/* ** Definitions for x86 and x64 CPUs. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_X86_H #define _LJ_TARGET_X86_H /* -- Registers IDs ------------------------------------------------------- */ #if LJ_64 #define GPRDEF(_) \ _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI) \ _(R8D) _(R9D) _(R10D) _(R11D) _(R12D) _(R13D) _(R14D) _(R15D) #define FPRDEF(_) \ _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7) \ _(XMM8) _(XMM9) _(XMM10) _(XMM11) _(XMM12) _(XMM13) _(XMM14) _(XMM15) #else #define GPRDEF(_) \ _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI) #define FPRDEF(_) \ _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7) #endif #define VRIDDEF(_) \ _(MRM) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_MRM = RID_MAX, /* Pseudo-id for ModRM operand. */ /* Calling conventions. */ RID_RET = RID_EAX, #if LJ_64 RID_FPRET = RID_XMM0, #else RID_RETLO = RID_EAX, RID_RETHI = RID_EDX, #endif /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_EDX, /* Interpreter BASE. */ #if LJ_64 && !LJ_ABI_WIN RID_LPC = RID_EBX, /* Interpreter PC. */ RID_DISPATCH = RID_R14D, /* Interpreter DISPATCH table. */ #else RID_LPC = RID_ESI, /* Interpreter PC. */ RID_DISPATCH = RID_EBX, /* Interpreter DISPATCH table. */ #endif /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_EAX, RID_MIN_FPR = RID_XMM0, RID_MAX_GPR = RID_MIN_FPR, RID_MAX_FPR = RID_MAX, RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR, }; /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except the stack pointer. */ #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR)-RID2RSET(RID_ESP)) #define RSET_FPR (RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR)) #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL #if LJ_64 /* Note: this requires the use of FORCE_REX! */ #define RSET_GPR8 RSET_GPR #else #define RSET_GPR8 (RSET_RANGE(RID_EAX, RID_EBX+1)) #endif /* ABI-specific register sets. */ #define RSET_ACD (RID2RSET(RID_EAX)|RID2RSET(RID_ECX)|RID2RSET(RID_EDX)) #if LJ_64 #if LJ_ABI_WIN /* Windows x64 ABI. */ #define RSET_SCRATCH \ (RSET_ACD|RSET_RANGE(RID_R8D, RID_R11D+1)|RSET_RANGE(RID_XMM0, RID_XMM5+1)) #define REGARG_GPRS \ (RID_ECX|((RID_EDX|((RID_R8D|(RID_R9D<<5))<<5))<<5)) #define REGARG_NUMGPR 4 #define REGARG_NUMFPR 4 #define REGARG_FIRSTFPR RID_XMM0 #define REGARG_LASTFPR RID_XMM3 #define STACKARG_OFS (4*8) #else /* The rest of the civilized x64 world has a common ABI. */ #define RSET_SCRATCH \ (RSET_ACD|RSET_RANGE(RID_ESI, RID_R11D+1)|RSET_FPR) #define REGARG_GPRS \ (RID_EDI|((RID_ESI|((RID_EDX|((RID_ECX|((RID_R8D|(RID_R9D \ <<5))<<5))<<5))<<5))<<5)) #define REGARG_NUMGPR 6 #define REGARG_NUMFPR 8 #define REGARG_FIRSTFPR RID_XMM0 #define REGARG_LASTFPR RID_XMM7 #define STACKARG_OFS 0 #endif #else /* Common x86 ABI. */ #define RSET_SCRATCH (RSET_ACD|RSET_FPR) #define REGARG_GPRS (RID_ECX|(RID_EDX<<5)) /* Fastcall only. */ #define REGARG_NUMGPR 2 /* Fastcall only. */ #define REGARG_NUMFPR 0 #define STACKARG_OFS 0 #endif #if