/* * Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2012 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "lib/misc/lib.h" #include "lib/device/device.h" #include "lib/metadata/metadata.h" #include "lib/commands/toolcontext.h" #include "lib/misc/lvm-string.h" #include "lib/misc/lvm-file.h" #include "lib/cache/lvmcache.h" #include "lib/mm/memlock.h" #include "lib/datastruct/str_list.h" #include "lib/metadata/pv_alloc.h" #include "lib/metadata/segtype.h" #include "lib/activate/activate.h" #include "lib/display/display.h" #include "lib/locking/locking.h" #include "lib/format_text/archiver.h" #include "lib/format_text/format-text.h" #include "lib/format_text/layout.h" #include "lib/format_text/import-export.h" #include "lib/config/defaults.h" #include "lib/locking/lvmlockd.h" #include "lib/notify/lvmnotify.h" #include #include static struct physical_volume *_pv_read(struct cmd_context *cmd, const struct format_type *fmt, struct volume_group *vg, struct lvmcache_info *info); static int _check_pv_ext(struct cmd_context *cmd, struct volume_group *vg) { struct lvmcache_info *info; uint32_t ext_version, ext_flags; struct pv_list *pvl; if (vg_is_foreign(vg)) return 1; if (vg_is_shared(vg)) return 1; dm_list_iterate_items(pvl, &vg->pvs) { if (is_missing_pv(pvl->pv)) continue; /* is_missing_pv doesn't catch NULL dev */ if (!pvl->pv->dev) continue; if (!(info = lvmcache_info_from_pvid(pvl->pv->dev->pvid, pvl->pv->dev, 0))) continue; ext_version = lvmcache_ext_version(info); if (ext_version < PV_HEADER_EXTENSION_VSN) { log_warn("WARNING: PV %s in VG %s is using an old PV header, modify the VG to update.", dev_name(pvl->pv->dev), vg->name); continue; } ext_flags = lvmcache_ext_flags(info); if (!(ext_flags & PV_EXT_USED)) { log_warn("WARNING: PV %s in VG %s is missing the used flag in PV header.", dev_name(pvl->pv->dev), vg->name); } } return 1; } /* * Historically, DEFAULT_PVMETADATASIZE was 255 for many years, * but that value was only used if default_data_alignment was * disabled. Using DEFAULT_PVMETADATASIZE 255, pe_start was * rounded up to 192KB from aligning it with 64K * (DEFAULT_PE_ALIGN_OLD 128 sectors). Given a 4KB mda_start, * and 192KB pe_start, the mda_size between the two was 188KB. * This metadata area size was too small to be a good default, * and disabling default_data_alignment, with no other change, * does not imply that the default mda_size or pe_start should * change. */ int get_default_pvmetadatasize_sectors(void) { int pagesize = lvm_getpagesize(); /* * This returns the default size of the metadata area in units of * 512 byte sectors. * * We want the default pe_start to consistently be 1 MiB (1024 KiB), * (even if default_data_alignment is disabled.) * * The mda start is at pagesize offset from the start of the device. * * The metadata size is the space between mda start and pe_start. * * So, if set set default metadata size to 1024 KiB - KiB, * it will consistently produce pe_start of 1 MiB. * * pe_start 1024 KiB = 2048 sectors. * * pagesizes: * 4096 = 8 sectors. * 8192 = 16 sectors. * 16384 = 32 sectors. * 65536 = 128 sectors. */ switch (pagesize) { case 4096: return 2040; case 8192: return 2032; case 16384: return 2016; case 65536: return 1920; } log_warn("Using metadata size 960 KiB for non-standard page size %d.", pagesize); return 1920; } #define ONE_MB_IN_SECTORS 2048 /* 2048 * 512 = 1048576 */ void set_pe_align(struct physical_volume *pv, uint64_t data_alignment_sectors) { uint64_t default_data_alignment_mb; uint64_t pe_align_sectors; uint64_t temp_pe_align_sectors; uint32_t page_size_sectors; if (pv->pe_align) goto out; if (data_alignment_sectors) { /* Always use specified alignment */ log_debug("Requested PE alignment is %llu sectors", (unsigned long long)data_alignment_sectors); pe_align_sectors = data_alignment_sectors; pv->pe_align = data_alignment_sectors; goto out; } /* * By default the first PE is placed at 1 MiB. * * If default_data_alignment is 2, then the first PE * is placed at 2 * 1 MiB. * * If default_data_alignment is 3, then the first PE * is placed at 3 * 1 MiB. */ default_data_alignment_mb = find_config_tree_int(pv->fmt->cmd, devices_default_data_alignment_CFG, NULL); if (default_data_alignment_mb) pe_align_sectors = default_data_alignment_mb * FIRST_PE_AT_ONE_MB_IN_SECTORS; else pe_align_sectors = FIRST_PE_AT_ONE_MB_IN_SECTORS; pv->pe_align = pe_align_sectors; log_debug("Standard PE alignment is %llu sectors", (unsigned long long)pe_align_sectors); page_size_sectors = lvm_getpagesize() >> SECTOR_SHIFT; if (page_size_sectors > pe_align_sectors) { /* This shouldn't happen */ log_debug("Increasing PE alignment to page size %u sectors", page_size_sectors); pe_align_sectors = page_size_sectors; pv->pe_align = page_size_sectors; } if (!pv->dev) goto out; /* * Align to stripe-width of underlying md device if present */ if (find_config_tree_bool(pv->fmt->cmd, devices_md_chunk_alignment_CFG, NULL)) { temp_pe_align_sectors = dev_md_stripe_width(pv->fmt->cmd->dev_types, pv->dev); if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) { log_debug("Adjusting PE alignment from %llu sectors to md stripe width %llu sectors for %s", (unsigned long long)pe_align_sectors, (unsigned long long)temp_pe_align_sectors, dev_name(pv->dev)); pe_align_sectors = temp_pe_align_sectors; pv->pe_align = temp_pe_align_sectors; } } /* * Align to topology's minimum_io_size or optimal_io_size if present * - minimum_io_size - the smallest request the device can perform * w/o incurring a read-modify-write penalty (e.g. MD's chunk size) * - optimal_io_size - the device's preferred unit of receiving I/O * (e.g. MD's stripe width) */ if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_detection_CFG, NULL)) { temp_pe_align_sectors = dev_minimum_io_size(pv->fmt->cmd->dev_types, pv->dev); if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) { log_debug("Adjusting PE alignment from %llu sectors to mininum io size %llu sectors for %s", (unsigned long long)pe_align_sectors, (unsigned long long)temp_pe_align_sectors, dev_name(pv->dev)); pe_align_sectors = temp_pe_align_sectors; pv->pe_align = temp_pe_align_sectors; } temp_pe_align_sectors = dev_optimal_io_size(pv->fmt->cmd->dev_types, pv->dev); if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) { log_debug("Adjusting PE alignment from %llu sectors to optimal io size %llu sectors for %s", (unsigned long long)pe_align_sectors, (unsigned long long)temp_pe_align_sectors, dev_name(pv->dev)); pe_align_sectors = temp_pe_align_sectors; pv->pe_align = temp_pe_align_sectors; } } out: log_debug("Setting PE alignment to %llu sectors for %s.", (unsigned long long)pv->pe_align, dev_name(pv->dev)); } void set_pe_align_offset(struct physical_volume *pv, uint64_t data_alignment_offset_sectors) { if (pv->pe_align_offset) goto out; if (data_alignment_offset_sectors) { /* Always use specified data_alignment_offset */ pv->pe_align_offset = data_alignment_offset_sectors; goto out; } if (!pv->dev) goto out; if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_offset_detection_CFG, NULL)) { int align_offset = dev_alignment_offset(pv->fmt->cmd->dev_types, pv->dev); /* must handle a -1 alignment_offset; means dev is misaligned */ if (align_offset < 0) align_offset = 0; pv->pe_align_offset = align_offset; } out: log_debug("Setting PE alignment offset to %llu sectors for %s.", (unsigned long long)pv->pe_align_offset, dev_name(pv->dev)); } void add_pvl_to_vgs(struct volume_group *vg, struct pv_list *pvl) { dm_list_add(&vg->pvs, &pvl->list); vg->pv_count++; pvl->pv->vg = vg; pv_set_fid(pvl->pv, vg->fid); } void del_pvl_from_vgs(struct volume_group *vg, struct pv_list *pvl) { char pvid[ID_LEN + 1] __attribute__((aligned(8))); struct lvmcache_info *info; vg->pv_count--; dm_list_del(&pvl->list); pvid[ID_LEN] = 0; memcpy(pvid, &pvl->pv->id.uuid, ID_LEN); pvl->pv->vg = vg->fid->fmt->orphan_vg; /* orphan */ if ((info = lvmcache_info_from_pvid(pvid, pvl->pv->dev, 0))) lvmcache_fid_add_mdas(info, vg->fid->fmt->orphan_vg->fid, pvid, ID_LEN); pv_set_fid(pvl->pv, vg->fid->fmt->orphan_vg->fid); } /** * add_pv_to_vg - Add a physical volume to a volume group * @vg - volume group to add to * @pv_name - name of the pv (to be removed) * @pv - physical volume to add to volume group * * Returns: * 0 - failure * 1 - success * FIXME: remove pv_name - obtain safely from pv */ int add_pv_to_vg(struct volume_group *vg, const char *pv_name, struct physical_volume *pv, int new_pv) { struct pv_list *pvl; struct format_instance *fid = vg->fid; struct dm_pool *mem = vg->vgmem; char uuid[64] __attribute__((aligned(8))); int used; log_verbose("Adding physical volume '%s' to volume group '%s'", pv_name, vg->name); if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) { log_error("pv_list allocation for '%s' failed", pv_name); return 0; } if (!is_orphan_vg(pv->vg_name)) { log_error("Physical volume '%s' is already in volume group " "'%s'", pv_name, pv->vg_name); return 0; } if (!new_pv) { if ((used = is_used_pv(pv)) < 0) return_0; if (used) { log_error("PV %s is used by a VG but its metadata is missing.", pv_name); return 0; } } if (pv->fmt != fid->fmt) { log_error("Physical volume %s is of different format type (%s)", pv_name, pv->fmt->name); return 0; } /* Ensure PV doesn't depend on another PV already in the VG */ if (pv_uses_vg(pv, vg)) { log_error("Physical volume %s might be constructed from same " "volume group %s", pv_name, vg->name); return 0; } if (!(pv->vg_name = dm_pool_strdup(mem, vg->name))) { log_error("vg->name allocation failed for '%s'", pv_name); return 0; } /* both are struct id */ memcpy(&pv->vg_id, &vg->id, sizeof(struct id)); /* Units of 512-byte sectors */ pv->pe_size = vg->extent_size; /* * pe_count must always be calculated by pv_setup */ pv->pe_alloc_count = 0; /* LVM1 stores this outside a VG; LVM2 only stores it inside */ /* FIXME Default from config file? vgextend cmdline flag? */ pv->status |= ALLOCATABLE_PV; if (!fid->fmt->ops->pv_setup(fid->fmt, pv, vg)) { log_error("Format-specific setup of physical volume '%s' " "failed.", pv_name); return 0; } if (find_pv_in_vg(vg, pv_name) || find_pv_in_vg_by_uuid(vg, &pv->id)) { if (!id_write_format(&pv->id, uuid, sizeof(uuid))) { stack; uuid[0] = '\0'; } log_error("Physical volume '%s (%s)' already in the VG.", pv_name, uuid); return 0; } if (vg->pv_count && (vg->pv_count == vg->max_pv)) { log_error("No space for '%s' - volume group '%s' " "holds max %d physical volume(s).", pv_name, vg->name, vg->max_pv); return 0; } if (!alloc_pv_segment_whole_pv(mem, pv)) return_0; if ((uint64_t) vg->extent_count + pv->pe_count > MAX_EXTENT_COUNT) { log_error("Unable to add %s to %s: new extent count (%" PRIu64 ") exceeds limit (%" PRIu32 ").", pv_name, vg->name, (uint64_t) vg->extent_count + pv->pe_count, MAX_EXTENT_COUNT); return 0; } pvl->pv = pv; add_pvl_to_vgs(vg, pvl); vg->extent_count += pv->pe_count; vg->free_count += pv->pe_count; dm_list_iterate_items(pvl, &fid->fmt->orphan_vg->pvs) if (pv == pvl->pv) { /* unlink from orphan */ dm_list_del(&pvl->list); break; } return 1; } static int _move_pv(struct volume_group *vg_from, struct volume_group *vg_to, const char *pv_name, int enforce_pv_from_source) { struct physical_volume *pv; struct pv_list *pvl; /* FIXME: handle tags */ if (!(pvl = find_pv_in_vg(vg_from, pv_name))) { if (!enforce_pv_from_source && find_pv_in_vg(vg_to, pv_name)) /* * PV has already been moved. This can happen if an * LV is being moved that has multiple sub-LVs on the * same PV. */ return 1; log_error("Physical volume %s not in volume group %s", pv_name, vg_from->name); return 0; } if (vg_bad_status_bits(vg_from, RESIZEABLE_VG) || vg_bad_status_bits(vg_to, RESIZEABLE_VG)) return 0; del_pvl_from_vgs(vg_from, pvl); add_pvl_to_vgs(vg_to, pvl); pv = pvl->pv; vg_from->extent_count -= pv_pe_count(pv); vg_to->extent_count += pv_pe_count(pv); vg_from->free_count -= pv_pe_count(pv) - pv_pe_alloc_count(pv); vg_to->free_count += pv_pe_count(pv) - pv_pe_alloc_count(pv); return 1; } int move_pv(struct volume_group *vg_from, struct volume_group *vg_to, const char *pv_name) { return _move_pv(vg_from, vg_to, pv_name, 1); } struct vg_from_to { struct volume_group *from; struct volume_group *to; }; static int _move_pvs_used_by_lv_cb(struct logical_volume *lv, void *data) { struct vg_from_to *v = (struct vg_from_to*) data; struct lv_segment *lvseg; unsigned s; dm_list_iterate_items(lvseg, &lv->segments) for (s = 0; s < lvseg->area_count; s++) if (seg_type(lvseg, s) == AREA_PV) if (!_move_pv(v->from, v->to, pv_dev_name(seg_pv(lvseg, s)), 0)) return_0; return 1; } int move_pvs_used_by_lv(struct volume_group *vg_from, struct volume_group *vg_to, const char *lv_name) { struct vg_from_to data = { .from = vg_from, .to = vg_to }; struct lv_list *lvl; /* FIXME: handle tags */ if (!(lvl = find_lv_in_vg(vg_from, lv_name))) { log_error("Logical volume %s not in volume group %s", lv_name, vg_from->name); return 0; } if (vg_bad_status_bits(vg_from, RESIZEABLE_VG)) { log_error("Cannot move PV(s) from non resize volume group %s.", vg_from->name); return 0; } if (vg_bad_status_bits(vg_to, RESIZEABLE_VG)) { log_error("Cannot move PV(s) to non resize volume group %s.", vg_to->name); return 0; } if (!for_each_sub_lv(lvl->lv, _move_pvs_used_by_lv_cb, &data)) return_0; if (!_move_pvs_used_by_lv_cb(lvl->lv, &data)) return_0; return 1; } int validate_new_vg_name(struct cmd_context *cmd, const char *vg_name) { static char vg_path[PATH_MAX]; name_error_t name_error; name_error = validate_name_detailed(vg_name); if (NAME_VALID != name_error) { display_name_error(name_error); log_error("New volume group name \"%s\" is invalid.", vg_name); return 0; } snprintf(vg_path, sizeof(vg_path), "%s%s", cmd->dev_dir, vg_name); if (path_exists(vg_path)) { log_error("%s: already exists in filesystem", vg_path); return 0; } return 1; } int validate_vg_rename_params(struct cmd_context *cmd, const char *vg_name_old, const char *vg_name_new) { unsigned length; char *dev_dir; dev_dir = cmd->dev_dir; length = strlen(dev_dir); /* Check sanity of new name */ if (strlen(vg_name_new) > NAME_LEN - length - 2) { log_error("New volume group path exceeds maximum length " "of %d!", NAME_LEN - length - 2); return 0; } if (!validate_new_vg_name(cmd, vg_name_new)) return_0; if (!strcmp(vg_name_old, vg_name_new)) { log_error("Old and new volume group names must differ"); return 0; } return 1; } int vg_rename(struct cmd_context *cmd, struct volume_group *vg, const char *new_name) { struct dm_pool *mem = vg->vgmem; struct pv_list *pvl; vg->old_name = vg->name; if (!(vg->name = dm_pool_strdup(mem, new_name))) { log_error("vg->name allocation failed for '%s'", new_name); return 0; } dm_list_iterate_items(pvl, &vg->pvs) { /* Skip if VG didn't change e.g. with vgsplit */ if (pvl->pv->vg_name && !strcmp(new_name, pvl->pv->vg_name)) continue; if (!(pvl->pv->vg_name = dm_pool_strdup(mem, new_name))) { log_error("pv->vg_name allocation failed for '%s'", pv_dev_name(pvl->pv)); return 0; } /* Mark the PVs that still hold metadata with the old VG name */ log_debug_metadata("Marking PV %s as moved to VG %s", dev_name(pvl->pv->dev), new_name); pvl->pv->status |= PV_MOVED_VG; } return 1; } int vg_remove_check(struct volume_group *vg) { unsigned lv_count; if (vg_missing_pv_count(vg)) { log_error("Volume group \"%s\" not found, is inconsistent " "or has PVs missing.", vg ? vg->name : ""); log_error("Consider vgreduce --removemissing if metadata " "is inconsistent."); return 0; } lv_count = vg_visible_lvs(vg); if (lv_count) { log_error("Volume group \"%s\" still contains %u " "logical volume(s)", vg->name, lv_count); return 0; } return 1; } void vg_remove_pvs(struct volume_group *vg) { struct pv_list *pvl, *tpvl; dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs) { del_pvl_from_vgs(vg, pvl); dm_list_add(&vg->removed_pvs, &pvl->list); } } int vg_remove_direct(struct volume_group *vg) { struct physical_volume *pv; struct pv_list *pvl; int ret = 1; if (!vg_remove_mdas(vg)) { log_error("vg_remove_mdas %s failed", vg->name); return 0; } /* init physical volumes */ dm_list_iterate_items(pvl, &vg->removed_pvs) { pv = pvl->pv; if (is_missing_pv(pv)) continue; log_verbose("Removing physical volume \"%s\" from " "volume group \"%s\"", pv_dev_name(pv), vg->name); pv->vg_name = vg->fid->fmt->orphan_vg_name; pv->status &= ~ALLOCATABLE_PV; if (!dev_get_size(pv_dev(pv), &pv->size)) { log_error("%s: Couldn't get size.", pv_dev_name(pv)); ret = 0; continue; } /* FIXME Write to same sector label was read from */ if (!pv_write(vg->cmd, pv, 0)) { log_error("Failed to remove physical volume \"%s\"" " from volume group \"%s\"", pv_dev_name(pv), vg->name); ret = 0; } } lockd_vg_update(vg); set_vg_notify(vg->cmd); if (!backup_remove(vg->cmd, vg->name)) stack; if (ret) log_print_unless_silent("Volume group \"%s\" successfully removed", vg->name); else log_error("Volume group \"%s\" not properly removed", vg->name); return ret; } int vg_remove(struct volume_group *vg) { int ret; ret = vg_remove_direct(vg); return ret; } int check_dev_block_size_for_vg(struct device *dev, const struct volume_group *vg, unsigned int *max_logical_block_size_found) { unsigned int physical_block_size, logical_block_size; if (!