| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LVM devices file lists devices that lvm can use. The default
file is /etc/lvm/devices/system.devices, and the lvmdevices(8)
command is used to add or remove device entries. If the file
does not exist, or if lvm.conf includes use_devicesfile=0, then
lvm will not use a devices file. When the devices file is in use,
the regex filter is not used, and the filter settings in lvm.conf
or on the command line are ignored.
LVM records devices in the devices file using hardware-specific
IDs, such as the WWID, and attempts to use subsystem-specific
IDs for virtual device types. These device IDs are also written
in the VG metadata. When no hardware or virtual ID is available,
lvm falls back using the unstable device name as the device ID.
When devnames are used, lvm performs extra scanning to find
devices if their devname changes, e.g. after reboot.
When proper device IDs are used, an lvm command will not look
at devices outside the devices file, but when devnames are used
as a fallback, lvm will scan devices outside the devices file
to locate PVs on renamed devices. A config setting
search_for_devnames can be used to control the scanning for
renamed devname entries.
Related to the devices file, the new command option
--devices <devnames> allows a list of devices to be specified for
the command to use, overriding the devices file. The listed
devices act as a sort of devices file in terms of limiting which
devices lvm will see and use. Devices that are not listed will
appear to be missing to the lvm command.
Multiple devices files can be kept in /etc/lvm/devices, which
allows lvm to be used with different sets of devices, e.g.
system devices do not need to be exposed to a specific application,
and the application can use lvm on its own set of devices that are
not exposed to the system. The option --devicesfile <filename> is
used to select the devices file to use with the command. Without
the option set, the default system devices file is used.
Setting --devicesfile "" causes lvm to not use a devices file.
An existing, empty devices file means lvm will see no devices.
The new command vgimportdevices adds PVs from a VG to the devices
file and updates the VG metadata to include the device IDs.
vgimportdevices -a will import all VGs into the system devices file.
LVM commands run by dmeventd not use a devices file by default,
and will look at all devices on the system. A devices file can
be created for dmeventd (/etc/lvm/devices/dmeventd.devices) If
this file exists, lvm commands run by dmeventd will use it.
Internal implementaion:
- device_ids_read - read the devices file
. add struct dev_use (du) to cmd->use_devices for each devices file entry
- dev_cache_scan - get /dev entries
. add struct device (dev) to dev_cache for each device on the system
- device_ids_match - match devices file entries to /dev entries
. match each du on cmd->use_devices to a dev in dev_cache, using device ID
. on match, set du->dev, dev->id, dev->flags MATCHED_USE_ID
- label_scan - read lvm headers and metadata from devices
. filters are applied, those that do not need data from the device
. filter-deviceid skips devs without MATCHED_USE_ID, i.e.
skips /dev entries that are not listed in the devices file
. read lvm label from dev
. filters are applied, those that use data from the device
. read lvm metadata from dev
. add info/vginfo structs for PVs/VGs (info is "lvmcache")
- device_ids_find_renamed_devs - handle devices with unstable devname ID
where devname changed
. this step only needed when devs do not have proper device IDs,
and their dev names change, e.g. after reboot sdb becomes sdc.
. detect incorrect match because PVID in the devices file entry
does not match the PVID found when the device was read above
. undo incorrect match between du and dev above
. search system devices for new location of PVID
. update devices file with new devnames for PVIDs on renamed devices
. label_scan the renamed devs
- continue with command processing
|
|
|
|
|
| |
from each command to one location in command init.
No functional change.
|
|
|
|
|
|
| |
and don't call it from inside pvcreate_each_device.
This avoids having to repeat it for users of
pvcreate_each_device (pvcreate/pvremove/vgcreate/vgextend.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
|
|
|
|
|
|
|
| |
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
|
| |
|
|
|
|
|
|
| |
If the PV was originally created with a larger-than-default
metadata area the restored one wasn't and might not even be
large enough to hold the metadata!
|
|
|
|
|
|
|
|
|
|
| |
If the device size does not match the size requested
by --setphysicalvolumesize, then prompt the user.
Make the pvcreate checking/prompting code handle
multiple prompts for the same device, since the
new prompt can be in addition to the existing
prompt when the PV is in a VG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
there's no parent
If there's parent processing handle, we don't need to create completely
new report group and status report - we'll just reuse the one already
initialized for the parent.
Currently, the situation where this matter is when doing internal report
to do the selection for processing commands where we have parent processing
handle for the command itself and processing handle for the selection
part (that is selection for non-reporting tools).
|
|
|
|
|
| |
Commit 4de6caf5 ("redefine pvcreate structs") left
out setting the "idp" pointer to the "id" arg.
|
|
|
|
|
|
|
|
|
|
| |
"pvcreate_each_params" was a temporary name used
to transition from the old "pvcreate_params".
Remove the old pvcreate_params struct and rename the
new pvcreate_each_params struct to pvcreate_params.
Rename various pvcreate_each_params terms to simply
pvcreate_params.
|
|
|
|
|
|
| |
New pv_create_args struct contains all the specific
parameters for creating a PV, independent of the
command.
|
| |
|
|
|
|
|
| |
Hmm rpmlint suggest fsf is using a different address these days,
so lets keep it up-to-date
|
| |
|
|
|
|
|
| |
Tags and --select are not yet supported because new code is needed
to ensure exactly one VG matches before the VG starts to be processed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
_pvcreate_check() has two missing requirements:
After refreshing filters there must be a rescan.
(Otherwise the persistent filter may remain empty.)
After wiping a signature, the filters must be refreshed.
(A device that was previously excluded by the filter due to
its signature might now need to be included.)
If several devices are added at once, the repeated scanning isn't
strictly needed, but we can address that later as part of the command
processing restructuring (by grouping the devices).
