summaryrefslogtreecommitdiff
path: root/sql/opt_range.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/opt_range.cc')
-rw-r--r--sql/opt_range.cc7292
1 files changed, 6816 insertions, 476 deletions
diff --git a/sql/opt_range.cc b/sql/opt_range.cc
index 01b366077b0..c3aa1f52556 100644
--- a/sql/opt_range.cc
+++ b/sql/opt_range.cc
@@ -1,9 +1,8 @@
-/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
+/* Copyright (C) 2000-2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
+ the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
@@ -23,13 +22,25 @@
*/
+/*
+ Classes in this file are used in the following way:
+ 1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
+ is created. #of rows in table and index statistics are ignored at this
+ step.
+ 2. Created SEL_TREE and index stats data are used to construct a
+ TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
+ plans may be created.
+ 3. The least expensive table read plan is used to create a tree of
+ QUICK_SELECT_I-derived objects which are later used for row retrieval.
+ QUICK_RANGEs are also created in this step.
+*/
+
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <m_ctype.h>
-#include <nisam.h>
#include "sql_select.h"
#ifndef EXTRA_DEBUG
@@ -37,6 +48,11 @@
#define test_use_count(A) {}
#endif
+/*
+ Convert double value to #rows. Currently this does floor(), and we
+ might consider using round() instead.
+*/
+#define double2rows(x) ((ha_rows)(x))
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
@@ -262,6 +278,8 @@ public:
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
+ /* Return true iff it's a single-point null interval */
+ inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
inline int cmp_min_to_min(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
@@ -354,8 +372,7 @@ public:
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
- void store(uint length,char **min_key,uint min_key_flag,
- char **max_key, uint max_key_flag)
+ void store_min(uint length,char **min_key,uint min_key_flag)
{
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
@@ -370,6 +387,11 @@ public:
memcpy(*min_key,min_value,length);
(*min_key)+= length;
}
+ }
+ void store(uint length,char **min_key,uint min_key_flag,
+ char **max_key, uint max_key_flag)
+ {
+ store_min(length, min_key, min_key_flag);
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
@@ -454,33 +476,84 @@ public:
SEL_ARG *clone_tree(struct st_qsel_param *param);
};
+class SEL_IMERGE;
+
class SEL_TREE :public Sql_alloc
{
public:
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
SEL_TREE(enum Type type_arg) :type(type_arg) {}
- SEL_TREE() :type(KEY) { bzero((char*) keys,sizeof(keys));}
+ SEL_TREE() :type(KEY)
+ {
+ keys_map.clear_all();
+ bzero((char*) keys,sizeof(keys));
+ }
SEL_ARG *keys[MAX_KEY];
+ key_map keys_map; /* bitmask of non-NULL elements in keys */
+
+ /*
+ Possible ways to read rows using index_merge. The list is non-empty only
+ if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
+ */
+ List<SEL_IMERGE> merges;
+
+ /* The members below are filled/used only after get_mm_tree is done */
+ key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */
+ uint n_ror_scans; /* number of set bits in ror_scans_map */
+
+ struct st_ror_scan_info **ror_scans; /* list of ROR key scans */
+ struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
+ /* Note that #records for each key scan is stored in table->quick_rows */
};
typedef struct st_qsel_param {
THD *thd;
TABLE *table;
- KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
- MEM_ROOT *mem_root;
+ KEY_PART *key_parts,*key_parts_end;
+ KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
+ MEM_ROOT *mem_root, *old_root;
table_map prev_tables,read_tables,current_table;
- uint baseflag, keys, max_key_part, range_count;
+ uint baseflag, max_key_part, range_count;
+
+ uint keys; /* number of keys used in the query */
+
+ /* used_key_no -> table_key_no translation table */
uint real_keynr[MAX_KEY];
+
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
bool quick; // Don't calulate possible keys
COND *cond;
+
+ uint fields_bitmap_size;
+ MY_BITMAP needed_fields; /* bitmask of fields needed by the query */
+ MY_BITMAP tmp_covered_fields;
+
+ key_map *needed_reg; /* ptr to SQL_SELECT::needed_reg */
+
+ uint *imerge_cost_buff; /* buffer for index_merge cost estimates */
+ uint imerge_cost_buff_size; /* size of the buffer */
+
+ /* TRUE if last checked tree->key can be used for ROR-scan */
+ bool is_ror_scan;
+ /* Number of ranges in the last checked tree->key */
+ uint n_ranges;
+ uint8 first_null_comp; /* first null component if any, 0 - otherwise */
/* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
uint alloced_sel_args;
} PARAM;
+class TABLE_READ_PLAN;
+ class TRP_RANGE;
+ class TRP_ROR_INTERSECT;
+ class TRP_ROR_UNION;
+ class TRP_ROR_INDEX_MERGE;
+ class TRP_GROUP_MIN_MAX;
+
+struct st_ror_scan_info;
+
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
Item_func::Functype type,Item *value,
Item_result cmp_type);
@@ -488,33 +561,276 @@ static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
KEY_PART *key_part,
Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
+
+static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag);
-static QUICK_SELECT *get_quick_select(PARAM *param,uint index,
- SEL_ARG *key_tree);
+QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
+ SEL_ARG *key_tree,
+ MEM_ROOT *alloc = NULL);
+static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
+ bool index_read_must_be_used,
+ double read_time);
+static
+TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
+ double read_time,
+ bool *are_all_covering);
+static
+TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
+ SEL_TREE *tree,
+ double read_time);
+static
+TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
+ double read_time);
+static
+TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
+static double get_index_only_read_time(const PARAM* param, ha_rows records,
+ int keynr);
+
#ifndef DBUG_OFF
-static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg);
+static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
+ const char *msg);
+static void print_ror_scans_arr(TABLE *table, const char *msg,
+ struct st_ror_scan_info **start,
+ struct st_ror_scan_info **end);
+static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
#endif
+
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(PARAM *param, SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(PARAM *param, SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
-static bool get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
+bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
-static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
+static bool null_part_in_key(KEY_PART *key_part, const char *key,
+ uint length);
+bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);
+
+
+/*
+ SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
+ a condition in the following form:
+ (t_1||t_2||...||t_N) && (next)
+
+ where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
+ (t_i,t_j) contains SEL_ARGS for the same index.
+
+ SEL_TREE contained in SEL_IMERGE always has merges=NULL.
+
+ This class relies on memory manager to do the cleanup.
+*/
+
+class SEL_IMERGE : public Sql_alloc
+{
+ enum { PREALLOCED_TREES= 10};
+public:
+ SEL_TREE *trees_prealloced[PREALLOCED_TREES];
+ SEL_TREE **trees; /* trees used to do index_merge */
+ SEL_TREE **trees_next; /* last of these trees */
+ SEL_TREE **trees_end; /* end of allocated space */
+
+ SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */
+
+ SEL_IMERGE() :
+ trees(&trees_prealloced[0]),
+ trees_next(trees),
+ trees_end(trees + PREALLOCED_TREES)
+ {}
+ int or_sel_tree(PARAM *param, SEL_TREE *tree);
+ int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
+ int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
+};
+
+
+/*
+ Add SEL_TREE to this index_merge without any checks,
+
+ NOTES
+ This function implements the following:
+ (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs
+
+ RETURN
+ 0 - OK
+ -1 - Out of memory.
+*/
+
+int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
+{
+ if (trees_next == trees_end)
+ {
+ const int realloc_ratio= 2; /* Double size for next round */
+ uint old_elements= (trees_end - trees);
+ uint old_size= sizeof(SEL_TREE**) * old_elements;
+ uint new_size= old_size * realloc_ratio;
+ SEL_TREE **new_trees;
+ if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
+ return -1;
+ memcpy(new_trees, trees, old_size);
+ trees= new_trees;
+ trees_next= trees + old_elements;
+ trees_end= trees + old_elements * realloc_ratio;
+ }
+ *(trees_next++)= tree;
+ return 0;
+}
+
+
+/*
+ Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
+ combining new_tree with one of the trees in this SEL_IMERGE if they both
+ have SEL_ARGs for the same key.
+
+ SYNOPSIS
+ or_sel_tree_with_checks()
+ param PARAM from SQL_SELECT::test_quick_select
+ new_tree SEL_TREE with type KEY or KEY_SMALLER.
+
+ NOTES
+ This does the following:
+ (t_1||...||t_k)||new_tree =
+ either
+ = (t_1||...||t_k||new_tree)
+ or
+ = (t_1||....||(t_j|| new_tree)||...||t_k),
+
+ where t_i, y are SEL_TREEs.
+ new_tree is combined with the first t_j it has a SEL_ARG on common
+ key with. As a consequence of this, choice of keys to do index_merge
+ read may depend on the order of conditions in WHERE part of the query.
+
+ RETURN
+ 0 OK
+ 1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
+ and (*this) should be discarded.
+ -1 An error occurred.
+*/
+
+int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
+{
+ for (SEL_TREE** tree = trees;
+ tree != trees_next;
+ tree++)
+ {
+ if (sel_trees_can_be_ored(*tree, new_tree, param))
+ {
+ *tree = tree_or(param, *tree, new_tree);
+ if (!*tree)
+ return 1;
+ if (((*tree)->type == SEL_TREE::MAYBE) ||
+ ((*tree)->type == SEL_TREE::ALWAYS))
+ return 1;
+ /* SEL_TREE::IMPOSSIBLE is impossible here */
+ return 0;
+ }
+ }
+
+ /* New tree cannot be combined with any of existing trees. */
+ return or_sel_tree(param, new_tree);
+}
+
+
+/*
+ Perform OR operation on this index_merge and supplied index_merge list.
+
+ RETURN
+ 0 - OK
+ 1 - One of conditions in result is always TRUE and this SEL_IMERGE
+ should be discarded.
+ -1 - An error occurred
+*/
+
+int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
+{
+ for (SEL_TREE** tree= imerge->trees;
+ tree != imerge->trees_next;
+ tree++)
+ {
+ if (or_sel_tree_with_checks(param, *tree))
+ return 1;
+ }
+ return 0;
+}
+
+
+/*
+ Perform AND operation on two index_merge lists and store result in *im1.
+*/
+
+inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
+{
+ im1->concat(im2);
+}
+
+
+/*
+ Perform OR operation on 2 index_merge lists, storing result in first list.
+
+ NOTES
+ The following conversion is implemented:
+ (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
+ => (a_1||b_1).
+
+ i.e. all conjuncts except the first one are currently dropped.
+ This is done to avoid producing N*K ways to do index_merge.
+
+ If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
+ and index_merge is discarded (while it is actually possible to try
+ harder).
+
+ As a consequence of this, choice of keys to do index_merge read may depend
+ on the order of conditions in WHERE part of the query.
+
+ RETURN
+ 0 OK, result is stored in *im1
+ other Error, both passed lists are unusable
+*/
+
+int imerge_list_or_list(PARAM *param,
+ List<SEL_IMERGE> *im1,
+ List<SEL_IMERGE> *im2)
+{
+ SEL_IMERGE *imerge= im1->head();
+ im1->empty();
+ im1->push_back(imerge);
+
+ return imerge->or_sel_imerge_with_checks(param, im2->head());
+}
+
+
+/*
+ Perform OR operation on index_merge list and key tree.
+
+ RETURN
+ 0 OK, result is stored in *im1.
+ other Error
+*/
+
+int imerge_list_or_tree(PARAM *param,
+ List<SEL_IMERGE> *im1,
+ SEL_TREE *tree)
+{
+ SEL_IMERGE *imerge;
+ List_iterator<SEL_IMERGE> it(*im1);
+ while ((imerge= it++))
+ {
+ if (imerge->or_sel_tree_with_checks(param, tree))
+ it.remove();
+ }
+ return im1->is_empty();
+}
/***************************************************************************
-** Basic functions for SQL_SELECT and QUICK_SELECT
+** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
***************************************************************************/
/* make a select from mysql info
@@ -524,13 +840,16 @@ static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
*/
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
- table_map read_tables, COND *conds, int *error)
+ table_map read_tables, COND *conds,
+ bool allow_null_cond,
+ int *error)
{
SQL_SELECT *select;
DBUG_ENTER("make_select");
*error=0;
- if (!conds)
+
+ if (!conds && !allow_null_cond)
DBUG_RETURN(0);
if (!(select= new SQL_SELECT))
{
@@ -570,7 +889,7 @@ void SQL_SELECT::cleanup()
free_cond=0;
delete cond;
cond= 0;
- }
+ }
close_cached_file(&file);
}
@@ -582,11 +901,29 @@ SQL_SELECT::~SQL_SELECT()
#undef index // Fix for Unixware 7
-QUICK_SELECT::QUICK_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc)
- :dont_free(0),sorted(0),error(0),index(key_nr),max_used_key_length(0),
- used_key_parts(0), head(table), it(ranges),range(0)
+QUICK_SELECT_I::QUICK_SELECT_I()
+ :max_used_key_length(0),
+ used_key_parts(0)
+{}
+
+QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
+ bool no_alloc, MEM_ROOT *parent_alloc)
+ :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),last_range(0)
{
- if (!no_alloc)
+ sorted= 0;
+ index= key_nr;
+ head= table;
+ key_part_info= head->key_info[index].key_part;
+ my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
+
+ /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
+ multi_range_bufsiz= thd->variables.read_rnd_buff_size;
+ multi_range_count= thd->variables.multi_range_count;
+ multi_range_length= 0;
+ multi_range= NULL;
+ multi_range_buff= NULL;
+
+ if (!no_alloc && !parent_alloc)
{
// Allocates everything through the internal memroot
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
@@ -594,21 +931,470 @@ QUICK_SELECT::QUICK_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc)
}
else
bzero((char*) &alloc,sizeof(alloc));
- file=head->file;
- record=head->record[0];
- init();
+ file= head->file;
+ record= head->record[0];
}
-QUICK_SELECT::~QUICK_SELECT()
+
+int QUICK_RANGE_SELECT::init()
{
+ DBUG_ENTER("QUICK_RANGE_SELECT::init");
+
+ if (file->inited != handler::NONE)
+ file->ha_index_or_rnd_end();
+ DBUG_RETURN(error= file->ha_index_init(index));
+}
+
+
+void QUICK_RANGE_SELECT::range_end()
+{
+ if (file->inited != handler::NONE)
+ file->ha_index_or_rnd_end();
+}
+
+
+QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
if (!dont_free)
{
- if (file->inited)
- file->ha_index_end();
+ /* file is NULL for CPK scan on covering ROR-intersection */
+ if (file)
+ {
+ range_end();
+ if (head->key_read)
+ {
+ head->key_read= 0;
+ file->extra(HA_EXTRA_NO_KEYREAD);
+ }
+ if (free_file)
+ {
+ DBUG_PRINT("info", ("Freeing separate handler 0x%lx (free: %d)", (long) file,
+ free_file));
+ file->reset();
+ file->external_lock(current_thd, F_UNLCK);
+ file->close();
+ }
+ }
+ delete_dynamic(&ranges); /* ranges are allocated in alloc */
free_root(&alloc,MYF(0));
}
+ if (multi_range)
+ my_free((char*) multi_range, MYF(0));
+ if (multi_range_buff)
+ my_free((char*) multi_range_buff, MYF(0));
+ DBUG_VOID_RETURN;
+}
+
+
+QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
+ TABLE *table)
+ :pk_quick_select(NULL), thd(thd_param)
+{
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
+ index= MAX_KEY;
+ head= table;
+ bzero(&read_record, sizeof(read_record));
+ init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
+ DBUG_VOID_RETURN;
+}
+
+int QUICK_INDEX_MERGE_SELECT::init()
+{
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
+ DBUG_RETURN(0);
+}
+
+int QUICK_INDEX_MERGE_SELECT::reset()
+{
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
+ DBUG_RETURN(read_keys_and_merge());
+}
+
+bool
+QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
+{
+ /*
+ Save quick_select that does scan on clustered primary key as it will be
+ processed separately.
