/* * Copyright (C) 2003-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2008,2018 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "lib/misc/lib.h" #include "lib/metadata/metadata.h" #include "lib/commands/toolcontext.h" #include "lib/metadata/segtype.h" #include "lib/display/display.h" #include "lib/format_text/archiver.h" #include "lib/activate/activate.h" #include "lib/metadata/lv_alloc.h" #include "lib/misc/lvm-string.h" #include "lib/datastruct/str_list.h" #include "lib/locking/locking.h" #include "lib/config/defaults.h" /* These are necessary for _write_log_header() */ #include "lib/mm/xlate.h" #define MIRROR_MAGIC 0x4D695272 #define MIRROR_DISK_VERSION 2 /* These are the flags that represent the mirror failure restoration policies */ #define MIRROR_REMOVE 0 #define MIRROR_ALLOCATE 1 #define MIRROR_ALLOCATE_ANYWHERE 2 /* * Returns true if the lv is temporary mirror layer for resync */ int is_temporary_mirror_layer(const struct logical_volume *lv) { if (lv_is_mirror_image(lv) && lv_is_mirrored(lv) && !lv_is_locked(lv)) return 1; return 0; } /* * Return a temporary LV for resyncing added mirror image. * Add other mirror legs to lvs list. */ struct logical_volume *find_temporary_mirror(const struct logical_volume *lv) { struct lv_segment *seg; if (!lv_is_mirrored(lv)) return NULL; seg = first_seg(lv); /* Temporary mirror is always area_num == 0 */ if (seg_type(seg, 0) == AREA_LV && is_temporary_mirror_layer(seg_lv(seg, 0))) return seg_lv(seg, 0); return NULL; } /* * cluster_mirror_is_available * * Check if the proper kernel module and log daemon are running. * Caller should check for 'vg_is_clustered(lv->vg)' before making * this call. * * Returns: 1 if available, 0 otherwise */ int cluster_mirror_is_available(struct cmd_context *cmd) { unsigned attr = 0; const struct segment_type *segtype; if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_MIRROR))) return_0; if (!segtype->ops->target_present) return_0; if (!segtype->ops->target_present(cmd, NULL, &attr)) return_0; if (!(attr & MIRROR_LOG_CLUSTERED)) return 0; return 1; } /* * Returns the number of mirrors of the LV */ uint32_t lv_mirror_count(const struct logical_volume *lv) { struct lv_segment *seg; uint32_t s, mirrors; if (!lv_is_mirrored(lv)) return 1; seg = first_seg(lv); /* FIXME: RAID10 only supports 2 copies right now */ if (seg_is_raid10(seg)) return 2; if (lv_is_pvmove(lv)) return seg->area_count; mirrors = 0; for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_LV) continue; if (is_temporary_mirror_layer(seg_lv(seg, s))) mirrors += lv_mirror_count(seg_lv(seg, s)); else mirrors++; } return mirrors ? mirrors : 1; } struct lv_segment *find_mirror_seg(struct lv_segment *seg) { struct lv_segment *mirror_seg; if (!(mirror_seg = get_only_segment_using_this_lv(seg->lv))) { log_error("Failed to find mirror_seg for %s", display_lvname(seg->lv)); return NULL; } if (!seg_is_mirrored(mirror_seg)) { log_error("LV %s on %s is not a mirror segments.", display_lvname(mirror_seg->lv), display_lvname(seg->lv)); return NULL; } return mirror_seg; } /* * Reduce the region size if necessary to ensure * the volume size is a multiple of the region size. * * For internal use only log only in verbose mode */ uint32_t adjusted_mirror_region_size(struct cmd_context *cmd, uint32_t extent_size, uint32_t extents, uint32_t region_size, int internal, int clustered) { uint64_t region_max; region_max = (uint64_t) extents * extent_size; if (region_max < UINT32_MAX && region_size > region_max) { region_size = UINT64_C(1) << (31 - clz(region_max)); if (!internal) log_print_unless_silent("Using reduced mirror region size of %s", display_size(cmd, region_size)); else log_verbose("Using reduced mirror region size of %s", display_size(cmd, region_size)); } return region_size; } /* * shift_mirror_images * @mirrored_seg * @mimage: The position (index) of the image to move to the end * * When dealing with removal of legs, we often move a 'removable leg' * to the back of the 'areas' array. It is critically important not * to simply swap it for the last area in the array. This would have * the affect of reordering the remaining legs - altering position of * the primary. So, we must shuffle all of the areas in the array * to maintain their relative position before moving the 'removable * leg' to the end. * * Short illustration of the problem: * - Mirror consists of legs A, B, C and we want to remove A * - We swap A and C and then remove A, leaving C, B * This scenario is problematic in failure cases where A dies, because * B becomes the primary. If the above happens, we effectively throw * away any changes made between the time of failure and the time of * restructuring the mirror. * * So, any time we want to move areas to the end to be removed, use * this function. */ int shift_mirror_images(struct lv_segment *mirrored_seg, unsigned mimage) { unsigned i; struct lv_segment_area area; if (mimage >= mirrored_seg->area_count) { log_error("Invalid index (%u) of mirror image supplied " "to shift_mirror_images().", mimage); return 0; } area = mirrored_seg->areas[mimage]; /* Shift remaining images down to fill the hole */ for (i = mimage + 1; i < mirrored_seg->area_count; i++) mirrored_seg->areas[i-1] = mirrored_seg->areas[i]; /* Place this one at the end */ mirrored_seg->areas[i-1] = area; return 1; } /* * This function writes a new header to the mirror log header to the lv * * Returns: 1 on success, 0 on failure */ static int _write_log_header(struct cmd_context *cmd, struct logical_volume *lv) { struct device *dev; char name[PATH_MAX]; struct { /* The mirror log header */ uint32_t magic; uint32_t version; uint64_t nr_regions; } log_header; log_header.magic = xlate32(MIRROR_MAGIC); log_header.version = xlate32(MIRROR_DISK_VERSION); log_header.nr_regions = xlate64((uint64_t)-1); if (dm_snprintf(name, sizeof(name), "%s%s/%s", cmd->dev_dir, lv->vg->name, lv->name) < 0) { log_error("Device path name too long - log header not written (%s).", display_lvname(lv)); return 0; } log_verbose("Writing log header for LV %s to device %s.", display_lvname(lv), name); if (!