summaryrefslogtreecommitdiff
path: root/mysys
diff options
context:
space:
mode:
authorunknown <serg@serg.mysql.com>2002-02-23 15:22:19 +0000
committerunknown <serg@serg.mysql.com>2002-02-23 15:22:19 +0000
commitdb58e2f05a2474f9869735566897d96259f678bd (patch)
tree38c55741b7ea7301a86ab9ba6df1b128974fe19b /mysys
parentdc09f16694edd1075668c57a8f4cee950edae41f (diff)
downloadmariadb-git-db58e2f05a2474f9869735566897d96259f678bd.tar.gz
mf_qsort.c:
qsort implementation backported from 4.0 tree, the old one was buggy mysys/mf_qsort.c: qsort implementation backported from 4.0 tree, the old one was buggy
Diffstat (limited to 'mysys')
-rw-r--r--mysys/mf_qsort.c360
1 files changed, 164 insertions, 196 deletions
diff --git a/mysys/mf_qsort.c b/mysys/mf_qsort.c
index 64e70990696..9cc937f6e8b 100644
--- a/mysys/mf_qsort.c
+++ b/mysys/mf_qsort.c
@@ -1,249 +1,217 @@
-/* Copyright (C) 1991, 1992, 1996, 1997 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
+/* Copyright (C) 2000 MySQL AB
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
+ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If not,
- write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
- Modifications by monty:
- - Uses mysys include files
- - Small fixes to make the it a bit faster
- - Can be compiled with a cmp function that takes one extra argument.
+ qsort implementation optimized for comparison of pointers
+ Inspired by the qsort implementations by Douglas C. Schmidt,
+ and Bentley & McIlroy's "Engineering a Sort Function".
*/
+
#include "mysys_priv.h"
+#ifndef SCO
#include <m_string.h>
+#endif
-/* Envoke the comparison function, returns either 0, < 0, or > 0. */
+/* We need to use qsort with 2 different compare functions */
#ifdef QSORT_EXTRA_CMP_ARGUMENT
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
#else
#define CMP(A,B) ((*cmp)((A),(B)))
#endif
-/* Byte-wise swap two items of size SIZE. */
-#define SWAP(a, b, size) \
- do \
- { \
- register size_t __size = (size); \
- register char *__a = (a), *__b = (b); \
- do \
- { \
- char __tmp = *__a; \
- *__a++ = *__b; \
- *__b++ = __tmp; \
- } while (--__size > 0); \
- } while (0)
-
-/* Discontinue quicksort algorithm when partition gets below this size.
- This particular magic number was chosen to work best on a Sun 4/260. */
-#define MAX_THRESH 8
-
-/* Stack node declarations used to store unfulfilled partition obligations. */
-typedef struct _qsort_stack_node
- {
- char *lo;
- char *hi;
- } stack_node;
-
-/* The next 4 #defines implement a very fast in-line stack abstraction. */
-#define STACK_SIZE (8 * sizeof(unsigned long int))
-#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
-#define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
-#define STACK_NOT_EMPTY (stack < top)
-
-/* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
-
- 1. Non-recursive, using an explicit stack of pointer that store the
- next array partition to sort. To save time, this maximum amount
- of space required to store an array of MAX_INT is allocated on the
- stack. Assuming a 32-bit integer, this needs only 32 *
- sizeof (stack_node) == 136 bits. Pretty cheap, actually.
+#define SWAP(A, B, size,swap_ptrs) \
+do { \
+ if (swap_ptrs) \
+ { \
+ reg1 char **a = (char**) (A), **b = (char**) (B); \
+ char *tmp = *a; *a++ = *b; *b++ = tmp; \
+ } \
+ else \
+ { \
+ reg1 char *a = (A), *b = (B); \
+ reg3 char *end= a+size; \
+ do \
+ { \
+ char tmp = *a; *a++ = *b; *b++ = tmp; \
+ } while (a < end); \
+ } \
+} while (0)
+
+/* Put the median in the middle argument */
+#define MEDIAN(low, mid, high) \
+{ \
+ if (CMP(high,low) < 0) \
+ SWAP(high, low, size, ptr_cmp); \
+ if (CMP(mid, low) < 0) \
+ SWAP(mid, low, size, ptr_cmp); \
+ else if (CMP(high, mid) < 0) \
+ SWAP(mid, high, size, ptr_cmp); \
+}
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
+/* The following node is used to store ranges to avoid recursive calls */
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segments.