(dev_get_direct_block_sizes(dev, &physical_block_size, &logical_block_size))) return_0; /* FIXME: max_logical_block_size_found does not seem to be used anywhere */ if (logical_block_size > *max_logical_block_size_found) *max_logical_block_size_found = logical_block_size; if (logical_block_size >> SECTOR_SHIFT > vg->extent_size) { log_error("Physical extent size used for volume group %s " "is less than logical block size (%u bytes) that %s uses.", vg->name, logical_block_size, dev_name(dev)); return 0; } return 1; } int vg_check_pv_dev_block_sizes(const struct volume_group *vg) { struct pv_list *pvl; unsigned int max_logical_block_size_found = 0; dm_list_iterate_items(pvl, &vg->pvs) { if (!check_dev_block_size_for_vg(pvl->pv->dev, vg, &max_logical_block_size_found)) return 0; } return 1; } int check_pv_dev_sizes(struct volume_group *vg) { struct pv_list *pvl; uint64_t dev_size, size; int r = 1; if (!vg->cmd->check_pv_dev_sizes || is_orphan_vg(vg->name)) return 1; dm_list_iterate_items(pvl, &vg->pvs) { if (is_missing_pv(pvl->pv)) continue; /* * Don't compare the sizes if we're not able * to determine the real dev_size. This may * happen if the device has gone since we did * VG read. */ if (!dev_get_size(pvl->pv->dev, &dev_size)) continue; size = pv_size(pvl->pv); if (dev_size < size) { log_warn("WARNING: Device %s has size of %" PRIu64 " sectors which " "is smaller than corresponding PV size of %" PRIu64 " sectors. Was device resized?", pv_dev_name(pvl->pv), dev_size, size); r = 0; } } return r; } int vg_extend_each_pv(struct volume_group *vg, struct pvcreate_params *pp) { struct pv_list *pvl; unsigned int max_logical_block_size = 0; unsigned int physical_block_size, logical_block_size; unsigned int prev_lbs = 0; int inconsistent_existing_lbs = 0; log_debug_metadata("Adding PVs to VG %s.", vg->name); if (vg_bad_status_bits(vg, RESIZEABLE_VG)) return_0; /* * Check if existing PVs have inconsistent block sizes. * If so, do not enforce new devices to be consistent. */ dm_list_iterate_items(pvl, &vg->pvs) { logical_block_size = 0; physical_block_size = 0; if (!pvl->pv->dev) continue; if (!dev_get_direct_block_sizes(pvl->pv->dev, &physical_block_size, &logical_block_size)) continue; if (!logical_block_size) continue; if (!prev_lbs) { prev_lbs = logical_block_size; continue; } if (prev_lbs != logical_block_size) { inconsistent_existing_lbs = 1; break; } } dm_list_iterate_items(pvl, &pp->pvs) { log_debug_metadata("Adding PV %s to VG %s.", pv_dev_name(pvl->pv), vg->name); if (!(check_dev_block_size_for_vg(pvl->pv->dev, (const struct volume_group *) vg, &max_logical_block_size))) { log_error("PV %s has wrong block size.", pv_dev_name(pvl->pv)); return 0; } logical_block_size = 0; physical_block_size = 0; if (!dev_get_direct_block_sizes(pvl->pv->dev, &physical_block_size, &logical_block_size)) log_warn("WARNING: PV %s has unknown block size.", pv_dev_name(pvl->pv)); else if (prev_lbs && logical_block_size && (logical_block_size != prev_lbs)) { if (vg->cmd->allow_mixed_block_sizes || inconsistent_existing_lbs) log_debug("Devices have inconsistent block sizes (%u and %u)", prev_lbs, logical_block_size); else { log_error("Devices have inconsistent logical block sizes (%u and %u).", prev_lbs, logical_block_size); return 0; } } if (!add_pv_to_vg(vg, pv_dev_name(pvl->pv), pvl->pv, 0)) { log_error("PV %s cannot be added to VG %s.", pv_dev_name(pvl->pv), vg->name); return 0; } } (void) check_pv_dev_sizes(vg); dm_list_splice(&vg->pv_write_list, &pp->pvs); return 1; } int lv_change_tag(struct logical_volume *lv, const char *tag, int add_tag) { char *tag_new; if (!(lv->vg->fid->fmt->features & FMT_TAGS)) { log_error("Logical volume %s/%s does not support tags", lv->vg->name, lv->name); return 0; } if (add_tag) { if (!(tag_new = dm_pool_strdup(lv->vg->vgmem, tag))) { log_error("Failed to duplicate tag %s from %s/%s", tag, lv->vg->name, lv->name); return 0; } if (!str_list_add(lv->vg->vgmem, &lv->tags, tag_new)) { log_error("Failed to add tag %s to %s/%s", tag, lv->vg->name, lv->name); return 0; } } else str_list_del(&lv->tags, tag); return 1; } int vg_change_tag(struct volume_group *vg, const char *tag, int add_tag) { char *tag_new; if (!(vg->fid->fmt->features & FMT_TAGS)) { log_error("Volume group %s does not support tags", vg->name); return 0; } if (add_tag) { if (!(tag_new = dm_pool_strdup(vg->vgmem, tag))) { log_error("Failed to duplicate tag %s from %s", tag, vg->name); return 0; } if (!str_list_add(vg->vgmem, &vg->tags, tag_new)) { log_error("Failed to add tag %s to volume group %s", tag, vg->name); return 0; } } else str_list_del(&vg->tags, tag); return 1; } const char *strip_dir(const char *vg_name, const char *dev_dir) { size_t len = strlen(dev_dir); if (!strncmp(vg_name, dev_dir, len)) vg_name += len; return vg_name; } /* * Validates major and minor numbers. * On >2.4 kernel we only support dynamic major number. */ int validate_major_minor(const struct cmd_context *cmd, const struct format_type *fmt, int32_t major, int32_t minor) { int r = 1; if (!strncmp(cmd->kernel_vsn, "2.4.", 4) || (fmt->features & FMT_RESTRICTED_LVIDS)) { if (major < 0 || major > 255) { log_error("Major number %d outside range 0-255.", major); r = 0; } if (minor < 0 || minor > 255) { log_error("Minor number %d outside range 0-255.", minor); r = 0; } } else { /* 12 bits for major number */ if ((major != -1) && (major != cmd->dev_types->device_mapper_major)) { /* User supplied some major number */ if (major < 0 || major > 4095) { log_error("Major number %d outside range 0-4095.", major); r = 0; } else log_print_unless_silent("Ignoring supplied major %d number - " "kernel assigns major numbers dynamically.", major); } /* 20 bits for minor number */ if (minor < 0 || minor > 1048575) { log_error("Minor number %d outside range 0-1048575.", minor); r = 0; } } return r; } /* * Validate parameters to vg_create() before calling. * FIXME: Move inside vg_create library function. * FIXME: Change vgcreate_params struct to individual gets/sets */ int vgcreate_params_validate(struct cmd_context *cmd, struct vgcreate_params *vp) { if (!validate_new_vg_name(cmd, vp->vg_name)) return_0; if (vp->alloc == ALLOC_INHERIT) { log_error("Volume Group allocation policy cannot inherit " "from anything"); return 0; } if (!vp->extent_size) { log_error("Physical extent size may not be zero"); return 0; } if (!(cmd->fmt->features & FMT_UNLIMITED_VOLS)) { if (!vp->max_lv) vp->max_lv = 255; if (!vp->max_pv) vp->max_pv = 255; if (vp->max_lv > 255 || vp->max_pv > 255) { log_error("Number of volumes may not exceed 255"); return 0; } } return 1; } static void _vg_wipe_cached_precommitted(struct volume_group *vg) { release_vg(vg->vg_precommitted); vg->vg_precommitted = NULL; } static void _vg_move_cached_precommitted_to_committed(struct volume_group *vg) { release_vg(vg->vg_committed); vg->vg_committed = vg->vg_precommitted; vg->vg_precommitted = NULL; vg->needs_backup = 1; } int lv_has_unknown_segments(const struct logical_volume *lv) { struct lv_segment *seg; /* foreach segment */ dm_list_iterate_items(seg, &lv->segments) if (seg_unknown(seg)) return 1; return 0; } int vg_has_unknown_segments(const struct volume_group *vg) { struct lv_list *lvl; /* foreach LV */ dm_list_iterate_items(lvl, &vg->lvs) if (lv_has_unknown_segments(lvl->lv)) return 1; return 0; } /* * Create a VG with default parameters. */ struct volume_group *vg_create(struct cmd_context *cmd, const char *vg_name) { struct volume_group *vg; struct format_instance_ctx fic = { .type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS, .context.vg_ref.vg_name = vg_name }; struct format_instance *fid; if (!(vg = alloc_vg("vg_create", cmd, vg_name))) goto_bad; if (!id_create(&vg->id)) { log_error("Couldn't create uuid for volume group '%s'.", vg_name); goto bad; } vg->status = (RESIZEABLE_VG | LVM_READ | LVM_WRITE); vg->system_id = NULL; vg->extent_size = DEFAULT_EXTENT_SIZE * 2; vg->max_lv = DEFAULT_MAX_LV; vg->max_pv = DEFAULT_MAX_PV; vg->alloc = DEFAULT_ALLOC_POLICY; vg->mda_copies = DEFAULT_VGMETADATACOPIES; if (!(fid = cmd->fmt->ops->create_instance(cmd->fmt, &fic))) { log_error("Failed to create format instance"); goto bad; } vg_set_fid(vg, fid); if (vg->fid->fmt->ops->vg_setup && !vg->fid->fmt->ops->vg_setup(vg->fid, vg)) { log_error("Format specific setup of volume group '%s' failed.", vg_name); goto bad; } return vg; bad: unlock_and_release_vg(cmd, vg, vg_name); return NULL; } /* Rounds up by default */ uint32_t extents_from_size(struct cmd_context *cmd, uint64_t size, uint32_t extent_size) { if (size % extent_size) { size += extent_size - size % extent_size; log_print_unless_silent("Rounding up size to full physical extent %s", display_size(cmd, size)); } if (size > (uint64_t) MAX_EXTENT_COUNT * extent_size) { log_error("Volume too large (%s) for extent size %s. " "Upper limit is less than %s.", display_size(cmd, size), display_size(cmd, (uint64_t) extent_size), display_size(cmd, (uint64_t) MAX_EXTENT_COUNT * extent_size)); return 0; } return (uint32_t) (size / extent_size); } /* * Converts size according to percentage with specified rounding to extents * * For PERCENT_NONE size is in standard sector units. * For all other percent type is in DM_PERCENT_1 base unit (supports decimal point) * * Return value of 0 extents is an error. */ uint32_t extents_from_percent_size(struct volume_group *vg, const struct dm_list *pvh, uint32_t extents, int roundup, percent_type_t percent, uint64_t size) { uint32_t count; switch (percent) { case PERCENT_NONE: if (!roundup && (size % vg->extent_size)) { if (!(size -= size % vg->extent_size)) { log_error("Specified size is smaller then physical extent boundary."); return 0; } log_print_unless_silent("Rounding size to boundary between physical extents: %s.", display_size(vg->cmd, size)); } return extents_from_size(vg->cmd, size, vg->extent_size); case PERCENT_LV: break; /* Base extents already passed in. */ case PERCENT_VG: extents = vg->extent_count; break; case PERCENT_PVS: if (pvh != &vg->pvs) { /* Physical volumes are specified on cmdline */ if (!(extents = pv_list_extents_free(pvh))) { log_error("No free extents in the list of physical volumes."); return 0; } break; } /* fall through to use all PVs in VG like %FREE */ case PERCENT_FREE: if (!(extents = vg->free_count)) { log_error("No free extents in Volume group %s.", vg->name); return 0; } break; default: log_error(INTERNAL_ERROR "Unsupported percent type %u.", percent); return 0; } if (!(count = percent_of_extents(size, extents, roundup))) log_error("Converted %s%%%s into 0 extents.", display_percent(vg->cmd, size), get_percent_string(percent)); else log_verbose("Converted %s%%%s into %" PRIu32 " extents.", display_percent(vg->cmd, size), get_percent_string(percent), count); return count; } static dm_bitset_t _bitset_with_random_bits(struct dm_pool *mem, uint32_t num_bits, uint32_t num_set_bits, unsigned *seed) { dm_bitset_t bs; unsigned bit_selected; char buf[32]; uint32_t i = num_bits - num_set_bits; if (!(bs = dm_bitset_create(mem, num_bits))) { log_error("Failed to allocate bitset for setting random bits."); return NULL; } if (!dm_pool_begin_object(mem, 512)) { log_error("dm_pool_begin_object failed for random list of bits."); dm_pool_free(mem, bs); return NULL; } /* Perform loop num_set_bits times, selecting one bit each time */ while (i++ < num_bits) { /* Select a random bit between 0 and (i-1) inclusive. */ bit_selected = lvm_even_rand(seed, i); /* * If the bit was already set, set the new bit that became * choosable for the first time during this pass. * This maintains a uniform probability distribution by compensating * for being unable to select it until this pass. */ if (dm_bit(bs, bit_selected)) bit_selected = i - 1; dm_bit_set(bs, bit_selected); if (dm_snprintf(buf, sizeof(buf), "%u ", bit_selected) < 0) { log_error("snprintf random bit failed."); dm_pool_free(mem, bs); return NULL; } if (!dm_pool_grow_object(mem, buf, strlen(buf))) { log_error("Failed to generate list of random bits."); dm_pool_free(mem, bs); return NULL; } } if (!dm_pool_grow_object(mem, "\0", 1)) { log_error("Failed to finish list of random bits."); dm_pool_free(mem, bs); return NULL; } log_debug_metadata("Selected %" PRIu32 " random bits from %" PRIu32 ": %s", num_set_bits, num_bits, (char *) dm_pool_end_object(mem)); return bs; } static int _vg_ignore_mdas(struct volume_group *vg, uint32_t num_to_ignore) { struct metadata_area *mda; uint32_t mda_used_count = vg_mda_used_count(vg); dm_bitset_t mda_to_ignore_bs; int r = 1; log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use " "but %" PRIu32 " required. Changing %" PRIu32 " mda.", vg->name, mda_used_count, vg_mda_count(vg), vg_mda_copies(vg), num_to_ignore); if (!num_to_ignore) return 1; if (!(mda_to_ignore_bs = _bitset_with_random_bits(vg->vgmem, mda_used_count, num_to_ignore, &vg->cmd->rand_seed))) return_0; dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) if (!mda_is_ignored(mda) && (--mda_used_count, dm_bit(mda_to_ignore_bs, mda_used_count))) { mda_set_ignored(mda, 1); if (!--num_to_ignore) goto out; } log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to ignore " "on volume group %s", num_to_ignore, vg->name); r = 0; out: dm_pool_free(vg->vgmem, mda_to_ignore_bs); return r; } static int _vg_unignore_mdas(struct volume_group *vg, uint32_t num_to_unignore) { struct metadata_area *mda, *tmda; uint32_t mda_used_count = vg_mda_used_count(vg); uint32_t mda_count = vg_mda_count(vg); uint32_t mda_free_count = mda_count - mda_used_count; dm_bitset_t mda_to_unignore_bs; int r = 1; if (!num_to_unignore) return 1; log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use " "but %" PRIu32 " required. Changing %" PRIu32 " mda.", vg->name, mda_used_count, mda_count, vg_mda_copies(vg), num_to_unignore); if (!(mda_to_unignore_bs = _bitset_with_random_bits(vg->vgmem, mda_free_count, num_to_unignore, &vg->cmd->rand_seed))) return_0; dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_ignored) if (mda_is_ignored(mda) && (--mda_free_count, dm_bit(mda_to_unignore_bs, mda_free_count))) { mda_set_ignored(mda, 0); dm_list_move(&vg->fid->metadata_areas_in_use, &mda->list); if (!--num_to_unignore) goto out; } dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) if (mda_is_ignored(mda) && (--mda_free_count, dm_bit(mda_to_unignore_bs, mda_free_count))) { mda_set_ignored(mda, 0); if (!--num_to_unignore) goto out; } log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to unignore " "on volume group %s", num_to_unignore, vg->name); r = 0; out: dm_pool_free(vg->vgmem, mda_to_unignore_bs); return r; } static int _vg_adjust_ignored_mdas(struct volume_group *vg) { uint32_t mda_copies_used = vg_mda_used_count(vg); if (vg->mda_copies == VGMETADATACOPIES_UNMANAGED) { /* Ensure at least one mda is in use. */ if (!mda_copies_used && vg_mda_count(vg) && !_vg_unignore_mdas(vg, 1)) return_0; else return 1; } /* Not an error to have vg_mda_count larger than total mdas. */ if (vg->mda_copies == VGMETADATACOPIES_ALL || vg->mda_copies >= vg_mda_count(vg)) { /* Use all */ if (!_vg_unignore_mdas(vg, vg_mda_count(vg) - mda_copies_used)) return_0; } else if (mda_copies_used < vg->mda_copies) { if (!_vg_unignore_mdas(vg, vg->mda_copies - mda_copies_used)) return_0; } else if (mda_copies_used > vg->mda_copies) if (!