summaryrefslogtreecommitdiff
path: root/sql/ha_partition.cc
diff options
context:
space:
mode:
authorunknown <mronstrom@mysql.com>2005-07-18 13:31:02 +0200
committerunknown <mronstrom@mysql.com>2005-07-18 13:31:02 +0200
commitcd483c5520949ee9840628b68cd78b9a8c88e6b5 (patch)
tree49a4797f25aaf50e6e6c5ab9d193608d969a612e /sql/ha_partition.cc
parent22545f477752987c8f70c0bc4740d2e8b67a6578 (diff)
downloadmariadb-git-cd483c5520949ee9840628b68cd78b9a8c88e6b5.tar.gz
Patch for push of wl1354 Partitioning
Diffstat (limited to 'sql/ha_partition.cc')
-rw-r--r--sql/ha_partition.cc3162
1 files changed, 3162 insertions, 0 deletions
diff --git a/sql/ha_partition.cc b/sql/ha_partition.cc
new file mode 100644
index 00000000000..30dd79551b4
--- /dev/null
+++ b/sql/ha_partition.cc
@@ -0,0 +1,3162 @@
+/* Copyright (C) 2005 MySQL AB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
+
+/*
+ This handler was developed by Mikael Ronström for version 5.1 of MySQL.
+ It is an abstraction layer on top of other handlers such as MyISAM,
+ InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also
+ be handled by a storage engine. The current example of this is NDB
+ Cluster that has internally handled partitioning. This have benefits in
+ that many loops needed in the partition handler can be avoided.
+
+ Partitioning has an inherent feature which in some cases is positive and
+ in some cases is negative. It splits the data into chunks. This makes
+ the data more manageable, queries can easily be parallelised towards the
+ parts and indexes are split such that there are less levels in the
+ index trees. The inherent disadvantage is that to use a split index
+ one has to scan all index parts which is ok for large queries but for
+ small queries it can be a disadvantage.
+
+ Partitioning lays the foundation for more manageable databases that are
+ extremely large. It does also lay the foundation for more parallelism
+ in the execution of queries. This functionality will grow with later
+ versions of MySQL.
+
+ You can enable it in your buld by doing the following during your build
+ process:
+ ./configure --with-partition
+
+ The partition is setup to use table locks. It implements an partition "SHARE"
+ that is inserted into a hash by table name. You can use this to store
+ information of state that any partition handler object will be able to see
+ if it is using the same table.
+
+ Please read the object definition in ha_partition.h before reading the rest
+ if this file.
+*/
+
+#ifdef __GNUC__
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include <mysql_priv.h>
+
+#ifdef HAVE_PARTITION_DB
+#include "ha_partition.h"
+
+static const char *ha_par_ext= ".par";
+#ifdef NOT_USED
+static int free_share(PARTITION_SHARE * share);
+static PARTITION_SHARE *get_share(const char *table_name, TABLE * table);
+#endif
+
+/****************************************************************************
+ MODULE create/delete handler object
+****************************************************************************/
+
+ha_partition::ha_partition(TABLE *table)
+ :handler(table), m_part_info(NULL), m_create_handler(FALSE),
+ m_is_sub_partitioned(0)
+{
+ DBUG_ENTER("ha_partition::ha_partition(table)");
+ init_handler_variables();
+ if (table)
+ {
+ if (table->s->part_info)
+ {
+ m_part_info= table->s->part_info;
+ m_is_sub_partitioned= is_sub_partitioned(m_part_info);
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+ha_partition::ha_partition(partition_info *part_info)
+ :handler(NULL), m_part_info(part_info), m_create_handler(TRUE),
+ m_is_sub_partitioned(is_sub_partitioned(m_part_info))
+
+{
+ DBUG_ENTER("ha_partition::ha_partition(part_info)");
+ init_handler_variables();
+ DBUG_ASSERT(m_part_info);
+ DBUG_VOID_RETURN;
+}
+
+
+void ha_partition::init_handler_variables()
+{
+ active_index= MAX_KEY;
+ m_file_buffer= NULL;
+ m_name_buffer_ptr= NULL;
+ m_engine_array= NULL;
+ m_file= NULL;
+ m_tot_parts= 0;
+ m_has_transactions= 0;
+ m_pkey_is_clustered= 0;
+ m_lock_type= F_UNLCK;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ m_scan_value= 2;
+ m_ref_length= 0;
+ m_part_spec.end_part= NO_CURRENT_PART_ID;
+ m_index_scan_type= partition_no_index_scan;
+ m_start_key.key= NULL;
+ m_start_key.length= 0;
+ m_myisam= FALSE;
+ m_innodb= FALSE;
+ m_extra_cache= FALSE;
+ m_extra_cache_size= 0;
+ m_table_flags= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
+ m_low_byte_first= 1;
+ m_part_field_array= NULL;
+ m_ordered_rec_buffer= NULL;
+ m_top_entry= NO_CURRENT_PART_ID;
+ m_rec_length= 0;
+ m_last_part= 0;
+ m_rec0= 0;
+ m_curr_key_info= 0;
+
+#ifdef DONT_HAVE_TO_BE_INITALIZED
+ m_start_key.flag= 0;
+ m_ordered= TRUE;
+#endif
+}
+
+
+ha_partition::~ha_partition()
+{
+ DBUG_ENTER("ha_partition::~ha_partition()");
+ if (m_file != NULL)
+ {
+ uint i;
+ for (i= 0; i < m_tot_parts; i++)
+ delete m_file[i];
+ }
+ my_free((char*) m_ordered_rec_buffer, MYF(MY_ALLOW_ZERO_PTR));
+
+ clear_handler_file();
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ The partition handler is only a layer on top of other engines. Thus it
+ can't really perform anything without the underlying handlers. Thus we
+ add this method as part of the allocation of a handler object.
+
+ 1) Allocation of underlying handlers
+ If we have access to the partition info we will allocate one handler
+ instance for each partition.
+ 2) Allocation without partition info
+ The cases where we don't have access to this information is when called
+ in preparation for delete_table and rename_table and in that case we
+ only need to set HA_FILE_BASED. In that case we will use the .par file
+ that contains information about the partitions and their engines and
+ the names of each partition.
+ 3) Table flags initialisation
+ We need also to set table flags for the partition handler. This is not
+ static since it depends on what storage engines are used as underlying
+ handlers.
+ The table flags is set in this routine to simulate the behaviour of a
+ normal storage engine
+ The flag HA_FILE_BASED will be set independent of the underlying handlers
+ 4) Index flags initialisation
+ When knowledge exists on the indexes it is also possible to initialise the
+ index flags. Again the index flags must be initialised by using the under-
+ lying handlers since this is storage engine dependent.
+ The flag HA_READ_ORDER will be reset for the time being to indicate no
+ ordered output is available from partition handler indexes. Later a merge
+ sort will be performed using the underlying handlers.
+ 5) primary_key_is_clustered, has_transactions and low_byte_first is
+ calculated here.
+*/
+
+int ha_partition::ha_initialise()
+{
+ handler **file_array, *file;
+ DBUG_ENTER("ha_partition::set_up_constants");
+
+ if (m_part_info)
+ {
+ m_tot_parts= get_tot_partitions(m_part_info);
+ DBUG_ASSERT(m_tot_parts > 0);
+ if (m_create_handler)
+ {
+ if (new_handlers_from_part_info())
+ DBUG_RETURN(1);
+ }
+ else if (get_from_handler_file(table->s->path))
+ {
+ my_error(ER_OUTOFMEMORY, MYF(0), 129); //Temporary fix TODO print_error
+ DBUG_RETURN(1);
+ }
+ /*
+ We create all underlying table handlers here. We only do it if we have
+ access to the partition info. We do it in this special method to be
+ able to report allocation errors.
+ */
+ /*
+ Set up table_flags, low_byte_first, primary_key_is_clustered and
+ has_transactions since they are called often in all kinds of places,
+ other parameters are calculated on demand.
+ HA_FILE_BASED is always set for partition handler since we use a
+ special file for handling names of partitions, engine types.
+ HA_CAN_GEOMETRY, HA_CAN_FULLTEXT, HA_CAN_SQL_HANDLER,
+ HA_CAN_INSERT_DELAYED is disabled until further investigated.
+ */
+ m_table_flags= m_file[0]->table_flags();
+ m_low_byte_first= m_file[0]->low_byte_first();
+ m_has_transactions= TRUE;
+ m_pkey_is_clustered= TRUE;
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ if (m_low_byte_first != file->low_byte_first())
+ {
+ // Cannot have handlers with different endian
+ my_error(ER_MIX_HANDLER_ERROR, MYF(0));
+ DBUG_RETURN(1);
+ }
+ if (!file->has_transactions())
+ m_has_transactions= FALSE;
+ if (!file->primary_key_is_clustered())
+ m_pkey_is_clustered= FALSE;
+ m_table_flags&= file->table_flags();
+ } while (*(++file_array));
+ m_table_flags&= ~(HA_CAN_GEOMETRY & HA_CAN_FULLTEXT &
+ HA_CAN_SQL_HANDLER & HA_CAN_INSERT_DELAYED);
+ /*
+ TODO RONM:
+ Make sure that the tree works without partition defined, compiles
+ and goes through mysql-test-run.
+ */
+ }
+ m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
+ DBUG_RETURN(0);
+}
+
+/****************************************************************************
+ MODULE meta data changes
+****************************************************************************/
+/*
+ Used to delete a table. By the time delete_table() has been called all
+ opened references to this table will have been closed (and your globally
+ shared references released. The variable name will just be the name of
+ the table. You will need to remove any files you have created at this
+ point.
+
+ If you do not implement this, the default delete_table() is called from
+ handler.cc and it will delete all files with the file extentions returned
+ by bas_ext().
+
+ Called from handler.cc by delete_table and ha_create_table(). Only used
+ during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
+ the storage engine.
+*/
+
+int ha_partition::delete_table(const char *name)
+{
+ int error;
+ DBUG_ENTER("ha_partition::delete_table");
+ if ((error= del_ren_cre_table(name, NULL, NULL, NULL)))
+ DBUG_RETURN(error);
+ DBUG_RETURN(handler::delete_table(name));
+}
+
+
+/*
+ Renames a table from one name to another from alter table call.
+
+ If you do not implement this, the default rename_table() is called from
+ handler.cc and it will delete all files with the file extentions returned
+ by bas_ext().
+
+ Called from sql_table.cc by mysql_rename_table().
+*/
+
+int ha_partition::rename_table(const char *from, const char *to)
+{
+ int error;
+ DBUG_ENTER("ha_partition::rename_table");
+ if ((error= del_ren_cre_table(from, to, NULL, NULL)))
+ DBUG_RETURN(error);
+ DBUG_RETURN(handler::rename_table(from, to));
+}
+
+
+/*
+ create_handler_files is called to create any handler specific files
+ before opening the file with openfrm to later call ::create on the
+ file object.
+ In the partition handler this is used to store the names of partitions
+ and types of engines in the partitions.
+*/
+
+int ha_partition::create_handler_files(const char *name)
+{
+ DBUG_ENTER("ha_partition::create_handler_files()");
+ if (create_handler_file(name))
+ {
+ my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ create() is called to create a table. The variable name will have the name
+ of the table. When create() is called you do not need to worry about
+ opening the table. Also, the FRM file will have already been created so
+ adjusting create_info will not do you any good. You can overwrite the frm
+ file at this point if you wish to change the table definition, but there
+ are no methods currently provided for doing that.
+
+ Called from handle.cc by ha_create_table().
+*/
+
+int ha_partition::create(const char *name, TABLE *table_arg,
+ HA_CREATE_INFO *create_info)
+{
+ char t_name[FN_REFLEN];
+ DBUG_ENTER("ha_partition::create");
+
+ strmov(t_name, name);
+ *fn_ext(t_name)= 0;
+ if (del_ren_cre_table(t_name, NULL, table_arg, create_info))
+ {
+ handler::delete_table(t_name);
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+void ha_partition::update_create_info(HA_CREATE_INFO *create_info)
+{
+ return;
+}
+
+
+char *ha_partition::update_table_comment(const char *comment)
+{
+ return (char*) comment; // Nothing to change
+}
+
+
+/*
+ This method is used to calculate the partition name, service routine to
+ the del_ren_cre_table method.
+*/
+
+static void create_partition_name(char *out, const char *in1, const char *in2)
+{
+ strxmov(out, in1, "_", in2, NullS);
+}
+
+
+/*
+ Common routine to handle delete_table and rename_table.
+ The routine uses the partition handler file to get the
+ names of the partition instances. Both these routines
+ are called after creating the handler without table
+ object and thus the file is needed to discover the
+ names of the partitions and the underlying storage engines.