+typedef struct st_stack
+{
+ char *low,*high;
+} stack_node;
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (n)
- stack size is needed (actually O(1) in this case)! */
+#define PUSH(LOW,HIGH) {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
+#define POP(LOW,HIGH) {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}
+/* The following stack size is enough for ulong ~0 elements */
+#define STACK_SIZE (8 * sizeof(unsigned long int))
+#define THRESHOLD_FOR_INSERT_SORT 10
#if defined(QSORT_TYPE_IS_VOID)
#define SORT_RETURN return
#else
#define SORT_RETURN return 0
#endif
+/****************************************************************************
+** 'standard' quicksort with the following extensions:
+**
+** Can be compiled with the qsort2_cmp compare function
+** Store ranges on stack to avoid recursion
+** Use insert sort on small ranges
+** Optimize for sorting of pointers (used often by MySQL)
+** Use median comparison to find partition element
+*****************************************************************************/
+
#ifdef QSORT_EXTRA_CMP_ARGUMENT
-qsort_t qsort2(void *base_ptr, size_t total_elems, size_t size, qsort2_cmp cmp,
+qsort_t qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
void *cmp_argument)
#else
-qsort_t qsort(void *base_ptr, size_t total_elems, size_t size, qsort_cmp cmp)
+qsort_t qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
#endif
{
- /* Allocating SIZE bytes for a pivot buffer facilitates a better
- algorithm below since we can do comparisons directly on the pivot.
- */
- size_t max_thresh = (size_t) (MAX_THRESH * size);
- if (total_elems <= 1)
- SORT_RETURN; /* Crashes on MSDOS if continues */
-
- if (total_elems > MAX_THRESH)
- {
- char *lo = (char*) base_ptr;
- char *hi = &lo[size * (total_elems - 1)];
- stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
- stack_node *top = stack + 1;
- char *pivot = (char *) my_alloca ((int) size);
+ char *low, *high, *pivot;
+ stack_node stack[STACK_SIZE], *stack_ptr;
+ my_bool ptr_cmp;
+ /* Handle the simple case first */
+ /* This will also make the rest of the code simpler */
+ if (count <= 1)
+ SORT_RETURN;
+
+ low = (char*) base_ptr;
+ high = low+ size * (count - 1);
+ stack_ptr = stack + 1;
#ifdef HAVE_purify
- stack[0].lo=stack[0].hi=0;
+ /* The first element in the stack will be accessed for the last POP */
+ stack[0].low=stack[0].high=0;
#endif
+ pivot = (char *) my_alloca((int) size);
+ ptr_cmp= size == sizeof(char*) && !((low - (char*) 0)& (sizeof(char*)-1));
- do
+ /* The following loop sorts elements between high and low */
+ do
+ {
+ char *low_ptr, *high_ptr, *mid;
+
+ count=((size_t) (high - low) / size)+1;
+ /* If count is small, then an insert sort is faster than qsort */
+ if (count < THRESHOLD_FOR_INSERT_SORT)
{
- char *left_ptr,*right_ptr;
-
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
-
- char *mid = lo + size * (((ulong) (hi - lo) / (ulong) size) >> 1);
-
- if (CMP(hi,lo) < 0)
- SWAP (hi, lo, size);
- if (CMP (mid, lo) < 0)
- SWAP (mid, lo, size);
- else if (CMP (hi, mid) < 0)
- SWAP (mid, hi, size);
- memcpy (pivot, mid, size);
-
- left_ptr = lo + size;
- right_ptr = hi - size;
-
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
+ for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
{
- while (CMP (left_ptr, pivot) < 0)
- left_ptr += size;
-
- while (CMP (pivot, right_ptr) < 0)
- right_ptr -= size;
-
- if (left_ptr < right_ptr)
- {
- SWAP (left_ptr, right_ptr, size);
- left_ptr += size;
- right_ptr -= size;
- }
- else if (left_ptr == right_ptr)
- {
- left_ptr += size;
