diff options
author | Sergey Petrunya <psergey@askmonty.org> | 2009-12-22 15:33:21 +0300 |
---|---|---|
committer | Sergey Petrunya <psergey@askmonty.org> | 2009-12-22 15:33:21 +0300 |
commit | da5edf5057d392f3647570606220d80106c81a7b (patch) | |
tree | 922a9e1f2882014f8c5a5a5f524bf88e39ed41dd /sql/opt_range_mrr.cc | |
parent | 19f6f52a21d48914a2542bcaf23806ace6870e8e (diff) | |
download | mariadb-git-da5edf5057d392f3647570606220d80106c81a7b.tar.gz |
MWL#67: MRR backport
- Make index condition pushdown be controlled by an @@optimizer_switch flag,
not by @@engine_condition_pushdown
- Make MRR buffer size be controlled by @@mrr_buffer_size, not
by @@read_rnd_buffer_size
- Move parts of code to separate files
- Code cleanup
- Add --sorted_result to some SELECTs in tests.
Diffstat (limited to 'sql/opt_range_mrr.cc')
-rw-r--r-- | sql/opt_range_mrr.cc | 349 |
1 files changed, 349 insertions, 0 deletions
diff --git a/sql/opt_range_mrr.cc b/sql/opt_range_mrr.cc new file mode 100644 index 00000000000..d2b40a8df4e --- /dev/null +++ b/sql/opt_range_mrr.cc @@ -0,0 +1,349 @@ + +/**************************************************************************** + MRR Range Sequence Interface implementation that walks a SEL_ARG* tree. + ****************************************************************************/ + +/* MRR range sequence, SEL_ARG* implementation: stack entry */ +typedef struct st_range_seq_entry +{ + /* + Pointers in min and max keys. They point to right-after-end of key + images. The 0-th entry has these pointing to key tuple start. + */ + uchar *min_key, *max_key; + + /* + Flags, for {keypart0, keypart1, ... this_keypart} subtuple. + min_key_flag may have NULL_RANGE set. + */ + uint min_key_flag, max_key_flag; + + /* Number of key parts */ + uint min_key_parts, max_key_parts; + SEL_ARG *key_tree; +} RANGE_SEQ_ENTRY; + + +/* + MRR range sequence, SEL_ARG* implementation: SEL_ARG graph traversal context +*/ +typedef struct st_sel_arg_range_seq +{ + uint keyno; /* index of used tree in SEL_TREE structure */ + uint real_keyno; /* Number of the index in tables */ + PARAM *param; + SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */ + + RANGE_SEQ_ENTRY stack[MAX_REF_PARTS]; + int i; /* Index of last used element in the above array */ + + bool at_start; /* TRUE <=> The traversal has just started */ +} SEL_ARG_RANGE_SEQ; + + +/* + Range sequence interface, SEL_ARG* implementation: Initialize the traversal + + SYNOPSIS + init() + init_params SEL_ARG tree traversal context + n_ranges [ignored] The number of ranges obtained + flags [ignored] HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY + + RETURN + Value of init_param +*/ + +range_seq_t sel_arg_range_seq_init(void *init_param, uint n_ranges, uint flags) +{ + SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)init_param; + seq->at_start= TRUE; + seq->stack[0].key_tree= NULL; + seq->stack[0].min_key= seq->param->min_key; + seq->stack[0].min_key_flag= 0; + seq->stack[0].min_key_parts= 0; + + seq->stack[0].max_key= seq->param->max_key; + seq->stack[0].max_key_flag= 0; + seq->stack[0].max_key_parts= 0; + seq->i= 0; + return init_param; +} + + +static void step_down_to(SEL_ARG_RANGE_SEQ *arg, SEL_ARG *key_tree) +{ + RANGE_SEQ_ENTRY *cur= &arg->stack[arg->i+1]; + RANGE_SEQ_ENTRY *prev= &arg->stack[arg->i]; + + cur->key_tree= key_tree; + cur->min_key= prev->min_key; + cur->max_key= prev->max_key; + cur->min_key_parts= prev->min_key_parts; + cur->max_key_parts= prev->max_key_parts; + + uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length; + cur->min_key_parts += key_tree->store_min(stor_length, &cur->min_key, + prev->min_key_flag); + cur->max_key_parts += key_tree->store_max(stor_length, &cur->max_key, + prev->max_key_flag); + + cur->min_key_flag= prev->min_key_flag | key_tree->min_flag; + cur->max_key_flag= prev->max_key_flag | key_tree->max_flag; + + if (key_tree->is_null_interval()) + cur->min_key_flag |= NULL_RANGE; + (arg->i)++; +} + + +/* + Range sequence interface, SEL_ARG* implementation: get the next interval + + SYNOPSIS + sel_arg_range_seq_next() + rseq Value returned from sel_arg_range_seq_init + range OUT Store information about the range here + + DESCRIPTION + This is "get_next" function for Range sequence interface implementation + for SEL_ARG* tree. + + IMPLEMENTATION + The traversal also updates those param members: + - is_ror_scan + - range_count + - max_key_part + + RETURN + 0 Ok + 1 No more ranges in the sequence +*/ + +uint sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range) +{ + SEL_ARG *key_tree; + SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)rseq; + if (seq->at_start) + { + key_tree= seq->start; + seq->at_start= FALSE; + goto walk_up_n_right; + } + + key_tree= seq->stack[seq->i].key_tree; + /* Ok, we're at some "full tuple" position in the tree */ + + /* Step down if we can */ + if (key_tree->next && key_tree->next != &null_element) + { + //step down; (update the tuple, we'll step right and stay there) + seq->i--; + step_down_to(seq, key_tree->next); + key_tree= key_tree->next; + seq->param->is_ror_scan= FALSE; + goto walk_right_n_up; + } + + /* Ok, can't step down, walk left until we can step down */ + while (1) + { + if (seq->i == 1) // can't step left + return 1; + /* Step left */ + seq->i--; + key_tree= seq->stack[seq->i].key_tree; + + /* Step down if we can */ + if (key_tree->next && key_tree->next != &null_element) + { + // Step down; update the tuple + seq->i--; + step_down_to(seq, key_tree->next); + key_tree= key_tree->next; + break; + } + } + + /* + Ok, we've stepped down from the path to previous tuple. + Walk right-up while we can + */ +walk_right_n_up: + while (key_tree->next_key_part && key_tree->next_key_part != &null_element && + key_tree->next_key_part->part == key_tree->part + 1 && + key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) + { + { + RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i]; + uint min_key_length= cur->min_key - seq->param->min_key; + uint max_key_length= cur->max_key - seq->param->max_key; + uint len= cur->min_key - cur[-1].min_key; + if (!(min_key_length == max_key_length && + !memcmp(cur[-1].min_key, cur[-1].max_key, len) && + !key_tree->min_flag && !key_tree->max_flag)) + { + seq->param->is_ror_scan= FALSE; + if (!key_tree->min_flag) + cur->min_key_parts += + key_tree->next_key_part->store_min_key(seq->param->key[seq->keyno], + &cur->min_key, + &cur->min_key_flag); + if (!key_tree->max_flag) + cur->max_key_parts += + key_tree->next_key_part->store_max_key(seq->param->key[seq->keyno], + &cur->max_key, + &cur->max_key_flag); + break; + } + } + + /* + Ok, current atomic interval is in form "t.field=const" and there is + next_key_part interval. Step right, and walk up from there. + */ + key_tree= key_tree->next_key_part; + +walk_up_n_right: + while (key_tree->prev && key_tree->prev != &null_element) + { + /* Step up */ + key_tree= key_tree->prev; + } + step_down_to(seq, key_tree); + } + + /* Ok got a tuple */ + RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i]; + uint min_key_length= cur->min_key - seq->param->min_key; + + range->ptr= (char*)(int)(key_tree->part); + if (cur->min_key_flag & GEOM_FLAG) + { + range->range_flag= cur->min_key_flag; + + /* Here minimum contains also function code bits, and maximum is +inf */ + range->start_key.key= seq->param->min_key; + range->start_key.length= min_key_length; + range->start_key.flag= (ha_rkey_function) (cur->min_key_flag ^ GEOM_FLAG); + } + else + { + range->range_flag= cur->min_key_flag | cur->max_key_flag; + + range->start_key.key= seq->param->min_key; + range->start_key.length= cur->min_key - seq->param->min_key; + range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts); + range->start_key.flag= (cur->min_key_flag & NEAR_MIN ? HA_READ_AFTER_KEY : + HA_READ_KEY_EXACT); + + range->end_key.key= seq->param->max_key; + range->end_key.length= cur->max_key - seq->param->max_key; + range->end_key.flag= (cur->max_key_flag & NEAR_MAX ? HA_READ_BEFORE_KEY : + HA_READ_AFTER_KEY); + range->end_key.keypart_map= make_prev_keypart_map(cur->max_key_parts); + + if (!