summaryrefslogtreecommitdiff
path: root/pstack/aout
diff options
context:
space:
mode:
authormonty@work.mysql.com <>2001-04-11 13:04:03 +0200
committermonty@work.mysql.com <>2001-04-11 13:04:03 +0200
commit8f62579c38e860ddc1d62c463d895c4c951fe979 (patch)
tree9ad58a68370fc8feb8195b7b9c6423d58372093a /pstack/aout
parent4709a1721a656f175e7b27aef2c01fa3910000f8 (diff)
downloadmariadb-git-8f62579c38e860ddc1d62c463d895c4c951fe979.tar.gz
Added all changes from old 4.0 version:
PSTACK, libmysqld and MySQL filesystem UPDATE ... ORDER BY DELETE ... ORDER BY New faster fulltext handling Faster compressed keys
Diffstat (limited to 'pstack/aout')
-rw-r--r--pstack/aout/aout64.h475
-rw-r--r--pstack/aout/stab.def264
-rw-r--r--pstack/aout/stab_gnu.h37
3 files changed, 776 insertions, 0 deletions
diff --git a/pstack/aout/aout64.h b/pstack/aout/aout64.h
new file mode 100644
index 00000000000..76f1140b682
--- /dev/null
+++ b/pstack/aout/aout64.h
@@ -0,0 +1,475 @@
+/* `a.out' object-file definitions, including extensions to 64-bit fields */
+
+#ifndef __A_OUT_64_H__
+#define __A_OUT_64_H__
+
+/* This is the layout on disk of the 32-bit or 64-bit exec header. */
+
+#ifndef external_exec
+struct external_exec
+{
+ bfd_byte e_info[4]; /* magic number and stuff */
+ bfd_byte e_text[BYTES_IN_WORD]; /* length of text section in bytes */
+ bfd_byte e_data[BYTES_IN_WORD]; /* length of data section in bytes */
+ bfd_byte e_bss[BYTES_IN_WORD]; /* length of bss area in bytes */
+ bfd_byte e_syms[BYTES_IN_WORD]; /* length of symbol table in bytes */
+ bfd_byte e_entry[BYTES_IN_WORD]; /* start address */
+ bfd_byte e_trsize[BYTES_IN_WORD]; /* length of text relocation info */
+ bfd_byte e_drsize[BYTES_IN_WORD]; /* length of data relocation info */
+};
+
+#define EXEC_BYTES_SIZE (4 + BYTES_IN_WORD * 7)
+
+/* Magic numbers for a.out files */
+
+#if ARCH_SIZE==64
+#define OMAGIC 0x1001 /* Code indicating object file */
+#define ZMAGIC 0x1002 /* Code indicating demand-paged executable. */
+#define NMAGIC 0x1003 /* Code indicating pure executable. */
+
+/* There is no 64-bit QMAGIC as far as I know. */
+
+#define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
+ && N_MAGIC(x) != NMAGIC \
+ && N_MAGIC(x) != ZMAGIC)
+#else
+#define OMAGIC 0407 /* ...object file or impure executable. */
+#define NMAGIC 0410 /* Code indicating pure executable. */
+#define ZMAGIC 0413 /* Code indicating demand-paged executable. */
+#define BMAGIC 0415 /* Used by a b.out object. */
+
+/* This indicates a demand-paged executable with the header in the text.
+ It is used by 386BSD (and variants) and Linux, at least. */
+#ifndef QMAGIC
+#define QMAGIC 0314
+#endif
+# ifndef N_BADMAG
+# define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
+ && N_MAGIC(x) != NMAGIC \
+ && N_MAGIC(x) != ZMAGIC \
+ && N_MAGIC(x) != QMAGIC)
+# endif /* N_BADMAG */
+#endif
+
+#endif
+
+#ifdef QMAGIC
+#define N_IS_QMAGIC(x) (N_MAGIC (x) == QMAGIC)
+#else
+#define N_IS_QMAGIC(x) (0)
+#endif
+
+/* The difference between TARGET_PAGE_SIZE and N_SEGSIZE is that TARGET_PAGE_SIZE is
+ the finest granularity at which you can page something, thus it
+ controls the padding (if any) before the text segment of a ZMAGIC
+ file. N_SEGSIZE is the resolution at which things can be marked as
+ read-only versus read/write, so it controls the padding between the
+ text segment and the data segment (in memory; on disk the padding
+ between them is TARGET_PAGE_SIZE). TARGET_PAGE_SIZE and N_SEGSIZE are the same
+ for most machines, but different for sun3. */
+
+/* By default, segment size is constant. But some machines override this
+ to be a function of the a.out header (e.g. machine type). */
+
+#ifndef N_SEGSIZE
+#define N_SEGSIZE(x) SEGMENT_SIZE
+#endif
+
+/* Virtual memory address of the text section.