+*/
+
+uint ha_partition::del_ren_cre_table(const char *from,
+ const char *to,
+ TABLE *table_arg,
+ HA_CREATE_INFO *create_info)
+{
+ int save_error= 0, error;
+ char from_buff[FN_REFLEN], to_buff[FN_REFLEN];
+ char *name_buffer_ptr;
+ uint i;
+ handler **file;
+ DBUG_ENTER("del_ren_cre_table()");
+
+ if (get_from_handler_file(from))
+ DBUG_RETURN(TRUE);
+ DBUG_ASSERT(m_file_buffer);
+ name_buffer_ptr= m_name_buffer_ptr;
+ file= m_file;
+ i= 0;
+ do
+ {
+ create_partition_name(from_buff, from, name_buffer_ptr);
+ if (to != NULL)
+ { // Rename branch
+ create_partition_name(to_buff, to, name_buffer_ptr);
+ error= (*file)->rename_table((const char*) from_buff,
+ (const char*) to_buff);
+ }
+ else if (table_arg == NULL) // delete branch
+ error= (*file)->delete_table((const char*) from_buff);
+ else
+ {
+ set_up_table_before_create(table_arg, create_info, i);
+ error= (*file)->create(from_buff, table_arg, create_info);
+ }
+ name_buffer_ptr= strend(name_buffer_ptr) + 1;
+ if (error)
+ save_error= error;
+ i++;
+ } while (*(++file));
+ DBUG_RETURN(save_error);
+}
+
+
+partition_element *ha_partition::find_partition_element(uint part_id)
+{
+ uint i;
+ uint curr_part_id= 0;
+ List_iterator_fast < partition_element > part_it(m_part_info->partitions);
+
+ for (i= 0; i < m_part_info->no_parts; i++)
+ {
+ partition_element *part_elem;
+ part_elem= part_it++;
+ if (m_is_sub_partitioned)
+ {
+ uint j;
+ List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->no_subparts; j++)
+ {
+ part_elem= sub_it++;
+ if (part_id == curr_part_id++)
+ return part_elem;
+ }
+ }
+ else if (part_id == curr_part_id++)
+ return part_elem;
+ }
+ DBUG_ASSERT(0);
+ current_thd->fatal_error(); // Abort
+ return NULL;
+}
+
+
+void ha_partition::set_up_table_before_create(TABLE *table,
+ HA_CREATE_INFO *info,
+ uint part_id)
+{
+ /*
+ Set up
+ 1) Comment on partition
+ 2) MAX_ROWS, MIN_ROWS on partition
+ 3) Index file name on partition
+ 4) Data file name on partition
+ */
+ partition_element *part_elem= find_partition_element(part_id);
+ if (!part_elem)
+ return; // Fatal error
+ table->s->max_rows= part_elem->part_max_rows;
+ table->s->min_rows= part_elem->part_min_rows;
+ info->index_file_name= part_elem->index_file_name;
+ info->data_file_name= part_elem->data_file_name;
+}
+
+
+/*
+ Routine used to add two names with '_' in between then. Service routine
+ to create_handler_file
+ Include the NULL in the count of characters since it is needed as separator
+ between the partition names.
+*/
+
+static uint name_add(char *dest, const char *first_name, const char *sec_name)
+{
+ return (uint) (strxmov(dest, first_name, "_", sec_name, NullS) -dest) + 1;
+}
+
+
+/*
+ Method used to create handler file with names of partitions, their
+ engine types and the number of partitions.
+*/
+
+bool ha_partition::create_handler_file(const char *name)
+{
+ partition_element *part_elem, *subpart_elem;
+ uint i, j, part_name_len, subpart_name_len;
+ uint tot_partition_words, tot_name_len;
+ uint tot_len_words, tot_len_byte, chksum, tot_name_words;
+ char *name_buffer_ptr;
+ uchar *file_buffer, *engine_array;
+ bool result= TRUE;
+ char file_name[FN_REFLEN];
+ File file;
+ List_iterator_fast < partition_element > part_it(m_part_info->partitions);
+ DBUG_ENTER("create_handler_file");
+
+ DBUG_PRINT("info", ("table name = %s", name));
+ tot_name_len= 0;
+ for (i= 0; i < m_part_info->no_parts; i++)
+ {
+ part_elem= part_it++;
+ part_name_len= strlen(part_elem->partition_name);
+ if (!m_is_sub_partitioned)
+ tot_name_len+= part_name_len + 1;
+ else
+ {
+ List_iterator_fast<partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->no_subparts; j++)
+ {
+ subpart_elem= sub_it++;
+ subpart_name_len= strlen(subpart_elem->partition_name);
+ tot_name_len+= part_name_len + subpart_name_len + 2;
+ }
+ }
+ }
+ /*
+ File format:
+ Length in words 4 byte
+ Checksum 4 byte
+ Total number of partitions 4 byte
+ Array of engine types n * 4 bytes where
+ n = (m_tot_parts + 3)/4
+ Length of name part in bytes 4 bytes
+ Name part m * 4 bytes where
+ m = ((length_name_part + 3)/4)*4
+
+ All padding bytes are zeroed
+ */
+ tot_partition_words= (m_tot_parts + 3) / 4;
+ tot_name_words= (tot_name_len + 3) / 4;
+ tot_len_words= 4 + tot_partition_words + tot_name_words;
+ tot_len_byte= 4 * tot_len_words;
+ if (!(file_buffer= (uchar *) my_malloc(tot_len_byte, MYF(MY_ZEROFILL))))
+ DBUG_RETURN(TRUE);
+ engine_array= (file_buffer + 12);
+ name_buffer_ptr= (char*) (file_buffer + ((4 + tot_partition_words) * 4));
+ part_it.rewind();
+ for (i= 0; i < m_part_info->no_parts; i++)
+ {
+ part_elem= part_it++;
+ if (!m_is_sub_partitioned)
+ {
+ name_buffer_ptr= strmov(name_buffer_ptr, part_elem->partition_name)+1;
+ *engine_array= (uchar) part_elem->engine_type;
+ DBUG_PRINT("info", ("engine: %u", *engine_array));
+ engine_array++;
+ }
+ else
+ {
+ List_iterator_fast<partition_element> sub_it(part_elem->subpartitions);
+ for (j= 0; j < m_part_info->no_subparts; j++)
+ {
+ subpart_elem= sub_it++;
+ name_buffer_ptr+= name_add(name_buffer_ptr,
+ part_elem->partition_name,
+ subpart_elem->partition_name);
+ *engine_array= (uchar) part_elem->engine_type;
+ engine_array++;
+ }
+ }
+ }
+ chksum= 0;
+ int4store(file_buffer, tot_len_words);
+ int4store(file_buffer + 8, m_tot_parts);
+ int4store(file_buffer + 12 + (tot_partition_words * 4), tot_name_len);
+ for (i= 0; i < tot_len_words; i++)
+ chksum^= uint4korr(file_buffer + 4 * i);
+ int4store(file_buffer + 4, chksum);
+ /*
+ Remove .frm extension and replace with .par
+ Create and write and close file
+ to be used at open, delete_table and rename_table
+ */
+ fn_format(file_name, name, "", ".par", MYF(MY_REPLACE_EXT));
+ if ((file= my_create(file_name, CREATE_MODE, O_RDWR | O_TRUNC,
+ MYF(MY_WME))) >= 0)
+ {
+ result= my_write(file, (byte *) file_buffer, tot_len_byte,
+ MYF(MY_WME | MY_NABP));
+ VOID(my_close(file, MYF(0)));
+ }
+ else
+ result= TRUE;
+ my_free((char*) file_buffer, MYF(0));
+ DBUG_RETURN(result);
+}
+
+
+void ha_partition::clear_handler_file()
+{
+ my_free((char*) m_file_buffer, MYF(MY_ALLOW_ZERO_PTR));
+ m_file_buffer= NULL;
+ m_name_buffer_ptr= NULL;
+ m_engine_array= NULL;
+}
+
+
+bool ha_partition::create_handlers()
+{
+ uint i;
+ uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
+ DBUG_ENTER("create_handlers");
+
+ if (!(m_file= (handler **) sql_alloc(alloc_len)))
+ DBUG_RETURN(TRUE);
+ bzero(m_file, alloc_len);
+ for (i= 0; i < m_tot_parts; i++)
+ {
+ if (!(m_file[i]= get_new_handler(table, (enum db_type) m_engine_array[i])))
+ DBUG_RETURN(TRUE);
+ DBUG_PRINT("info", ("engine_type: %u", m_engine_array[i]));
+ }
+ m_file[m_tot_parts]= 0;
+ /* For the moment we only support partition over the same table engine */
+ if (m_engine_array[0] == (uchar) DB_TYPE_MYISAM)
+ {
+ DBUG_PRINT("info", ("MyISAM"));
+ m_myisam= TRUE;
+ }
+ else if (m_engine_array[0] == (uchar) DB_TYPE_INNODB)
+ {
+ DBUG_PRINT("info", ("InnoDB"));
+ m_innodb= TRUE;
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+bool ha_partition::new_handlers_from_part_info()
+{
+ uint i, j;
+ partition_element *part_elem;
+ uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
+ List_iterator_fast <partition_element> part_it(m_part_info->partitions);
+ DBUG_ENTER("ha_partition::new_handlers_from_part_info");
+
+ if (!(m_file= (handler **) sql_alloc(alloc_len)))
+ goto error;
+ bzero(m_file, alloc_len);
+ DBUG_ASSERT(m_part_info->no_parts > 0);
+
+ i= 0;
+ /*
+ Don't know the size of the underlying storage engine, invent a number of
+ bytes allocated for error message if allocation fails
+ */
+ alloc_len= 128;
+ do
+ {
+ part_elem= part_it++;
+ if (!(m_file[i]= get_new_handler(table, part_elem->engine_type)))
+ goto error;
+ DBUG_PRINT("info", ("engine_type: %u", (uint) part_elem->engine_type));
+ if (m_is_sub_partitioned)
+ {
+ for (j= 0; j < m_part_info->no_subparts; j++)
+ {
+ if (!(m_file[i]= get_new_handler(table, part_elem->engine_type)))
+ goto error;
+ DBUG_PRINT("info", ("engine_type: %u", (uint) part_elem->engine_type));
+ }
+ }
+ } while (++i < m_part_info->no_parts);
+ if (part_elem->engine_type == DB_TYPE_MYISAM)
+ {
+ DBUG_PRINT("info", ("MyISAM"));
+ m_myisam= TRUE;
+ }
+ DBUG_RETURN(FALSE);
+error:
+ my_error(ER_OUTOFMEMORY, MYF(0), alloc_len);
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Open handler file to get partition names, engine types and number of
+ partitions.
+*/
+
+bool ha_partition::get_from_handler_file(const char *name)
+{
+ char buff[FN_REFLEN], *address_tot_name_len;
+ File file;
+ char *file_buffer, *name_buffer_ptr;
+ uchar *engine_array;
+ uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum;
+ DBUG_ENTER("ha_partition::get_from_handler_file");
+ DBUG_PRINT("enter", ("table name: '%s'", name));
+
+ if (m_file_buffer)
+ DBUG_RETURN(FALSE);
+ fn_format(buff, name, "", ha_par_ext, MYF(0));
+
+ /* Following could be done with my_stat to read in whole file */
+ if ((file= my_open(buff, O_RDONLY | O_SHARE, MYF(0))) < 0)
+ DBUG_RETURN(TRUE);
+ if (my_read(file, (byte *) & buff[0], 8, MYF(MY_NABP)))
+ goto err1;
+ len_words= uint4korr(buff);
+ len_bytes= 4 * len_words;
+ if (!(file_buffer= my_malloc(len_bytes, MYF(0))))
+ goto err1;
+ VOID(my_seek(file, 0, MY_SEEK_SET, MYF(0)));
+ if (my_read(file, (byte *) file_buffer, len_bytes, MYF(MY_NABP)))
+ goto err2;
+
+ chksum= 0;
+ for (i= 0; i < len_words; i++)
+ chksum ^= uint4korr((file_buffer) + 4 * i);
+ if (chksum)
+ goto err2;
+ m_tot_parts= uint4korr((file_buffer) + 8);
+ tot_partition_words= (m_tot_parts + 3) / 4;
+ engine_array= (uchar *) ((file_buffer) + 12);
+ address_tot_name_len= file_buffer + 12 + 4 * tot_partition_words;
+ tot_name_words= (uint4korr(address_tot_name_len) + 3) / 4;
+ if (len_words != (tot_partition_words + tot_name_words + 4))
+ goto err2;
+ name_buffer_ptr= file_buffer + 16 + 4 * tot_partition_words;
+ VOID(my_close(file, MYF(0)));
+ m_file_buffer= file_buffer; // Will be freed in clear_handler_file()
+ m_name_buffer_ptr= name_buffer_ptr;
+ m_engine_array= engine_array;
+ if (!m_file && create_handlers())
+ {
+ clear_handler_file();
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_RETURN(FALSE);
+
+err2:
+ my_free(file_buffer, MYF(0));
+err1:
+ VOID(my_close(file, MYF(0)));
+ DBUG_RETURN(TRUE);
+}
+
+/****************************************************************************
+ MODULE open/close object
+****************************************************************************/
+/*
+ Used for opening tables. The name will be the name of the file.