(dev = dev_cache_get(cmd, name, NULL))) { log_error("%s: not found: log header not written.", name); return 0; } if (!label_scan_open(dev)) { log_error("Failed to open %s/%s to write log header.", lv->vg->name, lv->name); return 0; } dev_set_last_byte(dev, sizeof(log_header)); if (!dev_write_bytes(dev, UINT64_C(0), sizeof(log_header), &log_header)) { log_error("Failed to write log header to %s.", name); return 0; } dev_unset_last_byte(dev); label_scan_invalidate(dev); return 1; } /* * Initialize mirror log contents */ static int _init_mirror_log(struct cmd_context *cmd, struct logical_volume *lock_holder, struct logical_volume *log_lv, int in_sync, struct dm_list *tagsl, int remove_on_failure) { struct dm_str_list *sl; if (log_lv != lv_lock_holder(log_lv) || !lv_is_visible(log_lv)) { /* Expect fully visible device for init */ log_error(INTERNAL_ERROR "Log LV %s is not top level LV for initialization.", display_lvname(log_lv)); return 0; } if (test_mode()) { log_verbose("Test mode: Skipping mirror log initialisation."); return 1; } if (!activation() && in_sync) { log_error("Aborting. Unable to create in-sync mirror log " "while activation is disabled."); return 0; } /* Temporary tag mirror log for activation */ dm_list_iterate_items(sl, tagsl) if (!str_list_add(log_lv->vg->vgmem, &log_lv->tags, sl->str)) { log_error("Aborting. Unable to tag mirror log."); return 0; } /* store mirror log on disk(s) */ if (!lock_holder) { if (!vg_write(log_lv->vg) || !vg_commit(log_lv->vg)) return_0; } else if (!lv_update_and_reload((struct logical_volume*) lock_holder)) return_0; if (!activate_lv(cmd, log_lv)) { log_error("Aborting. Failed to activate mirror log."); goto revert_new_lv; } if (activation()) { if (!wipe_lv(log_lv, (struct wipe_params) { .zero_sectors = log_lv->size, .do_zero = 1, .zero_value = in_sync ? 0xff : 0 })) { log_error("Aborting. Failed to wipe mirror log."); goto deactivate_and_revert_new_lv; } if (!_write_log_header(cmd, log_lv)) { log_error("Aborting. Failed to write mirror log header."); goto deactivate_and_revert_new_lv; } } if (!deactivate_lv(cmd, log_lv)) { log_error("Aborting. Failed to deactivate mirror log. " "Manual intervention required."); goto revert_new_lv; } /* Wait for events following any deactivation before reactivating */ if (!sync_local_dev_names(cmd)) { log_error("Aborting. Failed to sync local devices before initialising mirror log %s.", display_lvname(log_lv)); goto revert_new_lv; } /* Remove the temporary tags */ dm_list_iterate_items(sl, tagsl) str_list_del(&log_lv->tags, sl->str); return 1; deactivate_and_revert_new_lv: if (!deactivate_lv(cmd, log_lv)) { log_error("Unable to deactivate mirror log LV. " "Manual intervention required."); return 0; } revert_new_lv: dm_list_iterate_items(sl, tagsl) str_list_del(&log_lv->tags, sl->str); if (remove_on_failure && !lv_remove(log_lv)) { log_error("Manual intervention may be required to remove " "abandoned log LV before retrying."); return 0; } if (!vg_write(log_lv->vg) || !vg_commit(log_lv->vg)) log_error("Manual intervention may be required to " "remove/restore abandoned log LV before retrying."); else backup(log_lv->vg); return 0; } /* * Activate an LV similarly (i.e. SH or EX) to a given "model" LV */ static int _activate_lv_like_model(struct logical_volume *model, struct logical_volume *lv) { /* FIXME: run all cases through lv_active_change when clvm variants are gone. */ if (vg_is_shared(lv->vg)) return lv_active_change(lv->vg->cmd, lv, CHANGE_AEY); if (!activate_lv(lv->vg->cmd, lv)) return_0; return 1; } /* * Delete independent/orphan LV, it must acquire lock. */ static int _delete_lv(struct logical_volume *mirror_lv, struct logical_volume *lv, int reactivate) { struct cmd_context *cmd = mirror_lv->vg->cmd; struct dm_str_list *sl; /* Inherit tags - maybe needed for activation */ if (!str_list_match_list(&mirror_lv->tags, &lv->tags, NULL)) { dm_list_iterate_items(sl, &mirror_lv->tags) if (!str_list_add(cmd->mem, &lv->tags, sl->str)) { log_error("Aborting. Unable to tag."); return 0; } if (!vg_write(mirror_lv->vg) || !vg_commit(mirror_lv->vg)) { log_error("Intermediate VG commit for orphan volume failed."); return 0; } } if (reactivate) { /* FIXME: the 'model' should be 'mirror_lv' not 'lv', I think. */ if (!_activate_lv_like_model(lv, lv)) return_0; /* FIXME Is this superfluous now? */ if (!sync_local_dev_names(cmd)) { log_error("Failed to sync local devices when reactivating %s.", display_lvname(lv)); return 0; } if (!deactivate_lv(cmd, lv)) return_0; } if (!lv_remove(lv)) return_0; return 1; } static int _merge_mirror_images(struct logical_volume *lv, const struct dm_list *mimages) { uint32_t addition = dm_list_size(mimages); struct logical_volume **img_lvs; struct lv_list *lvl; int i = 0; if (!addition) return 1; img_lvs = alloca(sizeof(*img_lvs) * addition); memset(img_lvs, 0, sizeof(*img_lvs) * addition); dm_list_iterate_items(lvl, mimages) img_lvs[i++] = lvl->lv; return lv_add_mirror_lvs(lv, img_lvs, addition, MIRROR_IMAGE, first_seg(lv)->region_size); } /* Unlink the relationship between the segment and its log_lv */ struct logical_volume *detach_mirror_log(struct lv_segment *mirrored_seg) { struct logical_volume *log_lv; if (!mirrored_seg->log_lv) return NULL; log_lv = mirrored_seg->log_lv; mirrored_seg->log_lv = NULL; lv_set_visible(log_lv); log_lv->status &= ~MIRROR_LOG; if (!remove_seg_from_segs_using_this_lv(log_lv, mirrored_seg)) return_0; return log_lv; } /* Check if mirror image LV is removable with regard to given removable_pvs */ int is_mirror_image_removable(struct logical_volume *mimage_lv, void *baton) { struct physical_volume *pv; struct lv_segment *seg; int pv_found; struct pv_list *pvl; uint32_t s; struct dm_list *removable_pvs = baton; if (!baton || dm_list_empty(removable_pvs)) return 1; dm_list_iterate_items(seg, &mimage_lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_PV) { /* FIXME Recurse for AREA_LV? */ /* Structure of seg_lv is unknown. * Not removing this LV for safety. */ return 0; } pv = seg_pv(seg, s); pv_found = 0; dm_list_iterate_items(pvl, removable_pvs) { if (id_equal(&pv->id, &pvl->pv->id)) { pv_found = 1; break; } if (pvl->pv->dev && pv->dev && pv->dev->dev == pvl->pv->dev->dev) { pv_found = 1; break; } } if (!pv_found) return 0; } } return 1; } /* * _move_removable_mimages_to_end * * We always detach mimage LVs from the end of the areas array. * This