+ This is getting very complicated. A good reason to discard a.out format
+ for something that specifies these fields explicitly. But til then...
+
+ * OMAGIC and NMAGIC files:
+ (object files: text for "relocatable addr 0" right after the header)
+ start at 0, offset is EXEC_BYTES_SIZE, size as stated.
+ * The text address, offset, and size of ZMAGIC files depend
+ on the entry point of the file:
+ * entry point below TEXT_START_ADDR:
+ (hack for SunOS shared libraries)
+ start at 0, offset is 0, size as stated.
+ * If N_HEADER_IN_TEXT(x) is true (which defaults to being the
+ case when the entry point is EXEC_BYTES_SIZE or further into a page):
+ no padding is needed; text can start after exec header. Sun
+ considers the text segment of such files to include the exec header;
+ for BFD's purposes, we don't, which makes more work for us.
+ start at TEXT_START_ADDR + EXEC_BYTES_SIZE, offset is EXEC_BYTES_SIZE,
+ size as stated minus EXEC_BYTES_SIZE.
+ * If N_HEADER_IN_TEXT(x) is false (which defaults to being the case when
+ the entry point is less than EXEC_BYTES_SIZE into a page (e.g. page
+ aligned)): (padding is needed so that text can start at a page boundary)
+ start at TEXT_START_ADDR, offset TARGET_PAGE_SIZE, size as stated.
+
+ Specific configurations may want to hardwire N_HEADER_IN_TEXT,
+ for efficiency or to allow people to play games with the entry point.
+ In that case, you would #define N_HEADER_IN_TEXT(x) as 1 for sunos,
+ and as 0 for most other hosts (Sony News, Vax Ultrix, etc).
+ (Do this in the appropriate bfd target file.)
+ (The default is a heuristic that will break if people try changing
+ the entry point, perhaps with the ld -e flag.)
+
+ * QMAGIC is always like a ZMAGIC for which N_HEADER_IN_TEXT is true,
+ and for which the starting address is TARGET_PAGE_SIZE (or should this be
+ SEGMENT_SIZE?) (TEXT_START_ADDR only applies to ZMAGIC, not to QMAGIC).
+ */
+
+/* This macro is only relevant for ZMAGIC files; QMAGIC always has the header
+ in the text. */
+#ifndef N_HEADER_IN_TEXT
+#define N_HEADER_IN_TEXT(x) (((x).a_entry & (TARGET_PAGE_SIZE-1)) >= EXEC_BYTES_SIZE)
+#endif
+
+/* Sun shared libraries, not linux. This macro is only relevant for ZMAGIC
+ files. */
+#ifndef N_SHARED_LIB
+#define N_SHARED_LIB(x) ((x).a_entry < TEXT_START_ADDR)
+#endif
+
+/* Returning 0 not TEXT_START_ADDR for OMAGIC and NMAGIC is based on
+ the assumption that we are dealing with a .o file, not an
+ executable. This is necessary for OMAGIC (but means we don't work
+ right on the output from ld -N); more questionable for NMAGIC. */
+
+#ifndef N_TXTADDR
+#define N_TXTADDR(x) \
+ (/* The address of a QMAGIC file is always one page in, */ \
+ /* with the header in the text. */ \
+ N_IS_QMAGIC (x) ? TARGET_PAGE_SIZE + EXEC_BYTES_SIZE : \
+ N_MAGIC(x) != ZMAGIC ? 0 : /* object file or NMAGIC */\
+ N_SHARED_LIB(x) ? 0 : \
+ N_HEADER_IN_TEXT(x) ? \
+ TEXT_START_ADDR + EXEC_BYTES_SIZE : /* no padding */\
+ TEXT_START_ADDR /* a page of padding */\
+ )
+#endif
+
+/* If N_HEADER_IN_TEXT is not true for ZMAGIC, there is some padding
+ to make the text segment start at a certain boundary. For most
+ systems, this boundary is TARGET_PAGE_SIZE. But for Linux, in the
+ time-honored tradition of crazy ZMAGIC hacks, it is 1024 which is
+ not what TARGET_PAGE_SIZE needs to be for QMAGIC. */
+
+#ifndef ZMAGIC_DISK_BLOCK_SIZE
+#define ZMAGIC_DISK_BLOCK_SIZE TARGET_PAGE_SIZE
+#endif
+
+#define N_DISK_BLOCK_SIZE(x) \
+ (N_MAGIC(x) == ZMAGIC ? ZMAGIC_DISK_BLOCK_SIZE : TARGET_PAGE_SIZE)
+
+/* Offset in an a.out of the start of the text section. */
+#ifndef N_TXTOFF
+#define N_TXTOFF(x) \
+ (/* For {O,N,Q}MAGIC, no padding. */ \
+ N_MAGIC(x) != ZMAGIC ? EXEC_BYTES_SIZE : \
+ N_SHARED_LIB(x) ? 0 : \
+ N_HEADER_IN_TEXT(x) ? \
+ EXEC_BYTES_SIZE : /* no padding */\
+ ZMAGIC_DISK_BLOCK_SIZE /* a page of padding */\
+ )
+#endif
+/* Size of the text section. It's always as stated, except that we
+ offset it to `undo' the adjustment to N_TXTADDR and N_TXTOFF
+ for ZMAGIC files that nominally include the exec header
+ as part of the first page of text. (BFD doesn't consider the
+ exec header to be part of the text segment.) */
+#ifndef N_TXTSIZE
+#define N_TXTSIZE(x) \
+ (/* For QMAGIC, we don't consider the header part of the text section. */\
+ N_IS_QMAGIC (x) ? (x).a_text - EXEC_BYTES_SIZE : \
+ (N_MAGIC(x) != ZMAGIC || N_SHARED_LIB(x)) ? (x).a_text : \
+ N_HEADER_IN_TEXT(x) ? \
+ (x).a_text - EXEC_BYTES_SIZE: /* no padding */\
+ (x).a_text /* a page of padding */\
+ )
+#endif
+/* The address of the data segment in virtual memory.