_vg_ignore_mdas(vg, mda_copies_used - vg->mda_copies)) return_0; /* * The VGMETADATACOPIES_ALL value will never be written disk. * It is a special cmdline value that means 2 things: * 1. clear all ignore bits in all mdas in this vg * 2. set the "unmanaged" policy going forward for metadata balancing */ if (vg->mda_copies == VGMETADATACOPIES_ALL) vg->mda_copies = VGMETADATACOPIES_UNMANAGED; return 1; } uint64_t find_min_mda_size(struct dm_list *mdas) { uint64_t min_mda_size = UINT64_MAX, mda_size; struct metadata_area *mda; dm_list_iterate_items(mda, mdas) { if (!mda->ops->mda_total_sectors) continue; mda_size = mda->ops->mda_total_sectors(mda); if (mda_size < min_mda_size) min_mda_size = mda_size; } if (min_mda_size == UINT64_MAX) min_mda_size = UINT64_C(0); return min_mda_size; } static int _move_mdas(struct volume_group *vg_from, struct volume_group *vg_to, struct dm_list *mdas_from, struct dm_list *mdas_to) { struct metadata_area *mda, *mda2; int common_mda = 0; dm_list_iterate_items_safe(mda, mda2, mdas_from) { if (!mda->ops->mda_in_vg) { common_mda = 1; continue; } if (!mda->ops->mda_in_vg(vg_from->fid, vg_from, mda)) { if (is_orphan_vg(vg_to->name)) dm_list_del(&mda->list); else dm_list_move(mdas_to, &mda->list); } } return common_mda; } /* * Separate metadata areas after splitting a VG. * Also accepts orphan VG as destination (for vgreduce). */ int vg_split_mdas(struct cmd_context *cmd __attribute__((unused)), struct volume_group *vg_from, struct volume_group *vg_to) { struct dm_list *mdas_from_in_use, *mdas_to_in_use; struct dm_list *mdas_from_ignored, *mdas_to_ignored; int common_mda = 0; mdas_from_in_use = &vg_from->fid->metadata_areas_in_use; mdas_from_ignored = &vg_from->fid->metadata_areas_ignored; mdas_to_in_use = &vg_to->fid->metadata_areas_in_use; mdas_to_ignored = &vg_to->fid->metadata_areas_ignored; common_mda = _move_mdas(vg_from, vg_to, mdas_from_in_use, mdas_to_in_use); common_mda = _move_mdas(vg_from, vg_to, mdas_from_ignored, mdas_to_ignored); if ((dm_list_empty(mdas_from_in_use) && dm_list_empty(mdas_from_ignored)) || ((!is_orphan_vg(vg_to->name) && dm_list_empty(mdas_to_in_use) && dm_list_empty(mdas_to_ignored)))) return common_mda; return 1; } void pvcreate_params_set_defaults(struct pvcreate_params *pp) { memset(pp, 0, sizeof(*pp)); pp->zero = 1; pp->force = PROMPT; pp->yes = 0; pp->restorefile = NULL; pp->uuid_str = NULL; pp->pva.size = 0; pp->pva.data_alignment = 0; pp->pva.data_alignment_offset = 0; pp->pva.pvmetadatacopies = DEFAULT_PVMETADATACOPIES; pp->pva.pvmetadatasize = get_default_pvmetadatasize_sectors(); pp->pva.label_sector = DEFAULT_LABELSECTOR; pp->pva.metadataignore = DEFAULT_PVMETADATAIGNORE; pp->pva.ba_start = 0; pp->pva.ba_size = 0; pp->pva.pe_start = PV_PE_START_CALC; pp->pva.extent_count = 0; pp->pva.extent_size = 0; dm_list_init(&pp->prompts); dm_list_init(&pp->arg_devices); dm_list_init(&pp->arg_process); dm_list_init(&pp->arg_confirm); dm_list_init(&pp->arg_create); dm_list_init(&pp->arg_remove); dm_list_init(&pp->arg_fail); dm_list_init(&pp->pvs); } static struct physical_volume *_alloc_pv(struct dm_pool *mem, struct device *dev) { struct physical_volume *pv; if (!(pv = dm_pool_zalloc(mem, sizeof(*pv)))) { log_error("Failed to allocate pv structure."); return NULL; } pv->dev = dev; dm_list_init(&pv->tags); dm_list_init(&pv->segments); return pv; } /** * pv_create - initialize a physical volume for use with a volume group * created PV belongs to Orphan VG. * * Returns: * PV handle - physical volume initialized successfully * NULL - invalid parameter or problem initializing the physical volume */ struct physical_volume *pv_create(const struct cmd_context *cmd, struct device *dev, struct pv_create_args *pva) { const struct format_type *fmt = cmd->fmt; struct dm_pool *mem = fmt->orphan_vg->vgmem; struct physical_volume *pv = _alloc_pv(mem, dev); unsigned mda_index; struct pv_list *pvl; uint64_t size = pva->size; uint64_t data_alignment = pva->data_alignment; uint64_t data_alignment_offset = pva->data_alignment_offset; unsigned pvmetadatacopies = pva->pvmetadatacopies; uint64_t pvmetadatasize = pva->pvmetadatasize; unsigned metadataignore = pva->metadataignore; if (!pv) return_NULL; if (pva->idp) memcpy(&pv->id, pva->idp, sizeof(*pva->idp)); else if (!id_create(&pv->id)) { log_error("Failed to create random uuid for %s.", dev_name(dev)); goto bad; } if (!dev_get_size(pv->dev, &pv->size)) { log_error("%s: Couldn't get size.", pv_dev_name(pv)); goto bad; } if (size) { if (size > pv->size) log_warn("WARNING: %s: Overriding real size. " "You could lose data.", pv_dev_name(pv)); log_verbose("%s: Pretending size is %" PRIu64 " sectors.", pv_dev_name(pv), size); pv->size = size; } if (pv->size < pv_min_size()) { log_error("%s: Size must exceed minimum of %" PRIu64 " sectors.", pv_dev_name(pv), pv_min_size()); goto bad; } if (pv->size < data_alignment + data_alignment_offset) { log_error("%s: Data alignment must not exceed device size.", pv_dev_name(pv)); goto bad; } if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) { log_error("pv_list allocation in pv_create failed"); goto bad; } pvl->pv = pv; add_pvl_to_vgs(fmt->orphan_vg, pvl); fmt->orphan_vg->extent_count += pv->pe_count; fmt->orphan_vg->free_count += pv->pe_count; pv->fmt = fmt; pv->vg_name = fmt->orphan_vg_name; /* * Sets pv: pe_align, pe_align_offset, pe_start, pe_size * Does not write to device. */ if (!fmt->ops->pv_initialise(fmt, pva, pv)) { log_error("Format-specific initialisation of physical " "volume %s failed.", pv_dev_name(pv)); goto bad; } for (mda_index = 0; mda_index < pvmetadatacopies; mda_index++) { if (pv->fmt->ops->pv_add_metadata_area && !pv->fmt->ops->pv_add_metadata_area(pv->fmt, pv, pva->pe_start != PV_PE_START_CALC, mda_index, pvmetadatasize, metadataignore)) { log_error("Failed to add metadata area for " "new physical volume %s", pv_dev_name(pv)); goto bad; } } return pv; bad: // FIXME: detach from orphan in error path //free_pv_fid(pv); //dm_pool_free(mem, pv); return NULL; } /* FIXME: liblvm todo - make into function that returns handle */ struct pv_list *find_pv_in_vg(const struct volume_group *vg, const char *pv_name) { struct pv_list *pvl; struct device *dev = dev_cache_get(vg->cmd, pv_name, vg->cmd->filter); /* * If the device does not exist or is filtered out, don't bother trying * to find it in the list. This also prevents accidentally finding a * non-NULL PV which happens to be missing (i.e. its pv->dev is NULL) * for such devices. */ if (!dev) return NULL; dm_list_iterate_items(pvl, &vg->pvs) if (pvl->pv->dev == dev) return pvl; return NULL; } struct pv_list *find_pv_in_pv_list(const struct dm_list *pl, const struct physical_volume *pv) { struct pv_list *pvl; dm_list_iterate_items(pvl, pl) if (pvl->pv == pv) return pvl; return NULL; } int pv_is_in_vg(struct volume_group *vg, struct physical_volume *pv) { struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) if (pv == pvl->pv) return 1; return 0; } /** * find_pv_in_vg_by_uuid - Find PV in VG by PV UUID * @vg: volume group to search * @id: UUID of the PV to match * * Returns: * struct pv_list within owning struct volume_group - if UUID of PV found in VG * NULL - invalid parameter or UUID of PV not found in VG * * Note * FIXME - liblvm todo - make into function that takes VG handle */ struct pv_list *find_pv_in_vg_by_uuid(const struct volume_group *vg, const struct id *id) { struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) if (id_equal(&pvl->pv->id, id)) return pvl; return NULL; } struct lv_list *find_lv_in_vg(const struct volume_group *vg, const char *lv_name) { struct lv_list *lvl; const char *ptr; /* Use last component */ if ((ptr = strrchr(lv_name, '/'))) ptr++; else ptr = lv_name; dm_list_iterate_items(lvl, &vg->lvs) if (!strcmp(lvl->lv->name, ptr)) return lvl; return NULL; } struct logical_volume *find_lv_in_vg_by_lvid(const struct volume_group *vg, const union lvid *lvid) { struct lv_list *lvl; if (memcmp(&lvid->id[0], &vg->id, ID_LEN)) return NULL; /* Check VG does not match */ dm_list_iterate_items(lvl, &vg->lvs) if (!memcmp(&lvid->id[1], &lvl->lv->lvid.id[1], sizeof(lvid->id[1]))) return lvl->lv; /* LV uuid match */ return NULL; } struct logical_volume *find_lv(const struct volume_group *vg, const char *lv_name) { struct lv_list *lvl = find_lv_in_vg(vg, lv_name); return lvl ? lvl->lv : NULL; } struct generic_logical_volume *find_historical_glv(const struct volume_group *vg, const char *historical_lv_name, int check_removed_list, struct glv_list **glvl_found) { struct glv_list *glvl; const char *ptr; const struct dm_list *list = check_removed_list ? &vg->removed_historical_lvs : &vg->historical_lvs; /* Use last component */ if ((ptr = strrchr(historical_lv_name, '/'))) ptr++; else ptr = historical_lv_name; dm_list_iterate_items(glvl, list) { if (!strcmp(glvl->glv->historical->name, ptr)) { if (glvl_found) *glvl_found = glvl; return glvl->glv; } } if (glvl_found) *glvl_found = NULL; return NULL; } int lv_name_is_used_in_vg(const struct volume_group *vg, const char *name, int *historical) { int found; if (historical) *historical = 0; if (find_lv(vg, name)) found = 1; else if (find_historical_glv(vg, name, 0, NULL)) { found = 1; if (historical) *historical = 1; } else found = 0; return found; } struct physical_volume *find_pv(struct volume_group *vg, struct device *dev) { struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) if (dev == pvl->pv->dev) return pvl->pv; return NULL; } /* Find segment at a given logical extent in an LV */ struct lv_segment *find_seg_by_le(const struct logical_volume *lv, uint32_t le) { struct lv_segment *seg; dm_list_iterate_items(seg, &lv->segments) if (le >= seg->le && le < seg->le + seg->len) return seg; return NULL; } struct lv_segment *first_seg(const struct logical_volume *lv) { struct lv_segment *seg; dm_list_iterate_items(seg, &lv->segments) return seg; return NULL; } struct lv_segment *last_seg(const struct logical_volume *lv) { struct lv_segment *seg; dm_list_iterate_back_items(seg, &lv->segments) return seg; return NULL; } int vg_remove_mdas(struct volume_group *vg) { struct metadata_area *mda; /* FIXME Improve recovery situation? */ /* Remove each copy of the metadata */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { if (mda->ops->vg_remove && !mda->ops->vg_remove(vg->fid, vg, mda)) return_0; } return 1; } /* * Determine whether two vgs are compatible for merging. */ int vgs_are_compatible(struct cmd_context *cmd __attribute__((unused)), struct volume_group *vg_from, struct volume_group *vg_to) { struct lv_list *lvl1, *lvl2; struct pv_list *pvl; const char *name1, *name2; if (lvs_in_vg_activated(vg_from)) { log_error("Logical volumes in \"%s\" must be inactive", vg_from->name); return 0; } /* Check compatibility */ if (vg_to->extent_size != vg_from->extent_size) { log_error("Extent sizes differ: %d (%s) and %d (%s)", vg_to->extent_size, vg_to->name, vg_from->extent_size, vg_from->name); return 0; } if (vg_to->max_pv && (vg_to->max_pv < vg_to->pv_count + vg_from->pv_count)) { log_error("Maximum number of physical volumes (%d) exceeded " " for \"%s\" and \"%s\"", vg_to->max_pv, vg_to->name, vg_from->name); return 0; } if (vg_to->max_lv && (vg_to->max_lv < vg_visible_lvs(vg_to) + vg_visible_lvs(vg_from))) { log_error("Maximum number of logical volumes (%d) exceeded " " for \"%s\" and \"%s\"", vg_to->max_lv, vg_to->name, vg_from->name); return 0; } /* Metadata types must be the same */ if (vg_to->fid->fmt != vg_from->fid->fmt) { log_error("Metadata types differ for \"%s\" and \"%s\"", vg_to->name, vg_from->name); return 0; } /* Check no conflicts with LV names */ dm_list_iterate_items(lvl1, &vg_to->lvs) { name1 = lvl1->lv->name; dm_list_iterate_items(lvl2, &vg_from->lvs) { name2 = lvl2->lv->name; if (!strcmp(name1, name2)) { log_error("Duplicate logical volume " "name \"%s\" " "in \"%s\" and \"%s\"", name1, vg_to->name, vg_from->name); return 0; } } } /* Check no PVs are constructed from either VG */ dm_list_iterate_items(pvl, &vg_to->pvs) { if (pv_uses_vg(pvl->pv, vg_from)) { log_error("Physical volume %s might be constructed " "from same volume group %s.", pv_dev_name(pvl->pv), vg_from->name); return 0; } } dm_list_iterate_items(pvl, &vg_from->pvs) { if (pv_uses_vg(pvl->pv, vg_to)) { log_error("Physical volume %s might be constructed " "from same volume group %s.", pv_dev_name(pvl->pv), vg_to->name); return 0; } } return 1; } struct _lv_postorder_baton { int (*fn)(struct logical_volume *lv, void *data); void *data; }; static int _lv_postorder_visit(struct logical_volume *lv, int (*fn)(struct logical_volume *lv, void *data), void *data); static int _lv_each_dependency(struct logical_volume *lv, int (*fn)(struct logical_volume *lv, void *data), void *data) { unsigned i, s; struct lv_segment *lvseg; struct dm_list *snh; struct logical_volume *deps[] = { lv->snapshot ? lv->snapshot->origin : 0, lv->snapshot ? lv->snapshot->cow : 0 }; for (i = 0; i < DM_ARRAY_SIZE(deps); ++i) { if (deps[i] && !fn(deps[i], data)) return_0; } dm_list_iterate_items(lvseg, &lv->segments) { if (lvseg->external_lv && !fn(lvseg->external_lv, data)) return_0; if (lvseg->log_lv && !fn(lvseg->log_lv, data)) return_0; if (lvseg->pool_lv && !fn(lvseg->pool_lv, data)) return_0; if (lvseg->metadata_lv && !fn(lvseg->metadata_lv, data)) return_0; if (lvseg->writecache && !fn(lvseg->writecache, data)) return_0; if (lvseg->integrity_meta_dev && !fn(lvseg->integrity_meta_dev, data)) return_0; for (s = 0; s < lvseg->area_count; ++s) { if (seg_type(lvseg, s) == AREA_LV && !fn(seg_lv(lvseg,s), data)) return_0; } } if (lv_is_origin(lv)) dm_list_iterate(snh, &lv->snapshot_segs) if (!fn(dm_list_struct_base(snh, struct lv_segment, origin_list)->cow, data)) return_0; return 1; } static int _lv_postorder_cleanup(struct logical_volume *lv, void *data) { if (!(lv->status & POSTORDER_FLAG)) return 1; lv->status &= ~POSTORDER_FLAG; if (!_lv_each_dependency(lv, _lv_postorder_cleanup, data)) return_0; return 1; } static int _lv_postorder_level(struct logical_volume *lv, void *data) { struct _lv_postorder_baton *baton = data; return (data) ? _lv_postorder_visit(lv, baton->fn, baton->data) : 0; } static int _lv_postorder_visit(struct logical_volume *lv, int (*fn)(struct logical_volume *lv, void *data), void *data) { struct _lv_postorder_baton baton; int r; if (lv->status & POSTORDER_FLAG) return 1; if (lv->status & POSTORDER_OPEN_FLAG) return 1; // a data structure loop has closed... lv->status |= POSTORDER_OPEN_FLAG; baton.fn = fn; baton.data = data; r = _lv_each_dependency(lv, _lv_postorder_level, &baton); if (r) r = fn(lv, data); lv->status &= ~POSTORDER_OPEN_FLAG; lv->status |= POSTORDER_FLAG; return r; } /* * This will walk the LV dependency graph in depth-first order and in the * postorder, call a callback function "fn". The void *data is passed along all * the calls. The callback may return zero to indicate an error and terminate * the depth-first walk. The error is propagated to return value of * _lv_postorder. */ static int _lv_postorder(struct logical_volume *lv, int (*fn)(struct logical_volume *lv, void *data), void *data) { int r; int pool_locked = dm_pool_locked(lv->vg->vgmem); if (pool_locked && !dm_pool_unlock(lv->vg->vgmem, 0)) return_0; r = _lv_postorder_visit(lv, fn, data); _lv_postorder_cleanup(lv, 0); if (pool_locked && !dm_pool_lock(lv->vg->vgmem, 0)) return_0; return r; } /* * Calls _lv_postorder() on each LV from VG. Avoids duplicate transitivity visits. * Clears with _lv_postorder_cleanup() when all LVs were visited by postorder. */ static int _lv_postorder_vg(struct volume_group *vg, int (*fn)(struct logical_volume *lv, void *data), void *data) { struct lv_list *lvl; int r = 1; int pool_locked = dm_pool_locked(vg->vgmem); if (pool_locked && !dm_pool_unlock(vg->vgmem, 0)) return_0; dm_list_iterate_items(lvl, &vg->lvs) if (!_lv_postorder_visit(lvl->lv, fn, data)) { stack; r = 0; } dm_list_iterate_items(lvl, &vg->lvs) _lv_postorder_cleanup(lvl->lv, 0); if (pool_locked && !dm_pool_lock(vg->vgmem, 0)) return_0; return r; } struct _lv_mark_if_partial_baton { int partial; }; static int _lv_mark_if_partial_collect(struct logical_volume *lv, void *data) { struct _lv_mark_if_partial_baton *baton = data; if (baton && lv_is_partial(lv)) baton->partial = 1; return 1; } static int _lv_mark_if_partial_single(struct logical_volume *lv, void *data) { unsigned s; struct _lv_mark_if_partial_baton baton = { .partial = 0 }; struct lv_segment *lvseg; dm_list_iterate_items(lvseg, &lv->segments) { for (s = 0; s < lvseg->area_count; ++s) { if (seg_type(lvseg, s) == AREA_PV) { if (is_missing_pv(seg_pv(lvseg, s))) lv->status |= PARTIAL_LV; } } } if (!_lv_each_dependency(lv, _lv_mark_if_partial_collect, &baton)) return_0; if (baton.partial) lv->status |= PARTIAL_LV; return 1; } /* * Mark LVs with missing PVs using PARTIAL_LV status flag. The flag is * propagated transitively, so LVs referencing other LVs are marked * partial as well, if any of their referenced LVs are marked partial. */ int vg_mark_partial_lvs(struct volume_group *vg, int clear) { struct lv_list *lvl; if (clear) dm_list_iterate_items(lvl, &vg->lvs) lvl->lv->status &= ~PARTIAL_LV; if (!