+ A table is opened when it needs to be opened. For instance
+ when a request comes in for a select on the table (tables are not
+ open and closed for each request, they are cached).
+
+ Called from handler.cc by handler::ha_open(). The server opens all tables
+ by calling ha_open() which then calls the handler specific open().
+*/
+
+int ha_partition::open(const char *name, int mode, uint test_if_locked)
+{
+ int error;
+ char name_buff[FN_REFLEN];
+ char *name_buffer_ptr= m_name_buffer_ptr;
+ handler **file;
+ uint alloc_len;
+ DBUG_ENTER("ha_partition::open");
+
+ ref_length= 0;
+ m_part_field_array= m_part_info->full_part_field_array;
+ if (get_from_handler_file(name))
+ DBUG_RETURN(1);
+ m_start_key.length= 0;
+ m_rec0= table->record[0];
+ m_rec_length= table->s->reclength;
+ alloc_len= m_tot_parts * (m_rec_length + PARTITION_BYTES_IN_POS);
+ alloc_len+= table->s->max_key_length;
+ if (!m_ordered_rec_buffer)
+ {
+ if (!(m_ordered_rec_buffer= my_malloc(alloc_len, MYF(MY_WME))))
+ {
+ DBUG_RETURN(1);
+ }
+ {
+ /*
+ We set-up one record per partition and each record has 2 bytes in
+ front where the partition id is written. This is used by ordered
+ index_read.
+ We also set-up a reference to the first record for temporary use in
+ setting up the scan.
+ */
+ char *ptr= m_ordered_rec_buffer;
+ uint i= 0;
+ do
+ {
+ int2store(ptr, i);
+ ptr+= m_rec_length + PARTITION_BYTES_IN_POS;
+ } while (++i < m_tot_parts);
+ m_start_key.key= ptr;
+ }
+ }
+ file= m_file;
+ do
+ {
+ create_partition_name(name_buff, name, name_buffer_ptr);
+ if ((error= (*file)->ha_open((const char*) name_buff, mode,
+ test_if_locked)))
+ goto err_handler;
+ name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
+ set_if_bigger(ref_length, ((*file)->ref_length));
+ } while (*(++file));
+ /*
+ Add 2 bytes for partition id in position ref length.
+ ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS
+ */
+ ref_length+= PARTITION_BYTES_IN_POS;
+ m_ref_length= ref_length;
+ /*
+ Release buffer read from .par file. It will not be reused again after
+ being opened once.
+ */
+ clear_handler_file();
+ /*
+ Initialise priority queue, initialised to reading forward.
+ */
+ if ((error= init_queue(&queue, m_tot_parts, (uint) PARTITION_BYTES_IN_POS,
+ 0, key_rec_cmp, (void*)this)))
+ goto err_handler;
+ /*
+ Some handlers update statistics as part of the open call. This will in
+ some cases corrupt the statistics of the partition handler and thus
+ to ensure we have correct statistics we call info from open after
+ calling open on all individual handlers.
+ */
+ info(HA_STATUS_VARIABLE | HA_STATUS_CONST);
+ DBUG_RETURN(0);
+
+err_handler:
+ while (file-- != m_file)
+ (*file)->close();
+ DBUG_RETURN(error);
+}
+
+/*
+ Closes a table. We call the free_share() function to free any resources
+ that we have allocated in the "shared" structure.
+
+ Called from sql_base.cc, sql_select.cc, and table.cc.
+ In sql_select.cc it is only used to close up temporary tables or during
+ the process where a temporary table is converted over to being a
+ myisam table.
+ For sql_base.cc look at close_data_tables().
+*/
+
+int ha_partition::close(void)
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::close");
+ file= m_file;
+ do
+ {
+ (*file)->close();
+ } while (*(++file));
+ DBUG_RETURN(0);
+}
+
+
+/****************************************************************************
+ MODULE start/end statement
+****************************************************************************/
+/*
+ A number of methods to define various constants for the handler. In
+ the case of the partition handler we need to use some max and min
+ of the underlying handlers in most cases.
+*/
+
+/*
+ First you should go read the section "locking functions for mysql" in
+ lock.cc to understand this.
+ This create a lock on the table. If you are implementing a storage engine
+ that can handle transactions look at ha_berkely.cc to see how you will
+ want to goo about doing this. Otherwise you should consider calling
+ flock() here.
+ Originally this method was used to set locks on file level to enable
+ several MySQL Servers to work on the same data. For transactional
+ engines it has been "abused" to also mean start and end of statements
+ to enable proper rollback of statements and transactions. When LOCK
+ TABLES has been issued the start_stmt method takes over the role of
+ indicating start of statement but in this case there is no end of
+ statement indicator(?).
+
+ Called from lock.cc by lock_external() and unlock_external(). Also called
+ from sql_table.cc by copy_data_between_tables().
+*/
+
+int ha_partition::external_lock(THD *thd, int lock_type)
+{
+ uint error;
+ handler **file;
+ DBUG_ENTER("ha_partition::external_lock");
+ file= m_file;
+ do
+ {
+ if ((error= (*file)->external_lock(thd, lock_type)))
+ {
+ if (lock_type != F_UNLCK)
+ goto err_handler;
+ }
+ } while (*(++file));
+ m_lock_type= lock_type; // For the future (2009?)
+ DBUG_RETURN(0);
+
+err_handler:
+ while (file-- != m_file)
+ (*file)->external_lock(thd, F_UNLCK);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ The idea with handler::store_lock() is the following:
+
+ The statement decided which locks we should need for the table
+ for updates/deletes/inserts we get WRITE locks, for SELECT... we get
+ read locks.
+
+ Before adding the lock into the table lock handler (see thr_lock.c)
+ mysqld calls store lock with the requested locks. Store lock can now
+ modify a write lock to a read lock (or some other lock), ignore the
+ lock (if we don't want to use MySQL table locks at all) or add locks
+ for many tables (like we do when we are using a MERGE handler).
+
+ Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE
+ (which signals that we are doing WRITES, but we are still allowing other
+ reader's and writer's.
+
+ When releasing locks, store_lock() are also called. In this case one
+ usually doesn't have to do anything.
+
+ store_lock is called when holding a global mutex to ensure that only
+ one thread at a time changes the locking information of tables.
+
+ In some exceptional cases MySQL may send a request for a TL_IGNORE;
+ This means that we are requesting the same lock as last time and this
+ should also be ignored. (This may happen when someone does a flush
+ table when we have opened a part of the tables, in which case mysqld
+ closes and reopens the tables and tries to get the same locks at last
+ time). In the future we will probably try to remove this.
+
+ Called from lock.cc by get_lock_data().
+*/
+
+THR_LOCK_DATA **ha_partition::store_lock(THD *thd,
+ THR_LOCK_DATA **to,
+ enum thr_lock_type lock_type)
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::store_lock");
+ file= m_file;
+ do
+ {
+ to= (*file)->store_lock(thd, to, lock_type);
+ } while (*(++file));
+ DBUG_RETURN(to);
+}
+
+
+int ha_partition::start_stmt(THD *thd)
+{
+ int error= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::start_stmt");
+ file= m_file;
+ do
+ {
+ if ((error= (*file)->start_stmt(thd)))
+ break;
+ } while (*(++file));
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Returns the number of store locks needed in call to store lock.
+ We return number of partitions since we call store_lock on each
+ underlying handler. Assists the above functions in allocating
+ sufficient space for lock structures.
+*/
+
+uint ha_partition::lock_count() const
+{
+ DBUG_ENTER("ha_partition::lock_count");
+ DBUG_RETURN(m_tot_parts);
+}
+
+
+/*
+ Record currently processed was not in the result set of the statement
+ and is thus unlocked. Used for UPDATE and DELETE queries.
+*/
+
+void ha_partition::unlock_row()
+{
+ m_file[m_last_part]->unlock_row();
+ return;
+}
+
+
+/****************************************************************************
+ MODULE change record
+****************************************************************************/
+
+/*
+ write_row() inserts a row. buf() is a byte array of data, normally record[0].
+
+ You can use the field information to extract the data from the native byte
+ array type.
+
+ Example of this would be:
+ for (Field **field=table->field ; *field ; field++)
+ {
+ ...
+ }
+
+ See ha_tina.cc for an partition of extracting all of the data as strings.
+ ha_berekly.cc has an partition of how to store it intact by "packing" it
+ for ha_berkeley's own native storage type.
+
+ See the note for update_row() on auto_increments and timestamps. This
+ case also applied to write_row().
+
+ Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
+ sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.
+
+ ADDITIONAL INFO:
+
+ Most handlers set timestamp when calling write row if any such fields
+ exists. Since we are calling an underlying handler we assume the´
+ underlying handler will assume this responsibility.
+
+ Underlying handlers will also call update_auto_increment to calculate
+ the new auto increment value. We will catch the call to
+ get_auto_increment and ensure this increment value is maintained by
+ only one of the underlying handlers.
+*/
+
+int ha_partition::write_row(byte * buf)
+{
+ uint32 part_id;
+ int error;
+#ifdef NOT_NEEDED
+ byte *rec0= m_rec0;
+#endif
+ DBUG_ENTER("ha_partition::write_row");
+ DBUG_ASSERT(buf == m_rec0);
+
+#ifdef NOT_NEEDED
+ if (likely(buf == rec0))
+#endif
+ error= m_part_info->get_partition_id(m_part_info, &part_id);
+#ifdef NOT_NEEDED
+ else
+ {
+ set_field_ptr(m_part_field_array, buf, rec0);
+ error= m_part_info->get_partition_id(m_part_info, &part_id);
+ set_field_ptr(m_part_field_array, rec0, buf);
+ }
+#endif
+ if (unlikely(error))
+ DBUG_RETURN(error);
+ m_last_part= part_id;
+ DBUG_PRINT("info", ("Insert in partition %d", part_id));
+ DBUG_RETURN(m_file[part_id]->write_row(buf));
+}
+
+
+/*
+ Yes, update_row() does what you expect, it updates a row. old_data will
+ have the previous row record in it, while new_data will have the newest
+ data in it.
+ Keep in mind that the server can do updates based on ordering if an
+ ORDER BY clause was used. Consecutive ordering is not guarenteed.
+
+ Currently new_data will not have an updated auto_increament record, or
+ and updated timestamp field. You can do these for partition by doing these:
+ if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
+ table->timestamp_field->set_time();
+ if (table->next_number_field && record == table->record[0])
+ update_auto_increment();
+
+ Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
+ new_data is always record[0]
+ old_data is normally record[1] but may be anything
+
+*/
+
+int ha_partition::update_row(const byte *old_data, byte *new_data)
+{
+ uint32 new_part_id, old_part_id;
+ int error;
+ DBUG_ENTER("ha_partition::update_row");
+
+ if ((error= get_parts_for_update(old_data, new_data, table->record[0],
+ m_part_info, &old_part_id, &new_part_id)))
+ {
+ DBUG_RETURN(error);
+ }
+
+ /*
+ TODO:
+ set_internal_auto_increment=
+ max(set_internal_auto_increment, new_data->auto_increment)
+ */
+ m_last_part= new_part_id;
+ if (new_part_id == old_part_id)
+ {
+ DBUG_PRINT("info", ("Update in partition %d", new_part_id));
+ DBUG_RETURN(m_file[new_part_id]->update_row(old_data, new_data));
+ }
+ else
+ {
+ DBUG_PRINT("info", ("Update from partition %d to partition %d",
+ old_part_id, new_part_id));
+ if ((error= m_file[new_part_id]->write_row(new_data)))
+ DBUG_RETURN(error);
+ if ((error= m_file[old_part_id]->delete_row(old_data)))
+ {
+#ifdef IN_THE_FUTURE
+ (void) m_file[new_part_id]->delete_last_inserted_row(new_data);
+#endif
+ DBUG_RETURN(error);
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ This will delete a row. buf will contain a copy of the row to be deleted.