+ It is the text segment address, plus text segment size, rounded
+ up to a N_SEGSIZE boundary for pure or pageable files. */
+#ifndef N_DATADDR
+#define N_DATADDR(x) \
+ (N_MAGIC(x)==OMAGIC? (N_TXTADDR(x)+N_TXTSIZE(x)) \
+ : (N_SEGSIZE(x) + ((N_TXTADDR(x)+N_TXTSIZE(x)-1) & ~(N_SEGSIZE(x)-1))))
+#endif
+/* The address of the BSS segment -- immediately after the data segment. */
+
+#define N_BSSADDR(x) (N_DATADDR(x) + (x).a_data)
+
+/* Offsets of the various portions of the file after the text segment. */
+
+/* For {Q,Z}MAGIC, there is padding to make the data segment start on
+ a page boundary. Most of the time the a_text field (and thus
+ N_TXTSIZE) already contains this padding. It is possible that for
+ BSDI and/or 386BSD it sometimes doesn't contain the padding, and
+ perhaps we should be adding it here. But this seems kind of
+ questionable and probably should be BSDI/386BSD-specific if we do
+ do it.
+
+ For NMAGIC (at least for hp300 BSD, probably others), there is
+ padding in memory only, not on disk, so we must *not* ever pad here
+ for NMAGIC. */
+
+#ifndef N_DATOFF
+#define N_DATOFF(x) \
+ (N_TXTOFF(x) + N_TXTSIZE(x))
+#endif
+
+#ifndef N_TRELOFF
+#define N_TRELOFF(x) ( N_DATOFF(x) + (x).a_data )
+#endif
+#ifndef N_DRELOFF
+#define N_DRELOFF(x) ( N_TRELOFF(x) + (x).a_trsize )
+#endif
+#ifndef N_SYMOFF
+#define N_SYMOFF(x) ( N_DRELOFF(x) + (x).a_drsize )
+#endif
+#ifndef N_STROFF
+#define N_STROFF(x) ( N_SYMOFF(x) + (x).a_syms )
+#endif
+
+/* Symbols */
+#ifndef external_nlist
+struct external_nlist {
+ bfd_byte e_strx[BYTES_IN_WORD]; /* index into string table of name */
+ bfd_byte e_type[1]; /* type of symbol */
+ bfd_byte e_other[1]; /* misc info (usually empty) */
+ bfd_byte e_desc[2]; /* description field */
+ bfd_byte e_value[BYTES_IN_WORD]; /* value of symbol */
+};
+#define EXTERNAL_NLIST_SIZE (BYTES_IN_WORD+4+BYTES_IN_WORD)
+#endif
+
+struct internal_nlist {
+ unsigned long n_strx; /* index into string table of name */
+ unsigned char n_type; /* type of symbol */
+ unsigned char n_other; /* misc info (usually empty) */
+ unsigned short n_desc; /* description field */
+ bfd_vma n_value; /* value of symbol */
+};
+
+/* The n_type field is the symbol type, containing: */
+
+#define N_UNDF 0 /* Undefined symbol */
+#define N_ABS 2 /* Absolute symbol -- defined at particular addr */
+#define N_TEXT 4 /* Text sym -- defined at offset in text seg */
+#define N_DATA 6 /* Data sym -- defined at offset in data seg */
+#define N_BSS 8 /* BSS sym -- defined at offset in zero'd seg */
+#define N_COMM 0x12 /* Common symbol (visible after shared lib dynlink) */
+#define N_FN 0x1f /* File name of .o file */
+#define N_FN_SEQ 0x0C /* N_FN from Sequent compilers (sigh) */
+/* Note: N_EXT can only be usefully OR-ed with N_UNDF, N_ABS, N_TEXT,
+ N_DATA, or N_BSS. When the low-order bit of other types is set,
+ (e.g. N_WARNING versus N_FN), they are two different types. */
+#define N_EXT 1 /* External symbol (as opposed to local-to-this-file) */
+#define N_TYPE 0x1e
+#define N_STAB 0xe0 /* If any of these bits are on, it's a debug symbol */
+
+#define N_INDR 0x0a
+
+/* The following symbols refer to set elements.