+ */
+ if (head->file->primary_key_is_clustered() &&
+ quick_sel_range->index == head->s->primary_key)
+ pk_quick_select= quick_sel_range;
+ else
+ return quick_selects.push_back(quick_sel_range);
+ return 0;
+}
+
+QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
+ QUICK_RANGE_SELECT* quick;
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
+ quick_it.rewind();
+ while ((quick= quick_it++))
+ quick->file= NULL;
+ quick_selects.delete_elements();
+ delete pk_quick_select;
+ free_root(&alloc,MYF(0));
+ DBUG_VOID_RETURN;
+}
+
+
+QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
+ TABLE *table,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+ : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
+ scans_inited(FALSE)
+{
+ index= MAX_KEY;
+ head= table;
+ record= head->record[0];
+ if (!parent_alloc)
+ init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
+ else
+ bzero(&alloc, sizeof(MEM_ROOT));
+ last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
+ head->file->ref_length);
+}
+
+
+/*
+ Do post-constructor initialization.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::init()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::init()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
+ /* Check if last_rowid was successfully allocated in ctor */
+ DBUG_RETURN(!last_rowid);
+}
+
+
+/*
+ Initialize this quick select to be a ROR-merged scan.
+
+ SYNOPSIS
+ QUICK_RANGE_SELECT::init_ror_merged_scan()
+ reuse_handler If TRUE, use head->file, otherwise create a separate
+ handler object
+
+ NOTES
+ This function creates and prepares for subsequent use a separate handler
+ object if it can't reuse head->file. The reason for this is that during
+ ROR-merge several key scans are performed simultaneously, and a single
+ handler is only capable of preserving context of a single key scan.
+
+ In ROR-merge the quick select doing merge does full records retrieval,
+ merged quick selects read only keys.
+
+ RETURN
+ 0 ROR child scan initialized, ok to use.
+ 1 error
+*/
+
+int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
+{
+ handler *save_file= file;
+ DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
+
+ if (reuse_handler)
+ {
+ DBUG_PRINT("info", ("Reusing handler %p", file));
+ if (!head->no_keyread)
+ {
+ head->key_read= 1;
+ file->extra(HA_EXTRA_KEYREAD);
+ }
+ if (file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
+ init() || reset())
+ {
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+ }
+
+ /* Create a separate handler object for this quick select */
+ if (free_file)
+ {
+ /* already have own 'handler' object. */
+ DBUG_RETURN(0);
+ }
+
+ THD *thd= current_thd;
+ if (!(file= head->file->clone(thd->mem_root)))
+ {
+ /* Caller will free the memory */
+ goto failure;
+ }
+ if (file->external_lock(thd, F_RDLCK))
+ goto failure;
+ if (!head->no_keyread)
+ {
+ head->key_read= 1;
+ file->extra(HA_EXTRA_KEYREAD);
+ }
+ if (file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
+ init() || reset())
+ {
+ file->external_lock(thd, F_UNLCK);
+ file->close();
+ goto failure;
+ }
+ free_file= TRUE;
+ last_rowid= file->ref;
+ DBUG_RETURN(0);
+
+failure:
+ file= save_file;
+ DBUG_RETURN(1);
}
+
+/*
+ Initialize this quick select to be a part of a ROR-merged scan.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
+ reuse_handler If TRUE, use head->file, otherwise create separate
+ handler object.
+ RETURN
+ 0 OK
+ other error code
+*/
+int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
+ QUICK_RANGE_SELECT* quick;
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
+
+ /* Initialize all merged "children" quick selects */
+ DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
+ if (!need_to_fetch_row && reuse_handler)
+ {
+ quick= quick_it++;
+ /*
+ There is no use of this->file. Use it for the first of merged range
+ selects.
+ */
+ if (quick->init_ror_merged_scan(TRUE))
+ DBUG_RETURN(1);
+ quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
+ }
+ while ((quick= quick_it++))
+ {
+ if (quick->init_ror_merged_scan(FALSE))
+ DBUG_RETURN(1);
+ quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
+ /* All merged scans share the same record buffer in intersection. */
+ quick->record= head->record[0];
+ }
+
+ if (need_to_fetch_row && head->file->ha_rnd_init(1))
+ {
+ DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Initialize quick select for row retrieval.
+ SYNOPSIS
+ reset()
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::reset()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
+ if (!scans_inited && init_ror_merged_scan(TRUE))
+ DBUG_RETURN(1);
+ scans_inited= TRUE;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ QUICK_RANGE_SELECT *quick;
+ while ((quick= it++))
+ quick->reset();
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Add a merged quick select to this ROR-intersection quick select.
+
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::push_quick_back()
+ quick Quick select to be added. The quick select must return
+ rows in rowid order.
+ NOTES
+ This call can only be made before init() is called.
+
+ RETURN
+ FALSE OK
+ TRUE Out of memory.
+*/
+
+bool
+QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
+{
+ return quick_selects.push_back(quick);
+}
+
+QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
+{
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
+ quick_selects.delete_elements();
+ delete cpk_quick;
+ free_root(&alloc,MYF(0));
+ if (need_to_fetch_row && head->file->inited != handler::NONE)
+ head->file->ha_rnd_end();
+ DBUG_VOID_RETURN;
+}
+
+
+QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
+ TABLE *table)
+ : thd(thd_param), scans_inited(FALSE)
+{
+ index= MAX_KEY;
+ head= table;
+ rowid_length= table->file->ref_length;
+ record= head->record[0];
+ init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
+ thd_param->mem_root= &alloc;
+}
+
+
+/*
+ Do post-constructor initialization.
+ SYNOPSIS
+ QUICK_ROR_UNION_SELECT::init()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_UNION_SELECT::init()
+{
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
+ if (init_queue(&queue, quick_selects.elements, 0,
+ FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
+ (void*) this))
+ {
+ bzero(&queue, sizeof(QUEUE));
+ DBUG_RETURN(1);
+ }
+
+ if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
+ DBUG_RETURN(1);
+ prev_rowid= cur_rowid + head->file->ref_length;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
+ queue.
+
+ SYNPOSIS
+ QUICK_ROR_UNION_SELECT::queue_cmp()
+ arg Pointer to QUICK_ROR_UNION_SELECT
+ val1 First merged select
+ val2 Second merged select
+*/
+
+int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
+{
+ QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
+ return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
+ ((QUICK_SELECT_I*)val2)->last_rowid);
+}
+
+
+/*
+ Initialize quick select for row retrieval.
+ SYNOPSIS
+ reset()
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_ROR_UNION_SELECT::reset()
+{
+ QUICK_SELECT_I *quick;
+ int error;
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
+ have_prev_rowid= FALSE;
+ if (!scans_inited)
+ {
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (quick->init_ror_merged_scan(FALSE))
+ DBUG_RETURN(1);
+ }
+ scans_inited= TRUE;
+ }
+ queue_remove_all(&queue);
+ /*
+ Initialize scans for merged quick selects and put all merged quick
+ selects into the queue.
+ */
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (quick->reset())
+ DBUG_RETURN(1);
+ if ((error= quick->get_next()))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ continue;
+ DBUG_RETURN(error);
+ }
+ quick->save_last_pos();
+ queue_insert(&queue, (byte*)quick);
+ }
+
+ if (head->file->ha_rnd_init(1))
+ {
+ DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
+ DBUG_RETURN(1);
+ }
+
+ DBUG_RETURN(0);
+}
+
+
+bool
+QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
+{
+ return quick_selects.push_back(quick_sel_range);
+}
+
+QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
+{
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
+ delete_queue(&queue);
+ quick_selects.delete_elements();
+ if (head->file->inited != handler::NONE)
+ head->file->ha_rnd_end();
+ free_root(&alloc,MYF(0));
+ DBUG_VOID_RETURN;
+}
+
+
QUICK_RANGE::QUICK_RANGE()
:min_key(0),max_key(0),min_length(0),max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE)
@@ -820,7 +1606,7 @@ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
if (!ord->asc)
return MAX_KEY;
- for (idx= 0; idx < table->keys; idx++)
+ for (idx= 0; idx < table->s->keys; idx++)
{
if (!(table->keys_in_use_for_query.is_set(idx)))
continue;
@@ -871,27 +1657,279 @@ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
/*
- Test if a key can be used in different ranges
+ Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
+ objects from table read plans.
+*/
+class TABLE_READ_PLAN
+{
+public:
+ /*
+ Plan read cost, with or without cost of full row retrieval, depending
+ on plan creation parameters.
+ */
+ double read_cost;
+ ha_rows records; /* estimate of #rows to be examined */
+
+ /*
+ If TRUE, the scan returns rows in rowid order. This is used only for
+ scans that can be both ROR and non-ROR.
+ */
+ bool is_ror;
+
+ /*
+ Create quick select for this plan.
+ SYNOPSIS
+ make_quick()
+ param Parameter from test_quick_select
+ retrieve_full_rows If TRUE, created quick select will do full record
+ retrieval.
+ parent_alloc Memory pool to use, if any.
+
+ NOTES
+ retrieve_full_rows is ignored by some implementations.
+
+ RETURN
+ created quick select
+ NULL on any error.
+ */
+ virtual QUICK_SELECT_I *make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc=NULL) = 0;
+
+ /* Table read plans are allocated on MEM_ROOT and are never deleted */
+ static void *operator new(size_t size, MEM_ROOT *mem_root)
+ { return (void*) alloc_root(mem_root, (uint) size); }
+ static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
+ static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
+ virtual ~TABLE_READ_PLAN() {} /* Remove gcc warning */
+
+};
+
+class TRP_ROR_INTERSECT;
+class TRP_ROR_UNION;
+class TRP_INDEX_MERGE;
+
+
+/*
+ Plan for a QUICK_RANGE_SELECT scan.
+ TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
+ QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
+ record retrieval scans.
+*/
+
+class TRP_RANGE : public TABLE_READ_PLAN
+{
+public:
+ SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
+ uint key_idx; /* key number in PARAM::key */
+
+ TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
+ : key(key_arg), key_idx(idx_arg)
+ {}
+ virtual ~TRP_RANGE() {} /* Remove gcc warning */
+
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+ {
+ DBUG_ENTER("TRP_RANGE::make_quick");
+ QUICK_RANGE_SELECT *quick;
+ if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
+ {
+ quick->records= records;
+ quick->read_time= read_cost;
+ }
+ DBUG_RETURN(quick);
+ }
+};
+
+
+/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */
+
+class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
+{
+public:
+ TRP_ROR_INTERSECT() {} /* Remove gcc warning */
+ virtual ~TRP_ROR_INTERSECT() {} /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+
+ /* Array of pointers to ROR range scans used in this intersection */
+ struct st_ror_scan_info **first_scan;
+ struct st_ror_scan_info **last_scan; /* End of the above array */
+ struct st_ror_scan_info *cpk_scan; /* Clustered PK scan, if there is one */
+ bool is_covering; /* TRUE if no row retrieval phase is necessary */
+ double index_scan_costs; /* SUM(cost(index_scan)) */
+};
+
+
+/*
+ Plan for QUICK_ROR_UNION_SELECT scan.
+ QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
+ is ignored by make_quick.
+*/
+
+class TRP_ROR_UNION : public TABLE_READ_PLAN
+{
+public:
+ TRP_ROR_UNION() {} /* Remove gcc warning */
+ virtual ~TRP_ROR_UNION() {} /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
+ TABLE_READ_PLAN **last_ror; /* end of the above array */
+};
+
+
+/*
+ Plan for QUICK_INDEX_MERGE_SELECT scan.
+ QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
+ is ignored by make_quick.
+*/
+
+class TRP_INDEX_MERGE : public TABLE_READ_PLAN
+{
+public:
+ TRP_INDEX_MERGE() {} /* Remove gcc warning */
+ virtual ~TRP_INDEX_MERGE() {} /* Remove gcc warning */
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+ TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
+ TRP_RANGE **range_scans_end; /* end of the array */
+};
+
+/*
+ Plan for a QUICK_GROUP_MIN_MAX_SELECT scan.