_lv_postorder_vg(vg, _lv_mark_if_partial_single, NULL)) return_0; return 1; } /* * Be sure that all PV devices have cached read ahead in dev-cache * Currently it takes read_ahead from first PV segment only */ static int _lv_read_ahead_single(struct logical_volume *lv, void *data) { struct lv_segment *seg = first_seg(lv); uint32_t seg_read_ahead = 0, *read_ahead = data; if (!read_ahead) { log_error(INTERNAL_ERROR "Read ahead data missing."); return 0; } if (seg && seg->area_count && seg_type(seg, 0) == AREA_PV) dev_get_read_ahead(seg_pv(seg, 0)->dev, &seg_read_ahead); if (seg_read_ahead > *read_ahead) *read_ahead = seg_read_ahead; return 1; } /* * Calculate readahead for logical volume from underlying PV devices. * If read_ahead is NULL, only ensure that readahead of PVs are preloaded * into PV struct device in dev cache. */ void lv_calculate_readahead(const struct logical_volume *lv, uint32_t *read_ahead) { uint32_t _read_ahead = 0; if (lv->read_ahead == DM_READ_AHEAD_AUTO) _lv_postorder((struct logical_volume *)lv, _lv_read_ahead_single, &_read_ahead); if (read_ahead) { log_debug_metadata("Calculated readahead of LV %s is %u", lv->name, _read_ahead); *read_ahead = _read_ahead; } } struct validate_hash { struct dm_hash_table *lvname; struct dm_hash_table *historical_lvname; struct dm_hash_table *lvid; struct dm_hash_table *historical_lvid; struct dm_hash_table *pvid; struct dm_hash_table *lv_lock_args; }; /* * Check that an LV and all its PV references are correctly listed in vg->lvs * and vg->pvs, respectively. This only looks at a single LV, but *not* at the * LVs it is using. To do the latter, you should use _lv_postorder with this * function. C.f. vg_validate. */ static int _lv_validate_references_single(struct logical_volume *lv, void *data) { struct volume_group *vg = lv->vg; struct validate_hash *vhash = data; struct lv_segment *lvseg; struct physical_volume *pv; unsigned s; int r = 1; if (lv != dm_hash_lookup_binary(vhash->lvid, &lv->lvid.id[1], sizeof(lv->lvid.id[1]))) { log_error(INTERNAL_ERROR "Referenced LV %s not listed in VG %s.", lv->name, vg->name); r = 0; } dm_list_iterate_items(lvseg, &lv->segments) { for (s = 0; s < lvseg->area_count; ++s) { if (seg_type(lvseg, s) != AREA_PV) continue; pv = seg_pv(lvseg, s); /* look up the reference in vg->pvs */ if (pv != dm_hash_lookup_binary(vhash->pvid, &pv->id, sizeof(pv->id))) { log_error(INTERNAL_ERROR "Referenced PV %s not listed in VG %s.", pv_dev_name(pv), vg->name); r = 0; } } } return r; } /* * Format is : */ static int _validate_lock_args_chars(const char *lock_args) { unsigned i; char c; int found_colon = 0; int r = 1; for (i = 0; i < strlen(lock_args); i++) { c = lock_args[i]; if (!isalnum(c) && c != '.' && c != '_' && c != '-' && c != '+' && c != ':') { log_error(INTERNAL_ERROR "Invalid character at index %u of lock_args \"%s\"", i, lock_args); r = 0; } if (c == ':' && found_colon) { log_error(INTERNAL_ERROR "Invalid colon at index %u of lock_args \"%s\"", i, lock_args); r = 0; } if (c == ':') found_colon = 1; } return r; } static int _validate_vg_lock_args(struct volume_group *vg) { if (!vg->lock_args || !_validate_lock_args_chars(vg->lock_args)) { log_error(INTERNAL_ERROR "VG %s has invalid lock_args chars", vg->name); return 0; } return 1; } /* * For lock_type sanlock, LV lock_args are : * For lock_type dlm, LV lock_args are not used, and lock_args is * just set to "dlm". */ static int _validate_lv_lock_args(struct logical_volume *lv) { int r = 1; if (!strcmp(lv->vg->lock_type, "sanlock")) { if (!_validate_lock_args_chars(lv->lock_args)) { log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args chars", lv->vg->name, display_lvname(lv)); return 0; } } else if (!strcmp(lv->vg->lock_type, "dlm")) { if (strcmp(lv->lock_args, "dlm")) { log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args \"%s\"", lv->vg->name, display_lvname(lv), lv->lock_args); r = 0; } } else if (!strcmp(lv->vg->lock_type, "idm")) { if (strcmp(lv->lock_args, "idm")) { log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args \"%s\"", lv->vg->name, display_lvname(lv), lv->lock_args); r = 0; } } return r; } int vg_validate(struct volume_group *vg) { struct pv_list *pvl; struct lv_list *lvl; struct glv_list *glvl; struct historical_logical_volume *hlv; struct lv_segment *seg; struct dm_str_list *sl; char uuid[64] __attribute__((aligned(8))); char uuid2[64] __attribute__((aligned(8))); int r = 1; unsigned hidden_lv_count = 0, lv_count = 0, lv_visible_count = 0; unsigned pv_count = 0; unsigned num_snapshots = 0; unsigned spare_count = 0; size_t vg_name_len = strlen(vg->name); size_t dev_name_len; struct validate_hash vhash = { NULL }; if (vg->alloc == ALLOC_CLING_BY_TAGS) { log_error(INTERNAL_ERROR "VG %s allocation policy set to invalid cling_by_tags.", vg->name); r = 0; } if (vg->status & LVM_WRITE_LOCKED) { log_error(INTERNAL_ERROR "VG %s has external flag LVM_WRITE_LOCKED set internally.", vg->name); r = 0; } /* FIXME Also check there's no data/metadata overlap */ if (!(vhash.pvid = dm_hash_create(vg->pv_count))) { log_error("Failed to allocate pvid hash."); return 0; } dm_list_iterate_items(sl, &vg->tags) if (!validate_tag(sl->str)) { log_error(INTERNAL_ERROR "VG %s tag %s has invalid form.", vg->name, sl->str); r = 0; } dm_list_iterate_items(pvl, &vg->pvs) { if (++pv_count > vg->pv_count) { log_error(INTERNAL_ERROR "PV list corruption detected in VG %s.", vg->name); /* FIXME Dump list structure? */ r = 0; } if (pvl->pv->vg != vg) { log_error(INTERNAL_ERROR "VG %s PV list entry points " "to different VG %s.", vg->name, pvl->pv->vg ? pvl->pv->vg->name : "NULL"); r = 0; } if (strcmp(pvl->pv->vg_name, vg->name)) { log_error(INTERNAL_ERROR "VG name for PV %s is corrupted.", pv_dev_name(pvl->pv)); r = 0; } if (dm_hash_lookup_binary(vhash.pvid, &pvl->pv->id, sizeof(pvl->pv->id))) { if (!id_write_format(&pvl->pv->id, uuid, sizeof(uuid))) stack; log_error(INTERNAL_ERROR "Duplicate PV id " "%s detected for %s in %s.", uuid, pv_dev_name(pvl->pv), vg->name); r = 0; } dm_list_iterate_items(sl, &pvl->pv->tags) if (!validate_tag(sl->str)) { log_error(INTERNAL_ERROR "PV %s tag %s has invalid form.", pv_dev_name(pvl->pv), sl->str); r = 0; } if (!dm_hash_insert_binary(vhash.pvid, &pvl->pv->id, sizeof(pvl->pv->id), pvl->pv)) { log_error("Failed to hash pvid."); r = 0; break; } } if (!check_pv_segments(vg)) { log_error(INTERNAL_ERROR "PV segments corrupted in %s.", vg->name); r = 0; } dm_list_iterate_items(lvl, &vg->removed_lvs) { if (!(lvl->lv->status & LV_REMOVED)) { log_error(INTERNAL_ERROR "LV %s is not marked as removed while it's part " "of removed LV list for VG %s", lvl->lv->name, vg->name); r = 0; } } /* * Count all non-snapshot invisible LVs */ dm_list_iterate_items(lvl, &vg->lvs) { lv_count++; if (lvl->lv->status & LV_REMOVED) { log_error(INTERNAL_ERROR "LV %s is marked as removed while it's " "still part of the VG %s", lvl->lv->name, vg->name); r = 0; } if (lvl->lv->status & LVM_WRITE_LOCKED) { log_error(INTERNAL_ERROR "LV %s has external flag LVM_WRITE_LOCKED set internally.", lvl->lv->name); r = 0; } dev_name_len = strlen(lvl->lv->name) + vg_name_len + 3; if (dev_name_len >= NAME_LEN) { log_error(INTERNAL_ERROR "LV name \"%s/%s\" length %" PRIsize_t " is not supported.", vg->name, lvl->lv->name, dev_name_len); r = 0; } if (!id_equal(&lvl->lv->lvid.id[0], &lvl->lv->vg->id)) { if (!id_write_format(&lvl->lv->lvid.id[0], uuid, sizeof(uuid))) stack; if (!id_write_format(&lvl->lv->vg->id, uuid2, sizeof(uuid2))) stack; log_error(INTERNAL_ERROR "LV %s has VG UUID %s but its VG %s has UUID %s", lvl->lv->name, uuid, lvl->lv->vg->name, uuid2); r = 0; } if (lv_is_pool_metadata_spare(lvl->lv)) { if (++spare_count > 1) { log_error(INTERNAL_ERROR "LV %s is extra pool metadata spare volume. %u found but only 1 allowed.", lvl->lv->name, spare_count); r = 0; } if (vg->pool_metadata_spare_lv != lvl->lv) { log_error(INTERNAL_ERROR "LV %s is not the VG's pool metadata spare volume.", lvl->lv->name); r = 0; } } if (!check_lv_segments(lvl->lv, 0)) { log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name); r = 0; } if (lvl->lv->alloc == ALLOC_CLING_BY_TAGS) { log_error(INTERNAL_ERROR "LV %s allocation policy set to invalid cling_by_tags.", lvl->lv->name); r = 0; } if (!validate_name(lvl->lv->name)) { log_error(INTERNAL_ERROR "LV name %s has invalid form.", lvl->lv->name); r = 0; } dm_list_iterate_items(sl, &lvl->lv->tags) if (!validate_tag(sl->str)) { log_error(INTERNAL_ERROR "LV %s tag %s has invalid form.", lvl->lv->name, sl->str); r = 0; } if (lv_is_visible(lvl->lv)) lv_visible_count++; else if (lv_is_cow(lvl->lv)) num_snapshots++; else /* count other non-snapshot invisible volumes */ hidden_lv_count++; /* * FIXME: add check for unreferenced invisible LVs * - snapshot cow & origin * - mirror log & images * - mirror conversion volumes (_mimagetmp*) */ } /* * all volumes = visible LVs + snapshot_cows + invisible LVs */ if (lv_count != lv_visible_count + num_snapshots + hidden_lv_count) { log_error(INTERNAL_ERROR "#LVs (%u) != #visible LVs (%u) " "+ #snapshots (%u) + #internal LVs (%u) in VG %s", lv_count, lv_visible_count, num_snapshots, hidden_lv_count, vg->name); r = 0; } /* Avoid endless loop if lv->segments list is corrupt */ if (!r) goto out; if (!(vhash.lvname = dm_hash_create(lv_count))) { log_error("Failed to allocate lv_name hash"); r = 0; goto out; } if (!(vhash.lvid = dm_hash_create(lv_count))) { log_error("Failed to allocate uuid hash"); r = 0; goto out; } dm_list_iterate_items(lvl, &vg->lvs) { if (dm_hash_lookup(vhash.lvname, lvl->lv->name)) { log_error(INTERNAL_ERROR "Duplicate LV name %s detected in %s.", lvl->lv->name, vg->name); r = 0; } if (dm_hash_lookup_binary(vhash.lvid, &lvl->lv->lvid.id[1], sizeof(lvl->lv->lvid.id[1]))) { if (!id_write_format(&lvl->lv->lvid.id[1], uuid, sizeof(uuid))) stack; log_error(INTERNAL_ERROR "Duplicate LV id " "%s detected for %s in %s.", uuid, lvl->lv->name, vg->name); r = 0; } if (!check_lv_segments(lvl->lv, 1)) { log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name); r = 0; } if (!dm_hash_insert(vhash.lvname, lvl->lv->name, lvl)) { log_error("Failed to hash lvname."); r = 0; break; } if (!dm_hash_insert_binary(vhash.lvid, &lvl->lv->lvid.id[1], sizeof(lvl->lv->lvid.id[1]), lvl->lv)) { log_error("Failed to hash lvid."); r = 0; break; } } if (!_lv_postorder_vg(vg, _lv_validate_references_single, &vhash)) { stack; r = 0; } dm_list_iterate_items(lvl, &vg->lvs) { if (!lv_is_pvmove(lvl->lv)) continue; dm_list_iterate_items(seg, &lvl->lv->segments) { if (seg_is_mirrored(seg)) { if (seg->area_count != 2) { log_error(INTERNAL_ERROR "Segment in %s is not 2-way.", lvl->lv->name); r = 0; } } else if (seg->area_count != 1) { log_error(INTERNAL_ERROR "Segment in %s has wrong number of areas: %d.", lvl->lv->name, seg->area_count); r = 0; } } } if (!(vg->fid->fmt->features & FMT_UNLIMITED_VOLS) && (!vg->max_lv || !vg->max_pv)) { log_error(INTERNAL_ERROR "Volume group %s has limited PV/LV count" " but limit is not set.", vg->name); r = 0; } if (vg->pool_metadata_spare_lv && !lv_is_pool_metadata_spare(vg->pool_metadata_spare_lv)) { log_error(INTERNAL_ERROR "VG references non pool metadata spare LV %s.", vg->pool_metadata_spare_lv->name); r = 0; } if (vg_max_lv_reached(vg)) stack; if (!(vhash.lv_lock_args = dm_hash_create(lv_count))) { log_error("Failed to allocate lv_lock_args hash"); r = 0; goto out; } if (vg_is_shared(vg)) { if (!vg->lock_args) { log_error(INTERNAL_ERROR "VG %s with lock_type %s without lock_args", vg->name, vg->lock_type); r = 0; } if (vg_is_clustered(vg)) { log_error(INTERNAL_ERROR "VG %s with lock_type %s is clustered", vg->name, vg->lock_type); r = 0; } if (vg->system_id && vg->system_id[0]) { log_error(INTERNAL_ERROR "VG %s with lock_type %s has system_id %s", vg->name, vg->lock_type, vg->system_id); r = 0; } if (strcmp(vg->lock_type, "sanlock") && strcmp(vg->lock_type, "dlm") && strcmp(vg->lock_type, "idm")) { log_error(INTERNAL_ERROR "VG %s has unknown lock_type %s", vg->name, vg->lock_type); r = 0; } if (!_validate_vg_lock_args(vg)) r = 0; } else { if (vg->lock_args) { log_error(INTERNAL_ERROR "VG %s has lock_args %s without lock_type", vg->name, vg->lock_args); r = 0; } } dm_list_iterate_items(lvl, &vg->lvs) { if (vg_is_shared(vg)) { if (lockd_lv_uses_lock(lvl->lv)) { if (vg->skip_validate_lock_args) continue; /* * FIXME: make missing lock_args an error. * There are at least two cases where this * check doesn't work correctly: * * 1. When creating a cow snapshot, * (lvcreate -s -L1M -n snap1 vg/lv1), * lockd_lv_uses_lock() uses lv_is_cow() * which depends on lv->snapshot being * set, but it's not set at this point, * so lockd_lv_uses_lock() cannot identify * the LV as a cow_lv, and thinks it needs * a lock when it doesn't. To fix this we * probably need to validate by finding the * origin LV, then finding all its snapshots * which will have no lock_args. * * 2. When converting an LV to a thin pool * without using an existing metadata LV, * (lvconvert --type thin-pool vg/poolX), * there is an intermediate LV created, * probably for the metadata LV, and * validate is called on the VG in this * intermediate state, which finds the * newly created LV which is not yet * identified as a metadata LV, and * does not have any lock_args. To fix * this we might be able to find the place * where the intermediate LV is created, * and set new variable on it like for vgs, * lv->skip_validate_lock_args. */ if (!lvl->lv->lock_args) { /* log_verbose("LV %s/%s missing lock_args", vg->name, lvl->lv->name); r = 0; */ continue; } if (!_validate_lv_lock_args(lvl->lv)) { r = 0; continue; } if (!strcmp(vg->lock_type, "sanlock")) { if (dm_hash_lookup(vhash.lv_lock_args, lvl->lv->lock_args)) { log_error(INTERNAL_ERROR "LV %s/%s has duplicate lock_args %s.", vg->name, lvl->lv->name, lvl->lv->lock_args); r = 0; } if (!dm_hash_insert(vhash.lv_lock_args, lvl->lv->lock_args, lvl)) { log_error("Failed to hash lvname."); r = 0; } } } else { if (lv_is_cache_vol(lvl->lv)) { log_debug("lock_args will be ignored on cache vol"); } else if (lvl->lv->lock_args) { log_error(INTERNAL_ERROR "LV %s/%s shouldn't have lock_args", vg->name, lvl->lv->name); r = 0; } } } else { if (lvl->lv->lock_args) { log_error(INTERNAL_ERROR "LV %s/%s with no lock_type has lock_args %s", vg->name, lvl->lv->name, lvl->lv->lock_args); r = 0; } } } if (!(vhash.historical_lvname = dm_hash_create(dm_list_size(&vg->historical_lvs)))) { r = 0; goto_out; } if (!