+ All the N_SET[ATDB] symbols with the same name form one set.
+ Space is allocated for the set in the text section, and each set
+ elements value is stored into one word of the space.
+ The first word of the space is the length of the set (number of elements).
+
+ The address of the set is made into an N_SETV symbol
+ whose name is the same as the name of the set.
+ This symbol acts like a N_DATA global symbol
+ in that it can satisfy undefined external references. */
+
+/* These appear as input to LD, in a .o file. */
+#define N_SETA 0x14 /* Absolute set element symbol */
+#define N_SETT 0x16 /* Text set element symbol */
+#define N_SETD 0x18 /* Data set element symbol */
+#define N_SETB 0x1A /* Bss set element symbol */
+
+/* This is output from LD. */
+#define N_SETV 0x1C /* Pointer to set vector in data area. */
+
+/* Warning symbol. The text gives a warning message, the next symbol
+ in the table will be undefined. When the symbol is referenced, the
+ message is printed. */
+
+#define N_WARNING 0x1e
+
+/* Weak symbols. These are a GNU extension to the a.out format. The
+ semantics are those of ELF weak symbols. Weak symbols are always
+ externally visible. The N_WEAK? values are squeezed into the
+ available slots. The value of a N_WEAKU symbol is 0. The values
+ of the other types are the definitions. */
+#define N_WEAKU 0x0d /* Weak undefined symbol. */
+#define N_WEAKA 0x0e /* Weak absolute symbol. */
+#define N_WEAKT 0x0f /* Weak text symbol. */
+#define N_WEAKD 0x10 /* Weak data symbol. */
+#define N_WEAKB 0x11 /* Weak bss symbol. */
+
+/* Relocations
+
+ There are two types of relocation flavours for a.out systems,
+ standard and extended. The standard form is used on systems where the
+ instruction has room for all the bits of an offset to the operand, whilst
+ the extended form is used when an address operand has to be split over n
+ instructions. Eg, on the 68k, each move instruction can reference
+ the target with a displacement of 16 or 32 bits. On the sparc, move
+ instructions use an offset of 14 bits, so the offset is stored in
+ the reloc field, and the data in the section is ignored.
+*/
+
+/* This structure describes a single relocation to be performed.
+ The text-relocation section of the file is a vector of these structures,
+ all of which apply to the text section.
+ Likewise, the data-relocation section applies to the data section. */
+
+struct reloc_std_external {
+ bfd_byte r_address[BYTES_IN_WORD]; /* offset of of data to relocate */
+ bfd_byte r_index[3]; /* symbol table index of symbol */
+ bfd_byte r_type[1]; /* relocation type */
+};
+
+#define RELOC_STD_BITS_PCREL_BIG ((unsigned int) 0x80)
+#define RELOC_STD_BITS_PCREL_LITTLE ((unsigned int) 0x01)
+
+#define RELOC_STD_BITS_LENGTH_BIG ((unsigned int) 0x60)
+#define RELOC_STD_BITS_LENGTH_SH_BIG 5
+#define RELOC_STD_BITS_LENGTH_LITTLE ((unsigned int) 0x06)
+#define RELOC_STD_BITS_LENGTH_SH_LITTLE 1
+
+#define RELOC_STD_BITS_EXTERN_BIG ((unsigned int) 0x10)
+#define RELOC_STD_BITS_EXTERN_LITTLE ((unsigned int) 0x08)
+
+#define RELOC_STD_BITS_BASEREL_BIG ((unsigned int) 0x08)
+#define RELOC_STD_BITS_BASEREL_LITTLE ((unsigned int) 0x10)
+
+#define RELOC_STD_BITS_JMPTABLE_BIG ((unsigned int) 0x04)
+#define RELOC_STD_BITS_JMPTABLE_LITTLE ((unsigned int) 0x20)
+
+#define RELOC_STD_BITS_RELATIVE_BIG ((unsigned int) 0x02)
+#define RELOC_STD_BITS_RELATIVE_LITTLE ((unsigned int) 0x40)
+
+#define RELOC_STD_SIZE (BYTES_IN_WORD + 3 + 1) /* Bytes per relocation entry */
+
+struct reloc_std_internal
+{
+ bfd_vma r_address; /* Address (within segment) to be relocated. */
+ /* The meaning of r_symbolnum depends on r_extern. */
+ unsigned int r_symbolnum:24;
+ /* Nonzero means value is a pc-relative offset
+ and it should be relocated for changes in its own address
+ as well as for changes in the symbol or section specified. */
+ unsigned int r_pcrel:1;
+ /* Length (as exponent of 2) of the field to be relocated.