function will push 'count' mimages to the end of the array * based on if their PVs are removable. * * This is an all or nothing function. Either the user specifies * enough removable PVs to satisfy count, or they don't specify * any removable_pvs at all (in which case all PVs in the mirror * are considered removable). */ static int _move_removable_mimages_to_end(struct logical_volume *lv, uint32_t count, struct dm_list *removable_pvs) { int i; struct logical_volume *sub_lv; struct lv_segment *mirrored_seg = first_seg(lv); if (!removable_pvs) return 1; for (i = mirrored_seg->area_count - 1; (i >= 0) && count; i--) { sub_lv = seg_lv(mirrored_seg, i); if (!is_temporary_mirror_layer(sub_lv) && is_mirror_image_removable(sub_lv, removable_pvs)) { if (!shift_mirror_images(mirrored_seg, i)) return_0; count--; } } return !count; } static int _mirrored_lv_in_sync(struct logical_volume *lv) { dm_percent_t sync_percent; if (!lv_mirror_percent(lv->vg->cmd, lv, 0, &sync_percent, NULL)) { log_error("Unable to determine mirror sync status of %s.", display_lvname(lv)); return 0; } return (sync_percent == DM_PERCENT_100) ? 1 : 0; } /* * Split off 'split_count' legs from a mirror * * Returns: 0 on error, 1 on success */ static int _split_mirror_images(struct logical_volume *lv, const char *split_name, uint32_t split_count, struct dm_list *removable_pvs) { uint32_t i; struct logical_volume *sub_lv = NULL; struct logical_volume *new_lv = NULL; struct logical_volume *detached_log_lv = NULL; struct lv_segment *mirrored_seg = first_seg(lv); struct dm_list split_images; struct lv_list *lvl; struct cmd_context *cmd = lv->vg->cmd; char layer_name[NAME_LEN], format[NAME_LEN]; int act; if (!lv_is_mirrored(lv)) { log_error("Unable to split non-mirrored LV %s.", display_lvname(lv)); return 0; } if (!split_count) { log_error(INTERNAL_ERROR "split_count is zero!"); return 0; } log_verbose("Detaching %d images from mirror %s.", split_count, display_lvname(lv)); if (!_move_removable_mimages_to_end(lv, split_count, removable_pvs)) { /* * FIXME: Allow incomplete specification of removable PVs? * * I am forcing the user to either specify no * removable PVs or all of them. Should we allow * them to just specify some - making us pick the rest? */ log_error("Insufficient removable PVs given to satisfy request."); return 0; } /* * Step 1: * Remove the images from the mirror. * Make them visible, independent LVs (don't change names yet). * Track them in a list for later instantiation. */ dm_list_init(&split_images); for (i = 0; i < split_count; i++) { mirrored_seg->area_count--; sub_lv = seg_lv(mirrored_seg, mirrored_seg->area_count); sub_lv->status &= ~MIRROR_IMAGE; if (!release_lv_segment_area(mirrored_seg, mirrored_seg->area_count, mirrored_seg->area_len)) return_0; log_very_verbose("LV %s assigned to be split.", display_lvname(sub_lv)); if (!new_lv) { lv_set_visible(sub_lv); new_lv = sub_lv; continue; } /* If there is more than one image being split, add to list */ lvl = dm_pool_alloc(lv->vg->vgmem, sizeof(*lvl)); if (!lvl) { log_error("lv_list alloc failed."); return 0; } lvl->lv = sub_lv; dm_list_add(&split_images, &lvl->list); } if (!new_lv) { log_error(INTERNAL_ERROR "New LV not found."); return 0; } new_lv->name = dm_pool_strdup(lv->vg->vgmem, split_name); if (!new_lv->name) { log_error("Unable to rename newly split LV."); return 0; } if (lv->vg->lock_type && !strcmp(lv->vg->lock_type, "dlm")) new_lv->lock_args = lv->lock_args; if (!dm_list_empty(&split_images)) { /* * A number of images have been split and * a new mirror layer must be formed */ if (!insert_layer_for_lv(cmd, new_lv, 0, "_mimage_%d")) { log_error("Failed to build new mirror, %s.", display_lvname(new_lv)); return 0; } first_seg(new_lv)->region_size = mirrored_seg->region_size; dm_list_iterate_items(lvl, &split_images) { sub_lv = lvl->lv; if (dm_snprintf(format, sizeof(format), "%s_mimage_%%d", new_lv->name) < 0) { log_error("Failed to build new image name for %s.", display_lvname(new_lv)); return 0; } if (!generate_lv_name(lv->vg, format, layer_name, sizeof(layer_name))) { log_error("Failed to generate new image names for %s.", display_lvname(new_lv)); return 0; } if (!(sub_lv->name = dm_pool_strdup(lv->vg->vgmem, layer_name))) { log_error("Unable to allocate memory."); return 0; } } if (!_merge_mirror_images(new_lv, &split_images)) { log_error("Failed to group split images into new mirror."); return 0; } /* * We don't allow splitting a mirror that is not in-sync, * so we can bring the newly split mirror up without a * resync. (It will be a 'core' log mirror after all.) */ init_mirror_in_sync(1); } sub_lv = NULL; /* * If no more mirrors, remove mirror layer. * The sub_lv is removed entirely later - leaving * only the top-level (now linear) LV. */ if (mirrored_seg->area_count == 1) { sub_lv = seg_lv(mirrored_seg, 0); sub_lv->status &= ~MIRROR_IMAGE; lv_set_visible(sub_lv); detached_log_lv = detach_mirror_log(mirrored_seg); if (!remove_layer_from_lv(lv, sub_lv)) return_0; lv->status &= ~(MIRROR | MIRRORED | LV_NOTSYNCED); } /* * Suspend and resume the mirror - this includes all * the sub-LVs and soon-to-be-split sub-LVs */ if (!lv_update_and_reload(lv)) return_0; act = lv_is_active(lv_lock_holder(lv)); if (act && !_activate_lv_like_model(lv, new_lv)) { log_error("Failed to rename newly split LV in the kernel"); return 0; } /* Remove original mirror layer if it has been converted to linear */ if (sub_lv && !_delete_lv(lv, sub_lv, act)) return_0; /* Remove the log if it has been converted to linear */ if (detached_log_lv && !