(vhash.historical_lvid = dm_hash_create(dm_list_size(&vg->historical_lvs)))) { r = 0; goto_out; } dm_list_iterate_items(glvl, &vg->historical_lvs) { if (!glvl->glv->is_historical) { log_error(INTERNAL_ERROR "LV %s/%s appearing in VG's historical list is not a historical LV", vg->name, glvl->glv->live->name); r = 0; continue; } hlv = glvl->glv->historical; if (hlv->vg != vg) { log_error(INTERNAL_ERROR "Historical LV %s points to different VG %s while it is listed in VG %s", hlv->name, hlv->vg->name, vg->name); r = 0; continue; } if (!id_equal(&hlv->lvid.id[0], &hlv->vg->id)) { if (!id_write_format(&hlv->lvid.id[0], uuid, sizeof(uuid))) stack; if (!id_write_format(&hlv->vg->id, uuid2, sizeof(uuid2))) stack; log_error(INTERNAL_ERROR "Historical LV %s has VG UUID %s but its VG %s has UUID %s", hlv->name, uuid, hlv->vg->name, uuid2); r = 0; continue; } if (dm_hash_lookup_binary(vhash.historical_lvid, &hlv->lvid.id[1], sizeof(hlv->lvid.id[1]))) { if (!id_write_format(&hlv->lvid.id[1], uuid,sizeof(uuid))) stack; log_error(INTERNAL_ERROR "Duplicate historical LV id %s detected for %s in %s", uuid, hlv->name, vg->name); r = 0; } if (dm_hash_lookup(vhash.historical_lvname, hlv->name)) { log_error(INTERNAL_ERROR "Duplicate historical LV name %s detected in %s", hlv->name, vg->name); r = 0; continue; } if (!dm_hash_insert(vhash.historical_lvname, hlv->name, hlv)) { log_error("Failed to hash historical LV name"); r = 0; break; } if (!dm_hash_insert_binary(vhash.historical_lvid, &hlv->lvid.id[1], sizeof(hlv->lvid.id[1]), hlv)) { log_error("Failed to hash historical LV id"); r = 0; break; } if (dm_hash_lookup(vhash.lvname, hlv->name)) { log_error(INTERNAL_ERROR "Name %s appears as live and historical LV at the same time in VG %s", hlv->name, vg->name); r = 0; continue; } if (!hlv->indirect_origin && dm_list_empty(&hlv->indirect_glvs)) { log_error(INTERNAL_ERROR "Historical LV %s is not part of any LV chain in VG %s", hlv->name, vg->name); r = 0; continue; } } out: if (vhash.lvid) dm_hash_destroy(vhash.lvid); if (vhash.lvname) dm_hash_destroy(vhash.lvname); if (vhash.historical_lvid) dm_hash_destroy(vhash.historical_lvid); if (vhash.historical_lvname) dm_hash_destroy(vhash.historical_lvname); if (vhash.pvid) dm_hash_destroy(vhash.pvid); if (vhash.lv_lock_args) dm_hash_destroy(vhash.lv_lock_args); return r; } static int _pv_in_pv_list(struct physical_volume *pv, struct dm_list *head) { struct pv_list *pvl; dm_list_iterate_items(pvl, head) { if (pvl->pv == pv) return 1; } return 0; } static int _check_historical_lv_is_valid(struct historical_logical_volume *hlv) { struct glv_list *glvl; if (hlv->checked) return hlv->valid; /* * Historical LV is valid if there is * at least one live LV among ancestors. */ hlv->valid = 0; dm_list_iterate_items(glvl, &hlv->indirect_glvs) { if (!glvl->glv->is_historical || _check_historical_lv_is_valid(glvl->glv->historical)) { hlv->valid = 1; break; } } hlv->checked = 1; return hlv->valid; } static int _handle_historical_lvs(struct volume_group *vg) { struct glv_list *glvl, *tglvl; time_t current_timestamp = 0; struct historical_logical_volume *hlv; int valid = 1; dm_list_iterate_items(glvl, &vg->historical_lvs) glvl->glv->historical->checked = 0; dm_list_iterate_items(glvl, &vg->historical_lvs) { hlv = glvl->glv->historical; valid &= _check_historical_lv_is_valid(hlv); if (!hlv->timestamp_removed) { if (!current_timestamp) current_timestamp = time(NULL); hlv->timestamp_removed = (uint64_t) current_timestamp; } } if (valid) return 1; dm_list_iterate_items_safe(glvl, tglvl, &vg->historical_lvs) { hlv = glvl->glv->historical; if (hlv->checked && hlv->valid) continue; log_print_unless_silent("Automatically removing historical " "logical volume %s/%s%s.", vg->name, HISTORICAL_LV_PREFIX, hlv->name); if (!historical_glv_remove(glvl->glv)) return_0; } return 1; } static void _wipe_outdated_pvs(struct cmd_context *cmd, struct volume_group *vg) { char vgid[ID_LEN + 1] __attribute__((aligned(8))); DM_LIST_INIT(devs); struct dm_list *mdas = NULL; struct device_list *devl; struct device *dev; struct metadata_area *mda; struct label *label; struct lvmcache_info *info; uint32_t ext_flags; /* * When vg_read selected a good copy of the metadata, it used it to * update the lvmcache representation of the VG (lvmcache_update_vg). * At that point outdated PVs were recognized and moved into the * vginfo->outdated_infos list. Here we clear the PVs on that list. */ vgid[ID_LEN] = 0; memcpy(vgid, &vg->id.uuid, ID_LEN); lvmcache_get_outdated_devs(cmd, vg->name, vgid, &devs); dm_list_iterate_items(devl, &devs) { dev = devl->dev; lvmcache_get_outdated_mdas(cmd, vg->name, vgid, dev, &mdas); if (mdas) { dm_list_iterate_items(mda, mdas) { log_warn("WARNING: wiping mda on outdated PV %s", dev_name(dev)); if (!text_wipe_outdated_pv_mda(cmd, dev, mda)) log_warn("WARNING: failed to wipe mda on outdated PV %s", dev_name(dev)); } } if (!(label = lvmcache_get_dev_label(dev))) { log_error("_wipe_outdated_pvs no label for %s", dev_name(dev)); continue; } info = label->info; ext_flags = lvmcache_ext_flags(info); ext_flags &= ~PV_EXT_USED; lvmcache_set_ext_version(info, PV_HEADER_EXTENSION_VSN); lvmcache_set_ext_flags(info, ext_flags); log_warn("WARNING: wiping header on outdated PV %s", dev_name(dev)); if (!label_write(dev, label)) log_warn("WARNING: failed to wipe header on outdated PV %s", dev_name(dev)); lvmcache_del(info); } /* * A vgremove will involve many vg_write() calls (one for each lv * removed) but we only need to wipe pvs once, so clear the outdated * list so it won't be wiped again. */ lvmcache_del_outdated_devs(cmd, vg->name, vgid); } /* * After vg_write() returns success, * caller MUST call either vg_commit() or vg_revert() */ int vg_write(struct volume_group *vg) { char vgid[ID_LEN + 1] __attribute__((aligned(8))); struct dm_list *mdah; struct pv_list *pvl, *pvl_safe, *new_pvl; struct metadata_area *mda; struct lv_list *lvl; struct device *mda_dev; int revert = 0, wrote = 0; vgid[ID_LEN] = 0; memcpy(vgid, &vg->id.uuid, ID_LEN); if (vg_is_shared(vg)) { dm_list_iterate_items(lvl, &vg->lvs) { if (lvl->lv->lock_args && !strcmp(lvl->lv->lock_args, "pending")) { if (!lockd_init_lv_args(vg->cmd, vg, lvl->lv, vg->lock_type, &lvl->lv->lock_args)) { log_error("Cannot allocate lock for new LV."); return 0; } lvl->lv->new_lock_args = 1; } } } if (!_handle_historical_lvs(vg)) { log_error("Failed to handle historical LVs in VG %s.", vg->name); return 0; } if (!vg_validate(vg)) return_0; if (vg->status & PARTIAL_VG) { log_error("Cannot update partial volume group %s.", vg->name); return 0; } if (vg_missing_pv_count(vg) && !vg->cmd->handles_missing_pvs) { log_error("Cannot update volume group %s while physical " "volumes are missing.", vg->name); return 0; } if (lvmcache_has_duplicate_devs() && vg_has_duplicate_pvs(vg) && !find_config_tree_bool(vg->cmd, devices_allow_changes_with_duplicate_pvs_CFG, NULL)) { log_error("Cannot update volume group %s with duplicate PV devices.", vg->name); return 0; } if (vg_has_unknown_segments(vg) && !vg->cmd->handles_unknown_segments) { log_error("Cannot update volume group %s with unknown segments in it!", vg->name); return 0; } if (!_vg_adjust_ignored_mdas(vg)) return_0; if (!vg_mda_used_count(vg)) { log_error("Aborting vg_write: No metadata areas to write to!"); return 0; } if (vg->cmd->wipe_outdated_pvs) _wipe_outdated_pvs(vg->cmd, vg); if (!vg_is_archived(vg) && vg->vg_committed && !archive(vg->vg_committed)) return_0; if (critical_section()) log_error(INTERNAL_ERROR "Writing metadata in critical section."); /* Unlock memory if possible */ memlock_unlock(vg->cmd); vg->seqno++; dm_list_iterate_items(pvl, &vg->pvs) { int update_pv_header = 0; if (_pv_in_pv_list(pvl->pv, &vg->pv_write_list)) continue; if (!pvl->pv->fmt->ops->pv_needs_rewrite(pvl->pv->fmt, pvl->pv, &update_pv_header)) continue; if (!update_pv_header) continue; if (!(new_pvl = dm_pool_zalloc(vg->vgmem, sizeof(*new_pvl)))) continue; new_pvl->pv = pvl->pv; dm_list_add(&vg->pv_write_list, &new_pvl->list); log_warn("WARNING: updating PV header on %s for VG %s.", pv_dev_name(pvl->pv), vg->name); } dm_list_iterate_items_safe(pvl, pvl_safe, &vg->pv_write_list) { if (!pv_write(vg->cmd, pvl->pv, 1)) return_0; dm_list_del(&pvl->list); } /* Write to each copy of the metadata area */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { mda_dev = mda_get_device(mda); if (mda->status & MDA_FAILED) continue; /* * When the scan and vg_read find old metadata in an mda, they * leave the info struct in lvmcache, and leave the mda in * info->mdas. That means we use the mda here to write new * metadata into. This means that a command writing a VG will * automatically update old metadata to the latest. * * This can also happen if the metadata was ignored on this * dev, and then it's later changed to not ignored, and * we see the old metadata. */ if (lvmcache_has_old_metadata(vg->cmd, vg->name, vgid, mda_dev)) { log_warn("WARNING: updating old metadata to %u on %s for VG %s.", vg->seqno, dev_name(mda_dev), vg->name); } if (!mda->ops->vg_write) { log_error("Format does not support writing volume group metadata areas."); revert = 1; break; } if (!mda->ops->vg_write(vg->fid, vg, mda)) { if (vg->cmd->handles_missing_pvs) { log_warn("WARNING: Failed to write an MDA of VG %s.", vg->name); mda->status |= MDA_FAILED; } else { stack; revert = 1; break; } } else ++ wrote; } if (revert || !wrote) { log_error("Failed to write VG %s.", vg->name); dm_list_uniterate(mdah, &vg->fid->metadata_areas_in_use, &mda->list) { mda = dm_list_item(mdah, struct metadata_area); if (mda->status & MDA_FAILED) continue; if (mda->ops->vg_revert && !mda->ops->vg_revert(vg->fid, vg, mda)) { stack; } } return 0; } /* Now pre-commit each copy of the new metadata */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { if (mda->status & MDA_FAILED) continue; if (mda->ops->vg_precommit && !mda->ops->vg_precommit(vg->fid, vg, mda)) { stack; /* Revert */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { if (mda->status & MDA_FAILED) continue; if (mda->ops->vg_revert && !mda->ops->vg_revert(vg->fid, vg, mda)) { stack; } } return 0; } } lockd_vg_update(vg); return 1; } static int _vg_commit_mdas(struct volume_group *vg) { struct metadata_area *mda, *tmda; DM_LIST_INIT(ignored); int good = 0; /* Rearrange the metadata_areas_in_use so ignored mdas come first. */ dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_in_use) if (mda_is_ignored(mda)) dm_list_move(&ignored, &mda->list); dm_list_iterate_items_safe(mda, tmda, &ignored) dm_list_move(&vg->fid->metadata_areas_in_use, &mda->list); /* Commit to each copy of the metadata area */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { if (mda->status & MDA_FAILED) continue; if (mda->ops->vg_commit && !mda->ops->vg_commit(vg->fid, vg, mda)) { stack; } else good++; } if (good) return 1; return 0; } /* Commit pending changes */ int vg_commit(struct volume_group *vg) { struct pv_list *pvl; struct dm_str_list *sl; int ret; ret = _vg_commit_mdas(vg); set_vg_notify(vg->cmd); if (ret) { /* * We need to clear old_name after a successful commit. * The volume_group structure could be reused later. */ vg->old_name = NULL; dm_list_iterate_items(pvl, &vg->pvs) pvl->pv->status &= ~PV_MOVED_VG; /* This *is* the original now that it's commited. */ _vg_move_cached_precommitted_to_committed(vg); if (vg->needs_write_and_commit){ /* Print buffered messages that have been finished with this commit. */ dm_list_iterate_items(sl, &vg->msg_list) log_print_unless_silent("%s", sl->str); dm_list_init(&vg->msg_list); vg->needs_write_and_commit = 0; } } /* If at least one mda commit succeeded, it was committed */ return ret; } /* Don't commit any pending changes */ void vg_revert(struct volume_group *vg) { struct metadata_area *mda; struct lv_list *lvl; dm_list_iterate_items(lvl, &vg->lvs) { if (lvl->lv->new_lock_args) { lockd_free_lv(vg->cmd, vg, lvl->lv->name, &lvl->lv->lvid.id[1], lvl->lv->lock_args); lvl->lv->new_lock_args = 0; } } _vg_wipe_cached_precommitted(vg); /* VG is no longer needed */ dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) { if (mda->ops->vg_revert && !mda->ops->vg_revert(vg->fid, vg, mda)) { stack; } } } struct _vg_read_orphan_baton { struct cmd_context *cmd; struct volume_group *vg; const struct format_type *fmt; }; static int _vg_read_orphan_pv(struct lvmcache_info *info, void *baton) { struct _vg_read_orphan_baton *b = baton; struct physical_volume *pv = NULL; struct pv_list *pvl; uint32_t ext_version; uint32_t ext_flags; if (!(pv = _pv_read(b->cmd, b->fmt, b->vg, info))) { stack; return 1; } if (!(pvl = dm_pool_zalloc(b->vg->vgmem, sizeof(*pvl)))) { log_error("pv_list allocation failed"); free_pv_fid(pv); return 0; } pvl->pv = pv; add_pvl_to_vgs(b->vg, pvl); /* * FIXME: this bit of code that does the auto repair is disabled * until we can distinguish cases where the repair should not * happen, i.e. the VG metadata could not be read/parsed. * * A PV holding VG metadata that lvm can't understand * (e.g. damaged, checksum error, unrecognized flag) * will appear as an in-use orphan, and would be cleared * by this repair code. Disable this repair until the * code can keep track of these problematic PVs, and * distinguish them from actual in-use orphans. */ /* if (!_check_or_repair_orphan_pv_ext(pv, info, baton)) { stack; return 0; } */ /* * Nothing to do if PV header extension < 2: * - version 0 is PV header without any extensions, * - version 1 has bootloader area support only and * we're not checking anything for that one here. */ ext_version = lvmcache_ext_version(info); ext_flags = lvmcache_ext_flags(info); /* * Warn about a PV that has the in-use flag set, but appears in * the orphan VG (no VG was found referencing it.) * There are a number of conditions that could lead to this: * * . The PV was created with no mdas and is used in a VG with * other PVs (with metadata) that have not yet appeared on * the system. So, no VG metadata is found by lvm which * references the in-use PV with no mdas. * * . vgremove could have failed after clearing mdas but * before clearing the in-use flag. In this case, the * in-use flag needs to be manually cleared on the PV. * * . The PV may have damanged/unrecognized VG metadata * that lvm could not read. * * . The PV may have no mdas, and the PVs with the metadata * may have damaged/unrecognized metadata. */ if ((ext_version >= 2) && (ext_flags & PV_EXT_USED)) { log_warn("WARNING: PV %s is marked in use but no VG was found using it.", pv_dev_name(pv)); log_warn("WARNING: PV %s might need repairing.", pv_dev_name(pv)); } return 1; } /* Make orphan PVs look like a VG. */ struct volume_group *vg_read_orphans(struct cmd_context *cmd, const char *orphan_vgname) { const struct format_type *fmt = cmd->fmt; struct lvmcache_vginfo *vginfo; struct volume_group *vg = NULL; struct _vg_read_orphan_baton baton; struct pv_list *pvl, *tpvl; struct pv_list head; dm_list_init(&head.list); if (!(vginfo = lvmcache_vginfo_from_vgname(orphan_vgname, NULL))) return_NULL; vg = fmt->orphan_vg; dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs) if (pvl->pv->status & UNLABELLED_PV ) dm_list_move(&head.list, &pvl->list); else pv_set_fid(pvl->pv, NULL); dm_list_init(&vg->pvs); vg->pv_count = 0; vg->extent_count = 0; vg->free_count = 0; baton.cmd = cmd; baton.fmt = fmt; baton.vg = vg; /* * vg_read for a normal VG will rescan labels for all the devices * in the VG, in case something changed on disk between the initial * label scan and acquiring the VG lock. We don't rescan labels * here because this is only called in two ways: * * 1. for reporting, in which case it doesn't matter if something * changed between the label scan and printing the PVs here * * 2. pvcreate_each_device() for pvcreate//vgcreate/vgextend, * which already does the label rescan after taking the * orphan lock. */ while ((pvl = (struct pv_list *) dm_list_first(&head.list))) { dm_list_del(&pvl->list); add_pvl_to_vgs(vg, pvl); vg->extent_count += pvl->pv->pe_count; vg->free_count += pvl->pv->pe_count; } if (!lvmcache_foreach_pv(vginfo, _vg_read_orphan_pv, &baton)) return_NULL; return vg; } static void _destroy_fid(struct format_instance **fid) { if (*fid) { (*fid)->fmt->ops->destroy_instance(*fid); *fid = NULL; } } int vg_missing_pv_count(const struct volume_group *vg) { int ret = 0; struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) { if (is_missing_pv(pvl->pv)) ++ ret; } return ret; } #define DEV_LIST_DELIM ", " static int _check_devs_used_correspond_with_lv(struct dm_pool *mem, struct dm_list *list, struct logical_volume *lv) { struct device_list *dl; int found_inconsistent = 0; struct device *dev; struct lv_segment *seg; uint32_t s; int warned_about_no_dev = 0; char *used_devnames = NULL, *assumed_devnames = NULL; if (!(list = dev_cache_get_dev_list_for_lvid(lv->lvid.s + ID_LEN))) return 1; dm_list_iterate_items(dl, list) { dev = dl->dev; if (!(dev->flags & DEV_ASSUMED_FOR_LV)) { if (!found_inconsistent) { if (!dm_pool_begin_object(mem, 32)) return_0; found_inconsistent = 1; } else { if (!dm_pool_grow_object(mem, DEV_LIST_DELIM, sizeof(DEV_LIST_DELIM) - 1)) return_0; } if (!dm_pool_grow_object(mem, dev_name(dev), 0)) return_0; } } if (!found_inconsistent) return 1; if (!dm_pool_grow_object(mem, "\0", 1)) return_0; used_devnames = dm_pool_end_object(mem); found_inconsistent = 0; dm_list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) == AREA_PV) { if (!(dev = seg_dev(seg, s))) { if (!warned_about_no_dev) { log_warn("WARNING: Couldn't find all devices for LV %s " "while checking used and assumed devices.", display_lvname(lv)); warned_about_no_dev = 1; } continue; } if (!(dev->flags & DEV_USED_FOR_LV)) { if (!found_inconsistent) { if (!dm_pool_begin_object(mem, 32)) return_0; found_inconsistent = 1; } else { if (!dm_pool_grow_object(mem, DEV_LIST_DELIM, sizeof(DEV_LIST_DELIM) - 1)) return_0; } if (!dm_pool_grow_object(mem, dev_name(dev), 0)) return_0; } } } } if (found_inconsistent) { if (!dm_pool_grow_object(mem, "\0", 1)) return_0; assumed_devnames = dm_pool_end_object(mem); log_warn("WARNING: Device mismatch detected for %s which is accessing %s instead of %s.", display_lvname(lv), used_devnames, assumed_devnames); } return 1; } static int _check_devs_used_correspond_with_vg(struct volume_group *vg) { struct dm_pool *mem; char vgid[ID_LEN + 1] __attribute__((aligned(8))); struct pv_list *pvl; struct lv_list *lvl; struct dm_list *list; struct device_list *dl; int found_inconsistent = 0; vgid[ID_LEN] = 0; memcpy(vgid, &vg->id.uuid, ID_LEN); /* Mark all PVs in VG as used. */ dm_list_iterate_items(pvl, &vg->pvs) { /* * FIXME: It's not clear if the meaning * of "missing" should always include the * !pv->dev case, or if "missing" is the * more narrow case where VG metadata has * been written with the MISSING flag. */ if (!pvl->pv->dev) continue; if (is_missing_pv(pvl->pv)) continue; pvl->pv->dev->flags |= DEV_ASSUMED_FOR_LV; } if (!