+*/
+
+class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
+{
+private:
+ bool have_min, have_max;
+ KEY_PART_INFO *min_max_arg_part;
+ uint group_prefix_len;
+ uint used_key_parts;
+ uint group_key_parts;
+ KEY *index_info;
+ uint index;
+ uint key_infix_len;
+ byte key_infix[MAX_KEY_LENGTH];
+ SEL_TREE *range_tree; /* Represents all range predicates in the query. */
+ SEL_ARG *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
+ uint param_idx; /* Index of used key in param->key. */
+ /* Number of records selected by the ranges in index_tree. */
+public:
+ ha_rows quick_prefix_records;
+public:
+ TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
+ KEY_PART_INFO *min_max_arg_part_arg,
+ uint group_prefix_len_arg, uint used_key_parts_arg,
+ uint group_key_parts_arg, KEY *index_info_arg,
+ uint index_arg, uint key_infix_len_arg,
+ byte *key_infix_arg,
+ SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
+ uint param_idx_arg, ha_rows quick_prefix_records_arg)
+ : have_min(have_min_arg), have_max(have_max_arg),
+ min_max_arg_part(min_max_arg_part_arg),
+ group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
+ group_key_parts(group_key_parts_arg), index_info(index_info_arg),
+ index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
+ index_tree(index_tree_arg), param_idx(param_idx_arg),
+ quick_prefix_records(quick_prefix_records_arg)
+ {
+ if (key_infix_len)
+ memcpy(this->key_infix, key_infix_arg, key_infix_len);
+ }
+ virtual ~TRP_GROUP_MIN_MAX() {} /* Remove gcc warning */
+
+ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc);
+};
+
+
+/*
+ Fill param->needed_fields with bitmap of fields used in the query.
SYNOPSIS
- SQL_SELECT::test_quick_select(thd,keys_to_use, prev_tables,
- limit, force_quick_range)
+ fill_used_fields_bitmap()
+ param Parameter from test_quick_select function.
- Updates the following in the select parameter:
- needed_reg - Bits for keys with may be used if all prev regs are read
- quick - Parameter to use when reading records.
- In the table struct the following information is updated:
- quick_keys - Which keys can be used
- quick_rows - How many rows the key matches
+ NOTES
+ Clustered PK members are not put into the bitmap as they are implicitly
+ present in all keys (and it is impossible to avoid reading them).
+ RETURN
+ 0 Ok
+ 1 Out of memory.
+*/
- RETURN VALUES
- -1 if impossible select
- 0 if can't use quick_select
- 1 if found usable range
+static int fill_used_fields_bitmap(PARAM *param)
+{
+ TABLE *table= param->table;
+ param->fields_bitmap_size= (table->s->fields/8 + 1);
+ uchar *tmp;
+ uint pk;
+ param->tmp_covered_fields.bitmap= 0;
+ if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) ||
+ bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
+ FALSE))
+ return 1;
+
+ bitmap_clear_all(&param->needed_fields);
+ for (uint i= 0; i < table->s->fields; i++)
+ {
+ if (param->thd->query_id == table->field[i]->query_id)
+ bitmap_set_bit(&param->needed_fields, i+1);
+ }
+
+ pk= param->table->s->primary_key;
+ if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
+ {
+ /* The table uses clustered PK and it is not internally generated */
+ KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
+ KEY_PART_INFO *key_part_end= key_part +
+ param->table->key_info[pk].key_parts;
+ for (;key_part != key_part_end; ++key_part)
+ {
+ bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
+ }
+ }
+ return 0;
+}
+
+
+/*
+ Test if a key can be used in different ranges
+
+ SYNOPSIS
+ SQL_SELECT::test_quick_select()
+ thd Current thread
+ keys_to_use Keys to use for range retrieval
+ prev_tables Tables assumed to be already read when the scan is
+ performed (but not read at the moment of this call)
+ limit Query limit
+ force_quick_range Prefer to use range (instead of full table scan) even
+ if it is more expensive.
+
+ NOTES
+ Updates the following in the select parameter:
+ needed_reg - Bits for keys with may be used if all prev regs are read
+ quick - Parameter to use when reading records.
+
+ In the table struct the following information is updated:
+ quick_keys - Which keys can be used
+ quick_rows - How many rows the key matches
+
+ TODO
+ Check if this function really needs to modify keys_to_use, and change the
+ code to pass it by reference if it doesn't.
+
+ In addition to force_quick_range other means can be (an usually are) used
+ to make this function prefer range over full table scan. Figure out if
+ force_quick_range is really needed.
- TODO
- check if the function really needs to modify keys_to_use, and change the
- code to pass it by reference if not
+ RETURN
+ -1 if impossible select (i.e. certainly no rows will be selected)
+ 0 if can't use quick_select
+ 1 if found usable ranges and quick select has been successfully created.
*/
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
@@ -900,28 +1938,29 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
{
uint idx;
double scan_time;
- DBUG_ENTER("test_quick_select");
+ DBUG_ENTER("SQL_SELECT::test_quick_select");
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
- keys_to_use.to_ulonglong(), (ulong) prev_tables,
+ (ulong) keys_to_use.to_ulonglong(), (ulong) prev_tables,
(ulong) const_tables));
-
+ DBUG_PRINT("info", ("records: %lu", (ulong) head->file->records));
delete quick;
quick=0;
- needed_reg.clear_all(); quick_keys.clear_all();
- if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
+ needed_reg.clear_all();
+ quick_keys.clear_all();
+ if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
!limit)
DBUG_RETURN(0); /* purecov: inspected */
if (keys_to_use.is_clear_all())
DBUG_RETURN(0);
- records=head->file->records;
+ records= head->file->records;
if (!records)
records++; /* purecov: inspected */
- scan_time=(double) records / TIME_FOR_COMPARE+1;
- read_time=(double) head->file->scan_time()+ scan_time + 1.1;
+ scan_time= (double) records / TIME_FOR_COMPARE + 1;
+ read_time= (double) head->file->scan_time() + scan_time + 1.1;
if (head->force_index)
scan_time= read_time= DBL_MAX;
if (limit < records)
- read_time=(double) records+scan_time+1; // Force to use index
+ read_time= (double) records + scan_time + 1; // Force to use index
else if (read_time <= 2.0 && !force_quick_range)
DBUG_RETURN(0); /* No need for quick select */
@@ -930,8 +1969,8 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
keys_to_use.intersect(head->keys_in_use_for_query);
if (!keys_to_use.is_clear_all())
{
- MEM_ROOT *old_root,alloc;
- SEL_TREE *tree;
+ MEM_ROOT alloc;
+ SEL_TREE *tree= NULL;
KEY_PART *key_parts;
KEY *key_info;
PARAM param;
@@ -945,22 +1984,30 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
param.table=head;
param.keys=0;
param.mem_root= &alloc;
+ param.old_root= thd->mem_root;
+ param.needed_reg= &needed_reg;
+ param.imerge_cost_buff_size= 0;
+
thd->no_errors=1; // Don't warn about NULL
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
- if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
- sizeof(KEY_PART)*
- head->key_parts)))
+ if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
+ sizeof(KEY_PART)*
+ head->s->key_parts)) ||
+ fill_used_fields_bitmap(&param))
{
thd->no_errors=0;
free_root(&alloc,MYF(0)); // Return memory & allocator
DBUG_RETURN(0); // Can't use range
}
key_parts= param.key_parts;
- old_root= thd->mem_root;
thd->mem_root= &alloc;
+ /*
+ Make an array with description of all key parts of all table keys.
+ This is used in get_mm_parts function.
+ */
key_info= head->key_info;
- for (idx=0 ; idx < head->keys ; idx++, key_info++)
+ for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
{
KEY_PART_INFO *key_part_info;
if (!keys_to_use.is_set(idx))
@@ -981,88 +2028,150 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
key_parts->null_bit= key_part_info->null_bit;
key_parts->image_type =
(key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
- key_parts->flag= key_part_info->key_part_flag;
+ key_parts->flag= (uint8) key_part_info->key_part_flag;
}
param.real_keynr[param.keys++]=idx;
}
param.key_parts_end=key_parts;
param.alloced_sel_args= 0;
- if ((tree=get_mm_tree(&param,cond)))
+ /* Calculate cost of full index read for the shortest covering index */
+ if (!head->used_keys.is_clear_all())
+ {
+ int key_for_use= find_shortest_key(head, &head->used_keys);
+ double key_read_time= (get_index_only_read_time(&param, records,
+ key_for_use) +
+ (double) records / TIME_FOR_COMPARE);
+ DBUG_PRINT("info", ("'all'+'using index' scan will be using key %d, "
+ "read time %g", key_for_use, key_read_time));
+ if (key_read_time < read_time)
+ read_time= key_read_time;
+ }
+
+ TABLE_READ_PLAN *best_trp= NULL;
+ TRP_GROUP_MIN_MAX *group_trp;
+ double best_read_time= read_time;
+
+ if (cond)
+ {
+ if ((tree= get_mm_tree(&param,cond)))
+ {
+ if (tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ records=0L; /* Return -1 from this function. */
+ read_time= (double) HA_POS_ERROR;
+ goto free_mem;
+ }
+ if (tree->type != SEL_TREE::KEY &&
+ tree->type != SEL_TREE::KEY_SMALLER)
+ goto free_mem;
+ }
+ }
+
+ /*
+ Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
+ Notice that it can be constructed no matter if there is a range tree.
+ */
+ group_trp= get_best_group_min_max(&param, tree);
+ if (group_trp && group_trp->read_cost < best_read_time)
+ {
+ best_trp= group_trp;
+ best_read_time= best_trp->read_cost;
+ }
+
+ if (tree)
{
- if (tree->type == SEL_TREE::IMPOSSIBLE)
+ /*
+ It is possible to use a range-based quick select (but it might be
+ slower than 'all' table scan).
+ */
+ if (tree->merges.is_empty())
{
- records=0L; // Return -1 from this function
- read_time= (double) HA_POS_ERROR;
+ TRP_RANGE *range_trp;
+ TRP_ROR_INTERSECT *rori_trp;
+ bool can_build_covering= FALSE;
+
+ /* Get best 'range' plan and prepare data for making other plans */
+ if ((range_trp= get_key_scans_params(&param, tree, FALSE,
+ best_read_time)))
+ {
+ best_trp= range_trp;
+ best_read_time= best_trp->read_cost;
+ }
+
+ /*
+ Simultaneous key scans and row deletes on several handler
+ objects are not allowed so don't use ROR-intersection for
+ table deletes.
+ */
+ if ((thd->lex->sql_command != SQLCOM_DELETE))
+#ifdef NOT_USED
+ if ((thd->lex->sql_command != SQLCOM_UPDATE))
+#endif
+ {
+ /*
+ Get best non-covering ROR-intersection plan and prepare data for
+ building covering ROR-intersection.
+ */
+ if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
+ &can_build_covering)))
+ {
+ best_trp= rori_trp;
+ best_read_time= best_trp->read_cost;
+ /*
+ Try constructing covering ROR-intersect only if it looks possible
+ and worth doing.
+ */
+ if (!rori_trp->is_covering && can_build_covering &&
+ (rori_trp= get_best_covering_ror_intersect(&param, tree,
+ best_read_time)))
+ best_trp= rori_trp;
+ }
+ }
}
- else if (tree->type == SEL_TREE::KEY ||
- tree->type == SEL_TREE::KEY_SMALLER)
+ else
{
- SEL_ARG **key,**end,**best_key=0;
+ /* Try creating index_merge/ROR-union scan. */
+ SEL_IMERGE *imerge;
+ TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
+ LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */
+
+ DBUG_PRINT("info",("No range reads possible,"
+ " trying to construct index_merge"));
+ List_iterator_fast<SEL_IMERGE> it(tree->merges);
+ while ((imerge= it++))
+ {
+ new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
+ if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
+ best_conj_trp->read_cost))
+ best_conj_trp= new_conj_trp;
+ }
+ if (best_conj_trp)
+ best_trp= best_conj_trp;
+ }
+ }
+ thd->mem_root= param.old_root;
- for (idx=0,key=tree->keys, end=key+param.keys ;
- key != end ;
- key++,idx++)
- {
- ha_rows found_records;
- double found_read_time;
- if (*key)
- {
- uint keynr= param.real_keynr[idx];
- if ((*key)->type == SEL_ARG::MAYBE_KEY ||
- (*key)->maybe_flag)
- needed_reg.set_bit(keynr);
-
- found_records=check_quick_select(&param, idx, *key);
- if (found_records != HA_POS_ERROR && found_records > 2 &&
- head->used_keys.is_set(keynr) &&
- (head->file->index_flags(keynr, param.max_key_part, 1) &
- HA_KEYREAD_ONLY))
- {
- /*
- We can resolve this by only reading through this key.
- Assume that we will read trough the whole key range
- and that all key blocks are half full (normally things are
- much better).
- */
- uint keys_per_block= (head->file->block_size/2/
- (head->key_info[keynr].key_length+
- head->file->ref_length) + 1);
- found_read_time=((double) (found_records+keys_per_block-1)/
- (double) keys_per_block);
- }
- else
- found_read_time= (head->file->read_time(keynr,
- param.range_count,
- found_records)+
- (double) found_records / TIME_FOR_COMPARE);
- DBUG_PRINT("info",("read_time: %g found_read_time: %g",
- read_time, found_read_time));
- if (read_time > found_read_time && found_records != HA_POS_ERROR)
- {
- read_time=found_read_time;
- records=found_records;
- best_key=key;
- }
- }
- }
- if (best_key && records)
- {
- if ((quick=get_quick_select(&param,(uint) (best_key-tree->keys),
- *best_key)))
- {
- quick->records=records;
- quick->read_time=read_time;
- }
- }
+ /* If we got a read plan, create a quick select from it. */
+ if (best_trp)
+ {
+ records= best_trp->records;
+ if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
+ {
+ delete quick;
+ quick= NULL;
}
}
+
+ free_mem:
free_root(&alloc,MYF(0)); // Return memory & allocator
- thd->mem_root= old_root;
+ thd->mem_root= param.old_root;
thd->no_errors=0;
}
- DBUG_EXECUTE("info",print_quick(quick,&needed_reg););
+
+ DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
+
/*
Assume that if the user is using 'limit' we will only need to scan
limit rows if we are using a key
@@ -1070,11 +2179,1837 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
DBUG_RETURN(records ? test(quick) : -1);
}
+
+/*
+ Get cost of 'sweep' full records retrieval.