+ Thus, a value of 2 indicates 1<<2 bytes. */
+ unsigned int r_length:2;
+ /* 1 => relocate with value of symbol.
+ r_symbolnum is the index of the symbol
+ in files the symbol table.
+ 0 => relocate with the address of a segment.
+ r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
+ (the N_EXT bit may be set also, but signifies nothing). */
+ unsigned int r_extern:1;
+ /* The next three bits are for SunOS shared libraries, and seem to
+ be undocumented. */
+ unsigned int r_baserel:1; /* Linkage table relative */
+ unsigned int r_jmptable:1; /* pc-relative to jump table */
+ unsigned int r_relative:1; /* "relative relocation" */
+ /* unused */
+ unsigned int r_pad:1; /* Padding -- set to zero */
+};
+
+
+/* EXTENDED RELOCS */
+
+struct reloc_ext_external {
+ bfd_byte r_address[BYTES_IN_WORD]; /* offset of of data to relocate */
+ bfd_byte r_index[3]; /* symbol table index of symbol */
+ bfd_byte r_type[1]; /* relocation type */
+ bfd_byte r_addend[BYTES_IN_WORD]; /* datum addend */
+};
+
+#define RELOC_EXT_BITS_EXTERN_BIG ((unsigned int) 0x80)
+#define RELOC_EXT_BITS_EXTERN_LITTLE ((unsigned int) 0x01)
+
+#define RELOC_EXT_BITS_TYPE_BIG ((unsigned int) 0x1F)
+#define RELOC_EXT_BITS_TYPE_SH_BIG 0
+#define RELOC_EXT_BITS_TYPE_LITTLE ((unsigned int) 0xF8)
+#define RELOC_EXT_BITS_TYPE_SH_LITTLE 3
+
+/* Bytes per relocation entry */
+#define RELOC_EXT_SIZE (BYTES_IN_WORD + 3 + 1 + BYTES_IN_WORD)
+
+enum reloc_type
+{
+ /* simple relocations */
+ RELOC_8, /* data[0:7] = addend + sv */
+ RELOC_16, /* data[0:15] = addend + sv */
+ RELOC_32, /* data[0:31] = addend + sv */
+ /* pc-rel displacement */
+ RELOC_DISP8, /* data[0:7] = addend - pc + sv */
+ RELOC_DISP16, /* data[0:15] = addend - pc + sv */
+ RELOC_DISP32, /* data[0:31] = addend - pc + sv */
+ /* Special */
+ RELOC_WDISP30, /* data[0:29] = (addend + sv - pc)>>2 */
+ RELOC_WDISP22, /* data[0:21] = (addend + sv - pc)>>2 */
+ RELOC_HI22, /* data[0:21] = (addend + sv)>>10 */
+ RELOC_22, /* data[0:21] = (addend + sv) */
+ RELOC_13, /* data[0:12] = (addend + sv) */
+ RELOC_LO10, /* data[0:9] = (addend + sv) */
+ RELOC_SFA_BASE,
+ RELOC_SFA_OFF13,
+ /* P.I.C. (base-relative) */
+ RELOC_BASE10, /* Not sure - maybe we can do this the */
+ RELOC_BASE13, /* right way now */
+ RELOC_BASE22,
+ /* for some sort of pc-rel P.I.C. (?) */
+ RELOC_PC10,
+ RELOC_PC22,
+ /* P.I.C. jump table */
+ RELOC_JMP_TBL,
+ /* reputedly for shared libraries somehow */
+ RELOC_SEGOFF16,
+ RELOC_GLOB_DAT,
+ RELOC_JMP_SLOT,
+ RELOC_RELATIVE,
+
+ RELOC_11,
+ RELOC_WDISP2_14,
+ RELOC_WDISP19,
+ RELOC_HHI22, /* data[0:21] = (addend + sv) >> 42 */
+ RELOC_HLO10, /* data[0:9] = (addend + sv) >> 32 */
+
+ /* 29K relocation types */
+ RELOC_JUMPTARG,
+ RELOC_CONST,
+ RELOC_CONSTH,
+
+ /* All the new ones I can think of, for sparc v9 */
+
+ RELOC_64, /* data[0:63] = addend + sv */
+ RELOC_DISP64, /* data[0:63] = addend - pc + sv */
+ RELOC_WDISP21, /* data[0:20] = (addend + sv - pc)>>2 */
+ RELOC_DISP21, /* data[0:20] = addend - pc + sv */
+ RELOC_DISP14, /* data[0:13] = addend - pc + sv */
+ /* Q .
+ What are the other ones,
+ Since this is a clean slate, can we throw away the ones we dont
+ understand ? Should we sort the values ? What about using a
+ microcode format like the 68k ?