(list = dev_cache_get_dev_list_for_vgid(vgid))) return 1; dm_list_iterate_items(dl, list) { if (!(dl->dev->flags & DEV_OPEN_FAILURE) && !(dl->dev->flags & DEV_ASSUMED_FOR_LV)) { found_inconsistent = 1; break; } } if (found_inconsistent) { if (!(mem = dm_pool_create("vg_devs_check", 1024))) return_0; dm_list_iterate_items(lvl, &vg->lvs) { if (!_check_devs_used_correspond_with_lv(mem, list, lvl->lv)) { dm_pool_destroy(mem); return_0; } } dm_pool_destroy(mem); } return 1; } void free_pv_fid(struct physical_volume *pv) { if (!pv) return; pv_set_fid(pv, NULL); } static struct physical_volume *_pv_read(struct cmd_context *cmd, const struct format_type *fmt, struct volume_group *vg, struct lvmcache_info *info) { char pvid[ID_LEN + 1] __attribute__((aligned(8))); struct physical_volume *pv; struct device *dev = lvmcache_device(info); if (!(pv = _alloc_pv(vg->vgmem, NULL))) { log_error("pv allocation failed"); return NULL; } if (fmt->ops->pv_read) { /* format1 and pool */ if (!(fmt->ops->pv_read(fmt, dev_name(dev), pv, 0))) { log_error("Failed to read existing physical volume '%s'", dev_name(dev)); goto bad; } } else { /* format text */ if (!lvmcache_populate_pv_fields(info, vg, pv)) goto_bad; } if (!alloc_pv_segment_whole_pv(vg->vgmem, pv)) goto_bad; pvid[ID_LEN] = 0; memcpy(pvid, &pv->id.uuid, ID_LEN); lvmcache_fid_add_mdas(info, vg->fid, pvid, ID_LEN); pv_set_fid(pv, vg->fid); return pv; bad: free_pv_fid(pv); dm_pool_free(vg->vgmem, pv); return NULL; } /* * FIXME: we only want to print the warnings when this is called from * vg_read, not from import_vg_from_metadata, so do the warnings elsewhere * or avoid calling this from import_vg_from. */ static void _set_pv_device(struct format_instance *fid, struct volume_group *vg, struct physical_volume *pv) { char buffer[64] __attribute__((aligned(8))); struct cmd_context *cmd = fid->fmt->cmd; struct device *dev; uint64_t size; if (!(dev = lvmcache_device_from_pv_id(cmd, &pv->id, &pv->label_sector))) { if (!id_write_format(&pv->id, buffer, sizeof(buffer))) buffer[0] = '\0'; if (cmd && !cmd->expect_missing_vg_device && (!vg_is_foreign(vg) && !cmd->include_foreign_vgs)) log_warn("WARNING: Couldn't find device with uuid %s.", buffer); else log_debug_metadata("Couldn't find device with uuid %s.", buffer); } pv->dev = dev; /* * A previous command wrote the VG while this dev was missing, so * the MISSING flag was included in the PV. */ if ((pv->status & MISSING_PV) && pv->dev) log_warn("WARNING: VG %s was previously updated while PV %s was missing.", vg->name, dev_name(pv->dev)); /* * If this command writes the VG, we want the MISSING flag to be * written for this PV with no device. */ if (!pv->dev) pv->status |= MISSING_PV; /* Fix up pv size if missing or impossibly large */ if ((!pv->size || pv->size > (1ULL << 62)) && pv->dev) { if (!dev_get_size(pv->dev, &pv->size)) { log_error("%s: Couldn't get size.", pv_dev_name(pv)); return; } log_verbose("Fixing up missing size (%s) for PV %s", display_size(fid->fmt->cmd, pv->size), pv_dev_name(pv)); size = pv->pe_count * (uint64_t) vg->extent_size + pv->pe_start; if (size > pv->size) log_warn("WARNING: Physical Volume %s is too large " "for underlying device", pv_dev_name(pv)); } } /* * Finds the 'struct device' that correponds to each PV in the metadata, * and may make some adjustments to vg fields based on the dev properties. */ void set_pv_devices(struct format_instance *fid, struct volume_group *vg) { struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) _set_pv_device(fid, vg, pvl->pv); } int pv_write(struct cmd_context *cmd, struct physical_volume *pv, int allow_non_orphan) { if (!pv->fmt->ops->pv_write) { log_error("Format does not support writing physical volumes"); return 0; } /* * FIXME: Try to remove this restriction. This requires checking * that the PV and the VG are in a consistent state. We need * to provide some revert mechanism since PV label together * with VG metadata write is not atomic. */ if (!allow_non_orphan && (!is_orphan_vg(pv->vg_name) || pv->pe_alloc_count)) { log_error("Assertion failed: can't _pv_write non-orphan PV " "(in VG %s)", pv_vg_name(pv)); return 0; } if (!pv->fmt->ops->pv_write(cmd, pv->fmt, pv)) return_0; pv->status &= ~UNLABELLED_PV; return 1; } int pv_write_orphan(struct cmd_context *cmd, struct physical_volume *pv) { const char *old_vg_name = pv->vg_name; pv->vg_name = cmd->fmt->orphan_vg_name; pv->status = ALLOCATABLE_PV; pv->pe_alloc_count = 0; if (!dev_get_size(pv->dev, &pv->size)) { log_error("%s: Couldn't get size.", pv_dev_name(pv)); return 0; } if (!pv_write(cmd, pv, 0)) { log_error("Failed to clear metadata from physical " "volume \"%s\" after removal from \"%s\"", pv_dev_name(pv), old_vg_name); return 0; } return 1; } /** * is_orphan_vg - Determine whether a vg_name is an orphan * @vg_name: pointer to the vg_name */ int is_orphan_vg(const char *vg_name) { return (vg_name && !strncmp(vg_name, ORPHAN_PREFIX, sizeof(ORPHAN_PREFIX) - 1)) ? 1 : 0; } /* * Exclude pseudo VG names used for locking. */ int is_real_vg(const char *vg_name) { return (vg_name && *vg_name != '#'); } /* FIXME: remove / combine this with locking? */ int vg_check_write_mode(struct volume_group *vg) { if (vg->open_mode != 'w') { log_errno(EPERM, "Attempt to modify a read-only VG"); return 0; } return 1; } /* * Return 1 if the VG metadata should be written * *without* the LVM_WRITE flag in the status line, and * *with* the LVM_WRITE_LOCKED flag in the flags line. * * If this is done for a VG, it forces previous versions * of lvm (before the LVM_WRITE_LOCKED flag was added), to view * the VG and its LVs as read-only (because the LVM_WRITE flag * is missing). Versions of lvm that understand the * LVM_WRITE_LOCKED flag know to check the other methods of * access control for the VG, specifically system_id and lock_type. * * So, if a VG has a system_id or lock_type, then the * system_id and lock_type control access to the VG in * addition to its basic writable status. Because previous * lvm versions do not know about system_id or lock_type, * VGs depending on either of these should have LVM_WRITE_LOCKED * instead of LVM_WRITE to prevent the previous lvm versions from * assuming they can write the VG and its LVs. */ int vg_flag_write_locked(struct volume_group *vg) { if (vg->system_id && vg->system_id[0]) return 1; if (vg->lock_type && vg->lock_type[0] && strcmp(vg->lock_type, "none")) return 1; return 0; } static int _access_vg_clustered(struct cmd_context *cmd, const struct volume_group *vg) { if (vg_is_clustered(vg)) { /* * force_access_clustered is only set when forcibly * converting a clustered vg to lock type none. */ if (cmd->force_access_clustered) { log_debug("Allowing forced access to clustered vg %s", vg->name); return 1; } log_verbose("Skipping clustered VG %s.", vg->name); return 0; } return 1; } /* * Performs a set of checks against a VG according to bits set in status * and returns FAILED_* bits for those that aren't acceptable. * * FIXME Remove the unnecessary duplicate definitions and return bits directly. */ uint32_t vg_bad_status_bits(const struct volume_group *vg, uint64_t status) { uint32_t failure = 0; if ((status & CLUSTERED) && !_access_vg_clustered(vg->cmd, vg)) /* Return because other flags are considered undefined. */ return FAILED_CLUSTERED; if ((status & LVM_WRITE) && !(vg->status & LVM_WRITE)) { log_error("Volume group %s is read-only", vg->name); failure |= FAILED_READ_ONLY; } if ((status & RESIZEABLE_VG) && !vg_is_resizeable(vg)) { log_error("Volume group %s is not resizeable.", vg->name); failure |= FAILED_RESIZEABLE; } return failure; } /** * vg_check_status - check volume group status flags and log error * @vg - volume group to check status flags * @status - specific status flags to check */ int vg_check_status(const struct volume_group *vg, uint64_t status) { return !vg_bad_status_bits(vg, status); } static int _allow_extra_system_id(struct cmd_context *cmd, const char *system_id) { const struct dm_config_node *cn; const struct dm_config_value *cv; const char *str; if (!(cn = find_config_tree_array(cmd, local_extra_system_ids_CFG, NULL))) return 0; for (cv = cn->v; cv; cv = cv->next) { if (cv->type == DM_CFG_EMPTY_ARRAY) break; /* Ignore invalid data: Warning message already issued by config.c */ if (cv->type != DM_CFG_STRING) continue; str = cv->v.str; if (!*str) continue; if (!strcmp(str, system_id)) return 1; } return 0; } static int _access_vg_lock_type(struct cmd_context *cmd, struct volume_group *vg, uint32_t lockd_state, uint32_t *failure) { if (cmd->lockd_vg_disable) return 1; /* * Local VG requires no lock from lvmlockd. */ if (!vg_is_shared(vg)) return 1; /* * When lvmlockd is not used, lockd VGs are ignored by lvm * and cannot be used, with two exceptions: * * . The --shared option allows them to be revealed with * reporting/display commands. * * . If a command asks to operate on one specifically * by name, then an error is printed. */ if (!lvmlockd_use()) { /* * Some reporting/display commands have the --shared option * (like --foreign) to allow them to reveal lockd VGs that * are otherwise ignored. The --shared option must only be * permitted in commands that read the VG for report or display, * not any that write the VG or activate LVs. */ if (cmd->include_shared_vgs) return 1; /* * Some commands want the error printed by vg_read, others by ignore_vg. * Those using ignore_vg may choose to skip the error. */ if (cmd->vg_read_print_access_error) { log_error("Cannot access VG %s with lock type %s that requires lvmlockd.", vg->name, vg->lock_type); } *failure |= FAILED_LOCK_TYPE; return 0; } /* * The lock request from lvmlockd failed. If the lock was ex, * we cannot continue. If the lock was sh, we could also fail * to continue but since the lock was sh, it means the VG is * only being read, and it doesn't hurt to allow reading with * no lock. */ if (lockd_state & LDST_FAIL) { if ((lockd_state & LDST_EX) || cmd->lockd_vg_enforce_sh) { log_error("Cannot access VG %s due to failed lock.", vg->name); *failure |= FAILED_LOCK_MODE; return 0; } log_warn("Reading VG %s without a lock.", vg->name); return 1; } if (test_mode()) { log_error("Test mode is not yet supported with lock type %s.", vg->lock_type); *failure |= FAILED_LOCK_TYPE; return 0; } return 1; } int is_system_id_allowed(struct cmd_context *cmd, const char *system_id) { /* * A VG without a system_id can be accessed by anyone. */ if (!system_id || !system_id[0]) return 1; /* * Allowed if the host and VG system_id's match. */ if (cmd->system_id && !strcmp(cmd->system_id, system_id)) return 1; /* * Allowed if a host's extra system_id matches. */ if (cmd->system_id && _allow_extra_system_id(cmd, system_id)) return 1; /* * Not allowed if the host does not have a system_id * and the VG does, or if the host and VG's system_id's * do not match. */ return 0; } static int _access_vg_systemid(struct cmd_context *cmd, struct volume_group *vg) { /* * A few commands allow read-only access to foreign VGs. */ if (cmd->include_foreign_vgs) return 1; if (is_system_id_allowed(cmd, vg->system_id)) return 1; /* * Allow VG access if the local host has active LVs in it. */ if (lvs_in_vg_activated(vg)) { log_warn("WARNING: Found LVs active in VG %s with foreign system ID %s. Possible data corruption.", vg->name, vg->system_id); if (cmd->include_active_foreign_vgs) return 1; return 0; } /* * Print an error when reading a VG that has a system_id * and the host system_id is unknown. */ if (!cmd->system_id || cmd->unknown_system_id) { log_error("Cannot access VG %s with system ID %s with unknown local system ID.", vg->name, vg->system_id); return 0; } /* * Some commands want the error printed by vg_read, others by ignore_vg. * Those using ignore_vg may choose to skip the error. */ if (cmd->vg_read_print_access_error) { log_error("Cannot access VG %s with system ID %s with local system ID %s.", vg->name, vg->system_id, cmd->system_id); return 0; } /* Silently ignore foreign vgs. */ return 0; } static int _access_vg_exported(struct cmd_context *cmd, struct volume_group *vg) { if (!vg_is_exported(vg)) return 1; if (cmd->include_exported_vgs) return 1; /* * Some commands want the error printed by vg_read, others by ignore_vg. * Those using ignore_vg may choose to skip the error. */ if (cmd->vg_read_print_access_error) { log_error("Volume group %s is exported", vg->name); return 0; } /* Silently ignore exported vgs. */ return 0; } struct format_instance *alloc_fid(const struct format_type *fmt, const struct format_instance_ctx *fic) { struct dm_pool *mem; struct format_instance *fid; if (!(mem = dm_pool_create("format_instance", 1024))) return_NULL; if (!(fid = dm_pool_zalloc(mem, sizeof(*fid)))) { log_error("Couldn't allocate format_instance object."); goto bad; } fid->ref_count = 1; fid->mem = mem; fid->type = fic->type; fid->fmt = fmt; dm_list_init(&fid->metadata_areas_in_use); dm_list_init(&fid->metadata_areas_ignored); return fid; bad: dm_pool_destroy(mem); return NULL; } void pv_set_fid(struct physical_volume *pv, struct format_instance *fid) { if (fid == pv->fid) return; if (fid) fid->ref_count++; if (pv->fid) pv->fid->fmt->ops->destroy_instance(pv->fid); pv->fid = fid; } void vg_set_fid(struct volume_group *vg, struct format_instance *fid) { struct pv_list *pvl; if (fid == vg->fid) return; if (fid) fid->ref_count++; dm_list_iterate_items(pvl, &vg->pvs) pv_set_fid(pvl->pv, fid); dm_list_iterate_items(pvl, &vg->removed_pvs) pv_set_fid(pvl->pv, fid); if (vg->fid) vg->fid->fmt->ops->destroy_instance(vg->fid); vg->fid = fid; } static int _convert_key_to_string(const char *key, size_t key_len, unsigned sub_key, char *buf, size_t buf_len) { memcpy(buf, key, key_len); buf += key_len; buf_len -= key_len; if ((dm_snprintf(buf, buf_len, "_%u", sub_key) == -1)) return_0; return 1; } int fid_add_mda(struct format_instance *fid, struct metadata_area *mda, const char *key, size_t key_len, const unsigned sub_key) { static char full_key[PATH_MAX]; dm_list_add(mda_is_ignored(mda) ? &fid->metadata_areas_ignored : &fid->metadata_areas_in_use, &mda->list); /* Return if the mda is not supposed to be indexed. */ if (!key) return 1; if (!fid->metadata_areas_index) return_0; /* Add metadata area to index. */ if (!_convert_key_to_string(key, key_len, sub_key, full_key, sizeof(full_key))) return_0; if (!dm_hash_insert(fid->metadata_areas_index, full_key, mda)) { log_error("Failed to hash mda."); return 0; } return 1; } int fid_add_mdas(struct format_instance *fid, struct dm_list *mdas, const char *key, size_t key_len) { struct metadata_area *mda, *mda_new; unsigned mda_index = 0; dm_list_iterate_items(mda, mdas) { mda_new = mda_copy(fid->mem, mda); if (!mda_new) return_0; fid_remove_mda(fid, NULL, key, key_len, mda_index); fid_add_mda(fid, mda_new, key, key_len, mda_index); mda_index++; } return 1; } struct metadata_area *fid_get_mda_indexed(struct format_instance *fid, const char *key, size_t key_len, const unsigned sub_key) { static char full_key[PATH_MAX]; struct metadata_area *mda = NULL; if (!fid->metadata_areas_index) return_NULL; if (!_convert_key_to_string(key, key_len, sub_key, full_key, sizeof(full_key))) return_NULL; mda = (struct metadata_area *) dm_hash_lookup(fid->metadata_areas_index, full_key); return mda; } int fid_remove_mda(struct format_instance *fid, struct metadata_area *mda, const char *key, size_t key_len, const unsigned sub_key) { static char full_key[PATH_MAX]; struct metadata_area *mda_indexed = NULL; /* At least one of mda or key must be specified. */ if (!mda && !key) return 1; if (key) { /* * If both mda and key specified, check given mda * with what we find using the index and return * immediately if these two do not match. */ if (!(mda_indexed = fid_get_mda_indexed(fid, key, key_len, sub_key)) || (mda && mda != mda_indexed)) return 1; mda = mda_indexed; if (!_convert_key_to_string(key, key_len, sub_key, full_key, sizeof(full_key))) return_0; dm_hash_remove(fid->metadata_areas_index, full_key); } dm_list_del(&mda->list); return 1; } /* * Copy constructor for a metadata_area. */ struct metadata_area *mda_copy(struct dm_pool *mem, struct metadata_area *mda) { struct metadata_area *mda_new; if (!