+ SYNOPSIS
+ get_sweep_read_cost()
+ param Parameter from test_quick_select
+ records # of records to be retrieved
+ RETURN
+ cost of sweep
+*/
+
+double get_sweep_read_cost(const PARAM *param, ha_rows records)
+{
+ double result;
+ DBUG_ENTER("get_sweep_read_cost");
+ if (param->table->file->primary_key_is_clustered())
+ {
+ result= param->table->file->read_time(param->table->s->primary_key,
+ records, records);
+ }
+ else
+ {
+ double n_blocks=
+ ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
+ double busy_blocks=
+ n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
+ if (busy_blocks < 1.0)
+ busy_blocks= 1.0;
+ DBUG_PRINT("info",("sweep: nblocks: %g, busy_blocks: %g", n_blocks,
+ busy_blocks));
+ /*
+ Disabled: Bail out if # of blocks to read is bigger than # of blocks in
+ table data file.
+ if (max_cost != DBL_MAX && (busy_blocks+index_reads_cost) >= n_blocks)
+ return 1;
+ */
+ JOIN *join= param->thd->lex->select_lex.join;
+ if (!join || join->tables == 1)
+ {
+ /* No join, assume reading is done in one 'sweep' */
+ result= busy_blocks*(DISK_SEEK_BASE_COST +
+ DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
+ }
+ else
+ {
+ /*
+ Possibly this is a join with source table being non-last table, so
+ assume that disk seeks are random here.
+ */
+ result= busy_blocks;
+ }
+ }
+ DBUG_PRINT("return",("cost: %g", result));
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Get best plan for a SEL_IMERGE disjunctive expression.
+ SYNOPSIS
+ get_best_disjunct_quick()
+ param Parameter from check_quick_select function
+ imerge Expression to use
+ read_time Don't create scans with cost > read_time
+
+ NOTES
+ index_merge cost is calculated as follows:
+ index_merge_cost =
+ cost(index_reads) + (see #1)
+ cost(rowid_to_row_scan) + (see #2)
+ cost(unique_use) (see #3)
+
+ 1. cost(index_reads) =SUM_i(cost(index_read_i))
+ For non-CPK scans,
+ cost(index_read_i) = {cost of ordinary 'index only' scan}
+ For CPK scan,
+ cost(index_read_i) = {cost of non-'index only' scan}
+
+ 2. cost(rowid_to_row_scan)
+ If table PK is clustered then
+ cost(rowid_to_row_scan) =
+ {cost of ordinary clustered PK scan with n_ranges=n_rows}
+
+ Otherwise, we use the following model to calculate costs:
+ We need to retrieve n_rows rows from file that occupies n_blocks blocks.
+ We assume that offsets of rows we need are independent variates with
+ uniform distribution in [0..max_file_offset] range.
+
+ We'll denote block as "busy" if it contains row(s) we need to retrieve
+ and "empty" if doesn't contain rows we need.
+
+ Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
+ applies to any block in file). Let x_i be a variate taking value 1 if
+ block #i is empty and 0 otherwise.
+
+ Then E(x_i) = (1 - 1/n_blocks)^n_rows;
+
+ E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
+ = n_blocks * ((1 - 1/n_blocks)^n_rows) =
+ ~= n_blocks * exp(-n_rows/n_blocks).
+
+ E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
+ ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
+
+ Average size of "hole" between neighbor non-empty blocks is
+ E(hole_size) = n_blocks/E(n_busy_blocks).
+
+ The total cost of reading all needed blocks in one "sweep" is:
+
+ E(n_busy_blocks)*
+ (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).
+
+ 3. Cost of Unique use is calculated in Unique::get_use_cost function.
+
+ ROR-union cost is calculated in the same way index_merge, but instead of
+ Unique a priority queue is used.
+
+ RETURN
+ Created read plan
+ NULL - Out of memory or no read scan could be built.
+*/
+
+static
+TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
+ double read_time)
+{
+ SEL_TREE **ptree;
+ TRP_INDEX_MERGE *imerge_trp= NULL;
+ uint n_child_scans= imerge->trees_next - imerge->trees;
+ TRP_RANGE **range_scans;
+ TRP_RANGE **cur_child;
+ TRP_RANGE **cpk_scan= NULL;
+ bool imerge_too_expensive= FALSE;
+ double imerge_cost= 0.0;
+ ha_rows cpk_scan_records= 0;
+ ha_rows non_cpk_scan_records= 0;
+ bool pk_is_clustered= param->table->file->primary_key_is_clustered();
+ bool all_scans_ror_able= TRUE;
+ bool all_scans_rors= TRUE;
+ uint unique_calc_buff_size;
+ TABLE_READ_PLAN **roru_read_plans;
+ TABLE_READ_PLAN **cur_roru_plan;
+ double roru_index_costs;
+ ha_rows roru_total_records;
+ double roru_intersect_part= 1.0;
+ DBUG_ENTER("get_best_disjunct_quick");
+ DBUG_PRINT("info", ("Full table scan cost: %g", read_time));
+
+ if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
+ sizeof(TRP_RANGE*)*
+ n_child_scans)))
+ DBUG_RETURN(NULL);
+ /*
+ Collect best 'range' scan for each of disjuncts, and, while doing so,
+ analyze possibility of ROR scans. Also calculate some values needed by
+ other parts of the code.
+ */
+ for (ptree= imerge->trees, cur_child= range_scans;
+ ptree != imerge->trees_next;
+ ptree++, cur_child++)
+ {
+ DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
+ "tree in SEL_IMERGE"););
+ if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
+ {
+ /*
+ One of index scans in this index_merge is more expensive than entire
+ table read for another available option. The entire index_merge (and
+ any possible ROR-union) will be more expensive then, too. We continue
+ here only to update SQL_SELECT members.
+ */
+ imerge_too_expensive= TRUE;
+ }
+ if (imerge_too_expensive)
+ continue;
+
+ imerge_cost += (*cur_child)->read_cost;
+ all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
+ all_scans_rors &= (*cur_child)->is_ror;
+ if (pk_is_clustered &&
+ param->real_keynr[(*cur_child)->key_idx] ==
+ param->table->s->primary_key)
+ {
+ cpk_scan= cur_child;
+ cpk_scan_records= (*cur_child)->records;
+ }
+ else
+ non_cpk_scan_records += (*cur_child)->records;
+ }
+
+ DBUG_PRINT("info", ("index_merge scans cost %g", imerge_cost));
+ if (imerge_too_expensive || (imerge_cost > read_time) ||
+ (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
+ read_time != DBL_MAX)
+ {
+ /*
+ Bail out if it is obvious that both index_merge and ROR-union will be
+ more expensive
+ */
+ DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
+ "full table scan, bailing out"));
+ DBUG_RETURN(NULL);
+ }
+ if (all_scans_rors)
+ {
+ roru_read_plans= (TABLE_READ_PLAN**)range_scans;
+ goto skip_to_ror_scan;
+ }
+ if (cpk_scan)
+ {
+ /*
+ Add one ROWID comparison for each row retrieved on non-CPK scan. (it
+ is done in QUICK_RANGE_SELECT::row_in_ranges)
+ */
+ imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
+ }
+
+ /* Calculate cost(rowid_to_row_scan) */
+ imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
+ DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
+ imerge_cost));
+ if (imerge_cost > read_time)
+ goto build_ror_index_merge;
+
+ /* Add Unique operations cost */
+ unique_calc_buff_size=
+ Unique::get_cost_calc_buff_size(non_cpk_scan_records,
+ param->table->file->ref_length,
+ param->thd->variables.sortbuff_size);
+ if (param->imerge_cost_buff_size < unique_calc_buff_size)
+ {
+ if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
+ unique_calc_buff_size)))
+ DBUG_RETURN(NULL);
+ param->imerge_cost_buff_size= unique_calc_buff_size;
+ }
+
+ imerge_cost +=
+ Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
+ param->table->file->ref_length,
+ param->thd->variables.sortbuff_size);
+ DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
+ imerge_cost, read_time));
+ if (imerge_cost < read_time)
+ {
+ if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
+ {
+ imerge_trp->read_cost= imerge_cost;
+ imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
+ imerge_trp->records= min(imerge_trp->records,
+ param->table->file->records);
+ imerge_trp->range_scans= range_scans;
+ imerge_trp->range_scans_end= range_scans + n_child_scans;
+ read_time= imerge_cost;
+ }
+ }
+
+build_ror_index_merge:
+ if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
+ DBUG_RETURN(imerge_trp);
+
+ /* Ok, it is possible to build a ROR-union, try it. */
+ bool dummy;
+ if (!(roru_read_plans=
+ (TABLE_READ_PLAN**)alloc_root(param->mem_root,
+ sizeof(TABLE_READ_PLAN*)*
+ n_child_scans)))
+ DBUG_RETURN(imerge_trp);
+skip_to_ror_scan:
+ roru_index_costs= 0.0;
+ roru_total_records= 0;
+ cur_roru_plan= roru_read_plans;
+
+ /* Find 'best' ROR scan for each of trees in disjunction */
+ for (ptree= imerge->trees, cur_child= range_scans;
+ ptree != imerge->trees_next;
+ ptree++, cur_child++, cur_roru_plan++)
+ {
+ /*
+ Assume the best ROR scan is the one that has cheapest full-row-retrieval
+ scan cost.
+ Also accumulate index_only scan costs as we'll need them to calculate
+ overall index_intersection cost.
+ */
+ double cost;
+ if ((*cur_child)->is_ror)
+ {
+ /* Ok, we have index_only cost, now get full rows scan cost */
+ cost= param->table->file->
+ read_time(param->real_keynr[(*cur_child)->key_idx], 1,
+ (*cur_child)->records) +
+ rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
+ }
+ else
+ cost= read_time;
+
+ TABLE_READ_PLAN *prev_plan= *cur_child;
+ if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
+ &dummy)))
+ {
+ if (prev_plan->is_ror)
+ *cur_roru_plan= prev_plan;
+ else
+ DBUG_RETURN(imerge_trp);
+ roru_index_costs += (*cur_roru_plan)->read_cost;
+ }
+ else
+ roru_index_costs +=
+ ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
+ roru_total_records += (*cur_roru_plan)->records;
+ roru_intersect_part *= (*cur_roru_plan)->records /
+ param->table->file->records;
+ }
+
+ /*
+ rows to retrieve=
+ SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
+ This is valid because index_merge construction guarantees that conditions
+ in disjunction do not share key parts.
+ */
+ roru_total_records -= (ha_rows)(roru_intersect_part*
+ param->table->file->records);
+ /* ok, got a ROR read plan for each of the disjuncts
+ Calculate cost:
+ cost(index_union_scan(scan_1, ... scan_n)) =
+ SUM_i(cost_of_index_only_scan(scan_i)) +
+ queue_use_cost(rowid_len, n) +
+ cost_of_row_retrieval
+ See get_merge_buffers_cost function for queue_use_cost formula derivation.
+ */
+
+ double roru_total_cost;
+ roru_total_cost= roru_index_costs +
+ rows2double(roru_total_records)*log((double)n_child_scans) /
+ (TIME_FOR_COMPARE_ROWID * M_LN2) +
+ get_sweep_read_cost(param, roru_total_records);
+
+ DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
+ n_child_scans));
+ TRP_ROR_UNION* roru;
+ if (roru_total_cost < read_time)
+ {
+ if ((roru= new (param->mem_root) TRP_ROR_UNION))
+ {
+ roru->first_ror= roru_read_plans;
+ roru->last_ror= roru_read_plans + n_child_scans;
+ roru->read_cost= roru_total_cost;
+ roru->records= roru_total_records;
+ DBUG_RETURN(roru);
+ }
+ }
+ DBUG_RETURN(imerge_trp);
+}
+
+
+/*
+ Calculate cost of 'index only' scan for given index and number of records.
+
+ SYNOPSIS
+ get_index_only_read_time()
+ param parameters structure
+ records #of records to read
+ keynr key to read
+
+ NOTES
+ It is assumed that we will read trough the whole key range and that all
+ key blocks are half full (normally things are much better). It is also
+ assumed that each time we read the next key from the index, the handler
+ performs a random seek, thus the cost is proportional to the number of
+ blocks read.
+
+ TODO:
+ Move this to handler->read_time() by adding a flag 'index-only-read' to
+ this call. The reason for doing this is that the current function doesn't
+ handle the case when the row is stored in the b-tree (like in innodb
+ clustered index)
+*/
+
+static double get_index_only_read_time(const PARAM* param, ha_rows records,
+ int keynr)
+{
+ double read_time;
+ uint keys_per_block= (param->table->file->block_size/2/
+ (param->table->key_info[keynr].key_length+
+ param->table->file->ref_length) + 1);
+ read_time=((double) (records+keys_per_block-1)/
+ (double) keys_per_block);
+ return read_time;
+}
+
+
+typedef struct st_ror_scan_info
+{
+ uint idx; /* # of used key in param->keys */
+ uint keynr; /* # of used key in table */
+ ha_rows records; /* estimate of # records this scan will return */
+
+ /* Set of intervals over key fields that will be used for row retrieval. */
+ SEL_ARG *sel_arg;
+
+ /* Fields used in the query and covered by this ROR scan. */
+ MY_BITMAP covered_fields;
+ uint used_fields_covered; /* # of set bits in covered_fields */
+ int key_rec_length; /* length of key record (including rowid) */
+
+ /*
+ Cost of reading all index records with values in sel_arg intervals set
+ (assuming there is no need to access full table records)
+ */
+ double index_read_cost;
+ uint first_uncovered_field; /* first unused bit in covered_fields */
+ uint key_components; /* # of parts in the key */
+} ROR_SCAN_INFO;
+
+
+/*
+ Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
+ sel_arg set of intervals.
