|// Low-level VM code for PowerPC/e500 CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h | |.arch ppc |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// Don't use: r1 = sp, r2 and r13 = reserved and/or small data area ptr | |// The following must be C callee-save (but BASE is often refetched). |.define BASE, r14 // Base of current Lua stack frame. |.define KBASE, r15 // Constants of current Lua function. |.define PC, r16 // Next PC. |.define DISPATCH, r17 // Opcode dispatch table. |.define LREG, r18 // Register holding lua_State (also in SAVE_L). |.define MULTRES, r19 // Size of multi-result: (nresults+1)*8. | |// Constants for vectorized type-comparisons (hi+low GPR). C callee-save. |.define TISNUM, r22 |.define TISSTR, r23 |.define TISTAB, r24 |.define TISFUNC, r25 |.define TISNIL, r26 |.define TOBIT, r27 |.define ZERO, TOBIT // Zero in lo word. | |// The following temporaries are not saved across C calls, except for RA. |.define RA, r20 // Callee-save. |.define RB, r10 |.define RC, r11 |.define RD, r12 |.define INS, r7 // Overlaps CARG5. | |.define TMP0, r0 |.define TMP1, r8 |.define TMP2, r9 |.define TMP3, r6 // Overlaps CARG4. | |// Saved temporaries. |.define SAVE0, r21 | |// Calling conventions. |.define CARG1, r3 |.define CARG2, r4 |.define CARG3, r5 |.define CARG4, r6 // Overlaps TMP3. |.define CARG5, r7 // Overlaps INS. | |.define CRET1, r3 |.define CRET2, r4 | |// Stack layout while in interpreter. Must match with lj_frame.h. |.define SAVE_LR, 188(sp) |.define CFRAME_SPACE, 184 // Delta for sp. |// Back chain for sp: 184(sp) <-- sp entering interpreter |.define SAVE_r31, 176(sp) // 64 bit register saves. |.define SAVE_r30, 168(sp) |.define SAVE_r29, 160(sp) |.define SAVE_r28, 152(sp) |.define SAVE_r27, 144(sp) |.define SAVE_r26, 136(sp) |.define SAVE_r25, 128(sp) |.define SAVE_r24, 120(sp) |.define SAVE_r23, 112(sp) |.define SAVE_r22, 104(sp) |.define SAVE_r21, 96(sp) |.define SAVE_r20, 88(sp) |.define SAVE_r19, 80(sp) |.define SAVE_r18, 72(sp) |.define SAVE_r17, 64(sp) |.define SAVE_r16, 56(sp) |.define SAVE_r15, 48(sp) |.define SAVE_r14, 40(sp) |.define SAVE_CR, 36(sp) |.define UNUSED1, 32(sp) |.define SAVE_ERRF, 28(sp) // 32 bit C frame info. |.define SAVE_NRES, 24(sp) |.define SAVE_CFRAME, 20(sp) |.define SAVE_L, 16(sp) |.define SAVE_PC, 12(sp) |.define SAVE_MULTRES, 8(sp) |// Next frame lr: 4(sp) |// Back chain for sp: 0(sp) <-- sp while in interpreter | |.macro save_, reg; evstdd reg, SAVE_..reg; .endmacro |.macro rest_, reg; evldd reg, SAVE_..reg; .endmacro | |.macro saveregs | stwu sp, -CFRAME_SPACE(sp) | save_ r14; save_ r15; save_ r16; save_ r17; save_ r18; save_ r19 | mflr r0; mfcr r12 | save_ r20; save_ r21; save_ r22; save_ r23; save_ r24; save_ r25 | stw r0, SAVE_LR; stw r12, SAVE_CR | save_ r26; save_ r27; save_ r28; save_ r29; save_ r30; save_ r31 |.endmacro | |.macro restoreregs | lwz r0, SAVE_LR; lwz r12, SAVE_CR | rest_ r14; rest_ r15; rest_ r16; rest_ r17; rest_ r18; rest_ r19 | mtlr r0; mtcrf 0x38, r12 | rest_ r20; rest_ r21; rest_ r22; rest_ r23; rest_ r24; rest_ r25 | rest_ r26; rest_ r27; rest_ r28; rest_ r29; rest_ r30; rest_ r31 | addi sp, sp, CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace | |//----------------------------------------------------------------------- | |// These basic macros should really be part of DynASM. |.macro srwi, rx, ry, n; rlwinm rx, ry, 32-n, n, 31; .endmacro |.macro slwi, rx, ry, n; rlwinm rx, ry, n, 0, 31-n; .endmacro |.macro rotlwi, rx, ry, n; rlwinm rx, ry, n, 0, 31; .endmacro |.macro rotlw, rx, ry, rn; rlwnm rx, ry, rn, 0, 31; .endmacro |.macro subi, rx, ry, i; addi rx, ry, -i; .endmacro | |// Trap for not-yet-implemented parts. |.macro NYI; tw 4, sp, sp; .endmacro | |//----------------------------------------------------------------------- | |// Access to frame relative to BASE. |.define FRAME_PC, -8 |.define FRAME_FUNC, -4 | |// Instruction decode. |.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro |.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro |.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro |.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro |.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro | |.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro |.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | lwz INS, 0(PC) | addi PC, PC, 4 |.endmacro |// Instruction decode+dispatch. |.macro ins_NEXT2 | decode_OP4 TMP1, INS | decode_RB8 RB, INS | decode_RD8 RD, INS | lwzx TMP0, DISPATCH, TMP1 | decode_RA8 RA, INS | decode_RC8 RC, INS | mtctr TMP0 | bctr |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | lwz PC, LFUNC:RB->pc | lwz INS, 0(PC) | addi PC, PC, 4 | decode_OP4 TMP1, INS | decode_RA8 RA, INS | lwzx TMP0, DISPATCH, TMP1 | add RA, RA, BASE | mtctr TMP0 | bctr |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | stw PC, FRAME_PC(BASE) | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checknum, reg; evcmpltu reg, TISNUM; .endmacro |.macro checkstr, reg; evcmpeq reg, TISSTR; .endmacro |.macro checktab, reg; evcmpeq reg, TISTAB; .endmacro |.macro checkfunc, reg; evcmpeq reg, TISFUNC; .endmacro |.macro checknil, reg; evcmpeq reg, TISNIL; .endmacro |.macro checkok, label; blt label; .endmacro |.macro checkfail, label; bge label; .endmacro |.macro checkanyfail, label; bns label; .endmacro |.macro checkallok, label; bso label; .endmacro | |.macro branch_RD | srwi TMP0, RD, 1 | add PC, PC, TMP0 | addis PC, PC, -(BCBIAS_J*4 >> 16) |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro hotloop | NYI |.endmacro | |.macro hotcall | NYI |.endmacro | |// Set current VM state. Uses TMP0. |.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro |.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp | lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH) | // Assumes LJ_GC_BLACK is 0x04. | rlwinm mark, mark, 0, 30, 28 // black2gray(tab) | stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH) | stb mark, tab->marked | stw tmp, tab->gclist |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: TMP2 = previous base. | andi. TMP0, PC, FRAME_P | evsplati TMP1, LJ_TTRUE | beq ->cont_dispatch | | // Return from pcall or xpcall fast func. | lwz PC, FRAME_PC(TMP2) // Fetch PC of previous frame. | mr BASE, TMP2 // Restore caller base. | // Prepending may overwrite the pcall frame, so do it at the end. | stwu TMP1, FRAME_PC(RA) // Prepend true to results. | |->vm_returnc: | addi RD, RD, 8 // RD = (nresults+1)*8. | andi. TMP0, PC, FRAME_TYPE | cmpwi cr1, RD, 0 | li CRET1, LUA_YIELD | beq cr1, ->vm_unwind_c_eh | mr MULTRES, RD | beq ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return | // TMP0 = PC & FRAME_TYPE | cmpwi TMP0, FRAME_C | rlwinm TMP2, PC, 0, 0, 28 | li_vmstate C | sub TMP2, BASE, TMP2 // TMP2 = previous base. | bne ->vm_returnp | | addic. TMP1, RD, -8 | stw TMP2, L->base | lwz TMP2, SAVE_NRES | subi BASE, BASE, 8 | st_vmstate | slwi TMP2, TMP2, 3 | beq >2 |1: | addic. TMP1, TMP1, -8 | evldd TMP0, 0(RA) | addi RA, RA, 8 | evstdd TMP0, 0(BASE) | addi BASE, BASE, 8 | bne <1 | |2: | cmpw TMP2, RD // More/less results wanted? | bne >6 |3: | stw BASE, L->top // Store new top. | |->vm_leave_cp: | lwz TMP0, SAVE_CFRAME // Restore previous C frame. | li CRET1, 0 // Ok return status for vm_pcall. | stw TMP0, L->cframe | |->vm_leave_unw: | restoreregs | blr | |6: | ble >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | lwz TMP1, L->maxstack | cmplw BASE, TMP1 | bge >8 | evstdd TISNIL, 0(BASE) | addi RD, RD, 8 | addi BASE, BASE, 8 | b <2 | |7: // Less results wanted. | sub TMP0, RD, TMP2 | cmpwi TMP2, 0 // LUA_MULTRET+1 case? | sub TMP0, BASE, TMP0 // Subtract the difference. | iseleq BASE, BASE, TMP0 // Either keep top or shrink it. | b <3 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | stw BASE, L->top // Save current top held in BASE (yes). | mr SAVE0, RD | mr CARG2, TMP2 | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lwz TMP2, SAVE_NRES | mr RD, SAVE0 | slwi TMP2, TMP2, 3 | lwz BASE, L->top // Need the (realloced) L->top in BASE. | b <2 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mr sp, CARG1 | mr CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | li TMP0, ~LJ_VMST_C | lwz GL:TMP1, L->glref | stw TMP0, GL:TMP1->vmstate | b ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | rlwinm sp, CARG1, 0, 0, 29 |->vm_unwind_ff_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants. | evsplati TISFUNC, LJ_TFUNC | lus TOBIT, 0x4338 | evsplati TISTAB, LJ_TTAB | li TMP0, 0 | lwz BASE, L->base | evmergelo TOBIT, TOBIT, TMP0 | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | evsplati TISSTR, LJ_TSTR | li TMP1, LJ_TFALSE | evsplati TISNIL, LJ_TNIL | li_vmstate INTERP | lwz PC, FRAME_PC(BASE) // Fetch PC of previous frame. | la RA, -8(BASE) // Results start at BASE-8. | addi DISPATCH, DISPATCH, GG_G2DISP | stw TMP1, 0(RA) // Prepend false to error message. | li RD, 16 // 2 results: false + error message. | st_vmstate | b ->vm_returnc | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | li CARG2, LUA_MINSTACK | b >2 | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | add RC, BASE, RC | sub RA, RA, BASE | stw BASE, L->base | addi PC, PC, 4 // Must point after first instruction. | stw RC, L->top | srwi CARG2, RA, 3 |2: | // L->base = new base, L->top = top | stw PC, SAVE_PC | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lwz BASE, L->base | lwz RC, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub RC, RC, BASE | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mr L, CARG1 | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | mr BASE, CARG2 | lbz TMP1, L->status | stw L, SAVE_L | li PC, FRAME_CP | addi TMP0, sp, CFRAME_RESUME | addi DISPATCH, DISPATCH, GG_G2DISP | stw CARG3, SAVE_NRES | cmplwi TMP1, 0 | stw CARG3, SAVE_ERRF | stw TMP0, L->cframe | stw CARG3, SAVE_CFRAME | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | beq >3 | | // Resume after yield (like a return). | mr RA, BASE | lwz BASE, L->base | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants. | lwz TMP1, L->top | evsplati TISFUNC, LJ_TFUNC | lus TOBIT, 0x4338 | evsplati TISTAB, LJ_TTAB | lwz PC, FRAME_PC(BASE) | li TMP2, 0 | evsplati TISSTR, LJ_TSTR | sub RD, TMP1, BASE | evmergelo TOBIT, TOBIT, TMP2 | stb CARG3, L->status | andi. TMP0, PC, FRAME_TYPE | li_vmstate INTERP | addi RD, RD, 8 | evsplati TISNIL, LJ_TNIL | mr MULTRES, RD | st_vmstate | beq ->BC_RET_Z | b ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | li PC, FRAME_CP | stw CARG4, SAVE_ERRF | b >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | li PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | lwz TMP1, L:CARG1->cframe | stw CARG3, SAVE_NRES | mr L, CARG1 | stw CARG1, SAVE_L | mr BASE, CARG2 | stw sp, L->cframe // Add our C frame to cframe chain. | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | stw TMP1, SAVE_CFRAME | addi DISPATCH, DISPATCH, GG_G2DISP | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | lwz TMP2, L->base // TMP2 = old base (used in vmeta_call). | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants. | lwz TMP1, L->top | evsplati TISFUNC, LJ_TFUNC | add PC, PC, BASE | evsplati TISTAB, LJ_TTAB | lus TOBIT, 0x4338 | li TMP0, 0 | sub PC, PC, TMP2 // PC = frame delta + frame type | evsplati TISSTR, LJ_TSTR | sub NARGS8:RC, TMP1, BASE | evmergelo TOBIT, TOBIT, TMP0 | li_vmstate INTERP | evsplati TISNIL, LJ_TNIL | st_vmstate | |->vm_call_dispatch: | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC | li TMP0, -8 | evlddx LFUNC:RB, BASE, TMP0 | checkfunc LFUNC:RB | checkfail ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mr L, CARG1 | lwz TMP0, L:CARG1->stack | stw CARG1, SAVE_L | lwz TMP1, L->top | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | sub TMP0, TMP0, TMP1 // Compute -savestack(L, L->top). | lwz TMP1, L->cframe | stw sp, L->cframe // Add our C frame to cframe chain. | li TMP2, 0 | stw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame. | stw TMP2, SAVE_ERRF // No error function. | stw TMP1, SAVE_CFRAME | mtctr CARG4 | bctrl // (lua_State *L, lua_CFunction func, void *ud) | mr. BASE, CRET1 | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | li PC, FRAME_CP | addi DISPATCH, DISPATCH, GG_G2DISP | bne <3 // Else continue with the call. | b ->vm_leave_cp // No base? Just remove C frame. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the |// stack, so BASE doesn't need to be reloaded across these calls. | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8 | lwz TMP0, -12(BASE) // Continuation. | mr RB, BASE | mr BASE, TMP2 // Restore caller BASE. | lwz LFUNC:TMP1, FRAME_FUNC(TMP2) | cmplwi TMP0, 0 | lwz PC, -16(RB) // Restore PC from [cont|PC]. | beq >1 | subi TMP2, RD, 8 | lwz TMP1, LFUNC:TMP1->pc | evstddx TISNIL, RA, TMP2 // Ensure one valid arg. | lwz KBASE, PC2PROTO(k)(TMP1) | // BASE = base, RA = resultptr, RB = meta base | mtctr TMP0 | bctr // Jump to continuation. | |1: // Tail call from C function. | subi TMP1, RB, 16 | sub RC, TMP1, BASE | b ->vm_call_tail | |->cont_cat: // RA = resultptr, RB = meta base | lwz INS, -4(PC) | subi CARG2, RB, 16 | decode_RB8 SAVE0, INS | evldd TMP0, 0(RA) | add TMP1, BASE, SAVE0 | stw BASE, L->base | cmplw TMP1, CARG2 | sub CARG3, CARG2, TMP1 | decode_RA8 RA, INS | evstdd TMP0, 0(CARG2) | bne ->BC_CAT_Z | evstddx TMP0, BASE, RA | b ->cont_nop | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | evmergelo STR:RC, TISSTR, STR:RC | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | decode_RB8 RB, INS | evstdd STR:RC, 0(CARG3) | add CARG2, BASE, RB | b >1 | |->vmeta_tgets: | evmergelo TAB:RB, TISTAB, TAB:RB | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | evmergelo STR:RC, TISSTR, STR:RC | evstdd TAB:RB, 0(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | evstdd STR:RC, 0(CARG3) | b >1 | |->vmeta_tgetb: // TMP0 = index | efdcfsi TMP0, TMP0 | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB | evstdd TMP0, 0(CARG3) | b >1 | |->vmeta_tgetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | beq >3 | evldd TMP0, 0(CRET1) | evstddx TMP0, BASE, RA | ins_next | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | subfic TMP1, BASE, FRAME_CONT | lwz BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 16 // 2 args for func(t, k). | b ->vm_call_dispatch_f | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | evmergelo STR:RC, TISSTR, STR:RC | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | decode_RB8 RB, INS | evstdd STR:RC, 0(CARG3) | add CARG2, BASE, RB | b >1 | |->vmeta_tsets: | evmergelo TAB:RB, TISTAB, TAB:RB | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | evmergelo STR:RC, TISSTR, STR:RC | evstdd TAB:RB, 0(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | evstdd STR:RC, 0(CARG3) | b >1 | |->vmeta_tsetb: // TMP0 = index | efdcfsi TMP0, TMP0 | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB | evstdd TMP0, 0(CARG3) | b >1 | |->vmeta_tsetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | evlddx TMP0, BASE, RA | beq >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | evstdd TMP0, 0(CRET1) | ins_next | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | subfic TMP1, BASE, FRAME_CONT | lwz BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 24 // 3 args for func(t, k, v) | evstdd TMP0, 16(BASE) // Copy value to third argument. | b ->vm_call_dispatch_f | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | mr CARG1, L | subi PC, PC, 4 | add CARG2, BASE, RA | stw PC, SAVE_PC | add CARG3, BASE, RD | stw BASE, L->base | decode_OP1 CARG4, INS | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // Returns 0/1 or TValue * (metamethod). |3: | cmplwi CRET1, 1 | bgt ->vmeta_binop |4: | lwz INS, 0(PC) | addi PC, PC, 4 | decode_RD4 TMP2, INS | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | add TMP2, TMP2, TMP3 | isellt PC, PC, TMP2 |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | lwz INS, -4(PC) | evldd TMP0, 0(RA) | decode_RA8 TMP1, INS | evstddx TMP0, BASE, TMP1 | b ->cont_nop | |->cont_condt: // RA = resultptr | lwz TMP0, 0(RA) | li TMP1, LJ_TTRUE | cmplw TMP1, TMP0 // Branch if result is true. | b <4 | |->cont_condf: // RA = resultptr | lwz TMP0, 0(RA) | li TMP1, LJ_TFALSE | cmplw TMP0, TMP1 // Branch if result is false. | b <4 | |->vmeta_equal: | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV. | subi PC, PC, 4 | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // Returns 0/1 or TValue * (metamethod). | b <3 | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vn: | add CARG3, BASE, RB | add CARG4, KBASE, RC | b >1 | |->vmeta_arith_nv: | add CARG3, KBASE, RC | add CARG4, BASE, RB | b >1 | |->vmeta_unm: | add CARG3, BASE, RD | mr CARG4, CARG3 | b >1 | |->vmeta_arith_vv: | add CARG3, BASE, RB | add CARG4, BASE, RC |1: | add CARG2, BASE, RA | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | decode_OP1 CARG5, INS // Caveat: CARG5 overlaps INS. | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | beq ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | sub TMP1, CRET1, BASE | stw PC, -16(CRET1) // [cont|PC] | mr TMP2, BASE | addi PC, TMP1, FRAME_CONT | mr BASE, CRET1 | li NARGS8:RC, 16 // 2 args for func(o1, o2). | b ->vm_call_dispatch | |->vmeta_len: #if LJ_52 | mr SAVE0, CARG1 #endif | add CARG2, BASE, RD | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_len // (lua_State *L, TValue *o) | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | cmplwi CRET1, 0 | bne ->vmeta_binop // Binop call for compatibility. | mr CARG1, SAVE0 | b ->BC_LEN_Z #else | b ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // TMP2 = old base, BASE = new base, RC = nargs*8 | mr CARG1, L | stw TMP2, L->base // This is the callers base! | subi CARG2, BASE, 8 | stw PC, SAVE_PC | add CARG3, BASE, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | mr CARG1, L | stw BASE, L->base | subi CARG2, RA, 8 | stw PC, SAVE_PC | add CARG3, RA, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz TMP1, FRAME_PC(BASE) | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | lwz LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here. | b ->BC_CALLT_Z | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mr CARG1, L | stw BASE, L->base | mr CARG2, RA | stw PC, SAVE_PC | mr SAVE0, INS | bl extern lj_meta_for // (lua_State *L, TValue *base) |.if JIT | decode_OP1 TMP0, SAVE0 |.endif | decode_RA8 RA, SAVE0 |.if JIT | cmpwi TMP0, BC_JFORI |.endif | decode_RD8 RD, SAVE0 |.if JIT | beq =>BC_JFORI |.endif | b =>BC_FORI | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmplwi