summaryrefslogtreecommitdiff
path: root/sql/uniques.cc
diff options
context:
space:
mode:
authorunknown <sergefp@mysql.com>2003-12-20 00:53:14 +0300
committerunknown <sergefp@mysql.com>2003-12-20 00:53:14 +0300
commit28ad1273ddf3d42a4ec9f9fdfdd150f39fa4772e (patch)
tree75689b4bf7fed0ba61636f2437be5b8c027a3836 /sql/uniques.cc
parent06564b43c5de53a785b5360023103af7c9ae16d1 (diff)
downloadmariadb-git-28ad1273ddf3d42a4ec9f9fdfdd150f39fa4772e.tar.gz
Numerous small fixes to index_merge read time estimates code
Diffstat (limited to 'sql/uniques.cc')
-rw-r--r--sql/uniques.cc178
1 files changed, 114 insertions, 64 deletions
diff --git a/sql/uniques.cc b/sql/uniques.cc
index 8fc8efff5e6..17c412873d4 100644
--- a/sql/uniques.cc
+++ b/sql/uniques.cc
@@ -72,112 +72,161 @@ Unique::Unique(qsort_cmp2 comp_func, void * comp_func_fixed_arg,
}
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
+/*
+ Calculate log2(n!)
+
+ NOTES
+ Stirling's approximate formula is used:
+
+ n! ~= sqrt(2*M_PI*n) * (n/M_E)^n
+
+ Derivation of formula used for calculations is as follows:
-#ifndef M_E
-#define M_E (exp((double)1.0))
-#endif
+ log2(n!) = log(n!)/log(2) = log(sqrt(2*M_PI*n)*(n/M_E)^n) / log(2) =
+
+ = (log(2*M_PI*n)/2 + n*log(n/M_E)) / log(2).
+*/
inline double log2_n_fact(double x)
{
- return (2 * (((x)+1)*log(((x)+1)/M_E) + log(2*M_PI*((x)+1))/2 ) / log(2));
+ return (log(2*M_PI*x)/2 + x*log(x/M_E)) / M_LN2;
}
+
/*
- Calculate cost of merge_buffers call.
+ Calculate cost of merge_buffers function call for given sequence of
+ input stream lengths and store the number of rows in result stream in *last.
- NOTE
- See comment near Unique::get_use_cost for cost formula derivation.
+ SYNOPSIS
+ get_merge_buffers_cost()
+ buff_elems Array of #s of elements in buffers
+ elem_size Size of element stored in buffer
+ output_buff Pointer to storage for result buffer size
+ first Pointer to first merged element size
+ last Pointer to last merged element size
+
+ RETURN
+ Cost of merge_buffers operation in disk seeks.
+
+ NOTES
+ It is assumed that no rows are eliminated during merge.
+ The cost is calculated as
+
+ cost(read_and_write) + cost(merge_comparisons).
+
+ All bytes in the sequences is read and written back during merge so cost
+ of disk io is 2*elem_size*total_buf_elems/IO_SIZE (2 is for read + write)
+
+ For comparisons cost calculations we assume that all merged sequences have
+ the same length, so each of total_buf_size elements will be added to a sort
+ heap with (n_buffers-1) elements. This gives the comparison cost:
+
+ total_buf_elems* log2(n_buffers) / TIME_FOR_COMPARE_ROWID;
*/
-static double get_merge_buffers_cost(uint* buff_sizes, uint elem_size,
- int last, int f,int t)
+
+static double get_merge_buffers_cost(uint *buff_elems, uint elem_size,
+ uint *output_buff, uint *first,
+ uint *last)
{
- uint sum= 0;
- for (int i=f; i <= t; i++)
- sum+= buff_sizes[i];
- buff_sizes[last]= sum;
+ uint total_buf_elems= 0;
+ for (uint *pbuf= first; pbuf <= last; pbuf++)
+ total_buf_elems+= *pbuf;
+ *last= total_buf_elems;
- int n_buffers= t - f + 1;
- double buf_length= sum*elem_size;
+ int n_buffers= last - first + 1;
- return (((double)buf_length/(n_buffers+1)) / IO_SIZE) * 2 * n_buffers +
- buf_length * log(n_buffers) / (TIME_FOR_COMPARE_ROWID * log(2.0));
+ /* Using log2(n)=log(n)/log(2) formula */
+ return 2*((double)total_buf_elems*elem_size) / IO_SIZE +
+ total_buf_elems*log(n_buffers) / (TIME_FOR_COMPARE_ROWID * M_LN2);
}
+
/*
Calculate cost of merging buffers into one in Unique::get, i.e. calculate
- how long (in terms of disk seeks) the two call
+ how long (in terms of disk seeks) the two calls
merge_many_buffs(...);
merge_buffers(...);
will take.