+ */
+ NO_RELOC
+ };
+
+
+struct reloc_internal {
+ bfd_vma r_address; /* offset of of data to relocate */
+ long r_index; /* symbol table index of symbol */
+ enum reloc_type r_type; /* relocation type */
+ bfd_vma r_addend; /* datum addend */
+};
+
+/* Q.
+ Should the length of the string table be 4 bytes or 8 bytes ?
+
+ Q.
+ What about archive indexes ?
+
+ */
+
+#endif /* __A_OUT_64_H__ */
diff --git a/pstack/aout/stab.def b/pstack/aout/stab.def
new file mode 100644
index 00000000000..3c6b456d3a9
--- /dev/null
+++ b/pstack/aout/stab.def
@@ -0,0 +1,264 @@
+/* Table of DBX symbol codes for the GNU system.
+ Copyright (C) 1988, 91, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* New stab from Solaris 2. This uses an n_type of 0, which in a.out files
+ overlaps the N_UNDF used for ordinary symbols. In ELF files, the
+ debug information is in a different file section, so there is no conflict.
+ This symbol's n_value gives the size of the string section associated
+ with this file. The symbol's n_strx (relative to the just-updated
+ string section start address) gives the name of the source file,
+ e.g. "foo.c", without any path information. The symbol's n_desc gives
+ the count of upcoming symbols associated with this file (not including
+ this one). */
+/* __define_stab (N_UNDF, 0x00, "UNDF") */
+
+/* Global variable. Only the name is significant.
+ To find the address, look in the corresponding external symbol. */
+__define_stab (N_GSYM, 0x20, "GSYM")
+
+/* Function name for BSD Fortran. Only the name is significant.
+ To find the address, look in the corresponding external symbol. */
+__define_stab (N_FNAME, 0x22, "FNAME")
+
+/* Function name or text-segment variable for C. Value is its address.
+ Desc is supposedly starting line number, but GCC doesn't set it
+ and DBX seems not to miss it. */
+__define_stab (N_FUN, 0x24, "FUN")
+
+/* Data-segment variable with internal linkage. Value is its address.
+ "Static Sym". */
+__define_stab (N_STSYM, 0x26, "STSYM")
+
+/* BSS-segment variable with internal linkage. Value is its address. */
+__define_stab (N_LCSYM, 0x28, "LCSYM")
+
+/* Name of main routine. Only the name is significant. */
+__define_stab (N_MAIN, 0x2a, "MAIN")
+
+/* Solaris2: Read-only data symbols. */
+__define_stab (N_ROSYM, 0x2c, "ROSYM")
+
+/* Global symbol in Pascal.
+ Supposedly the value is its line number; I'm skeptical. */
+__define_stab (N_PC, 0x30, "PC")
+
+/* Number of symbols: 0, files,,funcs,lines according to Ultrix V4.0. */
+__define_stab (N_NSYMS, 0x32, "NSYMS")
+
+/* "No DST map for sym: name, ,0,type,ignored" according to Ultrix V4.0. */
+__define_stab (N_NOMAP, 0x34, "NOMAP")
+
+/* New stab from Solaris 2. Like N_SO, but for the object file. Two in
+ a row provide the build directory and the relative path of the .o from it.
+ Solaris2 uses this to avoid putting the stabs info into the linked
+ executable; this stab goes into the ".stab.index" section, and the debugger
+ reads the real stabs directly from the .o files instead. */
+__define_stab (N_OBJ, 0x38, "OBJ")
+
+/* New stab from Solaris 2. Options for the debugger, related to the
+ source language for this module. E.g. whether to use ANSI
+ integral promotions or traditional integral promotions. */
+__define_stab (N_OPT, 0x3c, "OPT")
+
+/* Register variable. Value is number of register. */
+__define_stab (N_RSYM, 0x40, "RSYM")
+
+/* Modula-2 compilation unit. Can someone say what info it contains? */
+__define_stab (N_M2C, 0x42, "M2C")
+
+/* Line number in text segment. Desc is the line number;
+ value is corresponding address. On Solaris2, the line number is
+ relative to the start of the current function. */
+__define_stab (N_SLINE, 0x44, "SLINE")
+
+/* Similar, for data segment. */
+__define_stab (N_DSLINE, 0x46, "DSLINE")
+
+/* Similar, for bss segment. */
+__define_stab (N_BSLINE, 0x48, "BSLINE")
+
+/* Sun's source-code browser stabs. ?? Don't know what the fields are.