+
+ SYNOPSIS
+ make_ror_scan()
+ param Parameter from test_quick_select function
+ idx Index of key in param->keys
+ sel_arg Set of intervals for a given key
+
+ RETURN
+ NULL - out of memory
+ ROR scan structure containing a scan for {idx, sel_arg}
+*/
+
+static
+ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
+{
+ ROR_SCAN_INFO *ror_scan;
+ uchar *bitmap_buf;
+ uint keynr;
+ DBUG_ENTER("make_ror_scan");
+
+ if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO))))
+ DBUG_RETURN(NULL);
+
+ ror_scan->idx= idx;
+ ror_scan->keynr= keynr= param->real_keynr[idx];
+ ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
+ param->table->file->ref_length);
+ ror_scan->sel_arg= sel_arg;
+ ror_scan->records= param->table->quick_rows[keynr];
+
+ if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root,
+ param->fields_bitmap_size)))
+ DBUG_RETURN(NULL);
+
+ if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
+ param->fields_bitmap_size*8, FALSE))
+ DBUG_RETURN(NULL);
+ bitmap_clear_all(&ror_scan->covered_fields);
+
+ KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
+ KEY_PART_INFO *key_part_end= key_part +
+ param->table->key_info[keynr].key_parts;
+ for (;key_part != key_part_end; ++key_part)
+ {
+ if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
+ bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
+ }
+ ror_scan->index_read_cost=
+ get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
+ ror_scan->keynr);
+ DBUG_RETURN(ror_scan);
+}
+
+
+/*
+ Compare two ROR_SCAN_INFO** by E(#records_matched) * key_record_length.
+ SYNOPSIS
+ cmp_ror_scan_info()
+ a ptr to first compared value
+ b ptr to second compared value
+
+ RETURN
+ -1 a < b
+ 0 a = b
+ 1 a > b
+*/
+
+static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
+{
+ double val1= rows2double((*a)->records) * (*a)->key_rec_length;
+ double val2= rows2double((*b)->records) * (*b)->key_rec_length;
+ return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
+}
+
+/*
+ Compare two ROR_SCAN_INFO** by
+ (#covered fields in F desc,
+ #components asc,
+ number of first not covered component asc)
+
+ SYNOPSIS
+ cmp_ror_scan_info_covering()
+ a ptr to first compared value
+ b ptr to second compared value
+
+ RETURN
+ -1 a < b
+ 0 a = b
+ 1 a > b
+*/
+
+static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
+{
+ if ((*a)->used_fields_covered > (*b)->used_fields_covered)
+ return -1;
+ if ((*a)->used_fields_covered < (*b)->used_fields_covered)
+ return 1;
+ if ((*a)->key_components < (*b)->key_components)
+ return -1;
+ if ((*a)->key_components > (*b)->key_components)
+ return 1;
+ if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
+ return -1;
+ if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
+ return 1;
+ return 0;
+}
+
+
+/* Auxiliary structure for incremental ROR-intersection creation */
+typedef struct
+{
+ const PARAM *param;
+ MY_BITMAP covered_fields; /* union of fields covered by all scans */
+ /*
+ Fraction of table records that satisfies conditions of all scans.
+ This is the number of full records that will be retrieved if a
+ non-index_only index intersection will be employed.
+ */
+ double out_rows;
+ /* TRUE if covered_fields is a superset of needed_fields */
+ bool is_covering;
+
+ ha_rows index_records; /* sum(#records to look in indexes) */
+ double index_scan_costs; /* SUM(cost of 'index-only' scans) */
+ double total_cost;
+} ROR_INTERSECT_INFO;
+
+
+/*
+ Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.
+
+ SYNOPSIS
+ ror_intersect_init()
+ param Parameter from test_quick_select
+
+ RETURN
+ allocated structure
+ NULL on error
+*/
+
+static
+ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
+{
+ ROR_INTERSECT_INFO *info;
+ uchar* buf;
+ if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
+ sizeof(ROR_INTERSECT_INFO))))
+ return NULL;
+ info->param= param;
+ if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size)))
+ return NULL;
+ if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
+ FALSE))
+ return NULL;
+ info->is_covering= FALSE;
+ info->index_scan_costs= 0.0;
+ info->index_records= 0;
+ info->out_rows= param->table->file->records;
+ bitmap_clear_all(&info->covered_fields);
+ return info;
+}
+
+void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
+{
+ dst->param= src->param;
+ memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap,
+ src->covered_fields.bitmap_size);
+ dst->out_rows= src->out_rows;
+ dst->is_covering= src->is_covering;
+ dst->index_records= src->index_records;
+ dst->index_scan_costs= src->index_scan_costs;
+ dst->total_cost= src->total_cost;
+}
+
+
+/*
+ Get selectivity of a ROR scan wrt ROR-intersection.
+
+ SYNOPSIS
+ ror_scan_selectivity()
+ info ROR-interection
+ scan ROR scan
+
+ NOTES
+ Suppose we have a condition on several keys
+ cond=k_11=c_11 AND k_12=c_12 AND ... // parts of first key
+ k_21=c_21 AND k_22=c_22 AND ... // parts of second key
+ ...
+ k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //parts of the key used by *scan
+
+ where k_ij may be the same as any k_pq (i.e. keys may have common parts).
+
+ A full row is retrieved if entire condition holds.
+
+ The recursive procedure for finding P(cond) is as follows:
+
+ First step:
+ Pick 1st part of 1st key and break conjunction (1) into two parts:
+ cond= (k_11=c_11 AND R)
+
+ Here R may still contain condition(s) equivalent to k_11=c_11.
+ Nevertheless, the following holds:
+
+ P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
+
+ Mark k_11 as fixed field (and satisfied condition) F, save P(F),
+ save R to be cond and proceed to recursion step.
+
+ Recursion step:
+ We have a set of fixed fields/satisfied conditions) F, probability P(F),
+ and remaining conjunction R
+ Pick next key part on current key and its condition "k_ij=c_ij".
+ We will add "k_ij=c_ij" into F and update P(F).
+ Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then
+
+ P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
+
+ (where '|' mean conditional probability, not "or")
+
+ Consider the first multiplier in (2). One of the following holds:
+ a) F contains condition on field used in t (i.e. t AND F = F).
+ Then P(t|F) = 1
+
+ b) F doesn't contain condition on field used in t. Then F and t are
+ considered independent.
+
+ P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
+ = P(t|fields_before_t_in_key).
+
+ P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
+ #records(fields_before_t_in_key, t)
+
+ The second multiplier is calculated by applying this step recursively.
+
+ IMPLEMENTATION
+ This function calculates the result of application of the "recursion step"
+ described above for all fixed key members of a single key, accumulating set
+ of covered fields, selectivity, etc.
+
+ The calculation is conducted as follows:
+ Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
+
+ n_{k1} n_{k_2}
+ --------- * --------- * .... (3)
+ n_{k1-1} n_{k2_1}
+
+ where k1,k2,... are key parts which fields were not yet marked as fixed
+ ( this is result of application of option b) of the recursion step for
+ parts of a single key).
+ Since it is reasonable to expect that most of the fields are not marked
+ as fixed, we calculate (3) as
+
+ n_{i1} n_{i_2}
+ (3) = n_{max_key_part} / ( --------- * --------- * .... )
+ n_{i1-1} n_{i2_1}
+
+ where i1,i2, .. are key parts that were already marked as fixed.
+
+ In order to minimize number of expensive records_in_range calls we group
+ and reduce adjacent fractions.
+
+ RETURN
+ Selectivity of given ROR scan.
+
+*/
+
+static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info,
+ const ROR_SCAN_INFO *scan)
+{
+ double selectivity_mult= 1.0;
+ KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
+ byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
+ char *key_ptr= (char*) key_val;
+ SEL_ARG *sel_arg, *tuple_arg= NULL;
+ bool cur_covered;
+ bool prev_covered= test(bitmap_is_set(&info->covered_fields,
+ key_part->fieldnr));
+ key_range min_range;
+ key_range max_range;
+ min_range.key= (byte*) key_val;
+ min_range.flag= HA_READ_KEY_EXACT;
+ max_range.key= (byte*) key_val;
+ max_range.flag= HA_READ_AFTER_KEY;
+ ha_rows prev_records= info->param->table->file->records;
+ DBUG_ENTER("ror_intersect_selectivity");
+
+ for (sel_arg= scan->sel_arg; sel_arg;
+ sel_arg= sel_arg->next_key_part)
+ {
+ DBUG_PRINT("info",("sel_arg step"));
+ cur_covered= test(bitmap_is_set(&info->covered_fields,
+ key_part[sel_arg->part].fieldnr));
+ if (cur_covered != prev_covered)
+ {
+ /* create (part1val, ..., part{n-1}val) tuple. */
+ ha_rows records;
+ if (!tuple_arg)
+ {
+ tuple_arg= scan->sel_arg;
+ /* Here we use the length of the first key part */
+ tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
+ }
+ while (tuple_arg->next_key_part != sel_arg)
+ {
+ tuple_arg= tuple_arg->next_key_part;
+ tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
+ }
+ min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
+ records= (info->param->table->file->
+ records_in_range(scan->keynr, &min_range, &max_range));
+ if (cur_covered)
+ {
+ /* uncovered -> covered */
+ double tmp= rows2double(records)/rows2double(prev_records);
+ DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
+ selectivity_mult *= tmp;
+ prev_records= HA_POS_ERROR;
+ }
+ else
+ {
+ /* covered -> uncovered */
+ prev_records= records;
+ }
+ }
+ prev_covered= cur_covered;
+ }
+ if (!prev_covered)
+ {
+ double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
+ rows2double(prev_records);
+ DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
+ selectivity_mult *= tmp;
+ }
+ DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
+ DBUG_RETURN(selectivity_mult);
+}
+
+
+/*
+ Check if adding a ROR scan to a ROR-intersection reduces its cost of
+ ROR-intersection and if yes, update parameters of ROR-intersection,
+ including its cost.
+
+ SYNOPSIS
+ ror_intersect_add()
+ param Parameter from test_quick_select
+ info ROR-intersection structure to add the scan to.
+ ror_scan ROR scan info to add.
+ is_cpk_scan If TRUE, add the scan as CPK scan (this can be inferred
+ from other parameters and is passed separately only to
+ avoid duplicating the inference code)
+
+ NOTES
+ Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
+ intersection decreases. The cost of ROR-intersection is calculated as
+ follows:
+
+ cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval
+
+ When we add a scan the first increases and the second decreases.
+
+ cost_of_full_rows_retrieval=
+ (union of indexes used covers all needed fields) ?
+ cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
+ 0
+
+ E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
+ ror_scan_selectivity({scan1}, scan2) * ... *
+ ror_scan_selectivity({scan1,...}, scanN).
+ RETURN
+ TRUE ROR scan added to ROR-intersection, cost updated.
+ FALSE It doesn't make sense to add this ROR scan to this ROR-intersection.
+*/
+
+static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
+ ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
+{
+ double selectivity_mult= 1.0;
+
+ DBUG_ENTER("ror_intersect_add");
+ DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
+ DBUG_PRINT("info", ("Adding scan on %s",
+ info->param->table->key_info[ror_scan->keynr].name));
+ DBUG_PRINT("info", ("is_cpk_scan: %d",is_cpk_scan));
+
+ selectivity_mult = ror_scan_selectivity(info, ror_scan);
+ if (selectivity_mult == 1.0)
+ {
+ /* Don't add this scan if it doesn't improve selectivity. */
+ DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
+ DBUG_RETURN(FALSE);
+ }
+
+ info->out_rows *= selectivity_mult;
+ DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
+
+ if (is_cpk_scan)
+ {
+ /*
+ CPK scan is used to filter out rows. We apply filtering for
+ each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
+ per check this gives us:
+ */
+ info->index_scan_costs += rows2double(info->index_records) /
+ TIME_FOR_COMPARE_ROWID;
+ }
+ else
+ {
+ info->index_records += info->param->table->quick_rows[ror_scan->keynr];
+ info->index_scan_costs += ror_scan->index_read_cost;
+ bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
+ if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
+ &info->covered_fields))
+ {
+ DBUG_PRINT("info", ("ROR-intersect is covering now"));
+ info->is_covering= TRUE;
+ }
+ }
+
+ info->total_cost= info->index_scan_costs;
+ DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
+ if (!info->is_covering)
+ {
+ info->total_cost +=
+ get_sweep_read_cost(info->param, double2rows(info->out_rows));
+ DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
+ }
+ DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
+ DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
+ info->is_covering?"" : "non-"));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Get best ROR-intersection plan using non-covering ROR-intersection search
+ algorithm. The returned plan may be covering.
+
+ SYNOPSIS
+ get_best_ror_intersect()
+ param Parameter from test_quick_select function.
+ tree Transformed restriction condition to be used to look
+ for ROR scans.
+ read_time Do not return read plans with cost > read_time.
+ are_all_covering [out] set to TRUE if union of all scans covers all
+ fields needed by the query (and it is possible to build
+ a covering ROR-intersection)
+
+ NOTES
+ get_key_scans_params must be called before this function can be called.
+
+ When this function is called by ROR-union construction algorithm it
+ assumes it is building an uncovered ROR-intersection (and thus # of full
+ records to be retrieved is wrong here). This is a hack.
+
+ IMPLEMENTATION
+ The approximate best non-covering plan search algorithm is as follows:
+
+ find_min_ror_intersection_scan()
+ {
+ R= select all ROR scans;
+ order R by (E(#records_matched) * key_record_length).
+
+ S= first(R); -- set of scans that will be used for ROR-intersection
+ R= R-first(S);
+ min_cost= cost(S);
+ min_scan= make_scan(S);
+ while (R is not empty)
+ {
+ firstR= R - first(R);
+ if (!selectivity(S + firstR < selectivity(S)))
+ continue;
+
+ S= S + first(R);
+ if (cost(S) < min_cost)
+ {
+ min_cost= cost(S);
+ min_scan= make_scan(S);
+ }
+ }
+ return min_scan;
+ }
+
+ See ror_intersect_add function for ROR intersection costs.
+
+ Special handling for Clustered PK scans
+ Clustered PK contains all table fields, so using it as a regular scan in
+ index intersection doesn't make sense: a range scan on CPK will be less
+ expensive in this case.
+ Clustered PK scan has special handling in ROR-intersection: it is not used
+ to retrieve rows, instead its condition is used to filter row references
+ we get from scans on other keys.
+
+ RETURN
+ ROR-intersection table read plan
+ NULL if out of memory or no suitable plan found.
+*/
+
+static
+TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
+ double read_time,
+ bool *are_all_covering)
+{
+ uint idx;
+ double min_cost= DBL_MAX;
+ DBUG_ENTER("get_best_ror_intersect");
+
+ if ((tree->n_ror_scans < 2) || !param->table->file->records)
+ DBUG_RETURN(NULL);
+
+ /*
+ Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of
+ them. Also find and save clustered PK scan if there is one.