+ The server will call this right after the current row has been read
+ (from either a previous rnd_xxx() or index_xxx() call).
+ If you keep a pointer to the last row or can access a primary key it will
+ make doing the deletion quite a bit easier.
+ Keep in mind that the server does no guarentee consecutive deletions.
+ ORDER BY clauses can be used.
+
+ Called in sql_acl.cc and sql_udf.cc to manage internal table information.
+ Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select
+ it is used for removing duplicates while in insert it is used for REPLACE
+ calls.
+
+ buf is either record[0] or record[1]
+
+*/
+
+int ha_partition::delete_row(const byte *buf)
+{
+ uint32 part_id;
+ int error;
+ DBUG_ENTER("ha_partition::delete_row");
+
+ if ((error= get_part_for_delete(buf, m_rec0, m_part_info, &part_id)))
+ {
+ DBUG_RETURN(error);
+ }
+ m_last_part= part_id;
+ DBUG_RETURN(m_file[part_id]->delete_row(buf));
+}
+
+
+/*
+ Used to delete all rows in a table. Both for cases of truncate and
+ for cases where the optimizer realizes that all rows will be
+ removed as a result of a SQL statement.
+
+ Called from item_sum.cc by Item_func_group_concat::clear(),
+ Item_sum_count_distinct::clear(), and Item_func_group_concat::clear().
+ Called from sql_delete.cc by mysql_delete().
+ Called from sql_select.cc by JOIN::reinit().
+ Called from sql_union.cc by st_select_lex_unit::exec().
+*/
+
+int ha_partition::delete_all_rows()
+{
+ int error;
+ handler **file;
+ DBUG_ENTER("ha_partition::delete_all_rows");
+ file= m_file;
+ do
+ {
+ if ((error= (*file)->delete_all_rows()))
+ DBUG_RETURN(error);
+ } while (*(++file));
+ DBUG_RETURN(0);
+}
+
+/*
+ rows == 0 means we will probably insert many rows
+*/
+
+void ha_partition::start_bulk_insert(ha_rows rows)
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::start_bulk_insert");
+ if (!rows)
+ {
+ /* Avoid allocation big caches in all underlaying handlers */
+ DBUG_VOID_RETURN;
+ }
+ rows= rows/m_tot_parts + 1;
+ file= m_file;
+ do
+ {
+ (*file)->start_bulk_insert(rows);
+ } while (*(++file));
+ DBUG_VOID_RETURN;
+}
+
+
+int ha_partition::end_bulk_insert()
+{
+ int error= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::end_bulk_insert");
+
+ file= m_file;
+ do
+ {
+ int tmp;
+ /* We want to execute end_bulk_insert() on all handlers */
+ if ((tmp= (*file)->end_bulk_insert()))
+ error= tmp;
+ } while (*(++file));
+ DBUG_RETURN(error);
+}
+
+/****************************************************************************
+ MODULE full table scan
+****************************************************************************/
+/*
+ Initialize engine for random reads
+
+ SYNOPSIS
+ ha_partition::rnd_init()
+ scan 0 Initialize for random reads through rnd_pos()
+ 1 Initialize for random scan through rnd_next()
+
+ NOTES
+ rnd_init() is called when the server wants the storage engine to do a
+ table scan or when the server wants to access data through rnd_pos.
+
+ When scan is used we will scan one handler partition at a time.
+ When preparing for rnd_pos we will init all handler partitions.
+ No extra cache handling is needed when scannning is not performed.
+
+ Before initialising we will call rnd_end to ensure that we clean up from
+ any previous incarnation of a table scan.
+ Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
+ sql_table.cc, and sql_update.cc.
+*/
+
+int ha_partition::rnd_init(bool scan)
+{
+ int error;
+ handler **file;
+ DBUG_ENTER("ha_partition::rnd_init");
+
+ include_partition_fields_in_used_fields();
+ if (scan)
+ {
+ /*
+ rnd_end() is needed for partitioning to reset internal data if scan
+ is already in use
+ */
+
+ rnd_end();
+ if (partition_scan_set_up(rec_buf(0), FALSE))
+ {
+ /*
+ The set of partitions to scan is empty. We return success and return
+ end of file on first rnd_next.
+ */
+ DBUG_RETURN(0);
+ }
+ /*
+ We will use the partition set in our scan, using the start and stop
+ partition and checking each scan before start dependent on bittfields.
+ */
+ late_extra_cache(m_part_spec.start_part);
+ DBUG_PRINT("info", ("rnd_init on partition %d",m_part_spec.start_part));
+ error= m_file[m_part_spec.start_part]->ha_rnd_init(1);
+ m_scan_value= 1; // Scan active
+ if (error)
+ m_scan_value= 2; // No scan active
+ DBUG_RETURN(error);
+ }
+ file= m_file;
+ do
+ {
+ if ((error= (*file)->ha_rnd_init(0)))
+ goto err;
+ } while (*(++file));
+ m_scan_value= 0;
+ DBUG_RETURN(0);
+
+err:
+ while (file--)
+ (*file)->ha_rnd_end();
+ DBUG_RETURN(error);
+}
+
+
+int ha_partition::rnd_end()
+{
+ handler **file;
+ DBUG_ENTER("ha_partition::rnd_end");
+ switch (m_scan_value) {
+ case 2: // Error
+ break;
+ case 1: // Table scan
+ if (m_part_spec.start_part != NO_CURRENT_PART_ID)
+ {
+ late_extra_no_cache(m_part_spec.start_part);
+ m_file[m_part_spec.start_part]->ha_rnd_end();
+ }
+ break;
+ case 0:
+ file= m_file;
+ do
+ {
+ (*file)->ha_rnd_end();
+ } while (*(++file));
+ break;
+ }
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ m_scan_value= 2;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ read next row during full table scan (scan in random row order)
+
+ SYNOPSIS
+ rnd_next()
+ buf buffer that should be filled with data
+
+ This is called for each row of the table scan. When you run out of records
+ you should return HA_ERR_END_OF_FILE.
+ The Field structure for the table is the key to getting data into buf
+ in a manner that will allow the server to understand it.
+
+ Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
+ sql_table.cc, and sql_update.cc.
+*/
+
+int ha_partition::rnd_next(byte *buf)
+{
+ DBUG_ASSERT(m_scan_value);
+ uint part_id= m_part_spec.start_part; // Cache of this variable
+ handler *file= m_file[part_id];
+ int result= HA_ERR_END_OF_FILE;
+ DBUG_ENTER("ha_partition::rnd_next");
+
+ DBUG_ASSERT(m_scan_value == 1);
+
+ if (part_id > m_part_spec.end_part)
+ {
+ /*
+ The original set of partitions to scan was empty and thus we report
+ the result here.
+ */
+ goto end;
+ }
+ while (TRUE)
+ {
+ if ((result= file->rnd_next(buf)))
+ {
+ if (result == HA_ERR_RECORD_DELETED)
+ continue; // Probably MyISAM
+
+ if (result != HA_ERR_END_OF_FILE)
+ break; // Return error
+
+ /* End current partition */
+ late_extra_no_cache(part_id);
+ DBUG_PRINT("info", ("rnd_end on partition %d", part_id));
+ if ((result= file->ha_rnd_end()))
+ break;
+ /* Shift to next partition */
+ if (++part_id > m_part_spec.end_part)
+ {
+ result= HA_ERR_END_OF_FILE;
+ break;
+ }
+ file= m_file[part_id];
+ DBUG_PRINT("info", ("rnd_init on partition %d", part_id));
+ if ((result= file->ha_rnd_init(1)))
+ break;
+ late_extra_cache(part_id);
+ }
+ else
+ {
+ m_part_spec.start_part= part_id;
+ m_last_part= part_id;
+ table->status= 0;
+ DBUG_RETURN(0);
+ }
+ }
+
+end:
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ table->status= STATUS_NOT_FOUND;
+ DBUG_RETURN(result);
+}
+
+
+inline void store_part_id_in_pos(byte *pos, uint part_id)
+{
+ int2store(pos, part_id);
+}
+
+inline uint get_part_id_from_pos(const byte *pos)
+{
+ return uint2korr(pos);
+}
+
+/*
+ position() is called after each call to rnd_next() if the data needs
+ to be ordered. You can do something like the following to store
+ the position:
+ ha_store_ptr(ref, ref_length, current_position);
+
+ The server uses ref to store data. ref_length in the above case is
+ the size needed to store current_position. ref is just a byte array
+ that the server will maintain. If you are using offsets to mark rows, then
+ current_position should be the offset. If it is a primary key like in
+ BDB, then it needs to be a primary key.
+
+ Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
+*/
+
+void ha_partition::position(const byte *record)
+{
+ handler *file= m_file[m_last_part];
+ DBUG_ENTER("ha_partition::position");
+ file->position(record);
+ store_part_id_in_pos(ref, m_last_part);
+ memcpy((ref + PARTITION_BYTES_IN_POS), file->ref,
+ (ref_length - PARTITION_BYTES_IN_POS));
+
+#ifdef SUPPORTING_PARTITION_OVER_DIFFERENT_ENGINES
+#ifdef HAVE_purify
+ bzero(ref + PARTITION_BYTES_IN_POS + ref_length, max_ref_length-ref_length);
+#endif /* HAVE_purify */
+#endif
+ DBUG_VOID_RETURN;
+}
+
+/*
+ This is like rnd_next, but you are given a position to use
+ to determine the row. The position will be of the type that you stored in
+ ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
+ or position you saved when position() was called.
+ Called from filesort.cc records.cc sql_insert.cc sql_select.cc
+ sql_update.cc.
+*/
+
+int ha_partition::rnd_pos(byte * buf, byte *pos)
+{
+ uint part_id;
+ handler *file;
+ DBUG_ENTER("ha_partition::rnd_pos");
+
+ part_id= get_part_id_from_pos((const byte *) pos);
+ DBUG_ASSERT(part_id < m_tot_parts);
+ file= m_file[part_id];
+ m_last_part= part_id;
+ DBUG_RETURN(file->rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS)));
+}
+
+
+/****************************************************************************
+ MODULE index scan
+****************************************************************************/
+/*
+ Positions an index cursor to the index specified in the handle. Fetches the
+ row if available. If the key value is null, begin at the first key of the
+ index.
+
+ There are loads of optimisations possible here for the partition handler.
+ The same optimisations can also be checked for full table scan although
+ only through conditions and not from index ranges.
+ Phase one optimisations:
+ Check if the fields of the partition function are bound. If so only use
+ the single partition it becomes bound to.
+ Phase two optimisations:
+ If it can be deducted through range or list partitioning that only a
+ subset of the partitions are used, then only use those partitions.
+*/
+
+/*
+ index_init is always called before starting index scans (except when
+ starting through index_read_idx and using read_range variants).
+*/
+
+int ha_partition::index_init(uint inx, bool sorted)
+{
+ int error= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::index_init");
+
+ active_index= inx;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ m_start_key.length= 0;
+ m_ordered= sorted;
+ m_curr_key_info= table->key_info+inx;
+ include_partition_fields_in_used_fields();
+
+ file= m_file;
+ do
+ {
+ /* TODO RONM: Change to index_init() when code is stable */
+ if ((error= (*file)->ha_index_init(inx, sorted)))
+ {
+ DBUG_ASSERT(0); // Should never happen
+ break;
+ }
+ } while (*(++file));
+ DBUG_RETURN(error);
+}
+
+
+/*
+ index_end is called at the end of an index scan to clean up any
+ things needed to clean up.
+*/
+
+int ha_partition::index_end()
+{
+ int error= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::index_end");
+
+ active_index= MAX_KEY;
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ file= m_file;
+ do
+ {
+ int tmp;
+ /* We want to execute index_end() on all handlers */
+ /* TODO RONM: Change to index_end() when code is stable */
+ if ((tmp= (*file)->ha_index_end()))
+ error= tmp;
+ } while (*(++file));
+ DBUG_RETURN(error);
+}
+
+
+/*
+ index_read starts a new index scan using a start key. The MySQL Server
+ will check the end key on its own. Thus to function properly the
+ partitioned handler need to ensure that it delivers records in the sort
+ order of the MySQL Server.
+ index_read can be restarted without calling index_end on the previous
+ index scan and without calling index_init. In this case the index_read
+ is on the same index as the previous index_scan. This is particularly
+ used in conjuntion with multi read ranges.