+ Supposedly the field is "path to associated .cb file". THIS VALUE
+ OVERLAPS WITH N_BSLINE! */
+__define_stab_duplicate (N_BROWS, 0x48, "BROWS")
+
+/* GNU Modula-2 definition module dependency. Value is the modification time
+ of the definition file. Other is non-zero if it is imported with the
+ GNU M2 keyword %INITIALIZE. Perhaps N_M2C can be used if there
+ are enough empty fields? */
+__define_stab(N_DEFD, 0x4a, "DEFD")
+
+/* New in Solaris2. Function start/body/end line numbers. */
+__define_stab(N_FLINE, 0x4C, "FLINE")
+
+/* THE FOLLOWING TWO STAB VALUES CONFLICT. Happily, one is for Modula-2
+ and one is for C++. Still,... */
+/* GNU C++ exception variable. Name is variable name. */
+__define_stab (N_EHDECL, 0x50, "EHDECL")
+/* Modula2 info "for imc": name,,0,0,0 according to Ultrix V4.0. */
+__define_stab_duplicate (N_MOD2, 0x50, "MOD2")
+
+/* GNU C++ `catch' clause. Value is its address. Desc is nonzero if
+ this entry is immediately followed by a CAUGHT stab saying what exception
+ was caught. Multiple CAUGHT stabs means that multiple exceptions
+ can be caught here. If Desc is 0, it means all exceptions are caught
+ here. */
+__define_stab (N_CATCH, 0x54, "CATCH")
+
+/* Structure or union element. Value is offset in the structure. */
+__define_stab (N_SSYM, 0x60, "SSYM")
+
+/* Solaris2: Last stab emitted for module. */
+__define_stab (N_ENDM, 0x62, "ENDM")
+
+/* Name of main source file.
+ Value is starting text address of the compilation.
+ If multiple N_SO's appear, the first to contain a trailing / is the
+ compilation directory. The first to not contain a trailing / is the
+ source file name, relative to the compilation directory. Others (perhaps
+ resulting from cfront) are ignored.
+ On Solaris2, value is undefined, but desc is a source-language code. */
+
+__define_stab (N_SO, 0x64, "SO")
+
+/* Automatic variable in the stack. Value is offset from frame pointer.
+ Also used for type descriptions. */
+__define_stab (N_LSYM, 0x80, "LSYM")
+
+/* Beginning of an include file. Only Sun uses this.
+ In an object file, only the name is significant.
+ The Sun linker puts data into some of the other fields. */
+__define_stab (N_BINCL, 0x82, "BINCL")
+
+/* Name of sub-source file (#include file).
+ Value is starting text address of the compilation. */
+__define_stab (N_SOL, 0x84, "SOL")
+
+/* Parameter variable. Value is offset from argument pointer.
+ (On most machines the argument pointer is the same as the frame pointer. */
+__define_stab (N_PSYM, 0xa0, "PSYM")
+
+/* End of an include file. No name.
+ This and N_BINCL act as brackets around the file's output.
+ In an object file, there is no significant data in this entry.
+ The Sun linker puts data into some of the fields. */
+__define_stab (N_EINCL, 0xa2, "EINCL")
+
+/* Alternate entry point. Value is its address. */
+__define_stab (N_ENTRY, 0xa4, "ENTRY")
+
+/* Beginning of lexical block.
+ The desc is the nesting level in lexical blocks.
+ The value is the address of the start of the text for the block.
+ The variables declared inside the block *precede* the N_LBRAC symbol.
+ On Solaris2, the value is relative to the start of the current function. */
+__define_stab (N_LBRAC, 0xc0, "LBRAC")
+
+/* Place holder for deleted include file. Replaces a N_BINCL and everything
+ up to the corresponding N_EINCL. The Sun linker generates these when
+ it finds multiple identical copies of the symbols from an include file.
+ This appears only in output from the Sun linker. */
+__define_stab (N_EXCL, 0xc2, "EXCL")
+
+/* Modula-2 scope information. Can someone say what info it contains? */
+__define_stab (N_SCOPE, 0xc4, "SCOPE")
+
+/* End of a lexical block. Desc matches the N_LBRAC's desc.
+ The value is the address of the end of the text for the block.
+ On Solaris2, the value is relative to the start of the current function. */
+__define_stab (N_RBRAC, 0xe0, "RBRAC")
+
+/* Begin named common block. Only the name is significant. */
+__define_stab (N_BCOMM, 0xe2, "BCOMM")
+
+/* End named common block. Only the name is significant
+ (and it should match the N_BCOMM). */
+__define_stab (N_ECOMM, 0xe4, "ECOMM")
+
+/* Member of a common block; value is offset within the common block.
+ This should occur within a BCOMM/ECOMM pair. */
+__define_stab (N_ECOML, 0xe8, "ECOML")
+
+/* Solaris2: Pascal "with" statement: type,,0,0,offset */
+__define_stab (N_WITH, 0xea, "WITH")
+
+/* These STAB's are used on Gould systems for Non-Base register symbols
+ or something like that. FIXME. I have assigned the values at random
+ since I don't have a Gould here. Fixups from Gould folk welcome... */
+__define_stab (N_NBTEXT, 0xF0, "NBTEXT")
+__define_stab (N_NBDATA, 0xF2, "NBDATA")
+__define_stab (N_NBBSS, 0xF4, "NBBSS")
+__define_stab (N_NBSTS, 0xF6, "NBSTS")
+__define_stab (N_NBLCS, 0xF8, "NBLCS")
+
+/* Second symbol entry containing a length-value for the preceding entry.