+ */
+ ROR_SCAN_INFO **cur_ror_scan;
+ ROR_SCAN_INFO *cpk_scan= NULL;
+ uint cpk_no;
+ bool cpk_scan_used= FALSE;
+
+ if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ param->keys)))
+ return NULL;
+ cpk_no= ((param->table->file->primary_key_is_clustered()) ?
+ param->table->s->primary_key : MAX_KEY);
+
+ for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
+ {
+ ROR_SCAN_INFO *scan;
+ if (!tree->ror_scans_map.is_set(idx))
+ continue;
+ if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
+ return NULL;
+ if (param->real_keynr[idx] == cpk_no)
+ {
+ cpk_scan= scan;
+ tree->n_ror_scans--;
+ }
+ else
+ *(cur_ror_scan++)= scan;
+ }
+
+ tree->ror_scans_end= cur_ror_scan;
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
+ tree->ror_scans,
+ tree->ror_scans_end););
+ /*
+ Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
+ ROR_SCAN_INFO's.
+ Step 2: Get best ROR-intersection using an approximate algorithm.
+ */
+ qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
+ (qsort_cmp)cmp_ror_scan_info);
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
+ tree->ror_scans,
+ tree->ror_scans_end););
+
+ ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
+ ROR_SCAN_INFO **intersect_scans_end;
+ if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ tree->n_ror_scans)))
+ return NULL;
+ intersect_scans_end= intersect_scans;
+
+ /* Create and incrementally update ROR intersection. */
+ ROR_INTERSECT_INFO *intersect, *intersect_best;
+ if (!(intersect= ror_intersect_init(param)) ||
+ !(intersect_best= ror_intersect_init(param)))
+ return NULL;
+
+ /* [intersect_scans,intersect_scans_best) will hold the best intersection */
+ ROR_SCAN_INFO **intersect_scans_best;
+ cur_ror_scan= tree->ror_scans;
+ intersect_scans_best= intersect_scans;
+ while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
+ {
+ /* S= S + first(R); R= R - first(R); */
+ if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
+ {
+ cur_ror_scan++;
+ continue;
+ }
+
+ *(intersect_scans_end++)= *(cur_ror_scan++);
+
+ if (intersect->total_cost < min_cost)
+ {
+ /* Local minimum found, save it */
+ ror_intersect_cpy(intersect_best, intersect);
+ intersect_scans_best= intersect_scans_end;
+ min_cost = intersect->total_cost;
+ }
+ }
+
+ if (intersect_scans_best == intersect_scans)
+ {
+ DBUG_PRINT("info", ("None of scans increase selectivity"));
+ DBUG_RETURN(NULL);
+ }
+
+ DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
+ "best ROR-intersection",
+ intersect_scans,
+ intersect_scans_best););
+
+ *are_all_covering= intersect->is_covering;
+ uint best_num= intersect_scans_best - intersect_scans;
+ ror_intersect_cpy(intersect, intersect_best);
+
+ /*
+ Ok, found the best ROR-intersection of non-CPK key scans.
+ Check if we should add a CPK scan. If the obtained ROR-intersection is
+ covering, it doesn't make sense to add CPK scan.
+ */
+ if (cpk_scan && !intersect->is_covering)
+ {
+ if (ror_intersect_add(intersect, cpk_scan, TRUE) &&
+ (intersect->total_cost < min_cost))
+ {
+ cpk_scan_used= TRUE;
+ intersect_best= intersect; //just set pointer here
+ }
+ }
+
+ /* Ok, return ROR-intersect plan if we have found one */
+ TRP_ROR_INTERSECT *trp= NULL;
+ if (min_cost < read_time && (cpk_scan_used || best_num > 1))
+ {
+ if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
+ DBUG_RETURN(trp);
+ if (!(trp->first_scan=
+ (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*best_num)))
+ DBUG_RETURN(NULL);
+ memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
+ trp->last_scan= trp->first_scan + best_num;
+ trp->is_covering= intersect_best->is_covering;
+ trp->read_cost= intersect_best->total_cost;
+ /* Prevent divisons by zero */
+ ha_rows best_rows = double2rows(intersect_best->out_rows);
+ if (!best_rows)
+ best_rows= 1;
+ trp->records= best_rows;
+ trp->index_scan_costs= intersect_best->index_scan_costs;
+ trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
+ DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
+ "cost %g, records %lu",
+ trp->read_cost, (ulong) trp->records));
+ }
+ DBUG_RETURN(trp);
+}
+
+
+/*
+ Get best covering ROR-intersection.
+ SYNOPSIS
+ get_best_covering_ror_intersect()
+ param Parameter from test_quick_select function.
+ tree SEL_TREE with sets of intervals for different keys.
+ read_time Don't return table read plans with cost > read_time.
+
+ RETURN
+ Best covering ROR-intersection plan
+ NULL if no plan found.
+
+ NOTES
+ get_best_ror_intersect must be called for a tree before calling this
+ function for it.
+ This function invalidates tree->ror_scans member values.
+
+ The following approximate algorithm is used:
+ I=set of all covering indexes
+ F=set of all fields to cover
+ S={}
+
+ do {
+ Order I by (#covered fields in F desc,
+ #components asc,
+ number of first not covered component asc);
+ F=F-covered by first(I);
+ S=S+first(I);
+ I=I-first(I);
+ } while F is not empty.
+*/
+
+static
+TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
+ SEL_TREE *tree,
+ double read_time)
+{
+ ROR_SCAN_INFO **ror_scan_mark;
+ ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
+ DBUG_ENTER("get_best_covering_ror_intersect");
+ uint nbits= param->fields_bitmap_size*8;
+
+ for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
+ (*scan)->key_components=
+ param->table->key_info[(*scan)->keynr].key_parts;
+
+ /*
+ Run covering-ROR-search algorithm.
+ Assume set I is [ror_scan .. ror_scans_end)
+ */
+
+ /*I=set of all covering indexes */
+ ror_scan_mark= tree->ror_scans;
+
+ MY_BITMAP *covered_fields= &param->tmp_covered_fields;
+ if (!covered_fields->bitmap)
+ covered_fields->bitmap= (uchar*)alloc_root(param->mem_root,
+ param->fields_bitmap_size);
+ if (!covered_fields->bitmap ||
+ bitmap_init(covered_fields, covered_fields->bitmap, nbits, FALSE))
+ DBUG_RETURN(0);
+ bitmap_clear_all(covered_fields);
+
+ double total_cost= 0.0f;
+ ha_rows records=0;
+ bool all_covered;
+
+ DBUG_PRINT("info", ("Building covering ROR-intersection"));
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "building covering ROR-I",
+ ror_scan_mark, ror_scans_end););
+ do {
+ /*
+ Update changed sorting info:
+ #covered fields,
+ number of first not covered component
+ Calculate and save these values for each of remaining scans.
+ */
+ for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
+ {
+ bitmap_subtract(&(*scan)->covered_fields, covered_fields);
+ (*scan)->used_fields_covered=
+ bitmap_bits_set(&(*scan)->covered_fields);
+ (*scan)->first_uncovered_field=
+ bitmap_get_first(&(*scan)->covered_fields);
+ }
+
+ qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
+ (qsort_cmp)cmp_ror_scan_info_covering);
+
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "remaining scans",
+ ror_scan_mark, ror_scans_end););
+
+ /* I=I-first(I) */
+ total_cost += (*ror_scan_mark)->index_read_cost;
+ records += (*ror_scan_mark)->records;
+ DBUG_PRINT("info", ("Adding scan on %s",
+ param->table->key_info[(*ror_scan_mark)->keynr].name));
+ if (total_cost > read_time)
+ DBUG_RETURN(NULL);
+ /* F=F-covered by first(I) */
+ bitmap_union(covered_fields, &(*ror_scan_mark)->covered_fields);
+ all_covered= bitmap_is_subset(&param->needed_fields, covered_fields);
+ } while ((++ror_scan_mark < ror_scans_end) && !all_covered);
+
+ if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
+ DBUG_RETURN(NULL);
+
+ /*
+ Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
+ cost total_cost.
+ */
+ DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "creating covering ROR-intersect",
+ tree->ror_scans, ror_scan_mark););
+
+ /* Add priority queue use cost. */
+ total_cost += rows2double(records)*
+ log((double)(ror_scan_mark - tree->ror_scans)) /
+ (TIME_FOR_COMPARE_ROWID * M_LN2);
+ DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));
+
+ if (total_cost > read_time)
+ DBUG_RETURN(NULL);
+
+ TRP_ROR_INTERSECT *trp;
+ if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
+ DBUG_RETURN(trp);
+ uint best_num= (ror_scan_mark - tree->ror_scans);
+ if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
+ sizeof(ROR_SCAN_INFO*)*
+ best_num)))
+ DBUG_RETURN(NULL);
+ memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*));
+ trp->last_scan= trp->first_scan + best_num;
+ trp->is_covering= TRUE;
+ trp->read_cost= total_cost;
+ trp->records= records;
+ trp->cpk_scan= NULL;
+
+ DBUG_PRINT("info",
+ ("Returning covering ROR-intersect plan: cost %g, records %lu",
+ trp->read_cost, (ulong) trp->records));
+ DBUG_RETURN(trp);
+}
+
+
+/*
+ Get best "range" table read plan for given SEL_TREE.
+ Also update PARAM members and store ROR scans info in the SEL_TREE.
+ SYNOPSIS
+ get_key_scans_params
+ param parameters from test_quick_select
+ tree make range select for this SEL_TREE
+ index_read_must_be_used if TRUE, assume 'index only' option will be set
+ (except for clustered PK indexes)
+ read_time don't create read plans with cost > read_time.
+ RETURN
+ Best range read plan
+ NULL if no plan found or error occurred
+*/
+
+static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
+ bool index_read_must_be_used,
+ double read_time)
+{
+ int idx;
+ SEL_ARG **key,**end, **key_to_read= NULL;
+ ha_rows best_records;
+ TRP_RANGE* read_plan= NULL;
+ bool pk_is_clustered= param->table->file->primary_key_is_clustered();
+ DBUG_ENTER("get_key_scans_params");
+ LINT_INIT(best_records); /* protected by key_to_read */
+ /*
+ Note that there may be trees that have type SEL_TREE::KEY but contain no
+ key reads at all, e.g. tree for expression "key1 is not null" where key1
+ is defined as "not null".
+ */
+ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
+ "tree scans"););
+ tree->ror_scans_map.clear_all();
+ tree->n_ror_scans= 0;
+ for (idx= 0,key=tree->keys, end=key+param->keys;
+ key != end ;
+ key++,idx++)
+ {
+ ha_rows found_records;
+ double found_read_time;
+ if (*key)
+ {
+ uint keynr= param->real_keynr[idx];
+ if ((*key)->type == SEL_ARG::MAYBE_KEY ||
+ (*key)->maybe_flag)
+ param->needed_reg->set_bit(keynr);
+
+ bool read_index_only= index_read_must_be_used ? TRUE :
+ (bool) param->table->used_keys.is_set(keynr);
+
+ found_records= check_quick_select(param, idx, *key);
+ if (param->is_ror_scan)
+ {
+ tree->n_ror_scans++;
+ tree->ror_scans_map.set_bit(idx);
+ }
+ double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
+ if (found_records != HA_POS_ERROR && found_records > 2 &&
+ read_index_only &&
+ (param->table->file->index_flags(keynr, param->max_key_part,1) &
+ HA_KEYREAD_ONLY) &&
+ !(pk_is_clustered && keynr == param->table->s->primary_key))
+ {
+ /*
+ We can resolve this by only reading through this key.
+ 0.01 is added to avoid races between range and 'index' scan.
+ */
+ found_read_time= get_index_only_read_time(param,found_records,keynr) +
+ cpu_cost + 0.01;
+ }
+ else
+ {
+ /*
+ cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
+ The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
+ */
+ found_read_time= param->table->file->read_time(keynr,
+ param->range_count,
+ found_records) +
+ cpu_cost + 0.01;
+ }
+ DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
+ param->table->key_info[keynr].name, found_read_time,
+ read_time));
+
+ if (read_time > found_read_time && found_records != HA_POS_ERROR
+ /*|| read_time == DBL_MAX*/ )
+ {
+ read_time= found_read_time;
+ best_records= found_records;
+ key_to_read= key;
+ }
+
+ }
+ }
+
+ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
+ "ROR scans"););
+ if (key_to_read)
+ {
+ idx= key_to_read - tree->keys;
+ if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
+ {
+ read_plan->records= best_records;
+ read_plan->is_ror= tree->ror_scans_map.is_set(idx);
+ read_plan->read_cost= read_time;
+ DBUG_PRINT("info",
+ ("Returning range plan for key %s, cost %g, records %lu",
+ param->table->key_info[param->real_keynr[idx]].name,
+ read_plan->read_cost, (ulong) read_plan->records));
+ }
+ }
+ else
+ DBUG_PRINT("info", ("No 'range' table read plan found"));
+
+ DBUG_RETURN(read_plan);
+}
+
+
+QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_INDEX_MERGE_SELECT *quick_imerge;
+ QUICK_RANGE_SELECT *quick;
+ /* index_merge always retrieves full rows, ignore retrieve_full_rows */
+ if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
+ return NULL;
+
+ quick_imerge->records= records;
+ quick_imerge->read_time= read_cost;
+ for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
+ range_scan++)
+ {
+ if (!(quick= (QUICK_RANGE_SELECT*)
+ ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
+ quick_imerge->push_quick_back(quick))
+ {
+ delete quick;
+ delete quick_imerge;
+ return NULL;
+ }
+ }
+ return quick_imerge;
+}
+
+QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
+ QUICK_RANGE_SELECT *quick;
+ DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
+ MEM_ROOT *alloc;
+
+ if ((quick_intrsect=
+ new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
+ retrieve_full_rows? (!is_covering):FALSE,
+ parent_alloc)))
+ {
+ DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
+ "creating ROR-intersect",
+ first_scan, last_scan););
+ alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
+ for (; first_scan != last_scan;++first_scan)
+ {
+ if (!(quick= get_quick_select(param, (*first_scan)->idx,
+ (*first_scan)->sel_arg, alloc)) ||
+ quick_intrsect->push_quick_back(quick))
+ {
+ delete quick_intrsect;
+ DBUG_RETURN(NULL);
+ }
+ }
+ if (cpk_scan)
+ {
+ if (!(quick= get_quick_select(param, cpk_scan->idx,
+ cpk_scan->sel_arg, alloc)))
+ {
+ delete quick_intrsect;
+ DBUG_RETURN(NULL);
+ }
+ quick->file= NULL;
+ quick_intrsect->cpk_quick= quick;
+ }
+ quick_intrsect->records= records;
+ quick_intrsect->read_time= read_cost;
+ }
+ DBUG_RETURN(quick_intrsect);
+}
+
+
+QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
+ bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_ROR_UNION_SELECT *quick_roru;
+ TABLE_READ_PLAN **scan;
+ QUICK_SELECT_I *quick;
+ DBUG_ENTER("TRP_ROR_UNION::make_quick");
+ /*
+ It is impossible to construct a ROR-union that will not retrieve full
+ rows, ignore retrieve_full_rows parameter.