_delete_lv(lv, detached_log_lv, act)) return_0; return 1; } /* * Remove num_removed images from mirrored_seg * * Arguments: * num_removed: the requested (maximum) number of mirrors to be removed * removable_pvs: if not NULL and list not empty, only mirrors using PVs * in this list will be removed * remove_log: if non-zero, log_lv will be removed * (even if it's 0, log_lv will be removed if there is no * mirror remaining after the removal) * collapse: if non-zero, instead of removing, remove the temporary * mirror layer and merge mirrors to the original LV. * removable_pvs should be NULL and num_removed should be * seg->area_count - 1. * removed: if non NULL, the number of removed mirror images is set * as a result * * If collapse is non-zero, is guaranteed to be equal to num_removed. * * Return values: * Failure (0) means something unexpected has happend and * the caller should abort. * Even if no mirror was removed (e.g. no LV matches to 'removable_pvs'), * returns success (1). */ static int _remove_mirror_images(struct logical_volume *lv, uint32_t num_removed, int (*is_removable)(struct logical_volume *, void *), void *removable_baton, unsigned remove_log, unsigned collapse, uint32_t *removed, int preferred_only) { uint32_t m; int32_t s; struct logical_volume *sub_lv; struct logical_volume *detached_log_lv = NULL; struct logical_volume *temp_layer_lv = NULL; struct lv_segment *seg, *pvmove_seg, *mirrored_seg = first_seg(lv); uint32_t old_area_count = mirrored_seg->area_count; uint32_t new_area_count = mirrored_seg->area_count; struct lv_list *lvl; struct dm_list tmp_orphan_lvs; uint32_t orig_removed = num_removed; int reactivate; if (removed) *removed = 0; log_very_verbose("Reducing mirror set %s from " FMTu32 " to " FMTu32 " image(s)%s.", display_lvname(lv), old_area_count, old_area_count - num_removed, remove_log ? " and no log volume" : ""); if (collapse && (old_area_count - num_removed != 1)) { log_error("Incompatible parameters to _remove_mirror_images."); return 0; } num_removed = 0; /* Move removable_pvs to end of array */ for (s = mirrored_seg->area_count - 1; s >= 0 && old_area_count - new_area_count < orig_removed; s--) { sub_lv = seg_lv(mirrored_seg, s); if (!(is_temporary_mirror_layer(sub_lv) && lv_mirror_count(sub_lv) != 1)) { if (!is_removable) { log_error(INTERNAL_ERROR "_remove_mirror_images called incorrectly with is_removable undefined."); return 0; } if (!is_removable(sub_lv, removable_baton)) continue; /* * Check if the user is trying to pull the * primary mirror image when the mirror is * not in-sync. */ if ((s == 0) && !_mirrored_lv_in_sync(lv) && !(lv_is_partial(lv))) { log_error("Unable to remove primary mirror image while mirror volume " "%s is not in-sync.", display_lvname(lv)); return 0; } if (!shift_mirror_images(mirrored_seg, s)) return_0; --new_area_count; ++num_removed; } } if (!preferred_only) num_removed = orig_removed; /* * If removable_pvs were specified, then they have been shifted * to the end to ensure they are removed. The remaining balance * of images left to remove will be taken from the unspecified. */ new_area_count = old_area_count - num_removed; if (num_removed && old_area_count == new_area_count) return 1; /* Remove mimage LVs from the segment */ dm_list_init(&tmp_orphan_lvs); for (m = new_area_count; m < mirrored_seg->area_count; m++) { seg_lv(mirrored_seg, m)->status &= ~MIRROR_IMAGE; lv_set_visible(seg_lv(mirrored_seg, m)); if (!(lvl = dm_pool_alloc(lv->vg->cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed."); return 0; } lvl->lv = seg_lv(mirrored_seg, m); dm_list_add(&tmp_orphan_lvs, &lvl->list); if (!release_lv_segment_area(mirrored_seg, m, mirrored_seg->area_len)) return_0; } mirrored_seg->area_count = new_area_count; /* If no more mirrors, remove mirror layer */ /* As an exceptional case, if the lv is temporary layer, * leave the LV as mirrored and let the lvconvert completion * to remove the layer. */ if (new_area_count == 1 && !is_temporary_mirror_layer(lv)) { temp_layer_lv = seg_lv(mirrored_seg, 0); temp_layer_lv->status &= ~MIRROR_IMAGE; lv_set_visible(temp_layer_lv); detached_log_lv = detach_mirror_log(mirrored_seg); if (!remove_layer_from_lv(lv, temp_layer_lv)) return_0; if (collapse && !_merge_mirror_images(lv, &tmp_orphan_lvs)) { log_error("Failed to add mirror images."); return 0; } /* * No longer a mirror? Even though new_area_count was 1, * _merge_mirror_images may have resulted into lv being still a * mirror. Fix up the flags if we only have one image left. */ if (lv_mirror_count(lv) == 1) lv->status &= ~(MIRROR | MIRRORED | LV_NOTSYNCED); mirrored_seg = first_seg(lv); if (remove_log && !detached_log_lv) detached_log_lv = detach_mirror_log(mirrored_seg); if (lv_is_pvmove(lv)) dm_list_iterate_items(pvmove_seg, &lv->segments) pvmove_seg->status |= PVMOVE; } else if (new_area_count == 0) { log_very_verbose("All mimages of %s are gone.", display_lvname(lv)); /* All mirror images are gone. * It can happen for vgreduce --removemissing. */ detached_log_lv = detach_mirror_log(mirrored_seg); lv->status &= ~(MIRROR | MIRRORED | LV_NOTSYNCED); if (!replace_lv_with_error_segment(lv)) return_0; } else if (remove_log) detached_log_lv = detach_mirror_log(mirrored_seg); /* * The log may be removed due to repair. If the log * happens to be a mirrored log, then there is a special * case we need to consider. One of the images of a * mirrored log can fail followed shortly afterwards by * a failure of the second. This means that the top-level * mirror is waiting for writes to the log to finish, but * they never will unless the mirrored log can be repaired * or replaced with an error target. Since both the devices * have failed, we must replace with error target - it is * the only way to release the pending writes. */ if (detached_log_lv && lv_is_mirrored(detached_log_lv) && lv_is_partial(detached_log_lv)) { seg = first_seg(detached_log_lv); log_very_verbose("%s being removed due to failures.", display_lvname(detached_log_lv)); /* * We are going to replace the mirror with an * error segment, but before we do, we must remember * all of the LVs that must be deleted later (i.e. * the sub-lv's) */ for (m = 0; m < seg->area_count; m++) { if (!(lvl = dm_pool_alloc(lv->vg->cmd->mem, sizeof(*lvl)))) return_0; seg_lv(seg, m)->status &= ~MIRROR_IMAGE; lv_set_visible(seg_lv(seg, m)); lvl->lv = seg_lv(seg, m); dm_list_add(&tmp_orphan_lvs, &lvl->list); } if (!replace_lv_with_error_segment(detached_log_lv)) { log_error("Failed error target substitution for %s.", display_lvname(detached_log_lv)); return 0; } if (!lv_update_and_reload(detached_log_lv)) return_0; } /* * To successfully remove these unwanted LVs we need to * remove the LVs from the mirror set, commit that metadata * then deactivate and remove them fully. */ if (!lv_update_and_reload_origin(mirrored_seg->lv)) return_0; /* Save or delete the 'orphan' LVs */ reactivate = lv_is_active(lv_lock_holder(lv)); if (!collapse) { dm_list_iterate_items(lvl, &tmp_orphan_lvs) if (!