NARGS8:RC, 8 | evldd CARG1, 0(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmplwi NARGS8:RC, 16 | evldd CARG1, 0(BASE) | evldd CARG2, 8(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_n, name | .ffunc_1 name | checknum CARG1 | checkfail ->fff_fallback |.endmacro | |.macro .ffunc_nn, name | .ffunc_2 name | evmergehi TMP0, CARG1, CARG2 | checknum TMP0 | checkanyfail ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1. |.macro ffgccheck | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | cmplw TMP0, TMP1 | bgel ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc assert | cmplwi NARGS8:RC, 8 | evldd TMP0, 0(BASE) | blt ->fff_fallback | evaddw TMP1, TISNIL, TISNIL // Synthesize LJ_TFALSE. | la RA, -8(BASE) | evcmpltu cr1, TMP0, TMP1 | lwz PC, FRAME_PC(BASE) | bge cr1, ->fff_fallback | evstdd TMP0, 0(RA) | addi RD, NARGS8:RC, 8 // Compute (nresults+1)*8. | beq ->fff_res // Done if exactly 1 argument. | li TMP1, 8 | subi RC, RC, 8 |1: | cmplw TMP1, RC | evlddx TMP0, BASE, TMP1 | evstddx TMP0, RA, TMP1 | addi TMP1, TMP1, 8 | bne <1 | b ->fff_res | |.ffunc type | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | blt ->fff_fallback | li TMP2, ~LJ_TNUMX | cmplw CARG1, TISNUM | not TMP1, CARG1 | isellt TMP1, TMP2, TMP1 | slwi TMP1, TMP1, 3 | la TMP2, CFUNC:RB->upvalue | evlddx STR:CRET1, TMP2, TMP1 | b ->fff_restv | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | checktab CARG1 | evmergehi TMP1, CARG1, CARG1 | checkfail >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:RB, TAB:CARG1->metatable |2: | evmr CRET1, TISNIL | cmplwi TAB:RB, 0 | lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH) | beq ->fff_restv | lwz TMP0, TAB:RB->hmask | evmergelo CRET1, TISTAB, TAB:RB // Use metatable as default result. | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | evmergelo STR:RC, TISSTR, STR:RC | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |3: // Rearranged logic, because we expect _not_ to find the key. | evldd TMP0, NODE:TMP2->key | evldd TMP1, NODE:TMP2->val | evcmpeq TMP0, STR:RC | lwz NODE:TMP2, NODE:TMP2->next | checkallok >5 | cmplwi NODE:TMP2, 0 | beq ->fff_restv // Not found, keep default result. | b <3 |5: | checknil TMP1 | checkok ->fff_restv // Ditto for nil value. | evmr CRET1, TMP1 // Return value of mt.__metatable. | b ->fff_restv | |6: | cmpwi TMP1, LJ_TUDATA | not TMP1, TMP1 | beq <1 | checknum CARG1 | slwi TMP1, TMP1, 2 | li TMP2, 4*~LJ_TNUMX | isellt TMP1, TMP2, TMP1 | la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH) | lwzx TAB:RB, TMP2, TMP1 | b <2 | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | evmergehi TMP0, TAB:CARG1, TAB:CARG2 | checktab TMP0 | checkanyfail ->fff_fallback | lwz TAB:TMP1, TAB:CARG1->metatable | cmplwi TAB:TMP1, 0 | lbz TMP3, TAB:CARG1->marked | bne ->fff_fallback | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stw TAB:CARG2, TAB:CARG1->metatable | beq ->fff_restv | barrierback TAB:CARG1, TMP3, TMP0 | b ->fff_restv | |.ffunc rawget | cmplwi NARGS8:RC, 16 | evldd CARG2, 0(BASE) | blt ->fff_fallback | checktab CARG2 | la CARG3, 8(BASE) | checkfail ->fff_fallback | mr CARG1, L | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // Returns cTValue *. | evldd CRET1, 0(CRET1) | b ->fff_restv | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmplwi NARGS8:RC, 8 | evldd CARG1, 0(BASE) | bne ->fff_fallback // Exactly one argument. | checknum CARG1 | checkok ->fff_restv | b ->fff_fallback | |.ffunc_1 tostring | // Only handles the string or number case inline. | checkstr CARG1 | // A __tostring method in the string base metatable is ignored. | checkok ->fff_restv // String key? | // Handle numbers inline, unless a number base metatable is present. | lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH) | checknum CARG1 | cmplwi cr1, TMP0, 0 | stw BASE, L->base // Add frame since C call can throw. | crand 4*cr0+eq, 4*cr0+lt, 4*cr1+eq | stw PC, SAVE_PC // Redundant (but a defined value). | bne ->fff_fallback | ffgccheck | mr CARG1, L | mr CARG2, BASE | bl extern lj_str_fromnum // (lua_State *L, lua_Number *np) | // Returns GCstr *. | evmergelo STR:CRET1, TISSTR, STR:CRET1 | b ->fff_restv | |//-- Base library: iterators ------------------------------------------- | |.ffunc next | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | blt ->fff_fallback | evstddx TISNIL, BASE, NARGS8:RC // Set missing 2nd arg to nil. | checktab TAB:CARG2 | lwz PC, FRAME_PC(BASE) | checkfail ->fff_fallback | stw BASE, L->base // Add frame since C call can throw. | mr CARG1, L | stw BASE, L->top // Dummy frame length is ok. | la CARG3, 8(BASE) | stw PC, SAVE_PC | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Returns 0 at end of traversal. | cmplwi CRET1, 0 | evmr CRET1, TISNIL | beq ->fff_restv // End of traversal: return nil. | evldd TMP0, 8(BASE) // Copy key and value to results. | la RA, -8(BASE) | evldd TMP1, 16(BASE) | evstdd TMP0, 0(RA) | li RD, (2+1)*8 | evstdd TMP1, 8(RA) | b ->fff_res | |.ffunc_1 pairs | checktab TAB:CARG1 | lwz PC, FRAME_PC(BASE) | checkfail ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif | evstdd TISNIL, 8(BASE) | li RD, (3+1)*8 | evstdd CFUNC:TMP0, 0(RA) | b ->fff_res | |.ffunc_2 ipairs_aux | checktab TAB:CARG1 | lwz PC, FRAME_PC(BASE) | checkfail ->fff_fallback | checknum CARG2 | lus TMP3, 0x3ff0 | checkfail ->fff_fallback | efdctsi TMP2, CARG2 | lwz TMP0, TAB:CARG1->asize | evmergelo TMP3, TMP3, ZERO | lwz TMP1, TAB:CARG1->array | efdadd CARG2, CARG2, TMP3 | addi TMP2, TMP2, 1 | la RA, -8(BASE) | cmplw TMP0, TMP2 | slwi TMP3, TMP2, 3 | evstdd CARG2, 0(RA) | ble >2 // Not in array part? | evlddx TMP1, TMP1, TMP3 |1: | checknil TMP1 | li RD, (0+1)*8 | checkok ->fff_res // End of iteration, return 0 results. | li RD, (2+1)*8 | evstdd TMP1, 8(RA) | b ->fff_res |2: // Check for empty hash part first. Otherwise call C function. | lwz TMP0, TAB:CARG1->hmask | cmplwi TMP0, 0 | li RD, (0+1)*8 | beq ->fff_res | mr CARG2, TMP2 | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cmplwi CRET1, 0 | li RD, (0+1)*8 | beq ->fff_res | evldd TMP1, 0(CRET1) | b <1 | |.ffunc_1 ipairs | checktab TAB:CARG1 | lwz PC, FRAME_PC(BASE) | checkfail ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif | evsplati TMP1, 0 | li RD, (3+1)*8 | evstdd TMP1, 8(BASE) | evstdd CFUNC:TMP0, 0(RA) | b ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | cmplwi NARGS8:RC, 8 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | blt ->fff_fallback | mr TMP2, BASE | la BASE, 8(BASE) | // Remember active hook before pcall. | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31 | subi NARGS8:RC, NARGS8:RC, 8 | addi PC, TMP3, 8+FRAME_PCALL | b ->vm_call_dispatch | |.ffunc_2 xpcall | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | mr TMP2, BASE | checkfunc CARG2 // Traceback must be a function. | checkfail ->fff_fallback | la BASE, 16(BASE) | // Remember active hook before pcall. | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31 | evstdd CARG2, 0(TMP2) // Swap function and traceback. | subi NARGS8:RC, NARGS8:RC, 16 | evstdd CARG1, 8(TMP2) | addi PC, TMP3, 16+FRAME_PCALL | b ->vm_call_dispatch | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | evmergehi TMP0, L:CARG1, L:CARG1 |.else |.ffunc coroutine_wrap_aux | lwz L:CARG1, CFUNC:RB->upvalue[0].gcr |.endif |.if resume | cmpwi TMP0, LJ_TTHREAD | bne ->fff_fallback |.endif | lbz TMP0, L:CARG1->status | lwz TMP1, L:CARG1->cframe | lwz CARG2, L:CARG1->top | cmplwi cr0, TMP0, LUA_YIELD | lwz TMP2, L:CARG1->base | cmplwi cr1, TMP1, 0 | lwz TMP0, L:CARG1->maxstack | cmplw cr7, CARG2, TMP2 | lwz PC, FRAME_PC(BASE) | crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq // st>LUA_YIELD || cframe!=0 | add TMP2, CARG2, NARGS8:RC | crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq // base==top && st!=LUA_YIELD | cmplw cr1, TMP2, TMP0 | cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt | stw PC, SAVE_PC | cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt // cond1 || cond2 || stackov | stw BASE, L->base | blt cr6, ->fff_fallback |1: |.if resume | addi BASE, BASE, 8 // Keep resumed thread in stack for GC. | subi NARGS8:RC, NARGS8:RC, 8 | subi TMP2, TMP2, 8 |.endif | stw TMP2, L:CARG1->top | li TMP1, 0 | stw BASE, L->top |2: // Move args to coroutine. | cmpw TMP1, NARGS8:RC | evlddx TMP0, BASE, TMP1 | beq >3 | evstddx TMP0, CARG2, TMP1 | addi TMP1, TMP1, 8 | b <2 |3: | li CARG3, 0 | mr L:SAVE0, L:CARG1 | li CARG4, 0 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0) | // Returns thread status. |4: | lwz TMP2, L:SAVE0->base | cmplwi CRET1, LUA_YIELD | lwz TMP3, L:SAVE0->top | li_vmstate INTERP | lwz BASE, L->base | st_vmstate | bgt >8 | sub RD, TMP3, TMP2 | lwz TMP0, L->maxstack | cmplwi RD, 0 | add TMP1, BASE, RD | beq >6 // No results? | cmplw TMP1, TMP0 | li TMP1, 0 | bgt >9 // Need to grow stack? | | subi TMP3, RD, 8 | stw TMP2, L:SAVE0->top // Clear coroutine stack. |5: // Move results from coroutine. | cmplw TMP1, TMP3 | evlddx TMP0, TMP2, TMP1 | evstddx TMP0, BASE, TMP1 | addi TMP1, TMP1, 8 | bne <5 |6: | andi. TMP0, PC, FRAME_TYPE |.if resume | li TMP1, LJ_TTRUE | la RA, -8(BASE) | stw TMP1, -8(BASE) // Prepend true to results. | addi RD, RD, 16 |.else | mr RA, BASE | addi RD, RD, 8 |.endif |7: | stw PC, SAVE_PC | mr MULTRES, RD | beq ->BC_RET_Z | b ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | andi. TMP0, PC, FRAME_TYPE | la TMP3, -8(TMP3) | li TMP1, LJ_TFALSE | evldd TMP0, 0(TMP3) | stw TMP3, L:SAVE0->top // Remove error from coroutine stack. | li RD, (2+1)*8 | stw TMP1, -8(BASE) // Prepend false to results. | la RA, -8(BASE) | evstdd TMP0, 0(BASE) // Copy error message. | b <7 |.else | mr CARG1, L | mr CARG2, L:SAVE0 | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) |.endif | |9: // Handle stack expansion on return from yield. | mr CARG1, L | srwi CARG2, RD, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | li CRET1, 0 | b <4 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | lwz TMP0, L->cframe | add TMP1, BASE, NARGS8:RC | stw BASE, L->base | andi. TMP0, TMP0, CFRAME_RESUME | stw TMP1, L->top | li CRET1, LUA_YIELD | beq ->fff_fallback | stw ZERO, L->cframe | stb CRET1, L->status | b ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.ffunc_n math_abs | efdabs CRET1, CARG1 | // Fallthrough. | |->fff_restv: | // CRET1 = TValue result. | lwz PC, FRAME_PC(BASE) | la RA, -8(BASE) | evstdd CRET1, 0(RA) |->fff_res1: | // RA = results, PC = return. | li RD, (1+1)*8 |->fff_res: | // RA = results, RD = (nresults+1)*8, PC = return. | andi. TMP0, PC, FRAME_TYPE | mr MULTRES, RD | bne ->vm_return | lwz INS, -4(PC) | decode_RB8 RB, INS |5: | cmplw RB, RD // More results expected? | decode_RA8 TMP0, INS | bgt >6 | ins_next1 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | sub BASE, RA, TMP0 | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | evstddx TISNIL, RA, TMP1 | b <5 | |.macro math_extern, func | .ffunc math_ .. func | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | blt ->fff_fallback | checknum CARG2 | evmergehi CARG1, CARG2, CARG2 | checkfail ->fff_fallback | bl extern func@plt | evmergelo CRET1, CRET1, CRET2 | b ->fff_restv |.endmacro | |.macro math_extern2, func | .ffunc math_ .. func | cmplwi NARGS8:RC, 16 | evldd CARG2, 0(BASE) | evldd CARG4, 8(BASE) | blt ->fff_fallback | evmergehi CARG1, CARG4, CARG2 | checknum CARG1 | evmergehi CARG3, CARG4, CARG4 | checkanyfail ->fff_fallback | bl extern func@plt | evmergelo CRET1, CRET1, CRET2 | b ->fff_restv |.endmacro | |.macro math_round, func | .ffunc math_ .. func | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | blt ->fff_fallback | checknum CARG2 | evmergehi CARG1, CARG2, CARG2 | checkfail ->fff_fallback | lwz PC, FRAME_PC(BASE) | bl ->vm_..func.._hilo; | la RA, -8(BASE) | evstdd CRET2, 0(RA) | b ->fff_res1 |.endmacro | | math_round floor | math_round ceil | | math_extern sqrt | |.ffunc math_log | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checknum CARG2 | evmergehi CARG1, CARG2, CARG2 | checkfail ->fff_fallback | bl extern log@plt | evmergelo CRET1, CRET1, CRET2 | b ->fff_restv | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |->ff_math_deg: |.ffunc_n math_rad | evldd CARG2, CFUNC:RB->upvalue[0] | efdmul CRET1, CARG1, CARG2 | b ->fff_restv | |.ffunc math_ldexp | cmplwi NARGS8:RC, 16 | evldd CARG2, 0(BASE) | evldd CARG4, 8(BASE) | blt ->fff_fallback | evmergehi CARG1, CARG4, CARG2 | checknum CARG1 | checkanyfail ->fff_fallback | efdctsi CARG3, CARG4 | bl extern ldexp@plt | evmergelo CRET1, CRET1, CRET2 | b ->fff_restv | |.ffunc math_frexp | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | blt ->fff_fallback | checknum CARG2 | evmergehi CARG1, CARG2, CARG2 | checkfail ->fff_fallback | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | lwz PC, FRAME_PC(BASE) | bl extern frexp@plt | lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH) | evmergelo CRET1, CRET1, CRET2 | efdcfsi CRET2, TMP1 | la RA, -8(BASE) | evstdd CRET1, 0(RA) | li RD, (2+1)*8 | evstdd CRET2, 8(RA) | b ->fff_res | |.ffunc math_modf | cmplwi NARGS8:RC, 8 | evldd CARG2, 0(BASE) | blt ->fff_fallback | checknum CARG2 | evmergehi CARG1, CARG2, CARG2 | checkfail ->fff_fallback | la CARG3, -8(BASE) | lwz PC, FRAME_PC(BASE) | bl extern modf@plt | evmergelo CRET1, CRET1, CRET2 | la RA, -8(BASE) | evstdd CRET1, 0(BASE) | li RD, (2+1)*8 | b ->fff_res | |.macro math_minmax, name, cmpop | .ffunc_1 name | checknum CARG1 | li TMP1, 8 | checkfail ->fff_fallback |1: | evlddx CARG2, BASE, TMP1 | cmplw cr1, TMP1, NARGS8:RC | checknum CARG2 | bge cr1, ->fff_restv // Ok, since CRET1 = CARG1. | checkfail ->fff_fallback | cmpop CARG2, CARG1 | addi TMP1, TMP1, 8 | crmove 4*cr0+lt, 4*cr0+gt | evsel CARG1, CARG2, CARG1 | b <1 |.endmacro | | math_minmax math_min, efdtstlt | math_minmax math_max, efdtstgt | |//-- String library ----------------------------------------------------- | |.ffunc_1 string_len | checkstr STR:CARG1 | checkfail ->fff_fallback | lwz TMP0, STR:CARG1->len | efdcfsi CRET1, TMP0 | b ->fff_restv | |.ffunc string_byte // Only handle the 1-arg case here. | cmplwi NARGS8:RC, 8 | evldd STR:CARG1, 0(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checkstr STR:CARG1 | la RA, -8(BASE) | checkfail ->fff_fallback | lwz TMP0, STR:CARG1->len | li RD, (0+1)*8 | lbz TMP1, STR:CARG1[1] // Access is always ok (NUL at end). | li TMP2, (1+1)*8 | cmplwi TMP0, 0 | lwz PC, FRAME_PC(BASE) | efdcfsi CRET1, TMP1 | iseleq RD, RD, TMP2 | evstdd CRET1, 0(RA) | b ->fff_res | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmplwi NARGS8:RC, 8 | evldd CARG1, 0(BASE) | bne ->fff_fallback // Exactly 1 argument. | checknum CARG1 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | checkfail ->fff_fallback | efdctsiz TMP0, CARG1 | li CARG3, 1 | cmplwi TMP0, 255 | stb TMP0, 0(CARG2) | bgt ->fff_fallback |->fff_newstr: | mr CARG1, L | stw BASE, L->base | stw PC, SAVE_PC | bl extern lj_str_new // (lua_State *L, char *str, size_t l) | // Returns GCstr *. | lwz BASE, L->base | evmergelo STR:CRET1, TISSTR, STR:CRET1 | b ->fff_restv | |.ffunc string_sub | ffgccheck | cmplwi NARGS8:RC, 16 | evldd CARG3, 16(BASE) | evldd STR:CARG1, 0(BASE) | blt ->fff_fallback | evldd CARG2, 8(BASE) | li TMP2, -1 | beq >1 | checknum CARG3 | checkfail ->fff_fallback | efdctsiz TMP2, CARG3 |1: | checknum CARG2 | checkfail ->fff_fallback | checkstr STR:CARG1 | efdctsiz TMP1, CARG2 | checkfail ->fff_fallback | lwz TMP0, STR:CARG1->len | cmplw TMP0, TMP2 // len < end? (unsigned compare) | add TMP3, TMP2, TMP0 | blt >5 |2: | cmpwi TMP1, 0 // start <= 0? | add TMP3, TMP1, TMP0 | ble >7 |3: | sub. CARG3, TMP2, TMP1 | addi CARG2, STR:CARG1, #STR-1 | addi CARG3, CARG3, 1 | add CARG2, CARG2, TMP1 | isellt CARG3, r0, CARG3 | b ->fff_newstr | |5: // Negative end or overflow. | cmpw TMP0, TMP2 | addi TMP3, TMP3, 1 | iselgt TMP2, TMP3, TMP0 // end = end > len ? len : end+len+1 | b <2 | |7: // Negative start or underflow. | cmpwi cr1, TMP3, 0 | iseleq TMP1, r0, TMP3 | isel TMP1, r0, TMP1, 4*cr1+lt | addi TMP1, TMP1, 1 // start = 1 + (start ? start+len : 0) | b <3 | |.ffunc string_rep // Only handle the 1-char case inline. | ffgccheck | cmplwi NARGS8:RC, 16 | evldd CARG1, 0(BASE) | evldd CARG2, 8(BASE) | bne ->fff_fallback // Exactly 2 arguments. | checknum CARG2 | checkfail ->fff_fallback | checkstr STR:CARG1 | efdctsiz CARG3, CARG2 | checkfail ->fff_fallback | lwz TMP0, STR:CARG1->len | cmpwi CARG3, 0 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH) | ble >2 // Count <= 0? (or non-int) | cmplwi TMP0, 1 | subi TMP2, CARG3, 1 | blt >2 // Zero length string? | cmplw cr1, TMP1, CARG3 | bne ->fff_fallback // Fallback for > 1-char strings. | lbz TMP0, STR:CARG1[1] | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH) | blt cr1, ->fff_fallback |1: // Fill buffer with char. Yes, this is suboptimal code (do you care?). | cmplwi TMP2, 0 | stbx TMP0, CARG2, TMP2 | subi TMP2, TMP2, 1 | bne <1 | b ->fff_newstr |2: // Return empty string. | la STR:CRET1, DISPATCH_GL(strempty)(DISPATCH) | evmergelo CRET1, TISSTR, STR:CRET1 | b ->fff_restv | |.ffunc string_reverse | ffgccheck | cmplwi NARGS8:RC, 8 | evldd CARG1, 0(BASE) | blt ->fff_fallback | checkstr STR:CARG1 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH) | checkfail ->fff_fallback | lwz CARG3, STR:CARG1->len | la CARG1, #STR(STR:CARG1) | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH) | li TMP2, 0 | cmplw TMP1, CARG3 | subi TMP3, CARG3, 1 | blt ->fff_fallback |1: // Reverse string copy. | cmpwi TMP3, 0 | lbzx TMP1, CARG1, TMP2 | blt ->fff_newstr | stbx TMP1, CARG2, TMP3 | subi TMP3, TMP3, 1 | addi TMP2, TMP2, 1 | b <1 | |.macro ffstring_case, name, lo | .ffunc name | ffgccheck | cmplwi NARGS8:RC, 8 | evldd CARG1, 0(BASE) | blt ->fff_fallback | checkstr STR:CARG1 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH) | checkfail ->fff_fallback | lwz CARG3, STR:CARG1->len | la CARG1, #STR(STR:CARG1) | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH) | cmplw TMP1, CARG3 | li TMP2, 0 | blt ->fff_fallback |1: // ASCII case conversion. | cmplw TMP2, CARG3 | lbzx TMP1, CARG1, TMP2 | bge ->fff_newstr | subi TMP0, TMP1, lo | xori TMP3, TMP1, 0x20 | cmplwi TMP0, 26 | isellt TMP1, TMP3, TMP1 | stbx TMP1, CARG2, TMP2 | addi TMP2, TMP2, 1 | b <1 |.endmacro | |ffstring_case string_lower, 65 |ffstring_case string_upper, 97 | |//-- Table library ------------------------------------------------------ | |.ffunc_1 table_getn | checktab CARG1 | checkfail ->fff_fallback | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | efdcfsi CRET1, CRET1 | b ->fff_restv | |//-- Bit library -------------------------------------------------------- | |.macro .ffunc_bit, name | .ffunc_n bit_..name | efdadd CARG1, CARG1, TOBIT |.endmacro | |.ffunc_bit tobit |->fff_resbit: | efdcfsi CRET1, CARG1 | b ->fff_restv | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | li TMP1, 8 |1: | evlddx CARG2, BASE, TMP1 | cmplw cr1, TMP1, NARGS8:RC | checknum CARG2 | bge cr1, ->fff_resbit | checkfail ->fff_fallback | efdadd CARG2, CARG2, TOBIT | ins CARG1, CARG1, CARG2 | addi TMP1, TMP1, 8 | b <1 |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, or |.ffunc_bit_op bxor, xor | |.ffunc_bit bswap | rotlwi TMP0, CARG1, 8 | rlwimi TMP0, CARG1, 24, 0, 7 | rlwimi TMP0, CARG1, 24, 16, 23 | efdcfsi CRET1, TMP0 | b ->fff_restv | |.ffunc_bit bnot | not TMP0, CARG1 | efdcfsi CRET1, TMP0 | b ->fff_restv | |.macro .ffunc_bit_sh, name, ins, shmod | .ffunc_nn bit_..name | efdadd CARG2, CARG2, TOBIT | efdadd CARG1, CARG1, TOBIT |.if shmod == 1 | rlwinm CARG2, CARG2, 0, 27, 31 |.elif shmod == 2 | neg CARG2, CARG2 |.endif | ins TMP0, CARG1, CARG2 | efdcfsi CRET1, TMP0 | b ->fff_restv |.endmacro | |.ffunc_bit_sh lshift, slw, 1 |.ffunc_bit_sh rshift, srw, 1 |.ffunc_bit_sh arshift, sraw, 1 |.ffunc_bit_sh rol, rotlw, 0 |.ffunc_bit_sh ror, rotlw, 2 | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RB = CFUNC, RC = nargs*8 | lwz TMP3, CFUNC:RB->f | add TMP1, BASE, NARGS8:RC | lwz PC, FRAME_PC(BASE) // Fallback may overwrite PC. | addi TMP0, TMP1, 8*LUA_MINSTACK | lwz TMP2, L->maxstack | stw PC, SAVE_PC // Redundant (but a defined value). | cmplw TMP0, TMP2 | stw BASE, L->base | stw TMP1, L->top | mr CARG1, L | bgt >5 // Need to grow stack. | mtctr TMP3 | bctrl // (lua_State *L) | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | lwz BASE, L->base | cmpwi CRET1, 0 | slwi RD, CRET1, 3 | la RA, -8(BASE) | bgt ->fff_res // Returned nresults+1? |1: // Returned 0 or -1: retry fast path. | lwz TMP0, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub NARGS8:RC, TMP0, BASE | bne ->vm_call_tail // Returned -1? | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | andi. TMP0, PC, FRAME_TYPE | rlwinm TMP1, PC, 0, 0, 28 | bne >3 | lwz INS, -4(PC) | decode_RA8 TMP1, INS | addi TMP1, TMP1, 8 |3: | sub TMP2, BASE, TMP1 | b ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | li CARG2, LUA_MINSTACK | bl extern lj_state_growstack // (lua_State *L, int n) | lwz BASE, L->base | cmpw TMP0, TMP0 // Set 4*cr0+eq to force retry. | b <1 | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | mflr SAVE0 | stw BASE, L->base | add TMP0, BASE, NARGS8:RC | stw PC, SAVE_PC // Redundant (but a defined value). | stw TMP0, L->top | mr CARG1, L | bl extern lj_gc_step // (lua_State *L) | lwz BASE, L->base | mtlr SAVE0 | lwz TMP0, L->top | sub NARGS8:RC, TMP0, BASE | lwz CFUNC:RB, FRAME_FUNC(BASE) | blr | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | NYI |.endif | |->vm_rethook: // Dispatch target for return hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andi. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | beq >1 |5: // Re-dispatch to static ins. | addi TMP1, TMP1, GG_DISP2STATIC // Assumes decode_OP4 TMP1, INS. | lwzx TMP0, DISPATCH, TMP1 | mtctr TMP0 | bctr | |->vm_inshook: // Dispatch target for instr/line hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0 | bne <5 | | cmpwi cr1, TMP0, 0 | addic. TMP2, TMP2, -1 | beq cr1, <5 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | beq >1 | bge cr1, <5 |1: | mr CARG1, L | stw MULTRES, SAVE_MULTRES | mr CARG2, PC | stw BASE, L->base | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | lwz BASE, L->base |4: // Re-dispatch to static ins. | lwz INS, -4(PC) | decode_OP4 TMP1, INS | decode_RB8 RB, INS | addi TMP1, TMP1, GG_DISP2STATIC | decode_RD8 RD, INS | lwzx TMP0, DISPATCH, TMP1 | decode_RA8 RA, INS | decode_RC8 RC, INS | mtctr TMP0 | bctr | |->cont_hook: // Continue from hook yield. | addi PC, PC, 4 | lwz MULTRES, -20(RB) // Restore MULTRES for *M ins. | b <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | NYI |.endif | |->vm_callhook: // Dispatch target for call hooks. | mr CARG2, PC |.if JIT | b >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | ori CARG2, PC, 1 |1: |.endif | add TMP0, BASE, RC | stw PC, SAVE_PC | mr CARG1, L | stw BASE, L->base | sub RA, RA, BASE | stw TMP0, L->top | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // Returns ASMFunction. | lwz BASE, L->base | lwz TMP0, L->top | stw ZERO, SAVE_PC // Invalidate for subsequent line hook. | sub NARGS8:RC, TMP0, BASE | add RA, BASE, RA | lwz LFUNC:RB, FRAME_FUNC(BASE) | mtctr CRET1 | bctr | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_exit_handler: |.if JIT | NYI |.endif |->vm_exit_interp: |.if JIT | NYI |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// FP value rounding. Called by math.floor/math.ceil fast functions |// and from JIT code. |// |// This can be inlined if the CPU has the frin/friz/frip/frim instructions. |// The alternative hard-float approaches have a deep dependency chain. |// The resulting latency is at least 3x-7x the double-precision FP latency |// (e500v2: 6cy, e600: 5cy, Cell: 10cy) or around 20-70 cycles. |// |// The soft-float approach is tedious, but much faster (e500v2: ~11cy/~6cy). |// However it relies on a fast way to transfer the FP value to GPRs |// (e500v2: 0cy for lo-word, 1cy for hi-word). |// |.macro vm_round, name, mode | // Used temporaries: TMP0, TMP1, TMP2, TMP3. |->name.._efd: // Input: CARG2, output: CRET2 | evmergehi CARG1, CARG2, CARG2 |->name.._hilo: | // Input: CARG1 (hi), CARG2 (hi, lo), output: CRET2 | rlwinm TMP2, CARG1, 12, 21, 31 | addic. TMP2, TMP2, -1023 // exp = exponent(x) - 1023 | li TMP1, -1 | cmplwi cr1, TMP2, 51 // 0 <= exp <= 51? | subfic TMP0, TMP2, 52 | bgt cr1, >1 | lus TMP3, 0xfff0 | slw TMP0, TMP1, TMP0 // lomask = -1 << (52-exp) | sraw TMP1, TMP3, TMP2 // himask = (int32_t)0xfff00000 >> exp |.if mode == 2 // trunc(x): | evmergelo TMP0, TMP1, TMP0 | evand CRET2, CARG2, TMP0 // hi &= himask, lo &= lomask |.else | andc TMP2, CARG2, TMP0 | andc TMP3, CARG1, TMP1 | or TMP2, TMP2, TMP3 // ztest = (hi&~himask) | (lo&~lomask) | srawi TMP3, CARG1, 31 // signmask = (int32_t)hi >> 31 |.if mode == 0 // floor(x): | and. TMP2, TMP2, TMP3 // iszero = ((ztest & signmask) == 0) |.else // ceil(x): | andc. TMP2, TMP2, TMP3 // iszero = ((ztest & ~signmask) == 0) |.endif | and CARG2, CARG2, TMP0 // lo &= lomask | and CARG1, CARG1, TMP1 // hi &= himask | subc TMP0, CARG2, TMP0 | iseleq TMP0, CARG2, TMP0 // lo = iszero ? lo : lo-lomask | sube TMP1, CARG1, TMP1 | iseleq TMP1, CARG1, TMP1 // hi = iszero ? hi : hi-himask+carry | evmergelo CRET2, TMP1, TMP0 |.endif | blr |1: | bgtlr // Already done if >=2^52, +-inf or nan. |.if mode == 2 // trunc(x): | rlwinm TMP1, CARG1, 0, 0, 0 // hi = sign(x) | li TMP0, 0 | evmergelo CRET2, TMP1, TMP0 |.else | rlwinm TMP2, CARG1, 0, 1, 31 | srawi TMP0, CARG1, 31 // signmask = (int32_t)hi >> 31 | or TMP2, TMP2, CARG2 // ztest = abs(hi) | lo | lus TMP1, 0x3ff0 |.if mode == 0 // floor(x): | and. TMP2, TMP2, TMP0 // iszero = ((ztest & signmask) == 0) |.else // ceil(x): | andc. TMP2, TMP2, TMP0 // iszero = ((ztest & ~signmask) == 0) |.endif | li TMP0, 0 | iseleq TMP1, r0, TMP1 | rlwimi CARG1, TMP1, 0, 1, 31 // hi = sign(x) | (iszero ? 0.0 : 1.0) | evmergelo CRET2, CARG1, TMP0 |.endif | blr |.endmacro | |->vm_floor: | mflr CARG3 | evmergelo CARG2, CARG1, CARG2 | bl ->vm_floor_hilo | mtlr CARG3 | evmergehi CRET1, CRET2, CRET2 | blr | | vm_round vm_floor, 0 | vm_round vm_ceil, 1 |.if JIT | vm_round vm_trunc, 2 |.else |->vm_trunc_efd: |->vm_trunc_hilo: |.endif | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_ffi_call: |.if FFI | NYI |.endif | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RD = src2*8, JMP with RD = target | evlddx TMP0, BASE, RA | addi PC, PC, 4 | evlddx TMP1, BASE, RD | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | lwz TMP2, -4(PC) | evmergehi RB, TMP0, TMP1 | decode_RD4 TMP2, TMP2 | checknum RB | add TMP2, TMP2, TMP3 | checkanyfail ->vmeta_comp | efdcmplt TMP0, TMP1 if (op == BC_ISLE || op == BC_ISGT) { | efdcmpeq cr1, TMP0, TMP1 | cror 4*cr0+gt, 4*cr0+gt, 4*cr1+gt } if (op == BC_ISLT || op == BC_ISLE) { | iselgt PC, TMP2, PC } else { | iselgt PC, PC, TMP2 } | ins_next break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RD = src2*8, JMP with RD = target | evlddx CARG2, BASE, RA | addi PC, PC, 4 | evlddx CARG3, BASE, RD | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | lwz TMP2, -4(PC) | evmergehi RB, CARG2, CARG3 | decode_RD4 TMP2, TMP2 | checknum RB | add TMP2, TMP2, TMP3 | checkanyfail >5 | efdcmpeq CARG2, CARG3 if (vk) { | iselgt PC, TMP2, PC } else { | iselgt PC, PC, TMP2 } |1: | ins_next | |5: // Either or both types are not numbers. | evcmpeq CARG2, CARG3 | not TMP3, RB | cmplwi cr1, TMP3, ~LJ_TISPRI // Primitive? | crorc 4*cr7+lt, 4*cr0+so, 4*cr0+lt // 1: Same tv or different type. | cmplwi cr6, TMP3, ~LJ_TISTABUD // Table or userdata? | crandc 4*cr7+gt, 4*cr0+lt, 4*cr1+gt // 2: Same type and primitive. | mr SAVE0, PC if (vk) { | isel PC, TMP2, PC, 4*cr7+gt } else { | isel TMP2, PC, TMP2, 4*cr7+gt } | cror 4*cr7+lt, 4*cr7+lt, 