+*/
+
+int ha_partition::index_read(byte * buf, const byte * key,
+ uint key_len, enum ha_rkey_function find_flag)
+{
+ DBUG_ENTER("ha_partition::index_read");
+ end_range= 0;
+ DBUG_RETURN(common_index_read(buf, key, key_len, find_flag));
+}
+
+
+int ha_partition::common_index_read(byte *buf, const byte *key, uint key_len,
+ enum ha_rkey_function find_flag)
+{
+ int error;
+ DBUG_ENTER("ha_partition::common_index_read");
+
+ memcpy((void*)m_start_key.key, key, key_len);
+ m_start_key.length= key_len;
+ m_start_key.flag= find_flag;
+ m_index_scan_type= partition_index_read;
+
+ if ((error= partition_scan_set_up(buf, TRUE)))
+ {
+ DBUG_RETURN(error);
+ }
+
+ if (!m_ordered_scan_ongoing ||
+ (find_flag == HA_READ_KEY_EXACT &&
+ (key_len >= m_curr_key_info->key_length ||
+ key_len == 0)))
+ {
+ /*
+ We use unordered index scan either when read_range is used and flag
+ is set to not use ordered or when an exact key is used and in this
+ case all records will be sorted equal and thus the sort order of the
+ resulting records doesn't matter.
+ We also use an unordered index scan when the number of partitions to
+ scan is only one.
+ The unordered index scan will use the partition set created.
+ Need to set unordered scan ongoing since we can come here even when
+ it isn't set.
+ */
+ m_ordered_scan_ongoing= FALSE;
+ error= handle_unordered_scan_next_partition(buf);
+ }
+ else
+ {
+ /*
+ In all other cases we will use the ordered index scan. This will use
+ the partition set created by the get_partition_set method.
+ */
+ error= handle_ordered_index_scan(buf);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ index_first() asks for the first key in the index.
+ This is similar to index_read except that there is no start key since
+ the scan starts from the leftmost entry and proceeds forward with
+ index_next.
+
+ Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
+ and sql_select.cc.
+*/
+
+int ha_partition::index_first(byte * buf)
+{
+ DBUG_ENTER("ha_partition::index_first");
+ end_range= 0;
+ m_index_scan_type= partition_index_first;
+ DBUG_RETURN(common_first_last(buf));
+}
+
+
+/*
+ index_last() asks for the last key in the index.
+ This is similar to index_read except that there is no start key since
+ the scan starts from the rightmost entry and proceeds forward with
+ index_prev.
+
+ Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
+ and sql_select.cc.
+*/
+
+int ha_partition::index_last(byte * buf)
+{
+ DBUG_ENTER("ha_partition::index_last");
+ m_index_scan_type= partition_index_last;
+ DBUG_RETURN(common_first_last(buf));
+}
+
+int ha_partition::common_first_last(byte *buf)
+{
+ int error;
+ if ((error= partition_scan_set_up(buf, FALSE)))
+ return error;
+ if (!m_ordered_scan_ongoing)
+ return handle_unordered_scan_next_partition(buf);
+ return handle_ordered_index_scan(buf);
+}
+
+/*
+ Positions an index cursor to the index specified in key. Fetches the
+ row if any. This is only used to read whole keys.
+ TODO: Optimise this code to avoid index_init and index_end
+*/
+
+int ha_partition::index_read_idx(byte * buf, uint index, const byte * key,
+ uint key_len,
+ enum ha_rkey_function find_flag)
+{
+ int res;
+ DBUG_ENTER("ha_partition::index_read_idx");
+ index_init(index, 0);
+ res= index_read(buf, key, key_len, find_flag);
+ index_end();
+ DBUG_RETURN(res);
+}
+
+/*
+ This is used in join_read_last_key to optimise away an ORDER BY.
+ Can only be used on indexes supporting HA_READ_ORDER
+*/
+
+int ha_partition::index_read_last(byte *buf, const byte *key, uint keylen)
+{
+ DBUG_ENTER("ha_partition::index_read_last");
+ m_ordered= TRUE; // Safety measure
+ DBUG_RETURN(index_read(buf, key, keylen, HA_READ_PREFIX_LAST));
+}
+
+
+/*
+ Used to read forward through the index.
+*/
+
+int ha_partition::index_next(byte * buf)
+{
+ DBUG_ENTER("ha_partition::index_next");
+ /*
+ TODO(low priority):
+ If we want partition to work with the HANDLER commands, we
+ must be able to do index_last() -> index_prev() -> index_next()
+ */
+ DBUG_ASSERT(m_index_scan_type != partition_index_last);
+ if (!m_ordered_scan_ongoing)
+ {
+ DBUG_RETURN(handle_unordered_next(buf, FALSE));
+ }
+ DBUG_RETURN(handle_ordered_next(buf, FALSE));
+}
+
+
+/*
+ This routine is used to read the next but only if the key is the same
+ as supplied in the call.
+*/
+
+int ha_partition::index_next_same(byte *buf, const byte *key, uint keylen)
+{
+ DBUG_ENTER("ha_partition::index_next_same");
+ DBUG_ASSERT(keylen == m_start_key.length);
+ DBUG_ASSERT(m_index_scan_type != partition_index_last);
+ if (!m_ordered_scan_ongoing)
+ DBUG_RETURN(handle_unordered_next(buf, TRUE));
+ DBUG_RETURN(handle_ordered_next(buf, TRUE));
+}
+
+/*
+ Used to read backwards through the index.
+*/
+
+int ha_partition::index_prev(byte * buf)
+{
+ DBUG_ENTER("ha_partition::index_prev");
+ /* TODO: read comment in index_next */
+ DBUG_ASSERT(m_index_scan_type != partition_index_first);
+ DBUG_RETURN(handle_ordered_prev(buf));
+}
+
+
+/*
+ We reimplement read_range_first since we don't want the compare_key
+ check at the end. This is already performed in the partition handler.
+ read_range_next is very much different due to that we need to scan
+ all underlying handlers.
+*/
+
+int ha_partition::read_range_first(const key_range *start_key,
+ const key_range *end_key,
+ bool eq_range_arg, bool sorted)
+{
+ int error;
+ DBUG_ENTER("ha_partition::read_range_first");
+ m_ordered= sorted;
+ eq_range= eq_range_arg;
+ end_range= 0;
+ if (end_key)
+ {
+ end_range= &save_end_range;
+ save_end_range= *end_key;
+ key_compare_result_on_equal=
+ ((end_key->flag == HA_READ_BEFORE_KEY) ? 1 :
+ (end_key->flag == HA_READ_AFTER_KEY) ? -1 : 0);
+ }
+ range_key_part= m_curr_key_info->key_part;
+
+ if (!start_key) // Read first record
+ {
+ m_index_scan_type= partition_index_first;
+ error= common_first_last(m_rec0);
+ }
+ else
+ {
+ error= common_index_read(m_rec0,
+ start_key->key,
+ start_key->length, start_key->flag);
+ }
+ DBUG_RETURN(error);
+}
+
+
+int ha_partition::read_range_next()
+{
+ DBUG_ENTER("ha_partition::read_range_next");
+ if (m_ordered)
+ {
+ DBUG_RETURN(handler::read_range_next());
+ }
+ DBUG_RETURN(handle_unordered_next(m_rec0, eq_range));
+}
+
+
+int ha_partition::partition_scan_set_up(byte * buf, bool idx_read_flag)
+{
+ DBUG_ENTER("ha_partition::partition_scan_set_up");
+
+ if (idx_read_flag)
+ get_partition_set(table,buf,active_index,&m_start_key,&m_part_spec);
+ else
+ get_partition_set(table, buf, MAX_KEY, 0, &m_part_spec);
+ if (m_part_spec.start_part > m_part_spec.end_part)
+ {
+ /*
+ We discovered a partition set but the set was empty so we report
+ key not found.
+ */
+ DBUG_PRINT("info", ("scan with no partition to scan"));
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ if (m_part_spec.start_part == m_part_spec.end_part)
+ {
+ /*
+ We discovered a single partition to scan, this never needs to be
+ performed using the ordered index scan.
+ */
+ DBUG_PRINT("info", ("index scan using the single partition %d",
+ m_part_spec.start_part));
+ m_ordered_scan_ongoing= FALSE;
+ }
+ else
+ {
+ /*
+ Set m_ordered_scan_ongoing according how the scan should be done
+ */
+ m_ordered_scan_ongoing= m_ordered;
+ }
+ DBUG_ASSERT(m_part_spec.start_part < m_tot_parts &&
+ m_part_spec.end_part < m_tot_parts);
+ DBUG_RETURN(0);
+}
+
+
+/****************************************************************************
+ Unordered Index Scan Routines
+****************************************************************************/
+/*
+ These routines are used to scan partitions without considering order.
+ This is performed in two situations.
+ 1) In read_multi_range this is the normal case
+ 2) When performing any type of index_read, index_first, index_last where
+ all fields in the partition function is bound. In this case the index
+ scan is performed on only one partition and thus it isn't necessary to
+ perform any sort.
+*/
+
+int ha_partition::handle_unordered_next(byte *buf, bool next_same)
+{
+ handler *file= file= m_file[m_part_spec.start_part];
+ int error;
+ DBUG_ENTER("ha_partition::handle_unordered_next");
+
+ /*
+ We should consider if this should be split into two functions as
+ next_same is alwas a local constant
+ */
+ if (next_same)
+ {
+ if (!(error= file->index_next_same(buf, m_start_key.key,
+ m_start_key.length)))
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0);
+ }
+ }
+ else if (!(error= file->index_next(buf)))
+ {
+ if (compare_key(end_range) <= 0)
+ {
+ m_last_part= m_part_spec.start_part;
+ DBUG_RETURN(0); // Row was in range
+ }
+ error= HA_ERR_END_OF_FILE;
+ }
+
+ if (error == HA_ERR_END_OF_FILE)
+ {
+ m_part_spec.start_part++; // Start using next part
+ error= handle_unordered_scan_next_partition(buf);
+ }
+ DBUG_RETURN(error);
+}
+
+
+/*
+ This routine is used to start the index scan on the next partition.
+ Both initial start and after completing scan on one partition.
+*/
+
+int ha_partition::handle_unordered_scan_next_partition(byte * buf)
+{
+ uint i;
+ DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition");
+
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ int error;
+ handler *file= m_file[i];
+
+ m_part_spec.start_part= i;
+ switch (m_index_scan_type) {
+ case partition_index_read:
+ DBUG_PRINT("info", ("index_read on partition %d", i));
+ error= file->index_read(buf, m_start_key.key,
+ m_start_key.length,
+ m_start_key.flag);
+ break;
+ case partition_index_first:
+ DBUG_PRINT("info", ("index_first on partition %d", i));
+ error= file->index_first(buf);
+ break;
+ default:
+ DBUG_ASSERT(FALSE);
+ DBUG_RETURN(1);
+ }
+ if (!error)
+ {
+ if (compare_key(end_range) <= 0)
+ {
+ m_last_part= i;
+ DBUG_RETURN(0);
+ }
+ error= HA_ERR_END_OF_FILE;
+ }
+ if ((error != HA_ERR_END_OF_FILE) && (error != HA_ERR_KEY_NOT_FOUND))
+ DBUG_RETURN(error);
+ DBUG_PRINT("info", ("HA_ERR_END_OF_FILE on partition %d", i));
+ }
+ m_part_spec.start_part= NO_CURRENT_PART_ID;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+}
+
+
+/*
+ This part contains the logic to handle index scans that require ordered
+ output. This includes all except those started by read_range_first with
+ the flag ordered set to FALSE. Thus most direct index_read and all
+ index_first and index_last.
+
+ We implement ordering by keeping one record plus a key buffer for each
+ partition. Every time a new entry is requested we will fetch a new
+ entry from the partition that is currently not filled with an entry.
+ Then the entry is put into its proper sort position.
+
+ Returning a record is done by getting the top record, copying the
+ record to the request buffer and setting the partition as empty on
+ entries.
+*/
+
+int ha_partition::handle_ordered_index_scan(byte *buf)
+{
+ uint i, j= 0;
+ bool found= FALSE;
+ bool reverse_order= FALSE;
+ DBUG_ENTER("ha_partition::handle_ordered_index_scan");
+
+ m_top_entry= NO_CURRENT_PART_ID;
+ queue_remove_all(&queue);
+ for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
+ {
+ int error;
+ byte *rec_buf_ptr= rec_buf(i);
+ handler *file= m_file[i];
+
+ switch (m_index_scan_type) {
+ case partition_index_read:
+ error= file->index_read(rec_buf_ptr,
+ m_start_key.key,
+ m_start_key.length,
+ m_start_key.flag);
+ reverse_order= FALSE;
+ break;
+ case partition_index_first:
+ error= file->index_first(rec_buf_ptr);
+ reverse_order= FALSE;
+ break;
+ case partition_index_last:
+ error= file->index_last(rec_buf_ptr);
+ reverse_order= TRUE;
+ break;
+ default:
+ DBUG_ASSERT(FALSE);
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ if (!error)
+ {
+ found= TRUE;
+ /*
+ Initialise queue without order first, simply insert
+ */
+ queue_element(&queue, j++)= (byte*)queue_buf(i);
+ }
+ else if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ {
+ DBUG_RETURN(error);
+ }
+ }
+ if (found)
+ {
+ /*
+ We found at least one partition with data, now sort all entries and
+ after that read the first entry and copy it to the buffer to return in.