+ */
+ if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
+ {
+ for (scan= first_ror; scan != last_ror; scan++)
+ {
+ if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
+ quick_roru->push_quick_back(quick))
+ DBUG_RETURN(NULL);
+ }
+ quick_roru->records= records;
+ quick_roru->read_time= read_cost;
+ }
+ DBUG_RETURN(quick_roru);
+}
+
+
+/*
+ Build a SEL_TREE for <> or NOT BETWEEN predicate
+
+ SYNOPSIS
+ get_ne_mm_tree()
+ param PARAM from SQL_SELECT::test_quick_select
+ cond_func item for the predicate
+ field field in the predicate
+ lt_value constant that field should be smaller
+ gt_value constant that field should be greaterr
+ cmp_type compare type for the field
+
+ RETURN
+ # Pointer to tree built tree
+ 0 on error
+*/
+
+static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func,
+ Field *field,
+ Item *lt_value, Item *gt_value,
+ Item_result cmp_type)
+{
+ SEL_TREE *tree;
+ tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
+ lt_value, cmp_type);
+ if (tree)
+ {
+ tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
+ Item_func::GT_FUNC,
+ gt_value, cmp_type));
+ }
+ return tree;
+}
+
+
+/*
+ Build a SEL_TREE for a simple predicate
+
+ SYNOPSIS
+ get_func_mm_tree()
+ param PARAM from SQL_SELECT::test_quick_select
+ cond_func item for the predicate
+ field field in the predicate
+ value constant in the predicate
+ cmp_type compare type for the field
+ inv TRUE <> NOT cond_func is considered
+ (makes sense only when cond_func is BETWEEN or IN)
+
+ RETURN
+ Pointer to the tree built tree
+*/
+
+static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
+ Field *field, Item *value,
+ Item_result cmp_type, bool inv)
+{
+ SEL_TREE *tree= 0;
+ DBUG_ENTER("get_func_mm_tree");
+
+ switch (cond_func->functype()) {
+
+ case Item_func::NE_FUNC:
+ tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
+ break;
+
+ case Item_func::BETWEEN:
+ {
+ if (!value)
+ {
+ if (inv)
+ {
+ tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
+ cond_func->arguments()[2], cmp_type);
+ }
+ else
+ {
+ tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
+ cond_func->arguments()[1],cmp_type);
+ if (tree)
+ {
+ tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
+ Item_func::LE_FUNC,
+ cond_func->arguments()[2],
+ cmp_type));
+ }
+ }
+ }
+ else
+ tree= get_mm_parts(param, cond_func, field,
+ (inv ?
+ (value == (Item*)1 ? Item_func::GT_FUNC :
+ Item_func::LT_FUNC):
+ (value == (Item*)1 ? Item_func::LE_FUNC :
+ Item_func::GE_FUNC)),
+ cond_func->arguments()[0], cmp_type);
+ break;
+ }
+ case Item_func::IN_FUNC:
+ {
+ Item_func_in *func=(Item_func_in*) cond_func;
+
+ if (inv)
+ {
+ if (func->array && func->cmp_type != ROW_RESULT)
+ {
+ /*
+ We get here for conditions in form "t.key NOT IN (c1, c2, ...)",
+ where c{i} are constants. Our goal is to produce a SEL_TREE that
+ represents intervals:
+
+ ($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ... (*)
+
+ where $MIN is either "-inf" or NULL.
+
+ The most straightforward way to produce it is to convert NOT IN
+ into "(t.key != c1) AND (t.key != c2) AND ... " and let the range
+ analyzer to build SEL_TREE from that. The problem is that the
+ range analyzer will use O(N^2) memory (which is probably a bug),
+ and people do use big NOT IN lists (e.g. see BUG#15872, BUG#21282),
+ will run out of memory.
+
+ Another problem with big lists like (*) is that a big list is
+ unlikely to produce a good "range" access, while considering that
+ range access will require expensive CPU calculations (and for
+ MyISAM even index accesses). In short, big NOT IN lists are rarely
+ worth analyzing.
+
+ Considering the above, we'll handle NOT IN as follows:
+ * if the number of entries in the NOT IN list is less than
+ NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*) manually.
+ * Otherwise, don't produce a SEL_TREE.
+ */
+#define NOT_IN_IGNORE_THRESHOLD 1000
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ /*
+ Create one Item_type constant object. We'll need it as
+ get_mm_parts only accepts constant values wrapped in Item_Type
+ objects.
+ We create the Item on param->mem_root which points to
+ per-statement mem_root (while thd->mem_root is currently pointing
+ to mem_root local to range optimizer).
+ */
+ Item *value_item= func->array->create_item();
+ param->thd->mem_root= tmp_root;
+
+ if (func->array->count > NOT_IN_IGNORE_THRESHOLD || !value_item)
+ break;
+
+ /* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */
+ uint i=0;
+ do
+ {
+ func->array->value_to_item(i, value_item);
+ tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
+ value_item, cmp_type);
+ if (!tree)
+ break;
+ i++;
+ } while (i < func->array->count && tree->type == SEL_TREE::IMPOSSIBLE);
+
+ if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
+ {
+ /* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
+ tree= NULL;
+ break;
+ }
+ SEL_TREE *tree2;
+ for (; i < func->array->count; i++)
+ {
+ if (func->array->compare_elems(i, i-1))
+ {
+ /* Get a SEL_TREE for "-inf < X < c_i" interval */
+ func->array->value_to_item(i, value_item);
+ tree2= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
+ value_item, cmp_type);
+ if (!tree2)
+ {
+ tree= NULL;
+ break;
+ }
+
+ /* Change all intervals to be "c_{i-1} < X < c_i" */
+ for (uint idx= 0; idx < param->keys; idx++)
+ {
+ SEL_ARG *new_interval, *last_val;
+ if (((new_interval= tree2->keys[idx])) &&
+ (tree->keys[idx]) &&
+ ((last_val= tree->keys[idx]->last())))
+ {
+ new_interval->min_value= last_val->max_value;
+ new_interval->min_flag= NEAR_MIN;
+ }
+ }
+ /*
+ The following doesn't try to allocate memory so no need to
+ check for NULL.
+ */
+ tree= tree_or(param, tree, tree2);
+ }
+ }
+
+ if (tree && tree->type != SEL_TREE::IMPOSSIBLE)
+ {
+ /*
+ Get the SEL_TREE for the last "c_last < X < +inf" interval
+ (value_item cotains c_last already)
+ */
+ tree2= get_mm_parts(param, cond_func, field, Item_func::GT_FUNC,
+ value_item, cmp_type);
+ tree= tree_or(param, tree, tree2);
+ }
+ }
+ else
+ {
+ tree= get_ne_mm_tree(param, cond_func, field,
+ func->arguments()[1], func->arguments()[1],
+ cmp_type);
+ if (tree)
+ {
+ Item **arg, **end;
+ for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
+ arg < end ; arg++)
+ {
+ tree= tree_and(param, tree, get_ne_mm_tree(param, cond_func, field,
+ *arg, *arg, cmp_type));
+ }
+ }
+ }
+ }
+ else
+ {
+ tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
+ func->arguments()[1], cmp_type);
+ if (tree)
+ {
+ Item **arg, **end;
+ for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
+ arg < end ; arg++)
+ {
+ tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
+ Item_func::EQ_FUNC,
+ *arg, cmp_type));
+ }
+ }
+ }
+ break;
+ }
+ default:
+ {
+ /*
+ Here the function for the following predicates are processed:
+ <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
+ If the predicate is of the form (value op field) it is handled
+ as the equivalent predicate (field rev_op value), e.g.
+ 2 <= a is handled as a >= 2.
+ */
+ Item_func::Functype func_type=
+ (value != cond_func->arguments()[0]) ? cond_func->functype() :
+ ((Item_bool_func2*) cond_func)->rev_functype();
+ tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
+ }
+ }
+
+ DBUG_RETURN(tree);
+}
+
+
+/*
+ Build conjunction of all SEL_TREEs for a simple predicate applying equalities
+
+ SYNOPSIS
+ get_full_func_mm_tree()
+ param PARAM from SQL_SELECT::test_quick_select
+ cond_func item for the predicate
+ field_item field in the predicate
+ value constant in the predicate
+ (for BETWEEN it contains the number of the field argument,
+ for IN it's always 0)
+ inv TRUE <> NOT cond_func is considered
+ (makes sense only when cond_func is BETWEEN or IN)
+
+ DESCRIPTION
+ For a simple SARGable predicate of the form (f op c), where f is a field and
+ c is a constant, the function builds a conjunction of all SEL_TREES that can
+ be obtained by the substitution of f for all different fields equal to f.
+
+ NOTES
+ If the WHERE condition contains a predicate (fi op c),
+ then not only SELL_TREE for this predicate is built, but
+ the trees for the results of substitution of fi for
+ each fj belonging to the same multiple equality as fi
+ are built as well.
+ E.g. for WHERE t1.a=t2.a AND t2.a > 10
+ a SEL_TREE for t2.a > 10 will be built for quick select from t2
+ and
+ a SEL_TREE for t1.a > 10 will be built for quick select from t1.
+
+ A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
+ in a similar way: we build a conjuction of trees for the results
+ of all substitutions of fi for equal fj.
+ Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
+ differently. It is considered as a conjuction of two SARGable
+ predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
+ is called for each of them separately producing trees for
+ AND j (f1j <=c ) and AND j (f2j <= c)
+ After this these two trees are united in one conjunctive tree.
+ It's easy to see that the same tree is obtained for
+ AND j,k (f1j <=c AND f2k<=c)
+ which is equivalent to
+ AND j,k (c BETWEEN f1j AND f2k).
+ The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
+ which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
+ function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
+ producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
+ trees are united in one OR-tree. The expression
+ (AND j (f1j > c) OR AND j (f2j < c)
+ is equivalent to the expression
+ AND j,k (f1j > c OR f2k < c)
+ which is just a translation of
+ AND j,k (c NOT BETWEEN f1j AND f2k)
+
+ In the cases when one of the items f1, f2 is a constant c1 we do not create
+ a tree for it at all. It works for BETWEEN predicates but does not
+ work for NOT BETWEEN predicates as we have to evaluate the expression
+ with it. If it is TRUE then the other tree can be completely ignored.
+ We do not do it now and no trees are built in these cases for
+ NOT BETWEEN predicates.
+
+ As to IN predicates only ones of the form (f IN (c1,...,cn)),
+ where f1 is a field and c1,...,cn are constant, are considered as
+ SARGable. We never try to narrow the index scan using predicates of
+ the form (c IN (c1,...,f,...,cn)).
+
+ RETURN
+ Pointer to the tree representing the built conjunction of SEL_TREEs
+*/
+
+static SEL_TREE *get_full_func_mm_tree(PARAM *param, Item_func *cond_func,
+ Item_field *field_item, Item *value,
+ bool inv)
+{
+ SEL_TREE *tree= 0;
+ SEL_TREE *ftree= 0;
+ table_map ref_tables= 0;
+ table_map param_comp= ~(param->prev_tables | param->read_tables |
+ param->current_table);
+ DBUG_ENTER("get_full_func_mm_tree");
+
+ for (uint i= 0; i < cond_func->arg_count; i++)
+ {
+ Item *arg= cond_func->arguments()[i]->real_item();
+ if (arg != field_item)
+ ref_tables|= arg->used_tables();
+ }
+ Field *field= field_item->field;
+ Item_result cmp_type= field->cmp_type();
+ if (!((ref_tables | field->table->map) & param_comp))
+ ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
+ Item_equal *item_equal= field_item->item_equal;
+ if (item_equal)
+ {
+ Item_equal_iterator it(*item_equal);
+ Item_field *item;
+ while ((item= it++))
+ {
+ Field *f= item->field;
+ if (field->eq(f))
+ continue;
+ if (!((ref_tables | f->table->map) & param_comp))
+ {
+ tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
+ ftree= !ftree ? tree : tree_and(param, ftree, tree);
+ }
+ }
+ }
+ DBUG_RETURN(ftree);
+}
+
/* make a select tree of all keys in condition */
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
SEL_TREE *tree=0;
+ SEL_TREE *ftree= 0;
+ Item_field *field_item= 0;
+ bool inv= FALSE;
+ Item *value= 0;
DBUG_ENTER("get_mm_tree");
if (cond->type() == Item::COND_ITEM)
@@ -1118,14 +4053,26 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
/* Here when simple cond */
if (cond->const_item())
{
- if (cond->val_int())
- DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
- DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
+ /*
+ During the cond->val_int() evaluation we can come across a subselect
+ item which may allocate memory on the thd->mem_root and assumes
+ all the memory allocated has the same life span as the subselect
+ item itself. So we have to restore the thread's mem_root here.