SYNOPSIS
get_merge_many_buffs_cost()
- alloc memory pool to use
- maxbuffer # of full buffers.
- max_n_elems # of elements in first maxbuffer buffers.
- last_n_elems # of elements in last buffer.
- elem_size size of buffer element.
+ buffer buffer space for temporary data, at least
+ Unique::get_cost_calc_buff_size bytes
+ maxbuffer # of full buffers
+ max_n_elems # of elements in first maxbuffer buffers
+ last_n_elems # of elements in last buffer
+ elem_size size of buffer element
NOTES
- It is assumed that maxbuffer+1 buffers are merged, first maxbuffer buffers
- contain max_n_elems each, last buffer contains last_n_elems elements.
+ maxbuffer+1 buffers are merged, where first maxbuffer buffers contain
+ max_n_elems elements each and last buffer contains last_n_elems elements.
The current implementation does a dumb simulation of merge_many_buffs
- actions.
+ function actions.
RETURN
- >=0 Cost of merge in disk seeks.
- <0 Out of memory.
+ Cost of merge in disk seeks.
*/
-static double get_merge_many_buffs_cost(MEM_ROOT *alloc,
+
+static double get_merge_many_buffs_cost(uint *buffer,
uint maxbuffer, uint max_n_elems,
uint last_n_elems, int elem_size)
{
register int i;
double total_cost= 0.0;
- int lastbuff;
- uint* buff_sizes;
-
- if (!(buff_sizes= (uint*)alloc_root(alloc, sizeof(uint) * (maxbuffer + 1))))
- return -1.0;
+ uint *buff_elems= buffer; /* #s of elements in each of merged sequences */
+ uint *lastbuff;
+
+ /*
+ Set initial state: first maxbuffer sequences contain max_n_elems elements
+ each, last sequence contains last_n_elems elements.
+ */
for(i = 0; i < (int)maxbuffer; i++)
- buff_sizes[i]= max_n_elems;
-
- buff_sizes[maxbuffer]= last_n_elems;
+ buff_elems[i]= max_n_elems;
+ buff_elems[maxbuffer]= last_n_elems;
+ /*
+ Do it exactly as merge_many_buff function does, calling
+ get_merge_buffers_cost to get cost of merge_buffers.
+ */
if (maxbuffer >= MERGEBUFF2)
{
- /* Simulate merge_many_buff */
while (maxbuffer >= MERGEBUFF2)
{
lastbuff=0;
for (i = 0; i <= (int) maxbuffer - MERGEBUFF*3/2; i += MERGEBUFF)
- total_cost += get_merge_buffers_cost(buff_sizes, elem_size,
- lastbuff++, i, i+MERGEBUFF-1);
+ total_cost+=get_merge_buffers_cost(buff_elems, elem_size, lastbuff++,
+ buff_elems + i,
+ buff_elems + i + MERGEBUFF-1);
- total_cost += get_merge_buffers_cost(buff_sizes, elem_size,
- lastbuff++, i, maxbuffer);
+ total_cost+=get_merge_buffers_cost(buff_elems, elem_size, lastbuff++,
+ buff_elems + i,
+ buff_elems + maxbuffer);
maxbuffer= (uint)lastbuff-1;
}
}
/* Simulate final merge_buff call. */
- total_cost += get_merge_buffers_cost(buff_sizes, elem_size, 0, 0,
- maxbuffer);
+ total_cost += get_merge_buffers_cost(buff_elems, elem_size, buff_elems,
+ buff_elems, buff_elems + maxbuffer);
return total_cost;
}
/*
- Calclulate cost of using Unique for processing nkeys elements of size
+ Calculate cost of using Unique for processing nkeys elements of size
key_size using max_in_memory_size memory.