- right_ptr -= size;
- break;
- }
- else
- break; /* left_ptr > right_ptr */
+ char *ptr;
+ for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
+ ptr -= size)
+ SWAP(ptr, ptr - size, size, ptr_cmp);
}
- while (left_ptr <= right_ptr);
+ POP(low, high);
+ continue;
+ }
+ /* Try to find a good middle element */
+ mid= low + size * (count >> 1);
+ if (count > 40) /* Must be bigger than 24 */
+ {
+ size_t step = size* (count / 8);
+ MEDIAN(low, low + step, low+step*2);
+ MEDIAN(mid - step, mid, mid+step);
+ MEDIAN(high - 2 * step, high-step, high);
+ /* Put best median in 'mid' */
+ MEDIAN(low+step, mid, high-step);
+ low_ptr = low;
+ high_ptr = high;
+ }
+ else
+ {
+ MEDIAN(low, mid, high);
+ /* The low and high argument are already in sorted against 'pivot' */
+ low_ptr = low + size;
+ high_ptr = high - size;
+ }
+ memcpy(pivot, mid, size);
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
+ do
+ {
+ while (CMP(low_ptr, pivot) < 0)
+ low_ptr += size;
+ while (CMP(pivot, high_ptr) < 0)
+ high_ptr -= size;
- if ((size_t) (right_ptr - lo) <= max_thresh)
+ if (low_ptr < high_ptr)
{
- if ((size_t) (hi - left_ptr) <= max_thresh)
- POP (lo, hi); /* Ignore both small partitions. */
- else
- lo = left_ptr; /* Ignore small left part. */
+ SWAP(low_ptr, high_ptr, size, ptr_cmp);
+ low_ptr += size;
+ high_ptr -= size;
}
- else if ((size_t) (hi - left_ptr) <= max_thresh)
- hi = right_ptr; /* Ignore small right partition. */
- else if ((right_ptr - lo) > (hi - left_ptr))
- {
- PUSH (lo, right_ptr); /* Push larger left part */
- lo = left_ptr;
- }
- else
+ else
{
- PUSH (left_ptr, hi); /* Push larger right part */
- hi = right_ptr;
+ if (low_ptr == high_ptr)
+ {
+ low_ptr += size;
+ high_ptr -= size;
+ }
+ break;
}
- } while (STACK_NOT_EMPTY);
- my_afree(pivot);
- }
-
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
-
- {
- char *end_ptr = (char*) base_ptr + size * (total_elems - 1);
- char *tmp_ptr = (char*) base_ptr;
- char *thresh = min (end_ptr, (char*) base_ptr + max_thresh);
- register char *run_ptr;
-
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
-
- for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
- if (CMP (run_ptr, tmp_ptr) < 0)
- tmp_ptr = run_ptr;
-
- if (tmp_ptr != (char*) base_ptr)
- SWAP (tmp_ptr, (char*) base_ptr, size);
+ }
+ while (low_ptr <= high_ptr);
- /* Insertion sort, running from left-hand-side up to right-hand-side. */
+ /*
+ Prepare for next iteration.
+ Skip partitions of size 1 as these doesn't have to be sorted
+ Push the larger partition and sort the smaller one first.
+ This ensures that the stack is keept small.
+ */
- for (run_ptr = (char*) base_ptr + size;
- (run_ptr += size) <= end_ptr; )
+ if ((int) (high_ptr - low) <= 0)
{
- if (CMP (run_ptr, (tmp_ptr = run_ptr-size)) < 0)
+ if ((int) (high - low_ptr) <= 0)
{
- char *trav;
- while (CMP (run_ptr, tmp_ptr -= size) < 0) ;
- tmp_ptr += size;
-
- /* Shift down all smaller elements, put found element in 'run_ptr' */
- for (trav = run_ptr + size; --trav >= run_ptr;)
- {
- char c = *trav;
- char *hi, *lo;
-
- for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
+ POP(low, high); /* Nothing more to sort */
}
+ else
+ low = low_ptr; /* Ignore small left part. */
+ }
+ else if ((int) (high - low_ptr) <= 0)
+ high = high_ptr; /* Ignore small right part. */
+ else if ((high_ptr - low) > (high - low_ptr))
+ {
+ PUSH(low, high_ptr); /* Push larger left part */
+ low = low_ptr;
+ }
+ else
+ {
+ PUSH(low_ptr, high); /* Push larger right part */
+ high = high_ptr;
}
- }
+ } while (stack_ptr > stack);
+ my_afree(pivot);
SORT_RETURN;
}