+ */
+ queue_set_max_at_top(&queue, reverse_order);
+ queue_set_cmp_arg(&queue, (void*)m_curr_key_info);
+ queue.elements= j;
+ queue_fix(&queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
+ DBUG_RETURN(0);
+ }
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+}
+
+
+void ha_partition::return_top_record(byte *buf)
+{
+ uint part_id;
+ byte *key_buffer= queue_top(&queue);
+ byte *rec_buffer= key_buffer + PARTITION_BYTES_IN_POS;
+ part_id= uint2korr(key_buffer);
+ memcpy(buf, rec_buffer, m_rec_length);
+ m_last_part= part_id;
+ m_top_entry= part_id;
+}
+
+
+int ha_partition::handle_ordered_next(byte *buf, bool next_same)
+{
+ int error;
+ uint part_id= m_top_entry;
+ handler *file= m_file[part_id];
+ DBUG_ENTER("ha_partition::handle_ordered_next");
+
+ if (!next_same)
+ error= file->index_next(rec_buf(part_id));
+ else
+ error= file->index_next_same(rec_buf(part_id), m_start_key.key,
+ m_start_key.length);
+ if (error)
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ {
+ /* Return next buffered row */
+ queue_remove(&queue, (uint) 0);
+ if (queue.elements)
+ {
+ DBUG_PRINT("info", ("Record returned from partition %u (2)",
+ m_top_entry));
+ return_top_record(buf);
+ error= 0;
+ }
+ }
+ DBUG_RETURN(error);
+ }
+ queue_replaced(&queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
+ DBUG_RETURN(0);
+}
+
+
+int ha_partition::handle_ordered_prev(byte *buf)
+{
+ int error;
+ uint part_id= m_top_entry;
+ handler *file= m_file[part_id];
+ DBUG_ENTER("ha_partition::handle_ordered_prev");
+ if ((error= file->index_prev(rec_buf(part_id))))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ {
+ queue_remove(&queue, (uint) 0);
+ if (queue.elements)
+ {
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %d (2)",
+ m_top_entry));
+ error= 0;
+ }
+ }
+ DBUG_RETURN(error);
+ }
+ queue_replaced(&queue);
+ return_top_record(buf);
+ DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
+ DBUG_RETURN(0);
+}
+
+
+void ha_partition::include_partition_fields_in_used_fields()
+{
+ DBUG_ENTER("ha_partition::include_partition_fields_in_used_fields");
+ Field **ptr= m_part_field_array;
+ do
+ {
+ ha_set_bit_in_read_set((*ptr)->fieldnr);
+ } while (*(++ptr));
+ DBUG_VOID_RETURN;
+}
+
+
+/****************************************************************************
+ MODULE information calls
+****************************************************************************/
+
+/*
+ These are all first approximations of the extra, info, scan_time
+ and read_time calls
+*/
+
+/*
+ ::info() is used to return information to the optimizer.
+ Currently this table handler doesn't implement most of the fields
+ really needed. SHOW also makes use of this data
+ Another note, if your handler doesn't proved exact record count,
+ you will probably want to have the following in your code:
+ if (records < 2)
+ records = 2;
+ The reason is that the server will optimize for cases of only a single
+ record. If in a table scan you don't know the number of records
+ it will probably be better to set records to two so you can return
+ as many records as you need.
+
+ Along with records a few more variables you may wish to set are:
+ records
+ deleted
+ data_file_length
+ index_file_length
+ delete_length
+ check_time
+ Take a look at the public variables in handler.h for more information.
+
+ Called in:
+ filesort.cc
+ ha_heap.cc
+ item_sum.cc
+ opt_sum.cc
+ sql_delete.cc
+ sql_delete.cc
+ sql_derived.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_select.cc
+ sql_show.cc
+ sql_show.cc
+ sql_show.cc
+ sql_show.cc
+ sql_table.cc
+ sql_union.cc
+ sql_update.cc
+
+ Some flags that are not implemented
+ HA_STATUS_POS:
+ This parameter is never used from the MySQL Server. It is checked in a
+ place in MyISAM so could potentially be used by MyISAM specific programs.
+ HA_STATUS_NO_LOCK:
+ This is declared and often used. It's only used by MyISAM.
+ It means that MySQL doesn't need the absolute latest statistics
+ information. This may save the handler from doing internal locks while
+ retrieving statistics data.
+*/
+
+void ha_partition::info(uint flag)
+{
+ handler *file, **file_array;
+ DBUG_ENTER("ha_partition:info");
+
+ if (flag & HA_STATUS_AUTO)
+ {
+ DBUG_PRINT("info", ("HA_STATUS_AUTO"));
+ /*
+ The auto increment value is only maintained by the first handler
+ so we will only call this.
+ */
+ m_file[0]->info(HA_STATUS_AUTO);
+ }
+ if (flag & HA_STATUS_VARIABLE)
+ {
+ DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
+ /*
+ Calculates statistical variables
+ records: Estimate of number records in table
+ We report sum (always at least 2)
+ deleted: Estimate of number holes in the table due to
+ deletes
+ We report sum
+ data_file_length: Length of data file, in principle bytes in table
+ We report sum
+ index_file_length: Length of index file, in principle bytes in
+ indexes in the table
+ We report sum
+ mean_record_length:Mean record length in the table
+ We calculate this
+ check_time: Time of last check (only applicable to MyISAM)
+ We report last time of all underlying handlers
+ */
+ records= 0;
+ deleted= 0;
+ data_file_length= 0;
+ index_file_length= 0;
+ check_time= 0;
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ file->info(HA_STATUS_VARIABLE);
+ records+= file->records;
+ deleted+= file->deleted;
+ data_file_length+= file->data_file_length;
+ index_file_length+= file->index_file_length;
+ if (file->check_time > check_time)
+ check_time= file->check_time;
+ } while (*(++file_array));
+ if (records < 2)
+ records= 2;
+ mean_rec_length= (ulong) (data_file_length / records);
+ }
+ if (flag & HA_STATUS_CONST)
+ {
+ DBUG_PRINT("info", ("HA_STATUS_CONST"));
+ /*
+ Recalculate loads of constant variables. MyISAM also sets things
+ directly on the table share object.
+
+ Check whether this should be fixed since handlers should not
+ change things directly on the table object.
+
+ Monty comment: This should NOT be changed! It's the handlers
+ responsibility to correct table->s->keys_xxxx information if keys
+ have been disabled.
+
+ The most important parameters set here is records per key on
+ all indexes. block_size and primar key ref_length.
+
+ For each index there is an array of rec_per_key.
+ As an example if we have an index with three attributes a,b and c
+ we will have an array of 3 rec_per_key.
+ rec_per_key[0] is an estimate of number of records divided by
+ number of unique values of the field a.
+ rec_per_key[1] is an estimate of the number of records divided
+ by the number of unique combinations of the fields a and b.
+ rec_per_key[2] is an estimate of the number of records divided
+ by the number of unique combinations of the fields a,b and c.
+
+ Many handlers only set the value of rec_per_key when all fields
+ are bound (rec_per_key[2] in the example above).
+
+ If the handler doesn't support statistics, it should set all of the
+ above to 0.
+
+ We will allow the first handler to set the rec_per_key and use
+ this as an estimate on the total table.
+
+ max_data_file_length: Maximum data file length
+ We ignore it, is only used in
+ SHOW TABLE STATUS
+ max_index_file_length: Maximum index file length
+ We ignore it since it is never used
+ block_size: Block size used
+ We set it to the value of the first handler
+ sortkey: Never used at any place so ignored
+ ref_length: We set this to the value calculated
+ and stored in local object
+ raid_type: Set by first handler (MyISAM)
+ raid_chunks: Set by first handler (MyISAM)
+ raid_chunksize: Set by first handler (MyISAM)
+ create_time: Creation time of table
+ Set by first handler
+
+ So we calculate these constants by using the variables on the first
+ handler.
+ */
+
+ file= m_file[0];
+ file->info(HA_STATUS_CONST);
+ create_time= file->create_time;
+ raid_type= file->raid_type;
+ raid_chunks= file->raid_chunks;
+ raid_chunksize= file->raid_chunksize;
+ ref_length= m_ref_length;
+ }
+ if (flag & HA_STATUS_ERRKEY)
+ {
+ handler *file= m_file[m_last_part];
+ DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY"));
+ /*
+ This flag is used to get index number of the unique index that
+ reported duplicate key
+ We will report the errkey on the last handler used and ignore the rest
+ */
+ file->info(HA_STATUS_ERRKEY);
+ if (file->errkey != (uint) -1)
+ errkey= file->errkey;
+ }
+ if (flag & HA_STATUS_TIME)
+ {
+ DBUG_PRINT("info", ("info: HA_STATUS_TIME"));
+ /*
+ This flag is used to set the latest update time of the table.
+ Used by SHOW commands
+ We will report the maximum of these times
+ */
+ update_time= 0;
+ file_array= m_file;
+ do
+ {
+ file= *file_array;
+ file->info(HA_STATUS_TIME);
+ if (file->update_time > update_time)
+ update_time= file->update_time;
+ } while (*(++file_array));
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ extra() is called whenever the server wishes to send a hint to
+ the storage engine. The MyISAM engine implements the most hints.
+
+ We divide the parameters into the following categories:
+ 1) Parameters used by most handlers
+ 2) Parameters used by some non-MyISAM handlers
+ 3) Parameters used only by MyISAM
+ 4) Parameters only used by temporary tables for query processing
+ 5) Parameters only used by MyISAM internally
+ 6) Parameters not used at all
+
+ The partition handler need to handle category 1), 2) and 3).
+
+ 1) Parameters used by most handlers
+ -----------------------------------
+ HA_EXTRA_RESET:
+ This option is used by most handlers and it resets the handler state
+ to the same state as after an open call. This includes releasing
+ any READ CACHE or WRITE CACHE or other internal buffer used.
+
+ It is called from the reset method in the handler interface. There are
+ three instances where this is called.
+ 1) After completing a INSERT ... SELECT ... query the handler for the
+ table inserted into is reset
+ 2) It is called from close_thread_table which in turn is called from
+ close_thread_tables except in the case where the tables are locked
+ in which case ha_commit_stmt is called instead.
+ It is only called from here if flush_version hasn't changed and the
+ table is not an old table when calling close_thread_table.
+ close_thread_tables is called from many places as a general clean up
+ function after completing a query.
+ 3) It is called when deleting the QUICK_RANGE_SELECT object if the
+ QUICK_RANGE_SELECT object had its own handler object. It is called
+ immediatley before close of this local handler object.
+ HA_EXTRA_KEYREAD:
+ HA_EXTRA_NO_KEYREAD:
+ These parameters are used to provide an optimisation hint to the handler.
+ If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for
+ many handlers this means that the index-only scans can be used and it
+ is not necessary to use the real records to satisfy this part of the
+ query. Index-only scans is a very important optimisation for disk-based
+ indexes. For main-memory indexes most indexes contain a reference to the
+ record and thus KEYREAD only says that it is enough to read key fields.
+ HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET
+ will disable this option.
+ The handler will set HA_KEYREAD_ONLY in its table flags to indicate this
+ feature is supported.
+ HA_EXTRA_FLUSH:
+ Indication to flush tables to disk, called at close_thread_table to
+ ensure disk based tables are flushed at end of query execution.
+
+ 2) Parameters used by some non-MyISAM handlers
+ ----------------------------------------------
+ HA_EXTRA_RETRIEVE_ALL_COLS:
+ Many handlers have implemented optimisations to avoid fetching all
+ fields when retrieving data. In certain situations all fields need
+ to be retrieved even though the query_id is not set on all field
+ objects.
+
+ It is called from copy_data_between_tables where all fields are
+ copied without setting query_id before calling the handlers.
+ It is called from UPDATE statements when the fields of the index
+ used is updated or ORDER BY is used with UPDATE.
+ And finally when calculating checksum of a table using the CHECKSUM
+ command.