4*cr7+gt // 1 or 2. if (vk) { | isel PC, TMP2, PC, 4*cr0+so } else { | isel PC, PC, TMP2, 4*cr0+so } | blt cr7, <1 // Done if 1 or 2. | blt cr6, <1 // Done if not tab/ud. | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:TMP2, TAB:CARG2->metatable | li CARG4, 1-vk // ne = 0 or 1. | cmplwi TAB:TMP2, 0 | beq <1 // No metatable? | lbz TMP2, TAB:TMP2->nomm | andi. TMP2, TMP2, 1<vmeta_equal // Handle __eq metamethod. break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RD = str_const*8 (~), JMP with RD = target | evlddx TMP0, BASE, RA | srwi RD, RD, 1 | lwz INS, 0(PC) | subfic RD, RD, -4 | addi PC, PC, 4 | lwzx STR:TMP1, KBASE, RD // KBASE-4-str_const*4 | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | decode_RD4 TMP2, INS | evmergelo STR:TMP1, TISSTR, STR:TMP1 | add TMP2, TMP2, TMP3 | evcmpeq TMP0, STR:TMP1 if (vk) { | isel PC, TMP2, PC, 4*cr0+so } else { | isel PC, PC, TMP2, 4*cr0+so } | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RD = num_const*8, JMP with RD = target | evlddx TMP0, BASE, RA | addi PC, PC, 4 | evlddx TMP1, KBASE, RD | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | lwz INS, -4(PC) | checknum TMP0 | checkfail >5 | efdcmpeq TMP0, TMP1 |1: | decode_RD4 TMP2, INS | add TMP2, TMP2, TMP3 if (vk) { | iselgt PC, TMP2, PC |5: } else { | iselgt PC, PC, TMP2 } |3: | ins_next if (!vk) { |5: | decode_RD4 TMP2, INS | add PC, TMP2, TMP3 | b <3 } break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target | lwzx TMP0, BASE, RA | srwi TMP1, RD, 3 | lwz INS, 0(PC) | addi PC, PC, 4 | not TMP1, TMP1 | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | cmplw TMP0, TMP1 | decode_RD4 TMP2, INS | add TMP2, TMP2, TMP3 if (vk) { | iseleq PC, TMP2, PC } else { | iseleq PC, PC, TMP2 } | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RD = src*8, JMP with RD = target | evlddx TMP0, BASE, RD | evaddw TMP1, TISNIL, TISNIL // Synthesize LJ_TFALSE. | lwz INS, 0(PC) | evcmpltu TMP0, TMP1 | addi PC, PC, 4 if (op == BC_IST || op == BC_ISF) { | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | decode_RD4 TMP2, INS | add TMP2, TMP2, TMP3 if (op == BC_IST) { | isellt PC, TMP2, PC } else { | isellt PC, PC, TMP2 } } else { if (op == BC_ISTC) { | checkfail >1 } else { | checkok >1 } | addis PC, PC, -(BCBIAS_J*4 >> 16) | decode_RD4 TMP2, INS | evstddx TMP0, BASE, RA | add PC, PC, TMP2 |1: } | ins_next break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RD = src*8 | ins_next1 | evlddx TMP0, BASE, RD | evstddx TMP0, BASE, RA | ins_next2 break; case BC_NOT: | // RA = dst*8, RD = src*8 | ins_next1 | lwzx TMP0, BASE, RD | subfic TMP1, TMP0, LJ_TTRUE | adde TMP0, TMP0, TMP1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_UNM: | // RA = dst*8, RD = src*8 | evlddx TMP0, BASE, RD | checknum TMP0 | checkfail ->vmeta_unm | efdneg TMP0, TMP0 | ins_next1 | evstddx TMP0, BASE, RA | ins_next2 break; case BC_LEN: | // RA = dst*8, RD = src*8 | evlddx CARG1, BASE, RD | checkstr CARG1 | checkfail >2 | lwz CRET1, STR:CARG1->len |1: | ins_next1 | efdcfsi TMP0, CRET1 | evstddx TMP0, BASE, RA | ins_next2 |2: | checktab CARG1 | checkfail ->vmeta_len #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | cmplwi TAB:TMP2, 0 | bne >9 |3: #endif |->BC_LEN_Z: | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | b <1 #if LJ_52 |9: | lbz TMP0, TAB:TMP2->nomm | andi. TMP0, TMP0, 1<vmeta_len #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre, t0, t1 | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | evlddx t0, BASE, RB | checknum t0 | evlddx t1, KBASE, RC | checkfail ->vmeta_arith_vn || break; ||case 1: | evlddx t1, BASE, RB | checknum t1 | evlddx t0, KBASE, RC | checkfail ->vmeta_arith_nv || break; ||default: | evlddx t0, BASE, RB | evlddx t1, BASE, RC | evmergehi TMP2, t0, t1 | checknum TMP2 | checkanyfail ->vmeta_arith_vv || break; ||} |.endmacro | |.macro ins_arith, ins | ins_arithpre TMP0, TMP1 | ins_next1 | ins TMP0, TMP0, TMP1 | evstddx TMP0, BASE, RA | ins_next2 |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith efdadd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith efdsub break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith efdmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arith efddiv break; case BC_MODVN: | ins_arithpre RD, SAVE0 |->BC_MODVN_Z: | efddiv CARG2, RD, SAVE0 | bl ->vm_floor_efd // floor(b/c) | efdmul TMP0, CRET2, SAVE0 | ins_next1 | efdsub TMP0, RD, TMP0 // b - floor(b/c)*c | evstddx TMP0, BASE, RA | ins_next2 break; case BC_MODNV: case BC_MODVV: | ins_arithpre RD, SAVE0 | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. break; case BC_POW: | evlddx CARG2, BASE, RB | evlddx CARG4, BASE, RC | evmergehi CARG1, CARG4, CARG2 | checknum CARG1 | evmergehi CARG3, CARG4, CARG4 | checkanyfail ->vmeta_arith_vv | bl extern pow@plt | evmergelo CRET2, CRET1, CRET2 | evstddx CRET2, BASE, RA | ins_next break; case BC_CAT: | // RA = dst*8, RB = src_start*8, RC = src_end*8 | sub CARG3, RC, RB | stw BASE, L->base | add CARG2, BASE, RC | mr SAVE0, RB |->BC_CAT_Z: | stw PC, SAVE_PC | mr CARG1, L | srwi CARG3, CARG3, 3 | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | lwz BASE, L->base | bne ->vmeta_binop | evlddx TMP0, BASE, SAVE0 // Copy result from RB to RA. | evstddx TMP0, BASE, RA | ins_next break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RD = str_const*8 (~) | ins_next1 | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | lwzx TMP0, KBASE, TMP1 // KBASE-4-str_const*4 | evmergelo TMP0, TISSTR, TMP0 | evstddx TMP0, BASE, RA | ins_next2 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RD = cdata_const*8 (~) | ins_next1 | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | lwzx TMP0, KBASE, TMP1 // KBASE-4-cdata_const*4 | li TMP2, LJ_TCDATA | evmergelo TMP0, TMP2, TMP0 | evstddx TMP0, BASE, RA | ins_next2 |.endif break; case BC_KSHORT: | // RA = dst*8, RD = int16_literal*8 | srwi TMP1, RD, 3 | extsh TMP1, TMP1 | ins_next1 | efdcfsi TMP0, TMP1 | evstddx TMP0, BASE, RA | ins_next2 break; case BC_KNUM: | // RA = dst*8, RD = num_const*8 | evlddx TMP0, KBASE, RD | ins_next1 | evstddx TMP0, BASE, RA | ins_next2 break; case BC_KPRI: | // RA = dst*8, RD = primitive_type*8 (~) | srwi TMP1, RD, 3 | not TMP0, TMP1 | ins_next1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_KNIL: | // RA = base*8, RD = end*8 | evstddx TISNIL, BASE, RA | addi RA, RA, 8 |1: | evstddx TISNIL, BASE, RA | cmpw RA, RD | addi RA, RA, 8 | blt <1 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RD = uvnum*8 | ins_next1 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RD, RD, 1 | addi RD, RD, offsetof(GCfuncL, uvptr) | lwzx UPVAL:RB, LFUNC:RB, RD | lwz TMP1, UPVAL:RB->v | evldd TMP0, 0(TMP1) | evstddx TMP0, BASE, RA | ins_next2 break; case BC_USETV: | // RA = uvnum*8, RD = src*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | evlddx TMP1, BASE, RD | lwzx UPVAL:RB, LFUNC:RB, RA | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andi. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP0, UPVAL:RB->closed | evmergehi TMP2, TMP1, TMP1 | evstdd TMP1, 0(CARG2) | cmplwi cr1, TMP0, 0 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | subi TMP2, TMP2, (LJ_TISNUM+1) | bne >2 // Upvalue is closed and black? |1: | ins_next | |2: // Check if new value is collectable. | cmplwi TMP2, LJ_TISGCV - (LJ_TISNUM+1) | bge <1 // tvisgcv(v) | lbz TMP3, GCOBJ:TMP1->gch.marked | andi. TMP3, TMP3, LJ_GC_WHITES // iswhite(v) | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETS: | // RA = uvnum*8, RD = str_const*8 (~) | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | srwi RA, RA, 1 | subfic TMP1, TMP1, -4 | addi RA, RA, offsetof(GCfuncL, uvptr) | lwzx STR:TMP1, KBASE, TMP1 // KBASE-4-str_const*4 | lwzx UPVAL:RB, LFUNC:RB, RA | evmergelo STR:TMP1, TISSTR, STR:TMP1 | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andi. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP3, STR:TMP1->marked | lbz TMP2, UPVAL:RB->closed | evstdd STR:TMP1, 0(CARG2) | bne >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | andi. TMP3, TMP3, LJ_GC_WHITES // iswhite(str) | cmplwi cr1, TMP2, 0 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETN: | // RA = uvnum*8, RD = num_const*8 | ins_next1 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | evlddx TMP0, KBASE, RD | lwzx UPVAL:RB, LFUNC:RB, RA | lwz TMP1, UPVAL:RB->v | evstdd TMP0, 0(TMP1) | ins_next2 break; case BC_USETP: | // RA = uvnum*8, RD = primitive_type*8 (~) | ins_next1 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | srwi TMP0, RD, 3 | lwzx UPVAL:RB, LFUNC:RB, RA | not TMP0, TMP0 | lwz TMP1, UPVAL:RB->v | stw TMP0, 0(TMP1) | ins_next2 break; case BC_UCLO: | // RA = level*8, RD = target | lwz TMP1, L->openupval | branch_RD // Do this first since RD is not saved. | stw BASE, L->base | cmplwi TMP1, 0 | mr CARG1, L | beq >1 | add CARG2, BASE, RA | bl extern lj_func_closeuv // (lua_State *L, TValue *level) | lwz BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype) | srwi TMP1, RD, 1 | stw BASE, L->base | subfic TMP1, TMP1, -4 | stw PC, SAVE_PC | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | mr CARG1, L | lwz CARG3, FRAME_FUNC(BASE) | // (lua_State *L, GCproto *pt, GCfuncL *parent) | bl extern lj_func_newL_gc | // Returns GCfuncL *. | lwz BASE, L->base | evmergelo