Replace the new pvcreate code added by commit
54685c20fc9dfb155a2e5bc9d8cf5f0aad944305 "filters: fix regression caused
by commit e80884cd080cad7e10be4588e3493b9000649426"
with this change to _pvcreate_check().
The filter refresh problem dates back to commit
acb4b5e4de3c49d36fe756f6fb9997ec179b89c2 "Fix pvcreate device check."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
e80884cd080cad7e10be4588e3493b9000649426
Commit e80884cd080cad7e10be4588e3493b9000649426 tried to dump filters
for them to be reevaluated when creating a PV to avoid overwriting
any existing signature that may have been created after last
scan/filtering.
However, we need to call refresh_filters instead of
persistent_filter->dump since dump requires proper rescannig to fill
up the persistent filter again. However, this is true only for pvcreate
but not for vgcreate with PV creation where the scanning happens before
this PV creation and hence the next rescan (if not full scan), does not
fill the persistent filter.
Also, move refresh_filters so that it's called sooner and only for
pvcreate, vgcreate already calls lvmcache_label_scan(cmd, 2) which
then calls refresh_filters itself, so no need to reevaluate this again.
This caused the persistent filter (/etc/lvm/cache/.cache file) to be
wrong and contain only the PV just being processed with
vgcreate <vg_name> <pv_name_to_create>.
This regression caused other block devices to be filtered out in case
the vgcreate with PV creation was used and then the persistent filter
is used by any other LVM command afterwards.
|
|
|
|
| |
metadata-exported.h is included by tools.h
|
|
|
|
|
| |
Files in tools/ should only use metadata-exported.h not metadata.h.
Rename pvcreate_locked to pvcreate_single.
|
|
|
|
|
|
|
|
|
| |
Start separating the validation from the action in the basic lvresize
code moved to the library.
Remove incorrect use of command line error codes from lvresize library
functions. Move errors.h to tools directory to reinforce this,
exporting public versions of the error codes in lvm2cmd.h for dmeventd
plugins to use.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
|
|
|
|
|
|
| |
V2: Correct call to lock_vol
Signed-off-by: Tony Asleson <tasleson@redhat.com>
|
| |
|
|
|
|
|
|
|
| |
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Embedding Area)
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Embedding Area)
New tools with PV header extension support will read the extension
if it exists and it's not an error if it does not exist (so old PVs
will still work seamlessly with new tools).
Old tools without PV header extension support will just ignore any
extension.
As for the Embedding Area location information (its start and size),
there are actually two places where this is stored:
- PV header extension
- VG metadata
The VG metadata contains a copy of what's written in the PV header
extension about the Embedding Area location (NULL value is not copied):
physical_volumes {
pv0 {
id = "AkSSRf-difg-fCCZ-NjAN-qP49-1zzg-S0Fd4T"
device = "/dev/sda" # Hint only
status = ["ALLOCATABLE"]
flags = []
dev_size = 262144 # 128 Megabytes
pe_start = 67584
pe_count = 23 # 92 Megabytes
ea_start = 2048
ea_size = 65536 # 32 Megabytes
}
}
The new metadata fields are "ea_start" and "ea_size".
This is mostly useful when restoring the PV by using existing
metadata backups (e.g. pvcreate --restorefile ...).
New tools does not require these two fields to exist in VG metadata,
they're not compulsory. Therefore, reading old VG metadata which doesn't
contain any Embedding Area information will not end up with any kind
of error but only a debug message that the ea_start and ea_size values
were not found.
Old tools just ignore these extra fields in VG metadata.
|
|
|
|
|
|
|
|
| |
pvcreate_params
Extract restorable PV creation parameters from struct pvcreate_params into
a separate struct pvcreate_restorable_params for clarity and also for better
maintainability when adding any new items later.
|
|
|
|
|
| |
Missing vg release on error path.
Add tests for few more error cases.
|
|
|
|
| |
alloc_policy_t, dm_string_mangling_t, percent_range_t, sign_t
|
|
|
|
| |
lvm.conf *and* lvmetad is running.
|
|
|
|
|
|
|
| |
Move commod code to destroy orphan VG into free_orphan_vg() function.
Use orphan vgmem for creation of PV lists.
Remove some free_pv_fid() calls (FIXME: check all of them)
FIXME: Check whether we could merge release_vg back again for all VGs.
|
|
|
|
|
|
|
| |
leaving behind the LVM-specific parts of the code (convenience wrappers that
handle `struct device` and `struct cmd_context`, basically). A number of
functions have been renamed (in addition to getting a dm_ prefix) -- namely,
all of the config interface now has a dm_config_ prefix.
|
|
|
|
|
|
|
|
| |
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
|
|
|
|
| |
Store label_sector only in struct physical_volume.
|
|
|
|
|
|
|
|
| |
Since format instances will use own memory pool, it's necessary to properly
deallocate it. For now, only fid is deallocated. The PV structure itself
still uses cmd mempool mostly, but anytime we'd like to add a mempool
in the struct physical_volume, we can just rename this fn to free_pv and
add the code (like we have free_vg fn for VGs).
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Introduce --norestorefile to allow user to override the new requirement.
This can also be overridden with "devices/require_restorefile_with_uuid"
in lvm.conf -- however the default is 1.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
| |
|
|
|
|
| |
Make find_pv_in_vg_by_uuid() return same type as related functions.
|
|
|
|
|
|
| |
Rename fill_default_pvcreate_params to pvcreate_params_set_defaults.
Rename pvcreate_validate_restore_params to pvcreate_restore_params_validate.
Rename pvcreate_validate_params to pvcreate_params_validate.
|
|
|
|
|
| |
For implicit pvcreate support, we need to call this from vgcreate and vgextend,
so move it into toollib.
|