+
+ SYNOPSIS
+ Unique::get_use_cost()
+ buffer space for temporary data, use Unique::get_cost_calc_buff_size
+ to get # bytes needed.
+ nkeys #of elements in Unique
+ key_size size of each elements in bytes
+ max_in_memory_size amount of memory Unique will be allowed to use
RETURN
- >=0 Cost in disk seeks.
- <0 Out of memory.
+ Cost in disk seeks.
NOTES
cost(using_unqiue) =
@@ -190,16 +239,14 @@ static double get_merge_many_buffs_cost(MEM_ROOT *alloc,
comparisons, where n runs from 1 tree_size (we assume that all added
elements are different). Together this gives:
- n_compares = 2*(log2(2) + log2(3) + ... + log2(N+1)) = 2*log2((N+1)!) =
+ n_compares = 2*(log2(2) + log2(3) + ... + log2(N+1)) = 2*log2((N+1)!)
- = 2*ln((N+1)!) / ln(2) = {using Stirling formula} =
-
- = 2*( (N+1)*ln((N+1)/e) + (1/2)*ln(2*pi*(N+1)) / ln(2).
-
then cost(tree_creation) = n_compares*ROWID_COMPARE_COST;
Total cost of creating trees:
(n_trees - 1)*max_size_tree_cost + non_max_size_tree_cost.
+
+ Approximate value of log2(N!) is calculated by log2_n_fact function.
2. Cost of merging.
If only one tree is created by Unique no merging will be necessary.
@@ -213,7 +260,7 @@ static double get_merge_many_buffs_cost(MEM_ROOT *alloc,
these will be random seeks.
*/
-double Unique::get_use_cost(MEM_ROOT *alloc, uint nkeys, uint key_size,
+double Unique::get_use_cost(uint *buffer, uint nkeys, uint key_size,
ulong max_in_memory_size)
{
ulong max_elements_in_tree;
@@ -221,15 +268,16 @@ double Unique::get_use_cost(MEM_ROOT *alloc, uint nkeys, uint key_size,
int n_full_trees; /* number of trees in unique - 1 */
double result;
- max_elements_in_tree= max_in_memory_size /
- ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size);
+ max_elements_in_tree=
+ max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size);
+
n_full_trees= nkeys / max_elements_in_tree;
last_tree_elems= nkeys % max_elements_in_tree;
/* Calculate cost of creating trees */
- result= log2_n_fact(last_tree_elems);
+ result= 2*log2_n_fact(last_tree_elems + 1.0);
if (n_full_trees)
- result+= n_full_trees * log2_n_fact(max_elements_in_tree);
+ result+= n_full_trees * log2_n_fact(max_elements_in_tree + 1.0);
result /= TIME_FOR_COMPARE_ROWID;
DBUG_PRINT("info",("unique trees sizes: %u=%u*%lu + %lu", nkeys,
@@ -241,13 +289,15 @@ double Unique::get_use_cost(MEM_ROOT *alloc, uint nkeys, uint key_size,
/*
There is more then one tree and merging is necessary.
- First, add cost of writing all trees to disk.
+ First, add cost of writing all trees to disk, assuming that all disk
+ writes are sequential.
*/
- result += n_full_trees * ceil(key_size*max_elements_in_tree / IO_SIZE);
- result += ceil(key_size*last_tree_elems / IO_SIZE);
+ result += DISK_SEEK_BASE_COST * n_full_trees *
+ ceil(key_size*max_elements_in_tree / IO_SIZE);
+ result += DISK_SEEK_BASE_COST * ceil(key_size*last_tree_elems / IO_SIZE);
/* Cost of merge */
- double merge_cost= get_merge_many_buffs_cost(alloc, n_full_trees,
+ double merge_cost= get_merge_many_buffs_cost(buffer, n_full_trees,
max_elements_in_tree,
last_tree_elems, key_size);
if (merge_cost < 0.0)