LFUNC:CRET1, TISFUNC, LFUNC:CRET1 | evstddx LFUNC:CRET1, BASE, RA | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~) | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | mr CARG1, L | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | stw BASE, L->base | cmplw TMP0, TMP1 | stw PC, SAVE_PC | bge >5 |1: if (op == BC_TNEW) { | rlwinm CARG2, RD, 29, 21, 31 | rlwinm CARG3, RD, 18, 27, 31 | cmpwi CARG2, 0x7ff | li TMP1, 0x801 | iseleq CARG2, TMP1, CARG2 | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Returns Table *. } else { | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | bl extern lj_tab_dup // (lua_State *L, Table *kt) | // Returns Table *. } | lwz BASE, L->base | evmergelo TAB:CRET1, TISTAB, TAB:CRET1 | evstddx TAB:CRET1, BASE, RA | ins_next |5: | mr SAVE0, RD | bl extern lj_gc_step_fixtop // (lua_State *L) | mr RD, SAVE0 | mr CARG1, L | b <1 break; case BC_GGET: | // RA = dst*8, RD = str_const*8 (~) case BC_GSET: | // RA = src*8, RD = str_const*8 (~) | lwz LFUNC:TMP2, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | lwz TAB:RB, LFUNC:TMP2->env | subfic TMP1, TMP1, -4 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } break; case BC_TGETV: | // RA = dst*8, RB = table*8, RC = key*8 | evlddx TAB:RB, BASE, RB | evlddx RC, BASE, RC | checktab TAB:RB | checkfail ->vmeta_tgetv | checknum RC | checkfail >5 | // Convert number key to integer | efdctsi TMP2, RC | lwz TMP0, TAB:RB->asize | efdcfsi TMP1, TMP2 | cmplw cr0, TMP0, TMP2 | efdcmpeq cr1, RC, TMP1 | lwz TMP1, TAB:RB->array | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+gt | slwi TMP2, TMP2, 3 | ble ->vmeta_tgetv // Integer key and in array part? | evlddx TMP1, TMP1, TMP2 | checknil TMP1 | checkok >2 |1: | evstddx TMP1, BASE, RA | ins_next | |2: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andi. TMP0, TMP0, 1<vmeta_tgetv | |5: | checkstr STR:RC // String key? | checkok ->BC_TGETS_Z | b ->vmeta_tgetv break; case BC_TGETS: | // RA = dst*8, RB = table*8, RC = str_const*8 (~) | evlddx TAB:RB, BASE, RB | srwi TMP1, RC, 1 | checktab TAB:RB | subfic TMP1, TMP1, -4 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | checkfail ->vmeta_tgets1 |->BC_TGETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | evmergelo STR:RC, TISSTR, STR:RC | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | evldd TMP0, NODE:TMP2->key | evldd TMP1, NODE:TMP2->val | evcmpeq TMP0, STR:RC | checkanyfail >4 | checknil TMP1 | checkok >5 // Key found, but nil value? |3: | evstddx TMP1, BASE, RA | ins_next | |4: // Follow hash chain. | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | bne <1 | // End of hash chain: key not found, nil result. | evmr TMP1, TISNIL | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <3 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andi. TMP0, TMP0, 1<vmeta_tgets break; case BC_TGETB: | // RA = dst*8, RB = table*8, RC = index*8 | evlddx TAB:RB, BASE, RB | srwi TMP0, RC, 3 | checktab TAB:RB | checkfail ->vmeta_tgetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | cmplw TMP0, TMP1 | bge ->vmeta_tgetb | evlddx TMP1, TMP2, RC | checknil TMP1 | checkok >5 |1: | ins_next1 | evstddx TMP1, BASE, RA | ins_next2 | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andi. TMP2, TMP2, 1<vmeta_tgetb // Caveat: preserve TMP0! break; case BC_TSETV: | // RA = src*8, RB = table*8, RC = key*8 | evlddx TAB:RB, BASE, RB | evlddx RC, BASE, RC | checktab TAB:RB | checkfail ->vmeta_tsetv | checknum RC | checkfail >5 | // Convert number key to integer | efdctsi TMP2, RC | evlddx SAVE0, BASE, RA | lwz TMP0, TAB:RB->asize | efdcfsi TMP1, TMP2 | cmplw cr0, TMP0, TMP2 | efdcmpeq cr1, RC, TMP1 | lwz TMP1, TAB:RB->array | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+gt | slwi TMP0, TMP2, 3 | ble ->vmeta_tsetv // Integer key and in array part? | lbz TMP3, TAB:RB->marked | evlddx TMP2, TMP1, TMP0 | checknil TMP2 | checkok >3 |1: | andi. TMP2, TMP3, LJ_GC_BLACK // isblack(table) | evstddx SAVE0, TMP1, TMP0 | bne >7 |2: | ins_next | |3: // Check for __newindex if previous value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andi. TMP2, TMP2, 1<vmeta_tsetv | |5: | checkstr STR:RC // String key? | checkok ->BC_TSETS_Z | b ->vmeta_tsetv | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETS: | // RA = src*8, RB = table*8, RC = str_const*8 (~) | evlddx TAB:RB, BASE, RB | srwi TMP1, RC, 1 | checktab TAB:RB | subfic TMP1, TMP1, -4 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | checkfail ->vmeta_tsets1 |->BC_TSETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | evmergelo STR:RC, TISSTR, STR:RC | stb ZERO, TAB:RB->nomm // Clear metamethod cache. | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | evlddx SAVE0, BASE, RA | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | lbz TMP3, TAB:RB->marked | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | evldd TMP0, NODE:TMP2->key | evldd TMP1, NODE:TMP2->val | evcmpeq TMP0, STR:RC | checkanyfail >5 | checknil TMP1 | checkok >4 // Key found, but nil value? |2: | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | evstdd SAVE0, NODE:TMP2->val | bne >7 |3: | ins_next | |4: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <2 // No metatable: done. | lbz TMP0, TAB:TMP1->nomm | andi. TMP0, TMP0, 1<vmeta_tsets | |5: // Follow hash chain. | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | bne <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | lwz TAB:TMP1, TAB:RB->metatable | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | stw PC, SAVE_PC | mr CARG1, L | cmplwi TAB:TMP1, 0 | stw BASE, L->base | beq >6 // No metatable: continue. | lbz TMP0, TAB:TMP1->nomm | andi. TMP0, TMP0, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | mr CARG2, TAB:RB | evstdd STR:RC, 0(CARG3) | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Returns TValue *. | lwz BASE, L->base | evstdd SAVE0, 0(CRET1) | b <3 // No 2nd write barrier needed. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <3 break; case BC_TSETB: | // RA = src*8, RB = table*8, RC = index*8 | evlddx TAB:RB, BASE, RB | srwi TMP0, RC, 3 | checktab TAB:RB | checkfail ->vmeta_tsetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | lbz TMP3, TAB:RB->marked | cmplw TMP0, TMP1 | evlddx SAVE0, BASE, RA | bge ->vmeta_tsetb | evlddx TMP1, TMP2, RC | checknil TMP1 | checkok >5 |1: | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | evstddx SAVE0, TMP2, RC | bne >7 |2: | ins_next | |5: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <1 // No metatable: done. | lbz TMP1, TAB:TMP1->nomm | andi. TMP1, TMP1, 1<vmeta_tsetb // Caveat: preserve TMP0! | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RD = num_const*8 (start index) | add RA, BASE, RA |1: | add TMP3, KBASE, RD | lwz TAB:CARG2, -4(RA) // Guaranteed to be a table. | addic. TMP0, MULTRES, -8 | lwz TMP3, 4(TMP3) // Integer constant is in lo-word. | srwi CARG3, TMP0, 3 | beq >4 // Nothing to copy? | add CARG3, CARG3, TMP3 | lwz TMP2, TAB:CARG2->asize | slwi TMP1, TMP3, 3 | lbz TMP3, TAB:CARG2->marked | cmplw CARG3, TMP2 | add TMP2, RA, TMP0 | lwz TMP0, TAB:CARG2->array | bgt >5 | add TMP1, TMP1, TMP0 | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table) |3: // Copy result slots to table. | evldd TMP0, 0(RA) | addi RA, RA, 8 | cmpw cr1, RA, TMP2 | evstdd TMP0, 0(TMP1) | addi TMP1, TMP1, 8 | blt cr1, <3 | bne >7 |4: | ins_next | |5: // Need to resize array part. | stw BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | mr SAVE0, RD | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | // Must not reallocate the stack. | mr RD, SAVE0 | b <1 | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0 | b <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALL follows. break; case BC_CALL: | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8 | evlddx LFUNC:RB, BASE, RA | mr TMP2, BASE | add BASE, BASE, RA | subi NARGS8:RC, NARGS8:RC, 8 | checkfunc LFUNC:RB | addi BASE, BASE, 8 | checkfail ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALLT follows. break; case BC_CALLT: | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 | evlddx LFUNC:RB, BASE, RA | add RA, BASE, RA | lwz TMP1, FRAME_PC(BASE) | subi NARGS8:RC, NARGS8:RC, 8 | checkfunc LFUNC:RB | addi RA, RA, 8 | checkfail ->vmeta_callt |->BC_CALLT_Z: | andi. TMP0, TMP1, FRAME_TYPE // Caveat: preserve cr0 until the crand. | lbz TMP3, LFUNC:RB->ffid | xori TMP2, TMP1, FRAME_VARG | cmplwi cr1, NARGS8:RC, 0 | bne >7 |1: | stw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC. | li TMP2, 0 | cmplwi cr7, TMP3, 1 // (> FF_C) Calling a fast function? | beq cr1, >3 |2: | addi TMP3, TMP2, 8 | evlddx TMP0, RA, TMP2 | cmplw cr1, TMP3, NARGS8:RC | evstddx TMP0, BASE, TMP2 | mr TMP2, TMP3 | bne cr1, <2 |3: | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt | beq >5 |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | lwz INS, -4(TMP1) | decode_RA8 RA, INS | sub TMP1, BASE, RA | lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1) | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE. | b <4 | |7: // Tailcall from a vararg function. | andi. TMP0, TMP2, FRAME_TYPEP | bne <1 // Vararg frame below? | sub BASE, BASE, TMP2 // Relocate BASE down. | lwz TMP1, FRAME_PC(BASE) | andi. TMP0, TMP1, FRAME_TYPE | b <1 break; case