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag && + (uint)key_tree->part+1 == seq->param->table->key_info[seq->real_keyno].key_parts && + (seq->param->table->key_info[seq->real_keyno].flags & (HA_NOSAME | HA_END_SPACE_KEY)) == + HA_NOSAME && + range->start_key.length == range->end_key.length && + !memcmp(seq->param->min_key,seq->param->max_key,range->start_key.length)) + range->range_flag= UNIQUE_RANGE | (cur->min_key_flag & NULL_RANGE); + + if (seq->param->is_ror_scan) + { + /* + If we get here, the condition on the key was converted to form + "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND + somecond(keyXpart{key_tree->part})" + Check if + somecond is "keyXpart{key_tree->part} = const" and + uncovered "tail" of KeyX parts is either empty or is identical to + first members of clustered primary key. + */ + if (!(!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag && + (range->start_key.length == range->end_key.length) && + !memcmp(range->start_key.key, range->end_key.key, range->start_key.length) && + is_key_scan_ror(seq->param, seq->real_keyno, key_tree->part + 1))) + seq->param->is_ror_scan= FALSE; + } + } + seq->param->range_count++; + seq->param->max_key_part=max(seq->param->max_key_part,key_tree->part); + return 0; +} + +/**************************************************************************** + MRR Range Sequence Interface implementation that walks array<QUICK_RANGE> + ****************************************************************************/ + +/* + Range sequence interface implementation for array<QUICK_RANGE>: initialize + + SYNOPSIS + quick_range_seq_init() + init_param Caller-opaque paramenter: QUICK_RANGE_SELECT* pointer + n_ranges Number of ranges in the sequence (ignored) + flags MRR flags (currently not used) + + RETURN + Opaque value to be passed to quick_range_seq_next +*/ + +range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags) +{ + QUICK_RANGE_SELECT *quick= (QUICK_RANGE_SELECT*)init_param; + quick->qr_traversal_ctx.first= (QUICK_RANGE**)quick->ranges.buffer; + quick->qr_traversal_ctx.cur= (QUICK_RANGE**)quick->ranges.buffer; + quick->qr_traversal_ctx.last= quick->qr_traversal_ctx.cur + + quick->ranges.elements; + return &quick->qr_traversal_ctx; +} + + +/* + Range sequence interface implementation for array<QUICK_RANGE>: get next + + SYNOPSIS + quick_range_seq_next() + rseq Value returned from quick_range_seq_init + range OUT Store information about the range here + + RETURN + 0 Ok + 1 No more ranges in the sequence +*/ + +uint quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range) +{ + QUICK_RANGE_SEQ_CTX *ctx= (QUICK_RANGE_SEQ_CTX*)rseq; + + if (ctx->cur == ctx->last) + return 1; /* no more ranges */ + + QUICK_RANGE *cur= *(ctx->cur); + key_range *start_key= &range->start_key; + key_range *end_key= &range->end_key; + + start_key->key= cur->min_key; + start_key->length= cur->min_length; + start_key->keypart_map= cur->min_keypart_map; + start_key->flag= ((cur->flag & NEAR_MIN) ? HA_READ_AFTER_KEY : + (cur->flag & EQ_RANGE) ? + HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT); + end_key->key= cur->max_key; + end_key->length= cur->max_length; + end_key->keypart_map= cur->max_keypart_map; + /* + We use HA_READ_AFTER_KEY here because if we are reading on a key + prefix. We want to find all keys with this prefix. + */ + end_key->flag= (cur->flag & NEAR_MAX ? HA_READ_BEFORE_KEY : + HA_READ_AFTER_KEY); + range->range_flag= cur->flag; + ctx->cur++; + return 0; +} + + |