(mda_new = dm_pool_alloc(mem, sizeof(*mda_new)))) { log_error("metadata_area allocation failed"); return NULL; } memcpy(mda_new, mda, sizeof(*mda)); if (mda->ops->mda_metadata_locn_copy && mda->metadata_locn) { mda_new->metadata_locn = mda->ops->mda_metadata_locn_copy(mem, mda->metadata_locn); if (!mda_new->metadata_locn) { dm_pool_free(mem, mda_new); return NULL; } } dm_list_init(&mda_new->list); return mda_new; } /* * This function provides a way to answer the question on a format specific * basis - does the format specfic context of these two metadata areas * match? * * A metatdata_area is defined to be independent of the underlying context. * This has the benefit that we can use the same abstraction to read disks * (see _metadata_text_raw_ops) or files (see _metadata_text_file_ops). * However, one downside is there is no format-independent way to determine * whether a given metadata_area is attached to a specific device - in fact, * it may not be attached to a device at all. * * Thus, LVM is structured such that an mda is not a member of struct * physical_volume. The location of the mda depends on whether * the PV is in a volume group. A PV not in a VG has an mda on the * 'info->mda' list in lvmcache, while a PV in a VG has an mda on * the vg->fid->metadata_areas_in_use list. For further details, see _vg_read(), * and the sequence of creating the format_instance with fid->metadata_areas_in_use * list, as well as the construction of the VG, with list of PVs (comes * after the construction of the fid and list of mdas). */ unsigned mda_locns_match(struct metadata_area *mda1, struct metadata_area *mda2) { if (!mda1->ops->mda_locns_match || !mda2->ops->mda_locns_match || mda1->ops->mda_locns_match != mda2->ops->mda_locns_match) return 0; return mda1->ops->mda_locns_match(mda1, mda2); } struct device *mda_get_device(struct metadata_area *mda) { if (!mda->ops->mda_get_device) return NULL; return mda->ops->mda_get_device(mda); } unsigned mda_is_ignored(struct metadata_area *mda) { return (mda->status & MDA_IGNORED); } void mda_set_ignored(struct metadata_area *mda, unsigned mda_ignored) { void *locn = mda->metadata_locn; unsigned old_mda_ignored = mda_is_ignored(mda); if (mda_ignored && !old_mda_ignored) mda->status |= MDA_IGNORED; else if (!mda_ignored && old_mda_ignored) mda->status &= ~MDA_IGNORED; else return; /* No change */ log_debug_metadata("%s ignored flag for mda %s at offset %" PRIu64 ".", mda_ignored ? "Setting" : "Clearing", mda->ops->mda_metadata_locn_name ? mda->ops->mda_metadata_locn_name(locn) : "", mda->ops->mda_metadata_locn_offset ? mda->ops->mda_metadata_locn_offset(locn) : UINT64_C(0)); } int mdas_empty_or_ignored(struct dm_list *mdas) { struct metadata_area *mda; if (dm_list_empty(mdas)) return 1; dm_list_iterate_items(mda, mdas) { if (mda_is_ignored(mda)) return 1; } return 0; } int pv_change_metadataignore(struct physical_volume *pv, uint32_t mda_ignored) { const char *pv_name = pv_dev_name(pv); if (mda_ignored && !pv_mda_used_count(pv)) { log_error("Metadata areas on physical volume \"%s\" already " "ignored.", pv_name); return 0; } if (!mda_ignored && (pv_mda_used_count(pv) == pv_mda_count(pv))) { log_error("Metadata areas on physical volume \"%s\" already " "marked as in-use.", pv_name); return 0; } if (!pv_mda_count(pv)) { log_error("Physical volume \"%s\" has no metadata " "areas.", pv_name); return 0; } log_verbose("Marking metadata areas on physical volume \"%s\" " "as %s.", pv_name, mda_ignored ? "ignored" : "in-use"); if (!pv_mda_set_ignored(pv, mda_ignored)) return_0; /* * Update vg_mda_copies based on the mdas in this PV. * This is most likely what the user would expect - if they * specify a specific PV to be ignored/un-ignored, they will * most likely not want LVM to turn around and change the * ignore / un-ignore value when it writes the VG to disk. * This does not guarantee this PV's ignore bits will be * preserved in future operations. */ if (!is_orphan(pv) && vg_mda_copies(pv->vg) != VGMETADATACOPIES_UNMANAGED) { log_warn("WARNING: Changing preferred number of copies of VG %s " "metadata from %"PRIu32" to %"PRIu32, pv_vg_name(pv), vg_mda_copies(pv->vg), vg_mda_used_count(pv->vg)); vg_set_mda_copies(pv->vg, vg_mda_used_count(pv->vg)); } return 1; } char *tags_format_and_copy(struct dm_pool *mem, const struct dm_list *tagsl) { struct dm_str_list *sl; if (!dm_pool_begin_object(mem, 256)) { log_error("dm_pool_begin_object failed"); return NULL; } dm_list_iterate_items(sl, tagsl) { if (!dm_pool_grow_object(mem, sl->str, strlen(sl->str)) || (sl->list.n != tagsl && !dm_pool_grow_object(mem, ",", 1))) { log_error("dm_pool_grow_object failed"); return NULL; } } if (!dm_pool_grow_object(mem, "\0", 1)) { log_error("dm_pool_grow_object failed"); return NULL; } return dm_pool_end_object(mem); } const struct logical_volume *lv_committed(const struct logical_volume *lv) { struct volume_group *vg; const struct logical_volume *found_lv; if (!lv) return NULL; if (!lv->vg->vg_committed) return lv; vg = lv->vg->vg_committed; if (!(found_lv = find_lv_in_vg_by_lvid(vg, &lv->lvid))) { log_error(INTERNAL_ERROR "LV %s (UUID %s) not found in committed metadata.", display_lvname(lv), lv->lvid.s); found_lv = lv; /* Use uncommitted LV as best effort */ } return found_lv; } /* * Check if a lock_type uses lvmlockd. * If not (none, clvm), return 0. * If so (dlm, sanlock), return 1. */ int is_lockd_type(const char *lock_type) { if (!lock_type) return 0; if (!strcmp(lock_type, "dlm")) return 1; if (!strcmp(lock_type, "sanlock")) return 1; if (!strcmp(lock_type, "idm")) return 1; return 0; } int vg_is_shared(const struct volume_group *vg) { return (vg->lock_type && is_lockd_type(vg->lock_type)); } int vg_strip_outdated_historical_lvs(struct volume_group *vg) { struct glv_list *glvl, *tglvl; time_t current_time = time(NULL); uint64_t threshold = find_config_tree_int(vg->cmd, metadata_lvs_history_retention_time_CFG, NULL); if (!threshold) return 1; dm_list_iterate_items_safe(glvl, tglvl, &vg->historical_lvs) { /* * Removal time in the future? Not likely, * but skip this item in any case. */ if (current_time < (time_t) glvl->glv->historical->timestamp_removed) continue; if ((current_time - glvl->glv->historical->timestamp_removed) > threshold) { if (!historical_glv_remove(glvl->glv)) { log_error("Failed to destroy record about historical LV %s/%s.", vg->name, glvl->glv->historical->name); return 0; } log_verbose("Outdated record for historical logical volume \"%s\" " "automatically destroyed.", glvl->glv->historical->name); } } return 1; } int lv_on_pmem(struct logical_volume *lv) { struct lv_segment *seg; struct physical_volume *pv; uint32_t s; int pmem_devs = 0, other_devs = 0; dm_list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_PV) continue; pv = seg_pv(seg, s); if (dev_is_pmem(lv->vg->cmd->dev_types, pv->dev)) { log_debug("LV %s dev %s is pmem.", display_lvname(lv), dev_name(pv->dev)); pmem_devs++; } else { log_debug("LV %s dev %s not pmem.", display_lvname(lv), dev_name(pv->dev)); other_devs++; } } } if (pmem_devs && other_devs) { log_error("Invalid mix of cache device types in %s.", display_lvname(lv)); return -1; } if (pmem_devs) { log_debug("LV %s on pmem", display_lvname(lv)); return 1; } return 0; } int vg_is_foreign(struct volume_group *vg) { return vg->cmd->system_id && strcmp(vg->system_id, vg->cmd->system_id); } void vg_write_commit_bad_mdas(struct cmd_context *cmd, struct volume_group *vg) { char vgid[ID_LEN + 1] __attribute__((aligned(8))); DM_LIST_INIT(bad_mda_list); struct mda_list *mdal; struct metadata_area *mda; struct device *dev; vgid[ID_LEN] = 0; memcpy(vgid, &vg->id.uuid, ID_LEN); lvmcache_get_bad_mdas(cmd, vg->name, vgid, &bad_mda_list); dm_list_iterate_items(mdal, &bad_mda_list) { mda = mdal->mda; dev = mda_get_device(mda); /* * bad_fields: * * 0: shouldn't happen * * READ|INTERNAL: there's probably nothing wrong on disk * * MAGIC|START: there's a good chance that we were * reading the mda_header from the wrong location; maybe * the pv_header location was wrong. We don't want to * write new metadata to the wrong location. To handle * this we would want to do some further verification that * we have the mda location correct. * * VERSION|CHECKSUM: when the others are correct these * look safe to repair. * * HEADER: general error related to header, covered by fields * above. * * TEXT: general error related to text metadata, we can repair. * * MISMATCH: different values between instances of metadata, * can repair. */ if (!mda->bad_fields || (mda->bad_fields & BAD_MDA_READ) || (mda->bad_fields & BAD_MDA_INTERNAL) || (mda->bad_fields & BAD_MDA_MAGIC) || (mda->bad_fields & BAD_MDA_START)) { log_warn("WARNING: not repairing bad metadata (0x%x) for mda%d on %s", mda->bad_fields, mda->mda_num, dev_name(dev)); continue; } /* * vg_write/vg_commit reread the mda_header which checks the * mda header fields and fails if any are bad, which stops * vg_write/vg_commit from continuing. Suppress these header * field checks when we know the field is bad and we are going * to replace it. FIXME: do vg_write/vg_commit really need to * reread and recheck the mda_header again (probably not)? */ if (mda->bad_fields & BAD_MDA_CHECKSUM) mda->ignore_bad_fields |= BAD_MDA_CHECKSUM; if (mda->bad_fields & BAD_MDA_VERSION) mda->ignore_bad_fields |= BAD_MDA_VERSION; log_warn("WARNING: repairing bad metadata (0x%x) in mda%d at %llu on %s.", mda->bad_fields, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev)); if (!mda->ops->vg_write(vg->fid, vg, mda)) { log_warn("WARNING: failed to write VG %s metadata to bad mda%d at %llu on %s.", vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev)); continue; } if (!mda->ops->vg_precommit(vg->fid, vg, mda)) { log_warn("WARNING: failed to precommit VG %s metadata to bad mda%d at %llu on %s.", vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev)); continue; } if (!mda->ops->vg_commit(vg->fid, vg, mda)) { log_warn("WARNING: failed to commit VG %s metadata to bad mda%d at %llu on %s.", vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev)); continue; } } } /* * Reread an mda_header. If the text offset is the same as was seen and saved * by label scan, it means the metadata is unchanged and we do not need to * reread metadata. */ bool scan_text_mismatch(struct cmd_context *cmd, const char *vgname, const char *vgid) { DM_LIST_INIT(mda_list); struct mda_list *mdal, *safe; struct metadata_area *mda; struct mda_context *mdac; struct device_area *area; struct mda_header *mdah; struct raw_locn *rlocn; struct device *dev; uint32_t bad_fields; bool ret = true; /* * if cmd->can_use_one_scan, check one mda_header is unchanged, * else check that all mda_headers are unchanged. */ lvmcache_get_mdas(cmd, vgname, vgid, &mda_list); dm_list_iterate_items(mdal, &mda_list) { mda = mdal->mda; if (!mda->scan_text_offset) continue; if (mda->mda_num != 1) continue; if (!(dev = mda_get_device(mda))) { log_debug("Rescan for text mismatch - no mda dev."); goto out; } bad_fields = 0; mdac = mda->metadata_locn; area = &mdac->area; /* * Invalidate mda_header in bcache so it will be reread from disk. */ if (!dev_invalidate_bytes(dev, 4096, 512)) { log_debug("Rescan for text mismatch - cannot invalidate."); goto out; } if (!(mdah = raw_read_mda_header(cmd->fmt, area, 1, 0, &bad_fields))) { log_debug("Rescan for text mismatch - no mda header."); goto out; } rlocn = mdah->raw_locns; if (bad_fields) { log_debug("Rescan for text mismatch - bad_fields."); } else if (rlocn->checksum != mda->scan_text_checksum) { log_debug("Rescan for text checksum mismatch - now %x prev %x.", rlocn->checksum, mda->scan_text_checksum); } else if (rlocn->offset != mda->scan_text_offset) { log_debug("Rescan for text offset mismatch - now %llu prev %llu.", (unsigned long long)rlocn->offset, (unsigned long long)mda->scan_text_offset); } else { /* the common case where fields match and no rescan needed */ ret = false; } dm_pool_free(cmd->mem, mdah); /* For can_use_one_scan commands, return result from checking one mda. */ if (cmd->can_use_one_scan) goto out; /* For other commands, return mismatch immediately. */ if (ret) goto out; } if (ret) { /* shouldn't happen */ log_debug("Rescan for text mismatch - no mdas."); goto out; } out: if (!ret) log_debug("Rescan skipped - unchanged offset %llu checksum %x.", (unsigned long long)mda->scan_text_offset, mda->scan_text_checksum); dm_list_iterate_items_safe(mdal, safe, &mda_list) { dm_list_del(&mdal->list); free(mdal); } return ret; } static struct volume_group *_vg_read(struct cmd_context *cmd, const char *vgname, const char *vgid, unsigned precommitted, int writing) { const struct format_type *fmt = cmd->fmt; struct format_instance *fid = NULL; struct format_instance_ctx fic; struct volume_group *vg, *vg_ret = NULL; struct metadata_area *mda, *mda2; unsigned use_precommitted = precommitted; struct device *mda_dev, *dev_ret = NULL; struct cached_vg_fmtdata *vg_fmtdata = NULL; /* Additional format-specific data about the vg */ int found_old_metadata = 0; unsigned use_previous_vg; log_debug_metadata("Reading VG %s %s", vgname ?: "", vgid ?: ""); /* * Devices are generally open readonly from scanning, and we need to * reopen them rw to update metadata. We want to reopen them rw before * before rescanning and/or writing. Reopening rw preserves the existing * bcache blocks for the devs. */ if (writing) lvmcache_label_reopen_vg_rw(cmd, vgname, vgid); /* * Rescan the devices that are associated with this vg in lvmcache. * This repeats what was done by the command's initial label scan, * but only the devices associated with this VG. * * The lvmcache info about these devs is from the initial label scan * performed by the command before the vg lock was held. Now the VG * lock is held, so we rescan all the info from the devs in case * something changed between the initial scan and now that the lock * is held. * * Some commands (e.g. reporting) are fine reporting data read by * the label scan. It doesn't matter if the devs changed between * the label scan and here, we can report what was seen in the * scan, even though it is the old state, since we will not be * making any modifications. If the VG was being modified during * the scan, and caused us to see inconsistent metadata on the * different PVs in the VG, then we do want to rescan the devs * here to get a consistent view of the VG. Note that we don't * know if the scan found all the PVs in the VG at this point. * We don't know that until vg_read looks at the list of PVs in * the metadata and compares that to the devices found by the scan. * * It's possible that a change made to the VG during scan was * adding or removing a PV from the VG. In this case, the list * of devices associated with the VG in lvmcache would change * due to the rescan. * * The devs in the VG may be persistently inconsistent due to some * previous problem. In this case, rescanning the labels here will * find the same inconsistency. The VG repair (mistakenly done by * vg_read below) is supposed to fix that. * * If the VG was not modified between the time we scanned the PVs * and now, when we hold the lock, then we don't need to rescan. * We can read the mda_header, and look at the text offset/checksum, * and if the current text offset/checksum matches what was seen during * label scan, we know that metadata is unchanged and doesn't need * to be rescanned. For reporting/display commands (CAN_USE_ONE_SCAN/ * can_use_one_scan), we check that the text offset/checksum are unchanged * in just one mda before deciding to skip rescanning. For other commands, * we check that they are unchanged in all mdas. This added checking is * probably unnecessary; all commands could likely just check a single mda. */ if (lvmcache_scan_mismatch(cmd, vgname, vgid) || scan_text_mismatch(cmd, vgname, vgid)) { log_debug_metadata("Rescanning devices for %s %s", vgname, writing ? "rw" : ""); if (writing) lvmcache_label_rescan_vg_rw(cmd, vgname, vgid); else lvmcache_label_rescan_vg(cmd, vgname, vgid); } /* * A "format instance" is an abstraction for a VG location, * i.e. where a VG's metadata exists on disk. * * An fic (format_instance_ctx) is a temporary struct used * to create an fid (format_instance). The fid hangs around * and is used to create a 'vg' to which it connected (vg->fid). * * The 'fic' describes a VG in terms of fmt/name/id. * * The 'fid' describes a VG in more detail than the fic, * holding information about where to find the VG metadata. * * The 'vg' describes the VG in the most detail representing * all the VG metadata. * * The fic and fid are set up by create_instance() to describe * the VG location. This happens before the VG metadata is * assembled into the more familiar struct volume_group "vg". * * The fid has one main purpose: to keep track of the metadata * locations for a given VG. It does this by putting 'mda' * structs on fid->metadata_areas_in_use, which specify where * metadata is located on disk. It gets this information * (metadata locations for a specific VG) from the command's * initial label scan. The info is passed indirectly via * lvmcache info/vginfo structs, which are created by the * label scan and then copied into fid by create_instance(). * * FIXME: just use the vginfo/info->mdas lists directly instead * of copying them into the fid list. */ fic.