+ HA_EXTRA_RETRIEVE_PRIMARY_KEY:
+ In some situations it is mandatory to retrieve primary key fields
+ independent of the query id's. This extra flag specifies that fetch
+ of primary key fields is mandatory.
+ HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
+ This is a strictly InnoDB feature that is more or less undocumented.
+ When it is activated InnoDB copies field by field from its fetch
+ cache instead of all fields in one memcpy. Have no idea what the
+ purpose of this is.
+ Cut from include/my_base.h:
+ When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep
+ other fields intact. When this is off (by default) InnoDB will use memcpy
+ to overwrite entire row.
+ HA_EXTRA_IGNORE_DUP_KEY:
+ HA_EXTRA_NO_IGNORE_DUP_KEY:
+ Informs the handler to we will not stop the transaction if we get an
+ duplicate key errors during insert/upate.
+ Always called in pair, triggered by INSERT IGNORE and other similar
+ SQL constructs.
+ Not used by MyISAM.
+
+ 3) Parameters used only by MyISAM
+ ---------------------------------
+ HA_EXTRA_NORMAL:
+ Only used in MyISAM to reset quick mode, not implemented by any other
+ handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET.
+
+ It is called after completing a successful DELETE query if the QUICK
+ option is set.
+
+ HA_EXTRA_QUICK:
+ When the user does DELETE QUICK FROM table where-clause; this extra
+ option is called before the delete query is performed and
+ HA_EXTRA_NORMAL is called after the delete query is completed.
+ Temporary tables used internally in MySQL always set this option
+
+ The meaning of quick mode is that when deleting in a B-tree no merging
+ of leafs is performed. This is a common method and many large DBMS's
+ actually only support this quick mode since it is very difficult to
+ merge leaves in a tree used by many threads concurrently.
+
+ HA_EXTRA_CACHE:
+ This flag is usually set with extra_opt along with a cache size.
+ The size of this buffer is set by the user variable
+ record_buffer_size. The value of this cache size is the amount of
+ data read from disk in each fetch when performing a table scan.
+ This means that before scanning a table it is normal to call
+ extra with HA_EXTRA_CACHE and when the scan is completed to call
+ HA_EXTRA_NO_CACHE to release the cache memory.
+
+ Some special care is taken when using this extra parameter since there
+ could be a write ongoing on the table in the same statement. In this
+ one has to take special care since there might be a WRITE CACHE as
+ well. HA_EXTRA_CACHE specifies using a READ CACHE and using
+ READ CACHE and WRITE CACHE at the same time is not possible.
+
+ Only MyISAM currently use this option.
+
+ It is set when doing full table scans using rr_sequential and
+ reset when completing such a scan with end_read_record
+ (resetting means calling extra with HA_EXTRA_NO_CACHE).
+
+ It is set in filesort.cc for MyISAM internal tables and it is set in
+ a multi-update where HA_EXTRA_CACHE is called on a temporary result
+ table and after that ha_rnd_init(0) on table to be updated
+ and immediately after that HA_EXTRA_NO_CACHE on table to be updated.
+
+ Apart from that it is always used from init_read_record but not when
+ used from UPDATE statements. It is not used from DELETE statements
+ with ORDER BY and LIMIT but it is used in normal scan loop in DELETE
+ statements. The reason here is that DELETE's in MyISAM doesn't move
+ existings data rows.
+
+ It is also set in copy_data_between_tables when scanning the old table
+ to copy over to the new table.
+ And it is set in join_init_read_record where quick objects are used
+ to perform a scan on the table. In this case the full table scan can
+ even be performed multiple times as part of the nested loop join.
+
+ For purposes of the partition handler it is obviously necessary to have
+ special treatment of this extra call. If we would simply pass this
+ extra call down to each handler we would allocate
+ cache size * no of partitions amount of memory and this is not
+ necessary since we will only scan one partition at a time when doing
+ full table scans.
+
+ Thus we treat it by first checking whether we have MyISAM handlers in
+ the table, if not we simply ignore the call and if we have we will
+ record the call but will not call any underlying handler yet. Then
+ when performing the sequential scan we will check this recorded value
+ and call extra_opt whenever we start scanning a new partition.
+
+ monty: Neads to be fixed so that it's passed to all handlers when we
+ move to another partition during table scan.
+
+ HA_EXTRA_NO_CACHE:
+ When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the
+ flush method in the select_union class.
+ It is used to some extent when insert delayed inserts.
+ See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows().
+
+ It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers
+ if they are MyISAM handlers. Other handlers we can ignore the call
+ for. If no cache is in use they will quickly return after finding
+ this out. And we also ensure that all caches are disabled and no one
+ is left by mistake.
+ In the future this call will probably be deleted an we will instead call
+ ::reset();
+
+ HA_EXTRA_WRITE_CACHE:
+ See above, called from various places. It is mostly used when we
+ do INSERT ... SELECT
+ No special handling to save cache space is developed currently.
+
+ HA_EXTRA_PREPARE_FOR_UPDATE:
+ This is called as part of a multi-table update. When the table to be
+ updated is also scanned then this informs MyISAM handler to drop any
+ caches if dynamic records are used (fixed size records do not care
+ about this call). We pass this along to all underlying MyISAM handlers
+ and ignore it for the rest.
+
+ HA_EXTRA_PREPARE_FOR_DELETE:
+ Only used by MyISAM, called in preparation for a DROP TABLE.
+ It's used mostly by Windows that cannot handle dropping an open file.
+ On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN.
+
+ HA_EXTRA_READCHECK:
+ HA_EXTRA_NO_READCHECK:
+ Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that
+ this is not needed in SQL. The reason for this call is that MyISAM sets
+ the READ_CHECK_USED in the open call so the call is needed for MyISAM
+ to reset this feature.
+ The idea with this parameter was to inform of doing/not doing a read
+ check before applying an update. Since SQL always performs a read before
+ applying the update No Read Check is needed in MyISAM as well.
+
+ This is a cut from Docs/myisam.txt
+ Sometimes you might want to force an update without checking whether
+ another user has changed the record since you last read it. This is
+ somewhat dangerous, so it should ideally not be used. That can be
+ accomplished by wrapping the mi_update() call in two calls to mi_extra(),
+ using these functions:
+ HA_EXTRA_NO_READCHECK=5 No readcheck on update
+ HA_EXTRA_READCHECK=6 Use readcheck (def)
+
+ HA_EXTRA_FORCE_REOPEN:
+ Only used by MyISAM, called when altering table, closing tables to
+ enforce a reopen of the table files.
+
+ 4) Parameters only used by temporary tables for query processing
+ ----------------------------------------------------------------
+ HA_EXTRA_RESET_STATE:
+ Same as HA_EXTRA_RESET except that buffers are not released. If there is
+ a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading
+ or to change type of cache between READ CACHE and WRITE CACHE.
+
+ This extra function is always called immediately before calling
+ delete_all_rows on the handler for temporary tables.
+ There are cases however when HA_EXTRA_RESET_STATE isn't called in
+ a similar case for a temporary table in sql_union.cc and in two other
+ cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE
+ called afterwards.
+ The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means
+ disable caching, delete all rows and enable WRITE CACHE. This is
+ used for temporary tables containing distinct sums and a
+ functional group.
+
+ The only case that delete_all_rows is called on non-temporary tables
+ is in sql_delete.cc when DELETE FROM table; is called by a user.
+ In this case no special extra calls are performed before or after this
+ call.
+
+ The partition handler should not need to bother about this one. It
+ should never be called.
+
+ HA_EXTRA_NO_ROWS:
+ Don't insert rows indication to HEAP and MyISAM, only used by temporary
+ tables used in query processing.
+ Not handled by partition handler.
+
+ 5) Parameters only used by MyISAM internally
+ --------------------------------------------
+ HA_EXTRA_REINIT_CACHE:
+ This call reinitialises the READ CACHE described above if there is one
+ and otherwise the call is ignored.
+
+ We can thus safely call it on all underlying handlers if they are
+ MyISAM handlers. It is however never called so we don't handle it at all.
+ HA_EXTRA_FLUSH_CACHE:
+ Flush WRITE CACHE in MyISAM. It is only from one place in the code.
+ This is in sql_insert.cc where it is called if the table_flags doesn't
+ contain HA_DUPP_POS. The only handler having the HA_DUPP_POS set is the
+ MyISAM handler and so the only handler not receiving this call is MyISAM.
+ Thus in effect this call is called but never used. Could be removed
+ from sql_insert.cc
+ HA_EXTRA_NO_USER_CHANGE:
+ Only used by MyISAM, never called.
+ Simulates lock_type as locked.
+ HA_EXTRA_WAIT_LOCK:
+ HA_EXTRA_WAIT_NOLOCK:
+ Only used by MyISAM, called from MyISAM handler but never from server
+ code on top of the handler.
+ Sets lock_wait on/off
+ HA_EXTRA_NO_KEYS:
+ Only used MyISAM, only used internally in MyISAM handler, never called
+ from server level.
+ HA_EXTRA_KEYREAD_CHANGE_POS:
+ HA_EXTRA_REMEMBER_POS:
+ HA_EXTRA_RESTORE_POS:
+ HA_EXTRA_PRELOAD_BUFFER_SIZE:
+ HA_EXTRA_CHANGE_KEY_TO_DUP:
+ HA_EXTRA_CHANGE_KEY_TO_UNIQUE:
+ Only used by MyISAM, never called.
+
+ 6) Parameters not used at all
+ -----------------------------
+ HA_EXTRA_KEY_CACHE:
+ HA_EXTRA_NO_KEY_CACHE:
+ This parameters are no longer used and could be removed.
+*/
+
+int ha_partition::extra(enum ha_extra_function operation)
+{
+ DBUG_ENTER("ha_partition:extra");
+ DBUG_PRINT("info", ("operation: %d", (int) operation));
+
+ switch (operation) {
+ /* Category 1), used by most handlers */
+ case HA_EXTRA_KEYREAD:
+ case HA_EXTRA_NO_KEYREAD:
+ case HA_EXTRA_FLUSH:
+ DBUG_RETURN(loop_extra(operation));
+
+ /* Category 2), used by non-MyISAM handlers */
+ case HA_EXTRA_IGNORE_DUP_KEY:
+ case HA_EXTRA_NO_IGNORE_DUP_KEY:
+ case HA_EXTRA_RETRIEVE_ALL_COLS:
+ case HA_EXTRA_RETRIEVE_PRIMARY_KEY:
+ case HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
+ {
+ if (!m_myisam)
+ DBUG_RETURN(loop_extra(operation));
+ break;
+ }
+
+ /* Category 3), used by MyISAM handlers */
+ case HA_EXTRA_NORMAL:
+ case HA_EXTRA_QUICK:
+ case HA_EXTRA_NO_READCHECK:
+ case HA_EXTRA_PREPARE_FOR_UPDATE:
+ case HA_EXTRA_PREPARE_FOR_DELETE:
+ case HA_EXTRA_FORCE_REOPEN:
+ {
+ if (m_myisam)
+ DBUG_RETURN(loop_extra(operation));
+ break;
+ }
+ case HA_EXTRA_CACHE:
+ {
+ prepare_extra_cache(0);
+ break;
+ }
+ case HA_EXTRA_NO_CACHE:
+ {
+ m_extra_cache= FALSE;
+ m_extra_cache_size= 0;
+ DBUG_RETURN(loop_extra(operation));
+ }
+ default:
+ {
+ /* Temporary crash to discover what is wrong */
+ DBUG_ASSERT(0);
+ break;
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ This will in the future be called instead of extra(HA_EXTRA_RESET) as this
+ is such a common call
+*/
+
+int ha_partition::reset(void)
+{
+ int result= 0, tmp;
+ handler **file;
+ DBUG_ENTER("ha_partition::reset");
+ file= m_file;
+ do
+ {
+ if ((tmp= (*file)->reset()))
+ result= tmp;
+ } while (*(++file));
+ DBUG_RETURN(result);
+}
+
+
+int ha_partition::extra_opt(enum ha_extra_function operation, ulong cachesize)
+{
+ DBUG_ENTER("ha_partition::extra_opt()");
+ DBUG_ASSERT(HA_EXTRA_CACHE == operation);
+ prepare_extra_cache(cachesize);
+ DBUG_RETURN(0);
+}
+
+
+void ha_partition::prepare_extra_cache(uint cachesize)
+{
+ DBUG_ENTER("ha_partition::prepare_extra_cache()");
+
+ m_extra_cache= TRUE;
+ m_extra_cache_size= cachesize;
+ if (m_part_spec.start_part != NO_CURRENT_PART_ID)
+ {
+ DBUG_ASSERT(m_part_spec.start_part == 0);
+ late_extra_cache(0);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+int ha_partition::loop_extra(enum ha_extra_function operation)
+{
+ int result= 0, tmp;
+ handler **file;
+ DBUG_ENTER("ha_partition::loop_extra()");
+ for (file= m_file; *file; file++)
+ {
+ if ((tmp= (*file)->extra(operation)))
+ result= tmp;
+ }
+ DBUG_RETURN(result);
+}
+
+
+void ha_partition::late_extra_cache(uint partition_id)
+{
+ handler *file;
+ DBUG_ENTER("ha_partition::late_extra_cache");
+ if (!m_extra_cache)
+ DBUG_VOID_RETURN;
+ file= m_file[partition_id];
+ if (m_extra_cache_size == 0)
+ VOID(file->extra(HA_EXTRA_CACHE));
+ else
+ VOID(file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size));
+ DBUG_VOID_RETURN;
+}
+
+
+void ha_partition::late_extra_no_cache(uint partition_id)
+{
+ handler *file;
+ DBUG_ENTER("ha_partition::late_extra_no_cache");
+ if (!m_extra_cache)
+ DBUG_VOID_RETURN;
+ file= m_file[partition_id];
+ VOID(file->extra(HA_EXTRA_NO_CACHE));
+ DBUG_VOID_RETURN;
+}
+
+
+/****************************************************************************
+ MODULE optimiser support
+****************************************************************************/
+
+const key_map *ha_partition::keys_to_use_for_scanning()
+{
+ DBUG_ENTER("ha_partition::keys_to_use_for_scanning");
+ DBUG_RETURN(m_file[0]->keys_to_use_for_scanning());
+}
+
+double ha_partition::scan_time()
+{
+ double scan_time= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::scan_time");
+
+ for (file= m_file; *file; file++)
+ scan_time+= (*file)->scan_time();
+ DBUG_RETURN(scan_time);
+}
+
+
+/*
+ This will be optimised later to include whether or not the index can
+ be used with partitioning. To achieve we need to add another parameter
+ that specifies how many of the index fields that are bound in the ranges.