LJ_64 /* Prefer the low 8 regs of each type to reduce REX prefixes. */ #undef rset_picktop #define rset_picktop(rs) (lj_fls(lj_bswap(rs)) ^ 0x18) #endif /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the *.dasc file(s). ** ** SPS_FIRST: First spill slot for general use. Reserve min. two 32 bit slots. */ #if LJ_64 #if LJ_ABI_WIN #define SPS_FIXED (4*2) #define SPS_FIRST (4*2) /* Don't use callee register save area. */ #else #define SPS_FIXED 4 #define SPS_FIRST 2 #endif #else #define SPS_FIXED 6 #define SPS_FIRST 2 #endif #define SPOFS_TMP 0 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 3) & ~3) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ intptr_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* Limited by the range of a short fwd jump (127): (2+2)*(32-1)-2 = 122. */ #define EXITSTUB_SPACING (2+2) #define EXITSTUBS_PER_GROUP 32 /* -- x86 ModRM operand encoding ------------------------------------------ */ typedef enum { XM_OFS0 = 0x00, XM_OFS8 = 0x40, XM_OFS32 = 0x80, XM_REG = 0xc0, XM_SCALE1 = 0x00, XM_SCALE2 = 0x40, XM_SCALE4 = 0x80, XM_SCALE8 = 0xc0, XM_MASK = 0xc0 } x86Mode; /* Structure to hold variable ModRM operand. */ typedef struct { int32_t ofs; /* Offset. */ uint8_t base; /* Base register or RID_NONE. */ uint8_t idx; /* Index register or RID_NONE. */ uint8_t scale; /* Index scale (XM_SCALE1 .. XM_SCALE8). */ } x86ModRM; /* -- Opcodes ------------------------------------------------------------- */ /* Macros to construct variable-length x86 opcodes. -(len+1) is in LSB. */ #define XO_(o) ((uint32_t)(0x0000fe + (0x##o<<24))) #define XO_FPU(a,b) ((uint32_t)(0x00fd + (0x##a<<16)+(0x##b<<24))) #define XO_0f(o) ((uint32_t)(0x0f00fd + (0x##o<<24))) #define XO_66(o) ((uint32_t)(0x6600fd + (0x##o<<24))) #define XO_660f(o) ((uint32_t)(0x0f66fc + (0x##o<<24))) #define XO_f20f(o) ((uint32_t)(0x0ff2fc + (0x##o<<24))) #define XO_f30f(o) ((uint32_t)(0x0ff3fc + (0x##o<<24))) /* This list of x86 opcodes is not intended to be complete. Opcodes are only ** included when needed. Take a look at DynASM or jit.dis_x86 to see the ** whole mess. */ typedef enum { /* Fixed length opcodes. XI_* prefix. */ XI_NOP = 0x90, XI_XCHGa = 0x90, XI_CALL = 0xe8, XI_JMP = 0xe9, XI_JMPs = 0xeb, XI_PUSH = 0x50, /* Really 50+r. */ XI_JCCs = 0x70, /* Really 7x. */ XI_JCCn = 0x80, /* Really 0f8x. */ XI_LEA = 0x8d, XI_MOVrib = 0xb0, /* Really b0+r. */ XI_MOVri = 0xb8, /* Really b8+r. */ XI_ARITHib = 0x80, XI_ARITHi = 0x81, XI_ARITHi8 = 0x83, XI_PUSHi8 = 0x6a, XI_TESTb = 0x84, XI_TEST = 0x85, XI_MOVmi = 0xc7, XI_GROUP5 = 0xff, /* Note: little-endian byte-order! */ XI_FLDZ = 0xeed9, XI_FLD1 = 0xe8d9, XI_FLDLG2 = 0xecd9, XI_FLDLN2 = 0xedd9, XI_FDUP = 0xc0d9, /* Really fld st0. */ XI_FPOP = 0xd8dd, /* Really fstp st0. */ XI_FPOP1 = 0xd9dd, /* Really fstp st1. */ XI_FRNDINT = 0xfcd9, XI_FSIN = 0xfed9, XI_FCOS = 0xffd9, XI_FPTAN = 0xf2d9, XI_FPATAN = 0xf3d9, XI_FSCALE = 0xfdd9, XI_FYL2X = 0xf1d9, /* Variable-length opcodes. XO_* prefix. */ XO_MOV = XO_(8b), XO_MOVto = XO_(89), XO_MOVtow = XO_66(89), XO_MOVtob = XO_(88), XO_MOVmi = XO_(c7), XO_MOVmib = XO_(c6), XO_LEA = XO_(8d), XO_ARITHib = XO_(80), XO_ARITHi = XO_(81), XO_ARITHi8 = XO_(83), XO_ARITHiw8 = XO_66(83), XO_SHIFTi = XO_(c1), XO_SHIFT1 = XO_(d1), XO_SHIFTcl = XO_(d3), XO_IMUL = XO_0f(af), XO_IMULi = XO_(69), XO_IMULi8 = XO_(6b), XO_CMP = XO_(3b), XO_TESTb = XO_(84), XO_TEST = XO_(85), XO_GROUP3b = XO_(f6), XO_GROUP3 = XO_(f7), XO_GROUP5b = XO_(fe), XO_GROUP5 = XO_(ff), XO_MOVZXb = XO_0f(b6), XO_MOVZXw = XO_0f(b7), XO_MOVSXb = XO_0f(be), XO_MOVSXw = XO_0f(bf), XO_MOVSXd = XO_(63), XO_BSWAP = XO_0f(c8), XO_CMOV = XO_0f(40), XO_MOVSD = XO_f20f(10), XO_MOVSDto = XO_f20f(11), XO_MOVSS = XO_f30f(10), XO_MOVSSto = XO_f30f(11), XO_MOVLPD = XO_660f(12), XO_MOVAPS = XO_0f(28), XO_XORPS = XO_0f(57), XO_ANDPS = XO_0f(54), XO_ADDSD = XO_f20f(58), XO_SUBSD = XO_f20f(5c), XO_MULSD = XO_f20f(59), XO_DIVSD = XO_f20f(5e), XO_SQRTSD = XO_f20f(51), XO_MINSD = XO_f20f(5d), XO_MAXSD = XO_f20f(5f), XO_ROUNDSD = 0x0b3a0ffc, /* Really 66 0f 3a 0b. See asm_fpmath. */ XO_UCOMISD = XO_660f(2e), XO_CVTSI2SD = XO_f20f(2a), XO_CVTSD2SI = XO_f20f(2d), XO_CVTTSD2SI= XO_f20f(2c), XO_CVTSI2SS = XO_f30f(2a), XO_CVTSS2SI = XO_f30f(2d), XO_CVTTSS2SI= XO_f30f(2c), XO_CVTSS2SD = XO_f30f(5a), XO_CVTSD2SS = XO_f20f(5a), XO_ADDSS = XO_f30f(58), XO_MOVD = XO_660f(6e), XO_MOVDto = XO_660f(7e), XO_FLDd = XO_(d9), XOg_FLDd = 0, XO_FLDq = XO_(dd), XOg_FLDq = 0, XO_FILDd = XO_(db), XOg_FILDd = 0, XO_FILDq = XO_(df), XOg_FILDq = 5, XO_FSTPd = XO_(d9), XOg_FSTPd = 3, XO_FSTPq = XO_(dd), XOg_FSTPq = 3, XO_FISTPq = XO_(df), XOg_FISTPq = 7, XO_FISTTPq = XO_(dd), XOg_FISTTPq = 1, XO_FADDq = XO_(dc), XOg_FADDq = 0, XO_FLDCW = XO_(d9), XOg_FLDCW = 5, XO_FNSTCW = XO_(d9), XOg_FNSTCW = 7 } x86Op; /* x86 opcode groups. */ typedef uint32_t x86Group; #define XG_(i8, i, g) ((x86Group)(((i8) << 16) + ((i) << 8) + (g))) #define XG_ARITHi(g) XG_(XI_ARITHi8, XI_ARITHi, g) #define XG_TOXOi(xg) ((x86Op)(0x000000fe + (((xg)<<16) & 0xff000000))) #define XG_TOXOi8(xg) ((x86Op)(0x000000fe + (((xg)<<8) & 0xff000000))) #define XO_ARITH(a) ((x86Op)(0x030000fe + ((a)<<27))) #define XO_ARITHw(a) ((x86Op)(0x036600fd + ((a)<<27))) typedef enum { XOg_ADD, XOg_OR, XOg_ADC, XOg_SBB, XOg_AND, XOg_SUB, XOg_XOR, XOg_CMP, XOg_X_IMUL } x86Arith; typedef enum { XOg_ROL, XOg_ROR, XOg_RCL, XOg_RCR, XOg_SHL, XOg_SHR, XOg_SAL, XOg_SAR } x86Shift; typedef enum { XOg_TEST, XOg_TEST_, XOg_NOT, XOg_NEG, XOg_MUL, XOg_IMUL, XOg_DIV, XOg_IDIV } x86Group3; typedef enum { XOg_INC, XOg_DEC, XOg_CALL, XOg_CALLfar, XOg_JMP, XOg_JMPfar, XOg_PUSH } x86Group5; /* x86 condition codes. */ typedef enum { CC_O, CC_NO, CC_B, CC_NB, CC_E, CC_NE, CC_BE, CC_NBE, CC_S, CC_NS, CC_P, CC_NP, CC_L, CC_NL, CC_LE, CC_NLE, CC_C = CC_B, CC_NAE = CC_C, CC_NC = CC_NB, CC_AE = CC_NB, CC_Z = CC_E, CC_NZ = CC_NE, CC_NA = CC_BE, CC_A = CC_NBE, CC_PE = CC_P, CC_PO = CC_NP, CC_NGE = CC_L, CC_GE = CC_NL, CC_NG = CC_LE, CC_G = CC_NLE } x86CC; #endif