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS; fic.context.vg_ref.vg_name = vgname; fic.context.vg_ref.vg_id = vgid; /* * Sets up the metadata areas that we need to read below. * For each info in vginfo->infos, for each mda in info->mdas, * (found during label_scan), copy the mda to fid->metadata_areas_in_use */ if (!(fid = fmt->ops->create_instance(fmt, &fic))) { log_error("Failed to create format instance"); return NULL; } /* * We use the fid globally here so prevent the release_vg * call to destroy the fid - we may want to reuse it! */ fid->ref_count++; /* * label_scan found PVs for this VG and set up lvmcache to describe the * VG/PVs that we use here to read the VG. It created 'vginfo' for the * VG, and created an 'info' attached to vginfo for each PV. It also * added a metadata_area struct to info->mdas for each metadata area it * found on the PV. The info->mdas structs are copied to * fid->metadata_areas_in_use by create_instance above, and here we * read VG metadata from each of those mdas. */ dm_list_iterate_items_safe(mda, mda2, &fid->metadata_areas_in_use) { mda_dev = mda_get_device(mda); /* I don't think this can happen */ if (!mda_dev) { log_warn("Ignoring metadata for VG %s from missing dev.", vgname); continue; } use_previous_vg = 0; if (use_precommitted) { log_debug_metadata("Reading VG %s precommit metadata from %s %llu", vgname, dev_name(mda_dev), (unsigned long long)mda->header_start); vg = mda->ops->vg_read_precommit(cmd, fid, vgname, mda, &vg_fmtdata, &use_previous_vg); if (!vg && !use_previous_vg) { log_warn("WARNING: Reading VG %s precommit on %s failed.", vgname, dev_name(mda_dev)); vg_fmtdata = NULL; continue; } } else { log_debug_metadata("Reading VG %s metadata from %s %llu", vgname, dev_name(mda_dev), (unsigned long long)mda->header_start); vg = mda->ops->vg_read(cmd, fid, vgname, mda, &vg_fmtdata, &use_previous_vg); if (!vg && !use_previous_vg) { log_warn("WARNING: Reading VG %s on %s failed.", vgname, dev_name(mda_dev)); vg_fmtdata = NULL; continue; } } if (!vg) continue; if (!vg_ret) { vg_ret = vg; dev_ret = mda_dev; continue; } /* * Use the newest copy of the metadata found on any mdas. * Above, We could check if the scan found an old metadata * seqno in this mda and just skip reading it again; then these * seqno checks would just be sanity checks. */ if (vg->seqno == vg_ret->seqno) { release_vg(vg); } else if (vg->seqno > vg_ret->seqno) { log_warn("WARNING: ignoring metadata seqno %u on %s for seqno %u on %s for VG %s.", vg_ret->seqno, dev_name(dev_ret), vg->seqno, dev_name(mda_dev), vg->name); found_old_metadata = 1; release_vg(vg_ret); vg_ret = vg; dev_ret = mda_dev; vg_fmtdata = NULL; } else { /* vg->seqno < vg_ret->seqno */ log_warn("WARNING: ignoring metadata seqno %u on %s for seqno %u on %s for VG %s.", vg->seqno, dev_name(mda_dev), vg_ret->seqno, dev_name(dev_ret), vg->name); found_old_metadata = 1; release_vg(vg); vg_fmtdata = NULL; } } if (found_old_metadata) { log_warn("WARNING: Inconsistent metadata found for VG %s.", vgname); log_warn("See vgck --updatemetadata to correct inconsistency."); } vg = NULL; if (vg_ret) set_pv_devices(fid, vg_ret); fid->ref_count--; if (!vg_ret) { _destroy_fid(&fid); goto_out; } /* * Correct the lvmcache representation of the VG using the metadata * that we have chosen above (vg_ret). * * The vginfo/info representation created by label_scan was not * entirely correct since it did not use the full or final metadata. * * In lvmcache, PVs with no mdas were not attached to the vginfo during * label_scan because label_scan didn't know where they should go. Now * that we have the VG metadata we can tell, so use that to attach those * info's to the vginfo. * * Also, outdated PVs that have been removed from the VG were incorrectly * attached to the vginfo during label_scan, and now need to be detached. */ lvmcache_update_vg_from_read(vg_ret, vg_ret->status & PRECOMMITTED); /* * lvmcache_update_vg identified outdated mdas that we read above that * are not actually part of the VG. Remove those outdated mdas from * the fid's list of mdas. */ dm_list_iterate_items_safe(mda, mda2, &fid->metadata_areas_in_use) { mda_dev = mda_get_device(mda); if (lvmcache_is_outdated_dev(cmd, vg_ret->name, (const char *)&vg_ret->id, mda_dev)) { log_debug_metadata("vg_read %s ignore mda for outdated dev %s", vg_ret->name, dev_name(mda_dev)); dm_list_del(&mda->list); } } out: return vg_ret; } struct volume_group *vg_read(struct cmd_context *cmd, const char *vg_name, const char *vgid, uint32_t vg_read_flags, uint32_t lockd_state, uint32_t *error_flags, struct volume_group **error_vg) { char uuidstr[64] __attribute__((aligned(8))); struct volume_group *vg = NULL; struct lv_list *lvl; struct pv_list *pvl; int missing_pv_dev = 0; int missing_pv_flag = 0; uint32_t failure = 0; int original_vgid_set = vgid ? 1 : 0; int writing = (vg_read_flags & READ_FOR_UPDATE); int activating = (vg_read_flags & READ_FOR_ACTIVATE); *error_flags = SUCCESS; if (error_vg) *error_vg = NULL; if (is_orphan_vg(vg_name)) { log_very_verbose("Reading orphan VG %s.", vg_name); vg = vg_read_orphans(cmd, vg_name); return vg; } if (!validate_name(vg_name)) { log_error("Volume group name \"%s\" has invalid characters.", vg_name); failure |= FAILED_NOTFOUND; goto bad; } /* * When a command is reading the VG with the intention of eventually * writing it, it passes the READ_FOR_UPDATE flag. This causes vg_read * to acquire an exclusive VG lock, and causes vg_read to do some more * checks, e.g. that the VG is writable and not exported. It also * means that when the label scan is repeated on the VG's devices, the * VG's PVs can be reopened read-write when rescanning in anticipation * of needing to write to them. */ if (!(vg_read_flags & READ_WITHOUT_LOCK) && !lock_vol(cmd, vg_name, (writing || activating) ? LCK_VG_WRITE : LCK_VG_READ, NULL)) { log_error("Can't get lock for %s.", vg_name); failure |= FAILED_LOCKING; goto bad; } /* I belive this is unused, the name is always set. */ if (!vg_name && !(vg_name = lvmcache_vgname_from_vgid(cmd->mem, vgid))) { unlock_vg(cmd, NULL, vg_name); log_error("VG name not found for vgid %s", vgid); failure |= FAILED_NOTFOUND; goto bad; } /* * If the command is process all vgs, process_each will get a list of vgname+vgid * pairs, and then call vg_read() for each vgname+vigd. In this case we know * which VG to read even if there are duplicate names, and we don't fail. * * If the user has requested one VG by name, process_each passes only the vgname * to vg_read(), and we look up the vgid from lvmcache. lvmcache finds duplicate * vgnames, doesn't know which is intended, returns a NULL vgid, and we fail. */ if (!vgid) vgid = lvmcache_vgid_from_vgname(cmd, vg_name); if (!vgid) { unlock_vg(cmd, NULL, vg_name); /* Some callers don't care if the VG doesn't exist and don't want an error message. */ if (!(vg_read_flags & READ_OK_NOTFOUND)) log_error("Volume group \"%s\" not found", vg_name); failure |= FAILED_NOTFOUND; goto bad; } /* * vgchange -ay (no vgname arg) will activate multiple local VGs with the same * name, but if the vgs have the same lv name, activating those lvs will fail. */ if (activating && original_vgid_set && lvmcache_has_duplicate_local_vgname(vgid, vg_name)) log_warn("WARNING: activating multiple VGs with the same name is dangerous and may fail."); if (!(vg = _vg_read(cmd, vg_name, vgid, 0, writing))) { unlock_vg(cmd, NULL, vg_name); /* Some callers don't care if the VG doesn't exist and don't want an error message. */ if (!(vg_read_flags & READ_OK_NOTFOUND)) log_error("Volume group \"%s\" not found.", vg_name); failure |= FAILED_NOTFOUND; goto bad; } /* * Check and warn if PV ext info is not in sync with VG metadata * (vg_write fixes.) */ _check_pv_ext(cmd, vg); if (!vg_strip_outdated_historical_lvs(vg)) log_warn("WARNING: failed to strip outdated historical lvs."); /* * Check for missing devices in the VG. In most cases a VG cannot be * changed while it's missing devices. This restriction is implemented * here in vg_read. Below we return an error from vg_read if the * vg_read flag indicates that the command is going to modify the VG. * (We should probably implement this restriction elsewhere instead of * returning an error from vg_read.) * * The PV's device may be present while the PV for the device has the * MISSING_PV flag set in the metadata. This happened because the VG * was written while this dev was missing, so the MISSING flag was * written in the metadata for PV. Now the device has reappeared. * However, the VG has changed since the device was last present, and * if the device has outdated data it may not be safe to just start * using it again. * * If there were no PE's used on the PV, we can just clear the MISSING * flag, but if there were PE's used we need to continue to treat the * PV as if the device is missing, limiting operations like the VG has * a missing device, and requiring the user to remove the reappeared * device from the VG, like a missing device, with vgreduce * --removemissing. */ dm_list_iterate_items(pvl, &vg->pvs) { if (!id_write_format(&pvl->pv->id, uuidstr, sizeof(uuidstr))) uuidstr[0] = '\0'; if (!pvl->pv->dev) { /* The obvious and common case of a missing device. */ if ((vg_is_foreign(vg) && !cmd->include_foreign_vgs) || cmd->expect_missing_vg_device) log_debug("VG %s is missing PV %s (last written to %s)", vg_name, uuidstr, pvl->pv->device_hint ?: "na"); else if (pvl->pv->device_hint) log_warn("WARNING: VG %s is missing PV %s (last written to %s).", vg_name, uuidstr, pvl->pv->device_hint); else log_warn("WARNING: VG %s is missing PV %s.", vg_name, uuidstr); missing_pv_dev++; } else if (pvl->pv->status & MISSING_PV) { /* A device that was missing but has reappeared. */ if (pvl->pv->pe_alloc_count == 0) { log_warn("WARNING: VG %s has unused reappeared PV %s %s.", vg_name, dev_name(pvl->pv->dev), uuidstr); pvl->pv->status &= ~MISSING_PV; /* tell vgextend restoremissing that MISSING flag was cleared here */ pvl->pv->unused_missing_cleared = 1; } else { log_warn("WARNING: VG %s was missing PV %s %s.", vg_name, dev_name(pvl->pv->dev), uuidstr); missing_pv_flag++; } } } if (missing_pv_dev || missing_pv_flag) vg_mark_partial_lvs(vg, 1); if (!check_pv_segments(vg)) { log_error(INTERNAL_ERROR "PV segments corrupted in %s.", vg->name); failure |= FAILED_INTERNAL_ERROR; goto bad; } dm_list_iterate_items(lvl, &vg->lvs) { if (!check_lv_segments(lvl->lv, 0)) { log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name); failure |= FAILED_INTERNAL_ERROR; goto bad; } } dm_list_iterate_items(lvl, &vg->lvs) { /* Checks that cross-reference other LVs. */ if (!check_lv_segments(lvl->lv, 1)) { log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name); failure |= FAILED_INTERNAL_ERROR; goto bad; } } if (!check_pv_dev_sizes(vg)) log_warn("WARNING: One or more devices used as PVs in VG %s have changed sizes.", vg->name); if (cmd->check_devs_used) _check_devs_used_correspond_with_vg(vg); if (!_access_vg_lock_type(cmd, vg, lockd_state, &failure)) { /* Either FAILED_LOCK_TYPE or FAILED_LOCK_MODE were set. */ goto_bad; } if (!_access_vg_systemid(cmd, vg)) { failure |= FAILED_SYSTEMID; goto_bad; } if (!_access_vg_clustered(cmd, vg)) { failure |= FAILED_CLUSTERED; goto_bad; } if (!_access_vg_exported(cmd, vg)) { failure |= FAILED_EXPORTED; goto_bad; } /* * If the command intends to write or activate the VG, there are * additional restrictions. FIXME: These restrictions should * probably be checked/applied after vg_read returns. */ if (writing || activating) { if (!(vg->status & LVM_WRITE)) { log_error("Volume group %s is read-only.", vg->name); failure |= FAILED_READ_ONLY; goto bad; } if (!cmd->handles_missing_pvs && (missing_pv_dev || missing_pv_flag)) { log_error("Cannot change VG %s while PVs are missing.", vg->name); log_error("See vgreduce --removemissing and vgextend --restoremissing."); failure |= FAILED_NOT_ENABLED; goto bad; } } if (writing && !cmd->handles_unknown_segments && vg_has_unknown_segments(vg)) { log_error("Cannot change VG %s with unknown segments in it!", vg->name); failure |= FAILED_NOT_ENABLED; /* FIXME new failure code here? */ goto bad; } /* * When we are reading the VG with the intention of writing it, * we save a second copy of the VG in vg->vg_committed. This * copy remains unmodified by the command operation, and is used * later if there is an error and we want to reactivate LVs. * FIXME: be specific about exactly when this works correctly. */ if (writing) { if (dm_pool_locked(vg->vgmem)) { /* FIXME: can this happen? */ log_warn("WARNING: vg_read no vg copy: pool locked."); goto out; } if (vg->vg_committed) { /* FIXME: can this happen? */ log_warn("WARNING: vg_read no vg copy: copy exists."); release_vg(vg->vg_committed); vg->vg_committed = NULL; } if (vg->vg_precommitted) { /* FIXME: can this happen? */ log_warn("WARNING: vg_read no vg copy: pre copy exists."); release_vg(vg->vg_precommitted); vg->vg_precommitted = NULL; } if (!vg->committed_cft) { log_error(INTERNAL_ERROR "Missing committed config tree."); goto out; } if (!(vg->vg_committed = import_vg_from_config_tree(cmd, vg->fid, vg->committed_cft))) { log_error("Failed to import written VG."); goto out; } } else { if (vg->vg_precommitted) log_error(INTERNAL_ERROR "vg_read vg %p vg_precommitted %p", (void *)vg, (void *)vg->vg_precommitted); if (vg->vg_committed) log_error(INTERNAL_ERROR "vg_read vg %p vg_committed %p", (void *)vg, (void *)vg->vg_committed); } out: /* We return with the VG lock held when read is successful. */ return vg; bad: *error_flags = failure; /* * FIXME: get rid of this case so we don't have to return the vg when * there's an error. It is here for process_each_pv() which wants to * eliminate the VG's devs from the list of devs it is processing, even * when it can't access the VG because of wrong system id or similar. * This could be done by looking at lvmcache info structs intead of 'vg'. * It's also used by process_each_vg/process_each_lv which want to * include error_vg values (like system_id) in error messages. * These values could also be found from lvmcache vginfo. */ if (error_vg && vg) { if (vg->vg_precommitted) log_error(INTERNAL_ERROR "vg_read vg %p vg_precommitted %p", (void *)vg, (void *)vg->vg_precommitted); if (vg->vg_committed) log_error(INTERNAL_ERROR "vg_read vg %p vg_committed %p", (void *)vg, (void *)vg->vg_committed); /* caller must unlock_vg and release_vg */ *error_vg = vg; return NULL; } if (vg) { unlock_vg(cmd, vg, vg_name); release_vg(vg); } return NULL; } /* * Simply a version of vg_read() that automatically sets the READ_FOR_UPDATE * flag, which means the caller intends to write the VG after reading it, * so vg_read should acquire an exclusive file lock on the vg. */ struct volume_group *vg_read_for_update(struct cmd_context *cmd, const char *vg_name, const char *vgid, uint32_t vg_read_flags, uint32_t lockd_state) { struct volume_group *vg; uint32_t error_flags = 0; vg = vg_read(cmd, vg_name, vgid, vg_read_flags | READ_FOR_UPDATE, lockd_state, &error_flags, NULL); return vg; } int get_visible_lvs_using_pv(struct cmd_context *cmd, struct volume_group *vg, struct device *dev, struct dm_list *lvs_list) { struct pv_list *pvl; struct lv_list *lvl, *lvl2; struct physical_volume *pv = NULL; dm_list_iterate_items(pvl, &vg->pvs) { if (pvl->pv->dev == dev) { pv = pvl->pv; break; } } if (!pv) return_0; dm_list_iterate_items(lvl, &vg->lvs) { if (!lv_is_visible(lvl->lv)) continue; if (!lv_is_on_pv(lvl->lv, pv)) continue; if (!(lvl2 = dm_pool_zalloc(cmd->mem, sizeof(*lvl2)))) return_0; lvl2->lv = lvl->lv; dm_list_add(lvs_list, &lvl2->list); } return 1; } int lv_is_linear(struct logical_volume *lv) { struct lv_segment *seg = first_seg(lv); return segtype_is_linear(seg->segtype); } int lv_is_striped(struct logical_volume *lv) { struct lv_segment *seg = first_seg(lv); return segtype_is_striped(seg->segtype); }