+ Possibly added as a new call to handlers.
+*/
+
+double ha_partition::read_time(uint index, uint ranges, ha_rows rows)
+{
+ DBUG_ENTER("ha_partition::read_time");
+ DBUG_RETURN(m_file[0]->read_time(index, ranges, rows));
+}
+
+/*
+ Given a starting key, and an ending key estimate the number of rows that
+ will exist between the two. end_key may be empty which in case determine
+ if start_key matches any rows.
+
+ Called from opt_range.cc by check_quick_keys().
+
+ monty: MUST be called for each range and added.
+ Note that MySQL will assume that if this returns 0 there is no
+ matching rows for the range!
+*/
+
+ha_rows ha_partition::records_in_range(uint inx, key_range *min_key,
+ key_range *max_key)
+{
+ ha_rows in_range= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::records_in_range");
+
+ file= m_file;
+ do
+ {
+ in_range+= (*file)->records_in_range(inx, min_key, max_key);
+ } while (*(++file));
+ DBUG_RETURN(in_range);
+}
+
+
+ha_rows ha_partition::estimate_rows_upper_bound()
+{
+ ha_rows rows, tot_rows= 0;
+ handler **file;
+ DBUG_ENTER("ha_partition::estimate_rows_upper_bound");
+
+ file= m_file;
+ do
+ {
+ rows= (*file)->estimate_rows_upper_bound();
+ if (rows == HA_POS_ERROR)
+ DBUG_RETURN(HA_POS_ERROR);
+ tot_rows+= rows;
+ } while (*(++file));
+ DBUG_RETURN(tot_rows);
+}
+
+
+uint8 ha_partition::table_cache_type()
+{
+ DBUG_ENTER("ha_partition::table_cache_type");
+ DBUG_RETURN(m_file[0]->table_cache_type());
+}
+
+
+/****************************************************************************
+ MODULE print messages
+****************************************************************************/
+
+const char *ha_partition::index_type(uint inx)
+{
+ DBUG_ENTER("ha_partition::index_type");
+ DBUG_RETURN(m_file[0]->index_type(inx));
+}
+
+
+void ha_partition::print_error(int error, myf errflag)
+{
+ DBUG_ENTER("ha_partition::print_error");
+ /* Should probably look for my own errors first */
+ /* monty: needs to be called for the last used partition ! */
+ m_file[0]->print_error(error, errflag);
+ DBUG_VOID_RETURN;
+}
+
+
+bool ha_partition::get_error_message(int error, String *buf)
+{
+ DBUG_ENTER("ha_partition::get_error_message");
+ /* Should probably look for my own errors first */
+ /* monty: needs to be called for the last used partition ! */
+ DBUG_RETURN(m_file[0]->get_error_message(error, buf));
+}
+
+
+/****************************************************************************
+ MODULE handler characteristics
+****************************************************************************/
+/*
+ If frm_error() is called then we will use this to to find out what file
+ extensions exist for the storage engine. This is also used by the default
+ rename_table and delete_table method in handler.cc.
+*/
+
+static const char *ha_partition_ext[]=
+{
+ ha_par_ext, NullS
+};
+
+const char **ha_partition::bas_ext() const
+{ return ha_partition_ext; }
+
+
+uint ha_partition::min_of_the_max_uint(uint (handler::*operator_func)(void) const) const
+{
+ handler **file;
+ uint min_of_the_max= ((*m_file)->*operator_func)();
+
+ for (file= m_file+1; *file; file++)
+ {
+ uint tmp= ((*file)->*operator_func)();
+ set_if_smaller(min_of_the_max, tmp);
+ }
+ return min_of_the_max;
+}
+
+
+uint ha_partition::max_supported_key_parts() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_parts);
+}
+
+
+uint ha_partition::max_supported_key_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_length);
+}
+
+
+uint ha_partition::max_supported_key_part_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_key_part_length);
+}
+
+
+uint ha_partition::max_supported_record_length() const
+{
+ return min_of_the_max_uint(&handler::max_supported_record_length);
+}
+
+
+uint ha_partition::max_supported_keys() const
+{
+ return min_of_the_max_uint(&handler::max_supported_keys);
+}
+
+
+uint ha_partition::extra_rec_buf_length() const
+{
+ handler **file;
+ uint max= (*m_file)->extra_rec_buf_length();
+ for (file= m_file, file++; *file; file++)
+ if (max < (*file)->extra_rec_buf_length())
+ max= (*file)->extra_rec_buf_length();
+ return max;
+}
+
+
+uint ha_partition::min_record_length(uint options) const
+{
+ handler **file;
+ uint max= (*m_file)->min_record_length(options);
+ for (file= m_file, file++; *file; file++)
+ if (max < (*file)->min_record_length(options))
+ max= (*file)->min_record_length(options);
+ return max;
+}
+
+
+/****************************************************************************
+ MODULE compare records
+****************************************************************************/
+/*
+ We get two references and need to check if those records are the same.
+ If they belong to different partitions we decide that they are not
+ the same record. Otherwise we use the particular handler to decide if
+ they are the same. Sort in partition id order if not equal.
+*/
+
+int ha_partition::cmp_ref(const byte *ref1, const byte *ref2)
+{
+ uint part_id;
+ my_ptrdiff_t diff1, diff2;
+ handler *file;
+ DBUG_ENTER("ha_partition::cmp_ref");
+ if ((ref1[0] == ref2[0]) && (ref1[1] == ref2[1]))
+ {
+ part_id= get_part_id_from_pos(ref1);
+ file= m_file[part_id];
+ DBUG_ASSERT(part_id < m_tot_parts);
+ DBUG_RETURN(file->cmp_ref((ref1 + PARTITION_BYTES_IN_POS),
+ (ref2 + PARTITION_BYTES_IN_POS)));
+ }
+ diff1= ref2[1] - ref1[1];
+ diff2= ref2[0] - ref1[0];
+ if (diff1 > 0)
+ {
+ DBUG_RETURN(-1);
+ }
+ if (diff1 < 0)
+ {
+ DBUG_RETURN(+1);
+ }
+ if (diff2 > 0)
+ {
+ DBUG_RETURN(-1);
+ }
+ DBUG_RETURN(+1);
+}
+
+
+/****************************************************************************
+ MODULE auto increment
+****************************************************************************/
+
+void ha_partition::restore_auto_increment()
+{
+ DBUG_ENTER("ha_partition::restore_auto_increment");
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ This method is called by update_auto_increment which in turn is called
+ by the individual handlers as part of write_row. We will always let
+ the first handler keep track of the auto increment value for all
+ partitions.
+*/
+
+ulonglong ha_partition::get_auto_increment()
+{
+ DBUG_ENTER("ha_partition::get_auto_increment");
+ DBUG_RETURN(m_file[0]->get_auto_increment());
+}
+
+
+/****************************************************************************
+ MODULE initialise handler for HANDLER call
+****************************************************************************/
+
+void ha_partition::init_table_handle_for_HANDLER()
+{
+ return;
+}
+
+
+/****************************************************************************
+ MODULE Partition Share
+****************************************************************************/
+/*
+ Service routines for ... methods.
+-------------------------------------------------------------------------
+ Variables for partition share methods. A hash used to track open tables.
+ A mutex for the hash table and an init variable to check if hash table
+ is initialised.
+ There is also a constant ending of the partition handler file name.
+*/
+
+#ifdef NOT_USED
+static HASH partition_open_tables;
+static pthread_mutex_t partition_mutex;
+static int partition_init= 0;
+
+
+/*
+ Function we use in the creation of our hash to get key.
+*/
+static byte *partition_get_key(PARTITION_SHARE *share, uint *length,
+ my_bool not_used __attribute__ ((unused)))
+{
+ *length= share->table_name_length;
+ return (byte *) share->table_name;
+}
+
+/*
+ Example of simple lock controls. The "share" it creates is structure we
+ will pass to each partition handler. Do you have to have one of these?
+ Well, you have pieces that are used for locking, and they are needed to
+ function.
+*/
+
+
+static PARTITION_SHARE *get_share(const char *table_name, TABLE *table)
+{
+ PARTITION_SHARE *share;
+ uint length;
+ char *tmp_name;
+
+ /*
+ So why does this exist? There is no way currently to init a storage
+ engine.
+ Innodb and BDB both have modifications to the server to allow them to
+ do this. Since you will not want to do this, this is probably the next
+ best method.
+ */
+ if (!partition_init)
+ {
+ /* Hijack a mutex for init'ing the storage engine */
+ pthread_mutex_lock(&LOCK_mysql_create_db);
+ if (!partition_init)
+ {
+ partition_init++;
+ VOID(pthread_mutex_init(&partition_mutex, MY_MUTEX_INIT_FAST));
+ (void) hash_init(&partition_open_tables, system_charset_info, 32, 0, 0,
+ (hash_get_key) partition_get_key, 0, 0);
+ }
+ pthread_mutex_unlock(&LOCK_mysql_create_db);
+ }
+ pthread_mutex_lock(&partition_mutex);
+ length= (uint) strlen(table_name);
+
+ if (!(share= (PARTITION_SHARE *) hash_search(&partition_open_tables,
+ (byte *) table_name, length)))
+ {
+ if (!(share= (PARTITION_SHARE *)
+ my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
+ &share, sizeof(*share),
+ &tmp_name, length + 1, NullS)))
+ {
+ pthread_mutex_unlock(&partition_mutex);
+ return NULL;
+ }
+
+ share->use_count= 0;
+ share->table_name_length= length;
+ share->table_name= tmp_name;
+ strmov(share->table_name, table_name);
+ if (my_hash_insert(&partition_open_tables, (byte *) share))
+ goto error;
+ thr_lock_init(&share->lock);
+ pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST);
+ }
+ share->use_count++;
+ pthread_mutex_unlock(&partition_mutex);
+
+ return share;
+
+error:
+ pthread_mutex_unlock(&partition_mutex);
+ my_free((gptr) share, MYF(0));
+
+ return NULL;
+}
+
+
+/*
+ Free lock controls. We call this whenever we close a table. If the table
+ had the last reference to the share then we free memory associated with
+ it.
+*/
+
+static int free_share(PARTITION_SHARE *share)
+{
+ pthread_mutex_lock(&partition_mutex);
+ if (!--share->use_count)
+ {
+ hash_delete(&partition_open_tables, (byte *) share);
+ thr_lock_delete(&share->lock);
+ pthread_mutex_destroy(&share->mutex);
+ my_free((gptr) share, MYF(0));
+ }
+ pthread_mutex_unlock(&partition_mutex);
+
+ return 0;
+}
+#endif /* NOT_USED */
+#endif /* HAVE_PARTITION_DB */