_delete_lv(lv, lvl->lv, reactivate)) return_0; } if (temp_layer_lv && !_delete_lv(lv, temp_layer_lv, reactivate)) return_0; if (detached_log_lv && !_delete_lv(lv, detached_log_lv, reactivate)) return_0; /* Mirror with only 1 area is 'in sync'. */ if (new_area_count == 1 && is_temporary_mirror_layer(lv)) { detached_log_lv = detach_mirror_log(mirrored_seg); if (!_init_mirror_log(lv->vg->cmd, (struct logical_volume*)lv_lock_holder(mirrored_seg->lv), detached_log_lv, 1, &lv->tags, 0)) { /* As a result, unnecessary sync may run after * collapsing. But safe.*/ log_error("Failed to initialize log device %s.", display_lvname(detached_log_lv)); return 0; } if (!attach_mirror_log(mirrored_seg, detached_log_lv)) return_0; } if (removed) *removed = old_area_count - new_area_count; log_very_verbose(FMTu32 " image(s) removed from %s.", old_area_count - new_area_count, display_lvname(lv)); return 1; } /* * Remove the number of mirror images from the LV */ int remove_mirror_images(struct logical_volume *lv, uint32_t num_mirrors, int (*is_removable)(struct logical_volume *, void *), void *removable_baton, unsigned remove_log) { uint32_t num_removed, removed_once, r; uint32_t existing_mirrors = lv_mirror_count(lv); struct logical_volume *next_lv = lv; int preferred_only = 1; int retries = 0; num_removed = existing_mirrors - num_mirrors; /* num_removed can be 0 if the function is called just to remove log */ do { if (num_removed < first_seg(next_lv)->area_count) removed_once = num_removed; else removed_once = first_seg(next_lv)->area_count - 1; if (!_remove_mirror_images(next_lv, removed_once, is_removable, removable_baton, remove_log, 0, &r, preferred_only)) return_0; if (r < removed_once || !removed_once) { /* Some mirrors are removed from the temporary mirror, * but the temporary layer still exists. * Down the stack and retry for remainder. */ next_lv = find_temporary_mirror(next_lv); if (!next_lv) { preferred_only = 0; next_lv = lv; } } num_removed -= r; /* * if there are still images to be removed, try again; this is * required since some temporary layers may have been reduced * to 1, at which point they are made removable, just like * normal images */ if (!next_lv && !preferred_only && !retries && num_removed) { ++retries; preferred_only = 1; } } while (next_lv && num_removed); if (num_removed) { if (num_removed == existing_mirrors - num_mirrors) log_error("No mirror images found using specified PVs."); else { log_error("%u images are removed out of requested %u.", existing_mirrors - lv_mirror_count(lv), existing_mirrors - num_mirrors); } return 0; } return 1; } static int _no_removable_images(struct logical_volume *lv __attribute__((unused)), void *baton __attribute__((unused))) { return 0; } /* * Collapsing temporary mirror layers. * * When mirrors are added to already-mirrored LV, a temporary mirror layer * is inserted at the top of the stack to reduce resync work. * The function will remove the intermediate layer and collapse the stack * as far as mirrors are in-sync. * * The function is destructive: to remove intermediate mirror layers, * VG metadata commits and suspend/resume are necessary. */ int collapse_mirrored_lv(struct logical_volume *lv) { struct logical_volume *tmp_lv; struct lv_segment *mirror_seg; while ((tmp_lv = find_temporary_mirror(lv))) { mirror_seg = find_mirror_seg(first_seg(tmp_lv)); if (!mirror_seg) { log_error("Failed to find mirrored LV for %s.", display_lvname(tmp_lv)); return 0; } if (!_mirrored_lv_in_sync(mirror_seg->lv)) { log_verbose("Not collapsing %s: out-of-sync.", display_lvname(mirror_seg->lv)); return 1; } if (!_remove_mirror_images(mirror_seg->lv, mirror_seg->area_count - 1, _no_removable_images, NULL, 0, 1, NULL, 0)) { log_error("Failed to release mirror images"); return 0; } } return 1; } static int _create_mimage_lvs(struct alloc_handle *ah, uint32_t num_mirrors, uint32_t stripes, uint32_t stripe_size, struct logical_volume *lv, struct logical_volume **img_lvs, int log) { uint32_t m, first_area; char img_name[NAME_LEN]; if (dm_snprintf(img_name, sizeof(img_name), "%s_mimage_%%d", lv->name) < 0) { log_error("Failed to build new mirror image name for %s.", display_lvname(lv)); return 0; } for (m = 0; m < num_mirrors; m++) { if (!(img_lvs[m] = lv_create_empty(img_name, NULL, LVM_READ | LVM_WRITE, ALLOC_INHERIT, lv->vg))) { log_error("Aborting. Failed to create mirror image LV. " "Remove new LV and retry."); return 0; } if (log) { first_area = m * stripes + (log - 1); if (!lv_add_log_segment(ah, first_area, img_lvs[m], 0)) { log_error("Failed to add mirror image segment" " to %s. Remove new LV and retry.", display_lvname(img_lvs[m])); return 0; } } else { if (!lv_add_segment(ah, m * stripes, stripes, img_lvs[m], get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED), stripe_size, 0, 0)) { log_error("Aborting. Failed to add mirror image segment " "to %s. Remove new LV and retry.", display_lvname(img_lvs[m])); return 0; } } } return 1; } /* * Remove mirrors from each segment. * 'new_mirrors' is the number of mirrors after the removal. '0' for linear. * If 'status_mask' is non-zero, the removal happens only when all segments * has the status bits on. */ int remove_mirrors_from_segments(struct logical_volume *lv, uint32_t new_mirrors, uint64_t status_mask) { struct lv_segment *seg; uint32_t s; /* Check the segment params are compatible */ dm_list_iterate_items(seg, &lv->segments) { if (!seg_is_mirrored(seg)) { log_error("Segment is not mirrored: %s:" FMTu32, display_lvname(lv), seg->le); return 0; } if ((seg->status & status_mask) != status_mask) { log_error("Segment status does not match: %s:" FMTu32 " status:0x" FMTx64 "/0x" FMTx64, display_lvname(lv), seg->le, seg->status, status_mask); return 0; } } /* Convert the segments */ dm_list_iterate_items(seg, &lv->segments) { if (!new_mirrors && seg->extents_copied == seg->area_len) { if (!move_lv_segment_area(seg, 0, seg, 1)) return_0; } for (s = new_mirrors + 1; s < seg->area_count; s++) if (!release_and_discard_lv_segment_area(seg, s, seg->area_len)) return_0; seg->area_count = new_mirrors + 1; if (!new_mirrors) seg->segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED); } return 1; } const char *get_pvmove_pvname_from_lv_mirr(const struct logical_volume *lv_mirr) { struct lv_segment *seg; struct device *dev; dm_list_iterate_items(seg, &lv_mirr->segments) { if (!seg_is_mirrored(seg)) continue; if (seg_type(seg, 0) == AREA_PV) { dev = seg_dev(seg, 0); if (!dev || dm_list_empty(&dev->aliases)) return NULL; return dev_name(dev); } if (seg_type(seg, 0) == AREA_LV) { dev = seg_dev(first_seg(seg_lv(seg, 0)), 0); if (!dev || dm_list_empty(&dev->aliases)) return NULL; return dev_name(dev); } } return NULL; } /* * Find first pvmove LV referenced by a segment of an LV. */ const struct logical_volume *find_pvmove_lv_in_lv(const struct logical_volume *lv) { const struct lv_segment *seg; uint32_t s; if (lv_is_pvmove(lv)) return lv; dm_list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_LV) continue; if (lv_is_pvmove(seg_lv(seg, s))) return seg_lv(seg, s); } } return NULL; } const char *get_pvmove_pvname_from_lv(const struct logical_volume *lv) { const struct logical_volume *pvmove_lv; pvmove_lv = find_pvmove_lv_in_lv(lv); if (pvmove_lv) return get_pvmove_pvname_from_lv_mirr(pvmove_lv); return NULL; } struct logical_volume *find_pvmove_lv(struct volume_group *vg, struct device *dev, uint64_t lv_type) { struct lv_list *lvl; struct logical_volume *lv; struct lv_segment *seg; /* Loop through all LVs */ dm_list_iterate_items(lvl, &vg->lvs) { lv = lvl->lv; if (!(lv->status & lv_type)) continue; /* * If this is an atomic pvmove, the first * segment will be a mirror containing * mimages (i.e. AREA_LVs) */ if (seg_type(first_seg(lv), 0) == AREA_LV) { seg = first_seg(lv); /* the mirror segment */ seg = first_seg(seg_lv(seg, 0)); /* mimage_0 segment0 */ if (seg_dev(seg, 0) != dev) continue; return lv; } /* * If this is a normal pvmove, check all the segments' * first areas for the requested device */ dm_list_iterate_items(seg, &lv->segments) { if (seg_type(seg, 0) != AREA_PV) continue; if (seg_dev(seg, 0) != dev) continue; return lv; } } return NULL; } struct dm_list *lvs_using_lv(struct cmd_context *cmd, struct volume_group *vg, struct logical_volume *lv) { struct dm_list *lvs; struct lv_list *lvl; struct seg_list *sl; if (!(lvs = dm_pool_alloc(cmd->mem, sizeof(*lvs)))) { log_error("lvs list alloc failed."); return NULL; } dm_list_init(lvs); dm_list_iterate_items(sl, &lv->segs_using_this_lv) { /* Find whether any segment points at the supplied LV */ if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed."); return NULL; } lvl->lv = sl->seg->lv; dm_list_add(lvs, &lvl->list); } return lvs; } /* * Fixup mirror pointers after single-pass segment import */ int fixup_imported_mirrors(struct volume_group *vg) { struct lv_list *lvl; struct lv_segment *seg; dm_list_iterate_items(lvl, &vg->lvs) { dm_list_iterate_items(seg, &lvl->lv->segments) { if (seg->segtype != get_segtype_from_string(vg->cmd, SEG_TYPE_NAME_MIRROR)) continue; if (seg->log_lv && !add_seg_to_segs_using_this_lv(seg->log_lv, seg)) return_0; } } return 1; } static int _add_mirrors_that_preserve_segments(struct logical_volume *lv, uint32_t flags, uint32_t mirrors, uint32_t region_size, struct dm_list *allocatable_pvs, alloc_policy_t alloc) { struct cmd_context *cmd = lv->vg->cmd; struct alloc_handle *ah; const struct segment_type *segtype; struct dm_list *parallel_areas; uint32_t adjusted_region_size; int r = 1; if (!(parallel_areas = build_parallel_areas_from_lv(lv, 1, 0))) return_0; if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_MIRROR))) return_0; if (!(adjusted_region_size = adjusted_mirror_region_size(cmd, lv->vg->extent_size, lv->le_count, region_size, 1, vg_is_clustered(lv->vg)))) return_0; if (!(ah = allocate_extents(lv->vg, NULL, segtype, 1, mirrors, 0, 0, lv->le_count, allocatable_pvs, alloc, 0, parallel_areas))) { log_error("Unable to allocate mirror extents for %s.", display_lvname(lv)); return 0; } if (flags & MIRROR_BY_SEG) { if (!lv_add_mirror_areas(ah, lv, 0, adjusted_region_size)) { log_error("Failed to add mirror areas to %s.", display_lvname(lv)); r = 0; } } else if (flags & MIRROR_BY_SEGMENTED_LV) { if (!lv_add_segmented_mirror_image(ah, lv, 0, adjusted_region_size)) { log_error("Failed to add mirror areas to %s.", display_lvname(lv)); r = 0; } } else { log_error(INTERNAL_ERROR "Unknown mirror flag."); r = 0; } alloc_destroy(ah); return r; } /* * Add mirrors to "linear" or "mirror" segments */ int add_mirrors_to_segments(struct cmd_context *cmd, struct logical_volume *lv, uint32_t mirrors, uint32_t region_size, struct dm_list *allocatable_pvs, alloc_policy_t alloc) { return _add_mirrors_that_preserve_segments(lv, MIRROR_BY_SEG, mirrors, region_size, allocatable_pvs, alloc); } /* * Convert mirror log * * FIXME: Can't handle segment-by-segment mirror (like pvmove) */ int remove_mirror_log(struct cmd_context *cmd, struct logical_volume *lv, struct dm_list *removable_pvs, int force) { dm_percent_t sync_percent; /* Unimplemented features */ if (dm_list_size(&lv->segments) != 1) { log_error("Multiple-segment mirror is not supported."); return 0; } /* Had disk log, switch to core. */ if (lv_is_active(lv)) { if (!lv_mirror_percent(cmd, lv, 0, &sync_percent, NULL)) { log_error("Unable to determine mirror sync status."); return 0; } } else if (force || yes_no_prompt("Full resync required to convert inactive " "mirror volume %s to core log. " "Proceed? [y/n]: ", display_lvname(lv)) == 'y') sync_percent = 0; else { log_error("Logical volume %s NOT converted.", display_lvname(lv)); return 0; } if (sync_percent == DM_PERCENT_100) init_mirror_in_sync(1); else { /* A full resync will take place */ lv->status &= ~LV_NOTSYNCED; init_mirror_in_sync(0); } if (!remove_mirror_images(lv, lv_mirror_count(lv), is_mirror_image_removable, removable_pvs, 1U)) return_0; return 1; } static struct logical_volume *_create_mirror_log(struct logical_volume *lv, struct alloc_handle *ah, alloc_policy_t alloc, const char *lv_name, const char *suffix) { struct logical_volume *log_lv; char log_name[NAME_LEN]; if (dm_snprintf(log_name, sizeof(log_name), "%s%s", lv_name, suffix) < 0) { log_error("Failed to build new mirror log name for %s.", lv_name); return NULL; } if (!