/* ** Memory access optimizations. ** AA: Alias Analysis using high-level semantic disambiguation. ** FWD: Load Forwarding (L2L) + Store Forwarding (S2L). ** DSE: Dead-Store Elimination. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_mem_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_tab.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) #define fleft (&J->fold.left) #define fright (&J->fold.right) /* ** Caveat #1: return value is not always a TRef -- only use with tref_ref(). ** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold(). */ /* Return values from alias analysis. */ typedef enum { ALIAS_NO, /* The two refs CANNOT alias (exact). */ ALIAS_MAY, /* The two refs MAY alias (inexact). */ ALIAS_MUST /* The two refs MUST alias (exact). */ } AliasRet; /* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */ /* Simplified escape analysis: check for intervening stores. */ static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop) { IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */ for (ir++; ir < stop; ir++) if (ir->op2 == ref && (ir->o == IR_ASTORE || ir->o == IR_HSTORE || ir->o == IR_USTORE || ir->o == IR_FSTORE)) return ALIAS_MAY; /* Reference was stored and might alias. */ return ALIAS_NO; /* Reference was not stored. */ } /* Alias analysis for two different table references. */ static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb) { IRIns *taba = IR(ta), *tabb = IR(tb); int newa, newb; lua_assert(ta != tb); lua_assert(irt_istab(taba->t) && irt_istab(tabb->t)); /* Disambiguate new allocations. */ newa = (taba->o == IR_TNEW || taba->o == IR_TDUP); newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP); if (newa && newb) return ALIAS_NO; /* Two different allocations never alias. */ if (newb) { /* At least one allocation? */ IRIns *tmp = taba; taba = tabb; tabb = tmp; } else if (!newa) { return ALIAS_MAY; /* Anything else: we just don't know. */ } return aa_escape(J, taba, tabb); } /* Alias analysis for array and hash access using key-based disambiguation. */ static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb) { IRRef ka = refa->op2; IRRef kb = refb->op2; IRIns *keya, *keyb; IRRef ta, tb; if (refa == refb) return ALIAS_MUST; /* Shortcut for same refs. */ keya = IR(ka); if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); } keyb = IR(kb); if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); } ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1; tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1; if (ka == kb) { /* Same key. Check for same table with different ref (NEWREF vs. HREF). */ if (ta == tb) return ALIAS_MUST; /* Same key, same table. */ else return aa_table(J, ta, tb); /* Same key, possibly different table. */ } if (irref_isk(ka) && irref_isk(kb)) return ALIAS_NO; /* Different constant keys. */ if (refa->o == IR_AREF) { /* Disambiguate array references based on index arithmetic. */ int32_t ofsa = 0, ofsb = 0; IRRef basea = ka, baseb = kb; lua_assert(refb->o == IR_AREF); /* Gather base and offset from t[base] or t[base+-ofs]. */ if (keya->o == IR_ADD && irref_isk(keya->op2)) { basea = keya->op1; ofsa = IR(keya->op2)->i; if (basea == kb && ofsa != 0) return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */ } if (keyb->o == IR_ADD && irref_isk(keyb->op2)) { baseb = keyb->op1; ofsb = IR(keyb->op2)->i; if (ka == baseb && ofsb != 0) return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */ } if (basea == baseb && ofsa != ofsb) return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */ } else { /* Disambiguate hash references based on the type of their keys. */ lua_assert((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) && (refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF)); if (!irt_sametype(keya->t, keyb->t)) return ALIAS_NO; /* Different key types. */ } if (ta == tb) return ALIAS_MAY; /* Same table, cannot disambiguate keys. */ else return aa_table(J, ta, tb); /* Try to disambiguate tables. */ } /* Array and hash load forwarding. */ static TRef fwd_ahload(jit_State *J, IRRef xref) { IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef ref; /* Search for conflicting stores. */ ref = J->chain[fins->o+IRDELTA_L2S]; while (ref > xref) { IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } /* No conflicting store (yet): const-fold loads from allocations. */ { IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr; IRRef tab = ir->op1; ir = IR(tab); if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) { /* A NEWREF with a number key may end up pointing to the array part. ** But it's referenced from HSTORE and not found in the ASTORE chain. ** Or a NEWREF may rehash the table and move unrelated number keys. ** For now simply consider this a conflict without forwarding anything. */ if (xr->o == IR_AREF) { IRRef ref2 = J->chain[IR_NEWREF]; while (ref2 > tab) { IRIns *newref = IR(ref2); if (irt_isnum(IR(newref->op2)->t)) goto cselim; ref2 = newref->prev; } } else { IRIns *key = IR(xr->op2); if (key->o == IR_KSLOT) key = IR(key->op1); if (irt_isnum(key->t) && J->chain[IR_NEWREF] > tab) goto cselim; } /* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF. ** But the above search for conflicting stores was limited by xref. ** So continue searching, limited by the TNEW/TDUP. Store forwarding ** is ok, too. A conflict does NOT limit the search for a matching load. */ while (ref > tab) { IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: goto cselim; /* Conflicting store. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } if (ir->o == IR_TNEW && !irt_isnil(fins->t)) return 0; /* Type instability in loop-carried dependency. */ if (irt_ispri(fins->t)) { return TREF_PRI(irt_type(fins->t)); } else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) || irt_isstr(fins->t)) { TValue keyv; cTValue *tv; IRIns *key = IR(xr->op2); if (key->o == IR_KSLOT) key = IR(key->op1); lj_ir_kvalue(J->L, &keyv, key); tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv); lua_assert(itype2irt(tv) == irt_type(fins->t)); if (irt_isnum(fins->t)) return lj_ir_knum_u64(J, tv->u64); else if (LJ_DUALNUM && irt_isint(fins->t)) return lj_ir_kint(J, intV(tv)); else return lj_ir_kstr(J, strV(tv)); } /* Othwerwise: don't intern as a constant. */ } } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[fins->o]; while (ref > lim) { IRIns *load = IR(ref); if (load->op1 == xref) return ref; /* Load forwarding. */ ref = load->prev; } return 0; /* Conflict or no match. */ } /* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */ static TRef fwd_aload_reassoc(jit_State *J) { IRIns *irx = IR(fins->op1); IRIns *key = IR(irx->op2); if (key->o == IR_ADD && irref_isk(key->op2)) { IRIns *add2 = IR(key->op1); if (add2->o == IR_ADD && irref_isk(add2->op2) && IR(key->op2)->i == -IR(add2->op2)->i) { IRRef ref = J->chain[IR_AREF]; IRRef lim = add2->op1; if (irx->op1 > lim) lim = irx->op1; while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == irx->op1 && ir->op2 == add2->op1) return fwd_ahload(J, ref); ref = ir->prev; } } } return 0; } /* ALOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J) { IRRef ref; if ((ref = fwd_ahload(J, fins->op1)) || (ref = fwd_aload_reassoc(J))) return ref; return EMITFOLD; } /* HLOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J) { IRRef ref = fwd_ahload(J, fins->op1); if (ref) return ref; return EMITFOLD; } /* HREFK forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J) { IRRef tab = fleft->op1; IRRef ref = J->chain[IR_NEWREF]; while (ref > tab) { IRIns *newref = IR(ref); if (tab == newref->op1) { if (fright->op1 == newref->op2) return ref; /* Forward from NEWREF. */ else goto docse; } else if (aa_table(J, tab, newref->op1) != ALIAS_NO) { goto docse; } ref = newref->prev; } /* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */ if (IR(tab)->o == IR_TDUP) fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */ docse: return CSEFOLD; } /* Check whether HREF of TNEW/TDUP can be folded to niltv. */ int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J) { IRRef lim = fins->op1; /* Search limit. */ IRRef ref; /* The key for an ASTORE may end up in the hash part after a NEWREF. */ if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) { ref = J->chain[IR_ASTORE]; while (ref > lim) { if (ref < J->chain[IR_NEWREF]) return 0; /* Conflict. */ ref = IR(ref)->prev; } } /* Search for conflicting stores. */ ref = J->chain[IR_HSTORE]; while (ref > lim) { IRIns *store = IR(ref); if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO) return 0; /* Conflict. */ ref = store->prev; } return 1; /* No conflict. Can fold to niltv. */ } /* Check whether there's no aliasing NEWREF for the left operand. */ int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim) { IRRef ta = fins->op1; IRRef ref = J->chain[IR_NEWREF]; while (ref > lim) { IRIns *newref = IR(ref); if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO) return 0; /* Conflict. */ ref = newref->prev; } return 1; /* No conflict. Can safely FOLD/CSE. */ } /* ASTORE/HSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J) { IRRef xref = fins->op1; /* xREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(xref); IRRef1 *refp = &J->chain[fins->o]; IRRef ref = *refp; while (ref > xref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: /* Store to MAYBE the same location. */ if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: /* Store to the same location. */ if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards (includes conflicting loads). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || ir->o == IR_CALLL) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; lj_ir_nop(store); /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- ULOAD forwarding ---------------------------------------------------- */ /* The current alias analysis for upvalues is very simplistic. It only ** disambiguates between the unique upvalues of the same function. ** This is good enough for now, since most upvalues are read-only. ** ** A more precise analysis would be feasible with the help of the parser: ** generate a unique key for every upvalue, even across all prototypes. ** Lacking a realistic use-case, it's unclear whether this is beneficial. */ static AliasRet aa_uref(IRIns *refa, IRIns *refb) { if (refa->o != refb->o) return ALIAS_NO; /* Different UREFx type. */ if (refa->op1 == refb->op1) { /* Same function. */ if (refa->op2 == refb->op2) return ALIAS_MUST; /* Same function, same upvalue idx. */ else return ALIAS_NO; /* Same function, different upvalue idx. */ } else { /* Different functions, check disambiguation hash values. */ if (((refa->op2 ^ refb->op2) & 0xff)) return ALIAS_NO; /* Upvalues with different hash values cannot alias. */ else return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */ } } /* ULOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J) { IRRef uref = fins->op1; IRRef lim = REF_BASE; /* Search limit. */ IRIns *xr = IR(uref); IRRef ref; /* Search for conflicting stores. */ ref = J->chain[IR_USTORE]; while (ref > lim) { IRIns *store = IR(ref); switch (aa_uref(xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[IR_ULOAD]; while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == uref || (IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o)) return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */ ref = ir->prev; } return lj_ir_emit(J); } /* USTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J) { IRRef xref = fins->op1; /* xREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(xref); IRRef1 *refp = &J->chain[IR_USTORE]; IRRef ref = *refp; while (ref > xref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_uref(xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: /* Store to MAYBE the same location. */ if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: /* Store to the same location. */ if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards (includes conflicting loads). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t)) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; lj_ir_nop(store); if (ref+1 < J->cur.nins && store[1].o == IR_OBAR && store[1].op1 == xref) { IRRef1 *bp = &J->chain[IR_OBAR]; IRIns *obar; for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp)) bp = &obar->prev; /* Remove OBAR, too. */ *bp = obar->prev; lj_ir_nop(obar); } /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- FLOAD forwarding and FSTORE elimination ----------------------------- */ /* Alias analysis for field access. ** Field loads are cheap and field stores are rare. ** Simple disambiguation based on field types is good enough. */ static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb) { if (refa->op2 != refb->op2) return ALIAS_NO; /* Different fields. */ if (refa->op1 == refb->op1) return ALIAS_MUST; /* Same field, same object. */ else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM) return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */ else return ALIAS_MAY; /* Same field, possibly different object. */ } /* Only the loads for mutable fields end up here (see FOLD). */ TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J) { IRRef oref = fins->op1; /* Object reference. */ IRRef fid = fins->op2; /* Field ID. */ IRRef lim = oref; /* Search limit. */ IRRef ref; /* Search for conflicting stores. */ ref = J->chain[IR_FSTORE]; while (ref > oref) { IRIns *store = IR(ref); switch (aa_fref(J, fins, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } /* No conflicting store: const-fold field loads from allocations. */ if (fid == IRFL_TAB_META) { IRIns *ir = IR(oref); if (ir->o == IR_TNEW || ir->o == IR_TDUP) return lj_ir_knull(J, IRT_TAB); } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ return lj_opt_cselim(J, lim); } /* FSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J) { IRRef fref = fins->op1; /* FREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(fref); IRRef1 *refp = &J->chain[IR_FSTORE]; IRRef ref = *refp; while (ref > fref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_fref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards or conflicting loads. */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2)) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; lj_ir_nop(store); /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- XLOAD forwarding and XSTORE elimination ----------------------------- */ /* Find cdata allocation for a reference (if any). */ static IRIns *aa_findcnew(jit_State *J, IRIns *ir) { while (ir->o == IR_ADD) { if (!irref_isk(ir->op1)) { IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */ if (ir1) return ir1; } if (irref_isk(ir->op2)) return NULL; ir = IR(ir->op2); /* Flatten right-recursion. */ } return ir->o == IR_CNEW ? ir : NULL; } /* Alias analysis for two cdata allocations. */ static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb) { IRIns *cnewa = aa_findcnew(J, refa); IRIns *cnewb = aa_findcnew(J, refb); if (cnewa == cnewb) return ALIAS_MAY; /* Same allocation or neither is an allocation. */ if (cnewa && cnewb) return ALIAS_NO; /* Two different allocations never alias. */ if (cnewb) { cnewa = cnewb; refb = refa; } return aa_escape(J, cnewa, refb); } /* Alias analysis for XLOAD/XSTORE. */ static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb) { ptrdiff_t ofsa = 0, ofsb = 0; IRIns *refb = IR(xb->op1); IRIns *basea = refa, *baseb = refb; if (refa == refb && irt_sametype(xa->t, xb->t)) return ALIAS_MUST; /* Shortcut for same refs with identical type. */ /* Offset-based disambiguation. */ if (refa->o == IR_ADD && irref_isk(refa->op2)) { IRIns *irk = IR(refa->op2); basea = IR(refa->op1); ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; } if (refb->o == IR_ADD && irref_isk(refb->op2)) { IRIns *irk = IR(refb->op2); baseb = IR(refb->op1); ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; } /* Treat constified pointers like base vs. base+offset. */ if (basea->o == IR_KPTR && baseb->o == IR_KPTR) { ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea); baseb = basea; } /* This implements (very) strict aliasing rules. ** Different types do NOT alias, except for differences in signedness. ** Type punning through unions is allowed (but forces a reload). */ if (basea == baseb) { ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t); if (ofsa == ofsb) { if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t)) return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */ } else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) { return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */ } /* NYI: extract, extend or reinterpret bits (int <-> fp). */ return ALIAS_MAY; /* Overlapping or type punning: force reload. */ } if (!irt_sametype(xa->t, xb->t) && !(irt_typerange(xa->t, IRT_I8, IRT_U64) && ((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1)) return ALIAS_NO; /* NYI: structural disambiguation. */ return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */ } /* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */ static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2) { IRRef ref = J->chain[op]; IRRef lim = op1; if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; } while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == op1 && ir->op2 == op2) return ref; ref = ir->prev; } return 0; } /* Reassociate index references. */ static IRRef reassoc_xref(jit_State *J, IRIns *ir) { ptrdiff_t ofs = 0; if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */ IRIns *irk = IR(ir->op2); ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; ir = IR(ir->op1); } if (ir->o == IR_ADD) { /* Add of base + index. */ /* Index ref > base ref for loop-carried dependences. Only check op1. */ IRIns *ir2, *ir1 = IR(ir->op1); int32_t shift = 0; IRRef idxref; /* Determine index shifts. Don't bother with IR_MUL here. */ if (ir1->o == IR_BSHL && irref_isk(ir1->op2)) shift = IR(ir1->op2)->i; else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2) shift = 1; else ir1 = ir; ir2 = IR(ir1->op1); /* A non-reassociated add. Must be a loop-carried dependence. */ if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2)) ofs += (ptrdiff_t)IR(ir2->op2)->i << shift; else return 0; idxref = ir2->op1; /* Try to CSE the reassociated chain. Give up if not found. */ if (ir1 != ir && !(idxref = reassoc_trycse(J, ir1->o, idxref, ir1->o == IR_BSHL ? ir1->op2 : idxref))) return 0; if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2))) return 0; if (ofs != 0) { IRRef refk = tref_ref(lj_ir_kintp(J, ofs)); if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk))) return 0; } return idxref; /* Success, found a reassociated index reference. Phew. */ } return 0; /* Failure. */ } /* XLOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J) { IRRef xref = fins->op1; IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef ref; if ((fins->op2 & IRXLOAD_READONLY)) goto cselim; if ((fins->op2 & IRXLOAD_VOLATILE)) goto doemit; /* Search for conflicting stores. */ ref = J->chain[IR_XSTORE]; retry: if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; while (ref > lim) { IRIns *store = IR(ref); switch (aa_xref(J, xr, fins, store)) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: /* Emit conversion if the loaded type doesn't match the forwarded type. */ if (!irt_sametype(fins->t, IR(store->op2)->t)) { IRType dt = irt_type(fins->t), st = irt_type(IR(store->op2)->t); if (dt == IRT_I8 || dt == IRT_I16) { /* Trunc + sign-extend. */ st = dt | IRCONV_SEXT; dt = IRT_INT; } else if (dt == IRT_U8 || dt == IRT_U16) { /* Trunc + zero-extend. */ st = dt; dt = IRT_INT; } fins->ot = IRT(IR_CONV, dt); fins->op1 = store->op2; fins->op2 = (dt<<5)|st; return RETRYFOLD; } return store->op2; /* Store forwarding. */ } ref = store->prev; } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[IR_XLOAD]; while (ref > lim) { /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */ if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t)) return ref; ref = IR(ref)->prev; } /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */ if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] && xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) { ref = J->chain[IR_XSTORE]; while (ref > lim) /* Skip stores that have already been checked. */ ref = IR(ref)->prev; lim = xref; xr = IR(xref); goto retry; /* Retry with the reassociated reference. */ } doemit: return EMITFOLD; } /* XSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J) { IRRef xref = fins->op1; IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef val = fins->op2; /* Stored value reference. */ IRRef1 *refp = &J->chain[IR_XSTORE]; IRRef ref = *refp; if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; if (J->chain[IR_XSNEW] > lim) lim = J->chain[IR_XSNEW]; while (ref > lim) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_xref(J, xr, fins, store)) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards or any XLOADs (no AA performed). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || ir->o == IR_XLOAD) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; lj_ir_nop(store); /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- Forwarding of lj_tab_len -------------------------------------------- */ /* This is rather simplistic right now, but better than nothing. */ TRef LJ_FASTCALL lj_opt_fwd_tab_len(jit_State *J) { IRRef tab = fins->op1; /* Table reference. */ IRRef lim = tab; /* Search limit. */ IRRef ref; /* Any ASTORE is a conflict and limits the search. */ if (J->chain[IR_ASTORE] > lim) lim = J->chain[IR_ASTORE]; /* Search for conflicting HSTORE with numeric key. */ ref = J->chain[IR_HSTORE]; while (ref > lim) { IRIns *store = IR(ref); IRIns *href = IR(store->op1); IRIns *key = IR(href->op2); if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) { lim = ref; /* Conflicting store found, limits search for TLEN. */ break; } ref = store->prev; } /* Try to find a matching load. Below the conflicting store, if any. */ return lj_opt_cselim(J, lim); } /* -- ASTORE/HSTORE previous type analysis -------------------------------- */ /* Check whether the previous value for a table store is non-nil. ** This can be derived either from a previous store or from a previous ** load (because all loads from tables perform a type check). ** ** The result of the analysis can be used to avoid the metatable check ** and the guard against HREF returning niltv. Both of these are cheap, ** so let's not spend too much effort on the analysis. ** ** A result of 1 is exact: previous value CANNOT be nil. ** A result of 0 is inexact: previous value MAY be nil. */ int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref) { /* First check stores. */ IRRef ref = J->chain[loadop+IRDELTA_L2S]; while (ref > xref) { IRIns *store = IR(ref); if (store->op1 == xref) { /* Same xREF. */ /* A nil store MAY alias, but a non-nil store MUST alias. */ return !irt_isnil(store->t); } else if (irt_isnil(store->t)) { /* Must check any nil store. */ IRRef skref = IR(store->op1)->op2; IRRef xkref = IR(xref)->op2; /* Same key type MAY alias. Need ALOAD check due to multiple int types. */ if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) { if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref)) return 0; /* A nil store with same const key or var key MAY alias. */ /* Different const keys CANNOT alias. */ } /* Different key types CANNOT alias. */ } /* Other non-nil stores MAY alias. */ ref = store->prev; } /* Check loads since nothing could be derived from stores. */ ref = J->chain[loadop]; while (ref > xref) { IRIns *load = IR(ref); if (load->op1 == xref) { /* Same xREF. */ /* A nil load MAY alias, but a non-nil load MUST alias. */ return !irt_isnil(load->t); } /* Other non-nil loads MAY alias. */ ref = load->prev; } return 0; /* Nothing derived at all, previous value MAY be nil. */ } /* ------------------------------------------------------------------------ */ #undef IR #undef fins #undef fleft #undef fright #endif