diff options
Diffstat (limited to 'extra/yassl/taocrypt/src/rabbit.cpp')
-rw-r--r-- | extra/yassl/taocrypt/src/rabbit.cpp | 250 |
1 files changed, 250 insertions, 0 deletions
diff --git a/extra/yassl/taocrypt/src/rabbit.cpp b/extra/yassl/taocrypt/src/rabbit.cpp new file mode 100644 index 00000000000..0ea4146618a --- /dev/null +++ b/extra/yassl/taocrypt/src/rabbit.cpp @@ -0,0 +1,250 @@ +/* + Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; version 2 of the License. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; see the file COPYING. If not, write to the + Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, + MA 02110-1301 USA. +*/ + + +#include "runtime.hpp" +#include "rabbit.hpp" + + + +namespace TaoCrypt { + + +#define U32V(x) (word32)(x) + + +#ifdef BIG_ENDIAN_ORDER + #define LITTLE32(x) ByteReverse((word32)x) +#else + #define LITTLE32(x) (x) +#endif + + +// local +namespace { + + +/* Square a 32-bit unsigned integer to obtain the 64-bit result and return */ +/* the upper 32 bits XOR the lower 32 bits */ +word32 RABBIT_g_func(word32 x) +{ + /* Temporary variables */ + word32 a, b, h, l; + + /* Construct high and low argument for squaring */ + a = x&0xFFFF; + b = x>>16; + + /* Calculate high and low result of squaring */ + h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b; + l = x*x; + + /* Return high XOR low */ + return U32V(h^l); +} + + +} // namespace local + + +/* Calculate the next internal state */ +void Rabbit::NextState(RabbitCtx which) +{ + /* Temporary variables */ + word32 g[8], c_old[8], i; + + Ctx* ctx; + + if (which == Master) + ctx = &masterCtx_; + else + ctx = &workCtx_; + + /* Save old counter values */ + for (i=0; i<8; i++) + c_old[i] = ctx->c[i]; + + /* Calculate new counter values */ + ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry); + ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0])); + ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1])); + ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2])); + ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3])); + ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4])); + ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5])); + ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6])); + ctx->carry = (ctx->c[7] < c_old[7]); + + /* Calculate the g-values */ + for (i=0;i<8;i++) + g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i])); + + /* Calculate new state values */ + ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16)); + ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]); + ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16)); + ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]); + ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16)); + ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]); + ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16)); + ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]); +} + + +/* IV setup */ +void Rabbit::SetIV(const byte* iv) +{ + /* Temporary variables */ + word32 i0, i1, i2, i3, i; + + /* Generate four subvectors */ + i0 = LITTLE32(*(word32*)(iv+0)); + i2 = LITTLE32(*(word32*)(iv+4)); + i1 = (i0>>16) | (i2&0xFFFF0000); + i3 = (i2<<16) | (i0&0x0000FFFF); + + /* Modify counter values */ + workCtx_.c[0] = masterCtx_.c[0] ^ i0; + workCtx_.c[1] = masterCtx_.c[1] ^ i1; + workCtx_.c[2] = masterCtx_.c[2] ^ i2; + workCtx_.c[3] = masterCtx_.c[3] ^ i3; + workCtx_.c[4] = masterCtx_.c[4] ^ i0; + workCtx_.c[5] = masterCtx_.c[5] ^ i1; + workCtx_.c[6] = masterCtx_.c[6] ^ i2; + workCtx_.c[7] = masterCtx_.c[7] ^ i3; + + /* Copy state variables */ + for (i=0; i<8; i++) + workCtx_.x[i] = masterCtx_.x[i]; + workCtx_.carry = masterCtx_.carry; + + /* Iterate the system four times */ + for (i=0; i<4; i++) + NextState(Work); +} + + +/* Key setup */ +void Rabbit::SetKey(const byte* key, const byte* iv) +{ + /* Temporary variables */ + word32 k0, k1, k2, k3, i; + + /* Generate four subkeys */ + k0 = LITTLE32(*(word32*)(key+ 0)); + k1 = LITTLE32(*(word32*)(key+ 4)); + k2 = LITTLE32(*(word32*)(key+ 8)); + k3 = LITTLE32(*(word32*)(key+12)); + + /* Generate initial state variables */ + masterCtx_.x[0] = k0; + masterCtx_.x[2] = k1; + masterCtx_.x[4] = k2; + masterCtx_.x[6] = k3; + masterCtx_.x[1] = U32V(k3<<16) | (k2>>16); + masterCtx_.x[3] = U32V(k0<<16) | (k3>>16); + masterCtx_.x[5] = U32V(k1<<16) | (k0>>16); + masterCtx_.x[7] = U32V(k2<<16) | (k1>>16); + + /* Generate initial counter values */ + masterCtx_.c[0] = rotlFixed(k2, 16); + masterCtx_.c[2] = rotlFixed(k3, 16); + masterCtx_.c[4] = rotlFixed(k0, 16); + masterCtx_.c[6] = rotlFixed(k1, 16); + masterCtx_.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF); + masterCtx_.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF); + masterCtx_.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF); + masterCtx_.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF); + + /* Clear carry bit */ + masterCtx_.carry = 0; + + /* Iterate the system four times */ + for (i=0; i<4; i++) + NextState(Master); + + /* Modify the counters */ + for (i=0; i<8; i++) + masterCtx_.c[i] ^= masterCtx_.x[(i+4)&0x7]; + + /* Copy master instance to work instance */ + for (i=0; i<8; i++) { + workCtx_.x[i] = masterCtx_.x[i]; + workCtx_.c[i] = masterCtx_.c[i]; + } + workCtx_.carry = masterCtx_.carry; + + if (iv) SetIV(iv); +} + + +/* Encrypt/decrypt a message of any size */ +void Rabbit::Process(byte* output, const byte* input, word32 msglen) +{ + /* Temporary variables */ + word32 i; + byte buffer[16]; + + /* Encrypt/decrypt all full blocks */ + while (msglen >= 16) { + /* Iterate the system */ + NextState(Work); + + /* Encrypt/decrypt 16 bytes of data */ + *(word32*)(output+ 0) = *(word32*)(input+ 0) ^ + LITTLE32(workCtx_.x[0] ^ (workCtx_.x[5]>>16) ^ + U32V(workCtx_.x[3]<<16)); + *(word32*)(output+ 4) = *(word32*)(input+ 4) ^ + LITTLE32(workCtx_.x[2] ^ (workCtx_.x[7]>>16) ^ + U32V(workCtx_.x[5]<<16)); + *(word32*)(output+ 8) = *(word32*)(input+ 8) ^ + LITTLE32(workCtx_.x[4] ^ (workCtx_.x[1]>>16) ^ + U32V(workCtx_.x[7]<<16)); + *(word32*)(output+12) = *(word32*)(input+12) ^ + LITTLE32(workCtx_.x[6] ^ (workCtx_.x[3]>>16) ^ + U32V(workCtx_.x[1]<<16)); + + /* Increment pointers and decrement length */ + input += 16; + output += 16; + msglen -= 16; + } + + /* Encrypt/decrypt remaining data */ + if (msglen) { + /* Iterate the system */ + NextState(Work); + + /* Generate 16 bytes of pseudo-random data */ + *(word32*)(buffer+ 0) = LITTLE32(workCtx_.x[0] ^ + (workCtx_.x[5]>>16) ^ U32V(workCtx_.x[3]<<16)); + *(word32*)(buffer+ 4) = LITTLE32(workCtx_.x[2] ^ + (workCtx_.x[7]>>16) ^ U32V(workCtx_.x[5]<<16)); + *(word32*)(buffer+ 8) = LITTLE32(workCtx_.x[4] ^ + (workCtx_.x[1]>>16) ^ U32V(workCtx_.x[7]<<16)); + *(word32*)(buffer+12) = LITTLE32(workCtx_.x[6] ^ + (workCtx_.x[3]>>16) ^ U32V(workCtx_.x[1]<<16)); + + /* Encrypt/decrypt the data */ + for (i=0; i<msglen; i++) + output[i] = input[i] ^ buffer[i]; + } +} + + +} // namespace |