+ The value is the length. */
+__define_stab (N_LENG, 0xfe, "LENG")
+
+/* The above information, in matrix format.
+
+ STAB MATRIX
+ _________________________________________________
+ | 00 - 1F are not dbx stab symbols |
+ | In most cases, the low bit is the EXTernal bit|
+
+ | 00 UNDEF | 02 ABS | 04 TEXT | 06 DATA |
+ | 01 |EXT | 03 |EXT | 05 |EXT | 07 |EXT |
+
+ | 08 BSS | 0A INDR | 0C FN_SEQ | 0E WEAKA |
+ | 09 |EXT | 0B | 0D WEAKU | 0F WEAKT |
+
+ | 10 WEAKD | 12 COMM | 14 SETA | 16 SETT |
+ | 11 WEAKB | 13 | 15 | 17 |
+
+ | 18 SETD | 1A SETB | 1C SETV | 1E WARNING|
+ | 19 | 1B | 1D | 1F FN |
+
+ |_______________________________________________|
+ | Debug entries with bit 01 set are unused. |
+ | 20 GSYM | 22 FNAME | 24 FUN | 26 STSYM |
+ | 28 LCSYM | 2A MAIN | 2C ROSYM | 2E |
+ | 30 PC | 32 NSYMS | 34 NOMAP | 36 |
+ | 38 OBJ | 3A | 3C OPT | 3E |
+ | 40 RSYM | 42 M2C | 44 SLINE | 46 DSLINE |
+ | 48 BSLINE*| 4A DEFD | 4C FLINE | 4E |
+ | 50 EHDECL*| 52 | 54 CATCH | 56 |
+ | 58 | 5A | 5C | 5E |
+ | 60 SSYM | 62 ENDM | 64 SO | 66 |
+ | 68 | 6A | 6C | 6E |
+ | 70 | 72 | 74 | 76 |
+ | 78 | 7A | 7C | 7E |
+ | 80 LSYM | 82 BINCL | 84 SOL | 86 |
+ | 88 | 8A | 8C | 8E |
+ | 90 | 92 | 94 | 96 |
+ | 98 | 9A | 9C | 9E |
+ | A0 PSYM | A2 EINCL | A4 ENTRY | A6 |
+ | A8 | AA | AC | AE |
+ | B0 | B2 | B4 | B6 |
+ | B8 | BA | BC | BE |
+ | C0 LBRAC | C2 EXCL | C4 SCOPE | C6 |
+ | C8 | CA | CC | CE |
+ | D0 | D2 | D4 | D6 |
+ | D8 | DA | DC | DE |
+ | E0 RBRAC | E2 BCOMM | E4 ECOMM | E6 |
+ | E8 ECOML | EA WITH | EC | EE |
+ | F0 | F2 | F4 | F6 |
+ | F8 | FA | FC | FE LENG |
+ +-----------------------------------------------+
+ * 50 EHDECL is also MOD2.
+ * 48 BSLINE is also BROWS.
+ */
diff --git a/pstack/aout/stab_gnu.h b/pstack/aout/stab_gnu.h
new file mode 100644
index 00000000000..7d18e14a263
--- /dev/null
+++ b/pstack/aout/stab_gnu.h
@@ -0,0 +1,37 @@
+#ifndef __GNU_STAB__
+
+/* Indicate the GNU stab.h is in use. */
+
+#define __GNU_STAB__
+
+#define __define_stab(NAME, CODE, STRING) NAME=CODE,
+#define __define_stab_duplicate(NAME, CODE, STRING) NAME=CODE,
+
+enum __stab_debug_code
+{
+#include "aout/stab.def"
+LAST_UNUSED_STAB_CODE
+};
+
+#undef __define_stab
+
+/* Definitions of "desc" field for N_SO stabs in Solaris2. */
+
+#define N_SO_AS 1
+#define N_SO_C 2
+#define N_SO_ANSI_C 3
+#define N_SO_CC 4 /* C++ */
+#define N_SO_FORTRAN 5
+#define N_SO_PASCAL 6
+
+/* Solaris2: Floating point type values in basic types. */
+
+#define NF_NONE 0
+#define NF_SINGLE 1 /* IEEE 32-bit */
+#define NF_DOUBLE 2 /* IEEE 64-bit */
+#define NF_COMPLEX 3 /* Fortran complex */
+#define NF_COMPLEX16 4 /* Fortran double complex */
+#define NF_COMPLEX32 5 /* Fortran complex*16 */
+#define NF_LDOUBLE 6 /* Long double (whatever that is) */
+
+#endif /* __GNU_STAB_ */