BC_ITERC: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8)) | subi RA, RA, 24 // evldd doesn't support neg. offsets. | mr TMP2, BASE | evlddx LFUNC:RB, BASE, RA | add BASE, BASE, RA | evldd TMP0, 8(BASE) | evldd TMP1, 16(BASE) | evstdd LFUNC:RB, 24(BASE) // Copy callable. | checkfunc LFUNC:RB | evstdd TMP0, 32(BASE) // Copy state. | li NARGS8:RC, 16 // Iterators get 2 arguments. | evstdd TMP1, 40(BASE) // Copy control var. | addi BASE, BASE, 32 | checkfail ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | add RA, BASE, RA | lwz TAB:RB, -12(RA) | lwz RC, -4(RA) // Get index from control var. | lwz TMP0, TAB:RB->asize | lwz TMP1, TAB:RB->array | addi PC, PC, 4 |1: // Traverse array part. | cmplw RC, TMP0 | slwi TMP3, RC, 3 | bge >5 // Index points after array part? | evlddx TMP2, TMP1, TMP3 | checknil TMP2 | lwz INS, -4(PC) | checkok >4 | efdcfsi TMP0, RC | addi RC, RC, 1 | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | evstdd TMP2, 8(RA) | decode_RD4 TMP1, INS | stw RC, -4(RA) // Update control var. | add PC, TMP1, TMP3 | evstdd TMP0, 0(RA) |3: | ins_next | |4: // Skip holes in array part. | addi RC, RC, 1 | b <1 | |5: // Traverse hash part. | lwz TMP1, TAB:RB->hmask | sub RC, RC, TMP0 | lwz TMP2, TAB:RB->node |6: | cmplw RC, TMP1 // End of iteration? Branch to ITERL+1. | slwi TMP3, RC, 5 | bgt <3 | slwi RB, RC, 3 | sub TMP3, TMP3, RB | evlddx RB, TMP2, TMP3 | add NODE:TMP3, TMP2, TMP3 | checknil RB | lwz INS, -4(PC) | checkok >7 | evldd TMP3, NODE:TMP3->key | addis TMP2, PC, -(BCBIAS_J*4 >> 16) | evstdd RB, 8(RA) | add RC, RC, TMP0 | decode_RD4 TMP1, INS | evstdd TMP3, 0(RA) | addi RC, RC, 1 | add PC, TMP1, TMP2 | stw RC, -4(RA) // Update control var. | b <3 | |7: // Skip holes in hash part. | addi RC, RC, 1 | b <6 break; case BC_ISNEXT: | // RA = base*8, RD = target (points to ITERN) | add RA, BASE, RA | li TMP2, -24 | evlddx CFUNC:TMP1, RA, TMP2 | lwz TMP2, -16(RA) | lwz TMP3, -8(RA) | evmergehi TMP0, CFUNC:TMP1, CFUNC:TMP1 | cmpwi cr0, TMP2, LJ_TTAB | cmpwi cr1, TMP0, LJ_TFUNC | cmpwi cr6, TMP3, LJ_TNIL | bne cr1, >5 | lbz TMP1, CFUNC:TMP1->ffid | crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq | cmpwi cr7, TMP1, FF_next_N | srwi TMP0, RD, 1 | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq | add TMP3, PC, TMP0 | bne cr0, >5 | lus TMP1, 0xfffe | ori TMP1, TMP1, 0x7fff | stw ZERO, -4(RA) // Initialize control var. | stw TMP1, -8(RA) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | li TMP0, BC_JMP | li TMP1, BC_ITERC | stb TMP0, -1(PC) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) | stb TMP1, 3(PC) | b <1 break; case BC_VARG: | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | lwz TMP0, FRAME_PC(BASE) | add RC, BASE, RC | add RA, BASE, RA | addi RC, RC, FRAME_VARG | add TMP2, RA, RB | subi TMP3, BASE, 8 // TMP3 = vtop | sub RC, RC, TMP0 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | cmplwi cr1, RB, 0 | sub. TMP1, TMP3, RC | beq cr1, >5 // Copy all varargs? | subi TMP2, TMP2, 16 | ble >2 // No vararg slots? |1: // Copy vararg slots to destination slots. | evldd TMP0, 0(RC) | addi RC, RC, 8 | evstdd TMP0, 0(RA) | cmplw RA, TMP2 | cmplw cr1, RC, TMP3 | bge >3 // All destination slots filled? | addi RA, RA, 8 | blt cr1, <1 // More vararg slots? |2: // Fill up remainder with nil. | evstdd TISNIL, 0(RA) | cmplw RA, TMP2 | addi RA, RA, 8 | blt <2 |3: | ins_next | |5: // Copy all varargs. | lwz TMP0, L->maxstack | li MULTRES, 8 // MULTRES = (0+1)*8 | ble <3 // No vararg slots? | add TMP2, RA, TMP1 | cmplw TMP2, TMP0 | addi MULTRES, TMP1, 8 | bgt >7 |6: | evldd TMP0, 0(RC) | addi RC, RC, 8 | evstdd TMP0, 0(RA) | cmplw RC, TMP3 | addi RA, RA, 8 | blt <6 // More vararg slots? | b <3 | |7: // Grow stack for varargs. | mr CARG1, L | stw RA, L->top | sub SAVE0, RC, BASE // Need delta, because BASE may change. | stw BASE, L->base | sub RA, RA, BASE | stw PC, SAVE_PC | srwi CARG2, TMP1, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | lwz BASE, L->base | add RA, BASE, RA | add RC, BASE, SAVE0 | subi TMP3, BASE, 8 | b <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RD = extra_nresults*8 | add RD, RD, MULTRES // MULTRES >= 8, so RD >= 8. | // Fall through. Assumes BC_RET follows. break; case BC_RET: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD |1: | andi. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bne ->BC_RETV_Z | |->BC_RET_Z: | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return | lwz INS, -4(PC) | cmpwi RD, 8 | subi TMP2, BASE, 8 | subi RC, RD, 8 | decode_RB8 RB, INS | beq >3 | li TMP1, 0 |2: | addi TMP3, TMP1, 8 | evlddx TMP0, RA, TMP1 | cmpw TMP3, RC | evstddx TMP0, TMP2, TMP1 | beq >3 | addi TMP1, TMP3, 8 | evlddx TMP0, RA, TMP3 | cmpw TMP1, RC | evstddx TMP0, TMP2, TMP3 | bne <2 |3: |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | evstddx TISNIL, TMP2, TMP1 | b <5 | |->BC_RETV_Z: // Non-standard return case. | andi. TMP2, TMP1, FRAME_TYPEP | bne ->vm_return | // Return from vararg function: relocate BASE down. | sub BASE, BASE, TMP1 | lwz PC, FRAME_PC(BASE) | b <1 break; case BC_RET0: case BC_RET1: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD | andi. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bne ->BC_RETV_Z | | lwz INS, -4(PC) | subi TMP2, BASE, 8 | decode_RB8 RB, INS if (op == BC_RET1) { | evldd TMP0, 0(RA) | evstdd TMP0, 0(TMP2) } |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | evstddx TISNIL, TMP2, TMP1 | b <5 break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RD = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); | add RA, BASE, RA | evldd TMP1, FORL_IDX*8(RA) | evldd TMP3, FORL_STEP*8(RA) | evldd TMP2, FORL_STOP*8(RA) if (!vk) { | evcmpgtu cr0, TMP1, TISNUM | evcmpgtu cr7, TMP3, TISNUM | evcmpgtu cr1, TMP2, TISNUM | cror 4*cr0+lt, 4*cr0+lt, 4*cr7+lt | cror 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | blt ->vmeta_for } if (vk) { | efdadd TMP1, TMP1, TMP3 | evstdd TMP1, FORL_IDX*8(RA) } | evcmpgts TMP3, TISNIL | evstdd TMP1, FORL_EXT*8(RA) | bge >2 | efdcmpgt TMP1, TMP2 |1: if (op != BC_JFORL) { | srwi RD, RD, 1 | add RD, PC, RD if (op == BC_JFORI) { | addis PC, RD, -(BCBIAS_J*4 >> 16) } else { | addis RD, RD, -(BCBIAS_J*4 >> 16) } } if (op == BC_FORI) { | iselgt PC, RD, PC } else if (op == BC_IFORL) { | iselgt PC, PC, RD } else { | ble =>BC_JLOOP } | ins_next |2: | efdcmpgt TMP2, TMP1 | b <1 break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RD = target | evlddx TMP1, BASE, RA | subi RA, RA, 8 | checknil TMP1 | checkok >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | NYI } else { | branch_RD // Otherwise save control var + branch. | evstddx TMP1, BASE, RA } |1: | ins_next break; case BC_LOOP: | // RA = base*8, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | NYI |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RD = target | branch_RD | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | lbz TMP1, -4+PC2PROTO(numparams)(PC) | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw RA, TMP2 | slwi TMP1, TMP1, 3 | bgt ->vm_growstack_l | ins_next1 |2: | cmplw NARGS8:RC, TMP1 // Check for missing parameters. | ble >3 if (op == BC_JFUNCF) { | NYI } else { | ins_next2 } | |3: // Clear missing parameters. | evstddx TISNIL, BASE, NARGS8:RC | addi NARGS8:RC, NARGS8:RC, 8 | b <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | add TMP1, BASE, RC | add TMP0, RA, RC | stw LFUNC:RB, 4(TMP1) // Store copy of LFUNC. | addi TMP3, RC, 8+FRAME_VARG | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw TMP0, TMP2 | stw TMP3, 0(TMP1) // Store delta + FRAME_VARG. | bge ->vm_growstack_l | lbz TMP2, -4+PC2PROTO(numparams)(PC) | mr RA, BASE | mr RC, TMP1 | ins_next1 | cmpwi TMP2, 0 | addi BASE, TMP1, 8 | beq >3 |1: | cmplw RA, RC // Less args than parameters? | evldd TMP0, 0(RA) | bge >4 | evstdd TISNIL, 0(RA) // Clear old fixarg slot (help the GC). | addi RA, RA, 8 |2: | addic. TMP2, TMP2, -1 | evstdd TMP0, 8(TMP1) | addi TMP1, TMP1, 8 | bne <1 |3: | ins_next2 | |4: // Clear missing parameters. | evmr TMP0, TISNIL | b <2 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | lwz TMP3, CFUNC:RB->f } else { | lwz TMP3, DISPATCH_GL(wrapf)(DISPATCH) } | add TMP1, RA, NARGS8:RC | lwz TMP2, L->maxstack | add RC, BASE, NARGS8:RC | stw BASE, L->base | cmplw TMP1, TMP2 | stw RC, L->top | li_vmstate C | mtctr TMP3 if (op == BC_FUNCCW) { | lwz CARG2, CFUNC:RB->f } | mr CARG1, L | bgt ->vm_growstack_c // Need to grow stack. | st_vmstate | bctrl // (lua_State *L [, lua_CFunction f]) | // Returns nresults. | lwz TMP1, L->top | slwi RD, CRET1, 3 | lwz BASE, L->base | li_vmstate INTERP | lwz PC, FRAME_PC(BASE) // Fetch PC of caller. | sub RA, TMP1, RD // RA = L->top - nresults*8 | st_vmstate | b ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.sleb128 37\n", (int)ctx->codesz, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte 5\n\t.uleb128 %d\n\t.uleb128 %d\n", 0x80+i, 1+2*(31-i), 1200+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .LASFDE1-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.sleb128 37\n", (int)ctx->codesz, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte 5\n\t.uleb128 %d\n\t.uleb128 %d\n", 0x80+i, 1+2*(31-i), 1200+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE1:\n\n"); break; default: break; } }