(log_lv = lv_create_empty(log_name, NULL, VISIBLE_LV | LVM_READ | LVM_WRITE, alloc, lv->vg))) return_NULL; if (!lv_add_log_segment(ah, 0, log_lv, MIRROR_LOG)) return_NULL; return log_lv; } /* * Returns: 1 on success, 0 on error */ static int _form_mirror(struct cmd_context *cmd, struct alloc_handle *ah, struct logical_volume *lv, uint32_t mirrors, uint32_t stripes, uint32_t stripe_size, uint32_t region_size, int log) { struct logical_volume **img_lvs; /* * insert a mirror layer */ if (dm_list_size(&lv->segments) != 1 || seg_type(first_seg(lv), 0) != AREA_LV) if (!insert_layer_for_lv(cmd, lv, 0, "_mimage_%d")) return_0; /* * create mirror image LVs */ img_lvs = alloca(sizeof(*img_lvs) * mirrors); memset(img_lvs, 0, sizeof(*img_lvs) * mirrors); if (!_create_mimage_lvs(ah, mirrors, stripes, stripe_size, lv, img_lvs, log)) return_0; if (!lv_add_mirror_lvs(lv, img_lvs, mirrors, /* Pass through MIRRORED & LOCKED status flag * TODO: Any other would be needed ?? */ MIRROR_IMAGE | (lv->status & (MIRRORED | LOCKED)), region_size)) { log_error("Aborting. Failed to add mirror segment. " "Remove new LV and retry."); return 0; } return 1; } static struct logical_volume *_set_up_mirror_log(struct cmd_context *cmd, struct alloc_handle *ah, struct logical_volume *lv, uint32_t log_count, uint32_t region_size, alloc_policy_t alloc, int in_sync) { struct logical_volume *log_lv; const char *suffix, *lv_name; char *tmp_name; size_t len; struct lv_segment *seg; init_mirror_in_sync(in_sync); /* Mirror log name is lv_name + suffix, determined as the following: * 1. suffix is: * o "_mlog" for the original mirror LV. * o "_mlogtmp_%d" for temporary mirror LV, * 2. lv_name is: * o lv->name, if the log is temporary * o otherwise, the top-level LV name */ seg = first_seg(lv); if (seg_type(seg, 0) == AREA_LV && strstr(seg_lv(seg, 0)->name, MIRROR_SYNC_LAYER)) { lv_name = lv->name; suffix = "_mlogtmp_%d"; } else if ((lv_name = strstr(lv->name, MIRROR_SYNC_LAYER))) { len = lv_name - lv->name; tmp_name = alloca(len + 1); tmp_name[len] = '\0'; lv_name = strncpy(tmp_name, lv->name, len); suffix = "_mlog"; } else { lv_name = lv->name; suffix = "_mlog"; } if (!(log_lv = _create_mirror_log(lv, ah, alloc, lv_name, suffix))) { log_error("Failed to create mirror log."); return NULL; } if (log_count > 1) { /* Kernel requires a mirror to be at least 1 region large. */ if (region_size > log_lv->size) { region_size = UINT64_C(1) << (31 - clz(log_lv->size)); log_debug("Adjusting region_size to %s for mirrored log.", display_size(cmd, (uint64_t)region_size)); } if (!_form_mirror(cmd, ah, log_lv, log_count-1, 1, 0, region_size, 2)) { log_error("Failed to form mirrored log."); return NULL; } } if (!_init_mirror_log(cmd, NULL, log_lv, in_sync, &lv->tags, 1)) { log_error("Failed to initialise mirror log."); return NULL; } return log_lv; } int attach_mirror_log(struct lv_segment *seg, struct logical_volume *log_lv) { seg->log_lv = log_lv; log_lv->status |= MIRROR_LOG; lv_set_hidden(log_lv); return add_seg_to_segs_using_this_lv(log_lv, seg); } /* Prepare disk mirror log for raid1->mirror conversion */ struct logical_volume *prepare_mirror_log(struct logical_volume *lv, int in_sync, uint32_t region_size, struct dm_list *allocatable_pvs, alloc_policy_t alloc) { struct cmd_context *cmd = lv->vg->cmd; const struct segment_type *segtype; struct dm_list *parallel_areas; struct alloc_handle *ah; struct logical_volume *log_lv; if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0, 0))) return_NULL; if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_MIRROR))) return_NULL; /* Allocate destination extents */ if (!(ah = allocate_extents(lv->vg, NULL, segtype, 0, 0, 1, region_size, lv->le_count, allocatable_pvs, alloc, 0, parallel_areas))) { log_error("Unable to allocate extents for mirror log."); return NULL; } if (!(log_lv = _create_mirror_log(lv, ah, alloc, lv->name, "_mlog"))) { log_error("Failed to create mirror log."); goto out; } if (!_init_mirror_log(cmd, NULL, log_lv, in_sync, &lv->tags, 1)) { log_error("Failed to initialise mirror log."); log_lv = NULL; goto out; } out: alloc_destroy(ah); return log_lv; } int add_mirror_log(struct cmd_context *cmd, struct logical_volume *lv, uint32_t log_count, uint32_t region_size, struct dm_list *allocatable_pvs, alloc_policy_t alloc) { struct alloc_handle *ah; const struct segment_type *segtype; struct dm_list *parallel_areas; dm_percent_t sync_percent; int in_sync; struct logical_volume *log_lv; unsigned old_log_count; int r = 0; if (dm_list_size(&lv->segments) != 1) { log_error("Multiple-segment mirror is not supported."); return 0; } log_lv = first_seg(lv)->log_lv; old_log_count = (log_lv) ? lv_mirror_count(log_lv) : 0; if (old_log_count == log_count) { log_verbose("Mirror %s already has a %s log.", display_lvname(lv), !log_count ? "core" : (log_count == 1) ? "disk" : "mirrored"); return 1; } if (log_count > 1) { if (find_config_tree_bool(cmd, global_support_mirrored_mirror_log_CFG, NULL)) log_warn("Log type \"mirrored\" creation/conversion is not supported for regular operation!"); else { log_err("Log type \"mirrored\" is DEPRECATED. Use RAID1 LV or disk log instead."); return 0; } } if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0, 0))) return_0; if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_MIRROR))) return_0; if (activation() && segtype->ops->target_present && !segtype->ops->target_present(cmd, NULL, NULL)) { log_error("%s: Required device-mapper target(s) not " "detected in your kernel.", segtype->name); return 0; } /* allocate destination extents */ if (!(ah = allocate_extents(lv->vg, NULL, segtype, 0, 0, log_count - old_log_count, region_size, lv->le_count, allocatable_pvs, alloc, 0, parallel_areas))) { log_error("Unable to allocate extents for mirror log."); return 0; } if (old_log_count) { /* Converting from disk to mirrored log */ if (!_form_mirror(cmd, ah, log_lv, log_count - 1, 1, 0, region_size, 1)) { log_error("Failed to convert mirror log"); return 0; } r = 1; goto out; } /* check sync status */ if (mirror_in_sync() || (lv_mirror_percent(cmd, lv, 0, &sync_percent, NULL) && (sync_percent == DM_PERCENT_100))) in_sync = 1; else in_sync = 0; if (!(log_lv = _set_up_mirror_log(cmd, ah, lv, log_count, region_size, alloc, in_sync))) goto_out; if (!attach_mirror_log(first_seg(lv), log_lv)) goto_out; r = 1; out: alloc_destroy(ah); return r; } /* * Convert "linear" LV to "mirror". */ int add_mirror_images(struct cmd_context *cmd, struct logical_volume *lv, uint32_t mirrors, uint32_t stripes, uint32_t stripe_size, uint32_t region_size, struct dm_list *allocatable_pvs, alloc_policy_t alloc, uint32_t log_count) { struct alloc_handle *ah; const struct segment_type *segtype; struct dm_list *parallel_areas; struct logical_volume *log_lv = NULL; /* * allocate destination extents */ if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0, 0))) return_0; if (!(segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_MIRROR))) return_0; if (!(ah = allocate_extents(lv->vg, NULL, segtype, stripes, mirrors, log_count, region_size, lv->le_count, allocatable_pvs, alloc, 0, parallel_areas))) { log_error("Unable to allocate extents for mirror(s)."); return 0; } /* * create and initialize mirror log */ if (log_count && !(log_lv = _set_up_mirror_log(cmd, ah, lv, log_count, (region_size > lv->vg->extent_size) ? lv->vg->extent_size : region_size, alloc, mirror_in_sync()))) { stack; goto out_remove_images; } /* The log initialization involves vg metadata commit. So from here on, if failure occurs, the log must be explicitly removed and the updated vg metadata should be committed. */ if (!_form_mirror(cmd, ah, lv, mirrors, stripes, stripe_size, region_size, 0)) goto out_remove_log; if (log_count && !attach_mirror_log(first_seg(lv), log_lv)) stack; alloc_destroy(ah); return 1; out_remove_log: if (log_lv) { if (!lv_remove(log_lv) || !vg_write(log_lv->vg) || !vg_commit(log_lv->vg)) log_error("Manual intervention may be required to remove " "abandoned log LV before retrying."); else backup(log_lv->vg); } out_remove_images: alloc_destroy(ah); return 0; } /* * Generic interface for adding mirror and/or mirror log. * 'mirror' is the number of mirrors to be added. * 'pvs' is either allocatable pvs. */ int lv_add_mirrors(struct cmd_context *cmd, struct logical_volume *lv, uint32_t mirrors, uint32_t stripes, uint32_t stripe_size, uint32_t region_size, uint32_t log_count, struct dm_list *pvs, alloc_policy_t alloc, uint32_t flags) { if (!mirrors && !log_count) { log_error("No conversion is requested."); return 0; } /* For corelog mirror, activation code depends on * the global mirror_in_sync status. As we are adding * a new mirror, it should be set as 'out-of-sync' * so that the sync starts. */ /* However, MIRROR_SKIP_INIT_SYNC even overrides it. */ if (flags & MIRROR_SKIP_INIT_SYNC) init_mirror_in_sync(1); else if (!log_count) init_mirror_in_sync(0); if (flags & MIRROR_BY_SEG) { if (log_count) { log_error("Persistent log is not supported on " "segment-by-segment mirroring."); return 0; } if (stripes > 1) { log_error("Striped-mirroring is not supported on " "segment-by-segment mirroring."); return 0; } return _add_mirrors_that_preserve_segments(lv, MIRROR_BY_SEG, mirrors, region_size, pvs, alloc); } if (flags & MIRROR_BY_SEGMENTED_LV) { if (stripes > 1) { log_error("Striped-mirroring is not supported on " "segment-by-segment mirroring."); return 0; } return _add_mirrors_that_preserve_segments(lv, MIRROR_BY_SEGMENTED_LV, mirrors, region_size, pvs, alloc); } if (flags & MIRROR_BY_LV) { if (!mirrors) return add_mirror_log(cmd, lv, log_count, region_size, pvs, alloc); return add_mirror_images(cmd, lv, mirrors, stripes, stripe_size, region_size, pvs, alloc, log_count); } log_error("Unsupported mirror conversion type."); return 0; } int lv_split_mirror_images(struct logical_volume *lv, const char *split_name, uint32_t split_count, struct dm_list *removable_pvs) { int historical; if (lv_name_is_used_in_vg(lv->vg, split_name, &historical)) { log_error("%sLogical Volume \"%s\" already exists in " "volume group \"%s\".", historical ? "historical " : "", split_name, lv->vg->name); return 0; } /* Can't split a mirror that is not in-sync... unless force? */ if (!_mirrored_lv_in_sync(lv)) { log_error("Unable to split mirror %s that is not in-sync.", display_lvname(lv)); return 0; } /* * FIXME: Generate default name when not supplied. * * If we were going to generate a default name, we would * do it here. Better to wait for a decision on the form * of the default name when '--track_deltas' (the ability * to merge a split leg back in and only copy the changes) * is being implemented. For now, we force the user to * come up with a name for their LV. */ if (!_split_mirror_images(lv, split_name, split_count, removable_pvs)) return_0; return 1; } /* * Generic interface for removing mirror and/or mirror log. * 'mirror' is the number of mirrors to be removed. * 'pvs' is removable pvs. */ int lv_remove_mirrors(struct cmd_context *cmd __attribute__((unused)), struct logical_volume *lv, uint32_t mirrors, uint32_t log_count, int (*is_removable)(struct logical_volume *, void *), void *removable_baton, uint64_t status_mask) { uint32_t new_mirrors; struct lv_segment *seg; if (!mirrors && !log_count) { log_error("No conversion is requested."); return 0; } seg = first_seg(lv); if (!seg_is_mirrored(seg)) { log_error("Not a mirror segment."); return 0; } if (lv_mirror_count(lv) <= mirrors) { log_error("Removing more than existing: %d <= %d.", seg->area_count, mirrors); return 0; } new_mirrors = lv_mirror_count(lv) - mirrors - 1; /* MIRROR_BY_LV */ if (seg_type(seg, 0) == AREA_LV && lv_is_mirror_image(seg_lv(seg, 0))) return remove_mirror_images(lv, new_mirrors + 1, is_removable, removable_baton, log_count ? 1U : 0); /* MIRROR_BY_SEG */ if (log_count) { log_error("Persistent log is not supported on " "segment-by-segment mirroring."); return 0; } return remove_mirrors_from_segments(lv, new_mirrors, status_mask); } int set_mirror_log_count(int *log_count, const char *mirrorlog) { if (!strcmp("core", mirrorlog)) *log_count = MIRROR_LOG_CORE; else if (!strcmp("disk", mirrorlog)) *log_count = MIRROR_LOG_DISK; else if (!strcmp("mirrored", mirrorlog)) *log_count = MIRROR_LOG_MIRRORED; else { log_error("Mirror log type \"%s\" is unknown.", mirrorlog); return 0; } return 1; } const char *get_mirror_log_name(int log_count) { switch (log_count) { case MIRROR_LOG_CORE: return "core"; case MIRROR_LOG_DISK: return "disk"; case MIRROR_LOG_MIRRORED: return "mirrored"; default: log_error(INTERNAL_ERROR "Unknown mirror log count %d.", log_count); return NULL; } }