+ */
+ MEM_ROOT *tmp_root= param->mem_root;
+ param->thd->mem_root= param->old_root;
+ tree= cond->val_int() ? new(tmp_root) SEL_TREE(SEL_TREE::ALWAYS) :
+ new(tmp_root) SEL_TREE(SEL_TREE::IMPOSSIBLE);
+ param->thd->mem_root= tmp_root;
+ DBUG_RETURN(tree);
}
- table_map ref_tables=cond->used_tables();
+ table_map ref_tables= 0;
+ table_map param_comp= ~(param->prev_tables | param->read_tables |
+ param->current_table);
if (cond->type() != Item::FUNC_ITEM)
{ // Should be a field
+ ref_tables= cond->used_tables();
if ((ref_tables & param->current_table) ||
(ref_tables & ~(param->prev_tables | param->read_tables)))
DBUG_RETURN(0);
@@ -1133,103 +4080,109 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
}
Item_func *cond_func= (Item_func*) cond;
- if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
- DBUG_RETURN(0); // Can't be calculated
+ if (cond_func->functype() == Item_func::BETWEEN ||
+ cond_func->functype() == Item_func::IN_FUNC)
+ inv= ((Item_func_opt_neg *) cond_func)->negated;
+ else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
+ DBUG_RETURN(0);
param->cond= cond;
- if (cond_func->functype() == Item_func::BETWEEN)
+ switch (cond_func->functype()) {
+ case Item_func::BETWEEN:
+ if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
+ {
+ field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
+ ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
+ }
+
+ /*
+ Concerning the code below see the NOTES section in
+ the comments for the function get_full_func_mm_tree()
+ */
+ for (uint i= 1 ; i < cond_func->arg_count ; i++)
+ {
+
+ if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
+ {
+ field_item= (Item_field*) (cond_func->arguments()[i]->real_item());
+ SEL_TREE *tmp= get_full_func_mm_tree(param, cond_func,
+ field_item, (Item*) i, inv);
+ if (inv)
+ tree= !tree ? tmp : tree_or(param, tree, tmp);
+ else
+ tree= tree_and(param, tree, tmp);
+ }
+ else if (inv)
+ {
+ tree= 0;
+ break;
+ }
+ }
+
+ ftree = tree_and(param, ftree, tree);
+ break;
+ case Item_func::IN_FUNC:
+ {
+ Item_func_in *func=(Item_func_in*) cond_func;
+ if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
+ DBUG_RETURN(0);
+ field_item= (Item_field*) (func->key_item()->real_item());
+ ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
+ break;
+ }
+ case Item_func::MULT_EQUAL_FUNC:
{
- if (!((Item_func_between *)(cond_func))->negated &&
- cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
+ Item_equal *item_equal= (Item_equal *) cond;
+ if (!(value= item_equal->get_const()))
+ DBUG_RETURN(0);
+ Item_equal_iterator it(*item_equal);
+ ref_tables= value->used_tables();
+ while ((field_item= it++))
{
- Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
- Item_result cmp_type=field->cmp_type();
- DBUG_RETURN(tree_and(param,
- get_mm_parts(param, cond_func, field,
- Item_func::GE_FUNC,
- cond_func->arguments()[1], cmp_type),
- get_mm_parts(param, cond_func, field,
- Item_func::LE_FUNC,
- cond_func->arguments()[2], cmp_type)));
+ Field *field= field_item->field;
+ Item_result cmp_type= field->cmp_type();
+ if (!((ref_tables | field->table->map) & param_comp))
+ {
+ tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
+ value,cmp_type);
+ ftree= !ftree ? tree : tree_and(param, ftree, tree);
+ }
}
- DBUG_RETURN(0);
+
+ DBUG_RETURN(ftree);
}
- if (cond_func->functype() == Item_func::IN_FUNC)
- { // COND OR
- Item_func_in *func=(Item_func_in*) cond_func;
- if (!func->negated && func->key_item()->type() == Item::FIELD_ITEM)
- {
- Field *field=((Item_field*) (func->key_item()))->field;
- Item_result cmp_type=field->cmp_type();
- tree= get_mm_parts(param,cond_func,field,Item_func::EQ_FUNC,
- func->arguments()[1],cmp_type);
- if (!tree)
- DBUG_RETURN(tree); // Not key field
- for (uint i=2 ; i < func->argument_count(); i++)
- {
- SEL_TREE *new_tree=get_mm_parts(param,cond_func,field,
- Item_func::EQ_FUNC,
- func->arguments()[i],cmp_type);
- tree=tree_or(param,tree,new_tree);
- }
- DBUG_RETURN(tree);
- }
- DBUG_RETURN(0); // Can't optimize this IN
- }
-
- if (ref_tables & ~(param->prev_tables | param->read_tables |
- param->current_table))
- DBUG_RETURN(0); // Can't be calculated yet
- if (!(ref_tables & param->current_table))
- DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
-
- /* check field op const */
- /* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
- if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
- {
- tree= get_mm_parts(param, cond_func,
- ((Item_field*) (cond_func->arguments()[0]))->field,
- cond_func->functype(),
- cond_func->arg_count > 1 ? cond_func->arguments()[1] :
- 0,
- ((Item_field*) (cond_func->arguments()[0]))->field->
- cmp_type());
- }
- /* check const op field */
- if (!tree &&
- cond_func->have_rev_func() &&
- cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
- {
- DBUG_RETURN(get_mm_parts(param, cond_func,
- ((Item_field*)
- (cond_func->arguments()[1]))->field,
- ((Item_bool_func2*) cond_func)->rev_functype(),
- cond_func->arguments()[0],
- ((Item_field*)
- (cond_func->arguments()[1]))->field->cmp_type()
- ));
+ default:
+ if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
+ {
+ field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
+ value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
+ }
+ else if (cond_func->have_rev_func() &&
+ cond_func->arguments()[1]->real_item()->type() ==
+ Item::FIELD_ITEM)
+ {
+ field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
+ value= cond_func->arguments()[0];
+ }
+ else
+ DBUG_RETURN(0);
+ ftree= get_full_func_mm_tree(param, cond_func, field_item, value, inv);
}
- DBUG_RETURN(tree);
+
+ DBUG_RETURN(ftree);
}
static SEL_TREE *
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
- Item_func::Functype type,
+ Item_func::Functype type,
Item *value, Item_result cmp_type)
{
- bool ne_func= FALSE;
DBUG_ENTER("get_mm_parts");
if (field->table != param->table)
DBUG_RETURN(0);
- if (type == Item_func::NE_FUNC)
- {
- ne_func= TRUE;
- type= Item_func::LT_FUNC;
- }
-
KEY_PART *key_part = param->key_parts;
KEY_PART *end = param->key_parts_end;
SEL_TREE *tree=0;
@@ -1252,30 +4205,21 @@ get_mm_parts(PARAM *param, COND *cond_func, Field *field,
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
{
tree->type=SEL_TREE::IMPOSSIBLE;
- /* If this is an NE_FUNC, we still need to check GT_FUNC. */
- if (!ne_func)
- DBUG_RETURN(tree);
+ DBUG_RETURN(tree);
}
}
else
{
// This key may be used later
- if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
+ if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
DBUG_RETURN(0); // OOM
}
sel_arg->part=(uchar) key_part->part;
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
+ tree->keys_map.set_bit(key_part->key);
}
}
- if (ne_func)
- {
- SEL_TREE *tree2= get_mm_parts(param, cond_func,
- field, Item_func::GT_FUNC,
- value, cmp_type);
- /* tree_or() will return 0 if tree2 is 0 */
- tree= tree_or(param,tree,tree2);
- }
DBUG_RETURN(tree);
}
@@ -1284,26 +4228,42 @@ static SEL_ARG *
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
Item_func::Functype type,Item *value)
{
- uint maybe_null=(uint) field->real_maybe_null(), copies;
- uint field_length=field->pack_length()+maybe_null;
- SEL_ARG *tree;
- char *str, *str2;
+ uint maybe_null=(uint) field->real_maybe_null();
+ bool optimize_range;
+ SEL_ARG *tree= 0;
+ MEM_ROOT *alloc= param->mem_root;
+ char *str;
+ ulong orig_sql_mode;
+ int err;
DBUG_ENTER("get_mm_leaf");
+ /*
+ We need to restore the runtime mem_root of the thread in this
+ function because it evaluates the value of its argument, while
+ the argument can be any, e.g. a subselect. The subselect
+ items, in turn, assume that all the memory allocated during
+ the evaluation has the same life span as the item itself.
+ TODO: opt_range.cc should not reset thd->mem_root at all.
+ */
+ param->thd->mem_root= param->old_root;
if (!value) // IS NULL or IS NOT NULL
{
- if (field->table->outer_join) // Can't use a key on this
- DBUG_RETURN(0);
+ if (field->table->maybe_null) // Can't use a key on this
+ goto end;
if (!maybe_null) // Not null field
- DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
- if (!(tree=new SEL_ARG(field,is_null_string,is_null_string)))
- DBUG_RETURN(0); // out of memory
+ {
+ if (type == Item_func::ISNULL_FUNC)
+ tree= &null_element;
+ goto end;
+ }
+ if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
+ goto end; // out of memory
if (type == Item_func::ISNOTNULL_FUNC)
{
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
tree->max_flag=NO_MAX_RANGE;
}
- DBUG_RETURN(tree);
+ goto end;
}
/*
@@ -1323,7 +4283,10 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
key_part->image_type == Field::itRAW &&
((Field_str*)field)->charset() != conf_func->compare_collation() &&
!(conf_func->compare_collation()->state & MY_CS_BINSORT))
- DBUG_RETURN(0);
+ goto end;
+
+ optimize_range= field->optimize_range(param->real_keynr[key_part->key],
+ key_part->part);
if (type == Item_func::LIKE_FUNC)
{
@@ -1331,12 +4294,15 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
uint length,offset,min_length,max_length;
+ uint field_length= field->pack_length()+maybe_null;
- if (!field->optimize_range(param->real_keynr[key_part->key],
- key_part->part))
- DBUG_RETURN(0); // Can't optimize this
+ if (!optimize_range)
+ goto end;
if (!(res= value->val_str(&tmp)))
- DBUG_RETURN(&null_element);
+ {
+ tree= &null_element;
+ goto end;
+ }
/*
TODO:
@@ -1349,7 +4315,7 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
res= &tmp;
}
if (field->cmp_type() != STRING_RESULT)
- DBUG_RETURN(0); // Can only optimize strings
+ goto end; // Can only optimize strings
offset=maybe_null;
length=key_part->store_length;
@@ -1374,35 +4340,37 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
field_length= length;
}
length+=offset;
- if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
- DBUG_RETURN(0);
+ if (!(min_str= (char*) alloc_root(alloc, length*2)))
+ goto end;
+
max_str=min_str+length;
if (maybe_null)
max_str[0]= min_str[0]=0;
+ field_length-= maybe_null;
like_error= my_like_range(field->charset(),
res->ptr(), res->length(),
((Item_func_like*)(param->cond))->escape,
wild_one, wild_many,
- field_length-maybe_null,
+ field_length,
min_str+offset, max_str+offset,
&min_length, &max_length);
if (like_error) // Can't optimize with LIKE
- DBUG_RETURN(0);
+ goto end;
- if (offset != maybe_null) // Blob
+ if (offset != maybe_null) // BLOB or VARCHAR
{
int2store(min_str+maybe_null,min_length);
int2store(max_str+maybe_null,max_length);
}
- DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
+ tree= new (alloc) SEL_ARG(field, min_str, max_str);
+ goto end;
}
- if (!field->optimize_range(param->real_keynr[key_part->key],
- key_part->part) &&
+ if (!optimize_range &&
type != Item_func::EQ_FUNC &&
type != Item_func::EQUAL_FUNC)
- DBUG_RETURN(0); // Can't optimize this
+ goto end; // Can't optimize this
/*
We can't always use indexes when comparing a string index to a number
@@ -1411,47 +4379,50 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
- DBUG_RETURN(0);
-
- if (value->save_in_field(field, 1) < 0)
+ goto end;
+ /* For comparison purposes allow invalid dates like 2000-01-32 */
+ orig_sql_mode= field->table->in_use->variables.sql_mode;
+ if (value->real_item()->type() == Item::STRING_ITEM &&
+ (field->type() == FIELD_TYPE_DATE ||
+ field->type() == FIELD_TYPE_DATETIME))
+ field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
+ err= value->save_in_field_no_warnings(field, 1);
+ if (err > 0 && field->cmp_type() != value->result_type())
{
+ if ((type == Item_func::EQ_FUNC || type == Item_func::EQUAL_FUNC) &&
+ value->result_type() == item_cmp_type(field->result_type(),
+ value->result_type()))
+
+ {
+ tree= new (alloc) SEL_ARG(field, 0, 0);
+ tree->type= SEL_ARG::IMPOSSIBLE;
+ }
+ else
+ {
+ /*
+ TODO: We should return trees of the type SEL_ARG::IMPOSSIBLE
+ for the cases like int_field > 999999999999999999999999 as well.
+ */
+ tree= 0;
+ }
+ goto end;
+ }
+ if (err < 0)
+ {
+ field->table->in_use->variables.sql_mode= orig_sql_mode;
/* This happens when we try to insert a NULL field in a not null column */
- DBUG_RETURN(&null_element); // cmp with NULL is never true
- }
- /* Get local copy of key */
- copies= 1;
- if (field->key_type() == HA_KEYTYPE_VARTEXT)
- copies= 2;
- str= str2= (char*) alloc_root(param->mem_root,
- (key_part->store_length)*copies+1);
+ tree= &null_element; // cmp with NULL is never TRUE
+ goto end;
+ }
+ field->table->in_use->variables.sql_mode= orig_sql_mode;
+ str= (char*) alloc_root(alloc, key_part->store_length+1);
if (!str)
- DBUG_RETURN(0);
+ goto end;
if (maybe_null)
*str= (char) field->is_real_null(); // Set to 1 if null
- field->get_key_image(str+maybe_null, key_part->length,
- field->charset(), key_part->image_type);
- if (copies == 2)
- {
- /*
- The key is stored as 2 byte length + key
- key doesn't match end space. In other words, a key 'X ' should match
- all rows between 'X' and 'X ...'
- */
- uint length= uint2korr(str+maybe_null);
- str2= str+ key_part->store_length;
- /* remove end space */
- while (length > 0 && str[length+HA_KEY_BLOB_LENGTH+maybe_null-1] == ' ')
- length--;
- int2store(str+maybe_null, length);
- /* Create key that is space filled */
- memcpy(str2, str, length + HA_KEY_BLOB_LENGTH + maybe_null);
- my_fill_8bit(field->charset(),
- str2+ length+ HA_KEY_BLOB_LENGTH +maybe_null,
- key_part->length-length, ' ');
- int2store(str2+maybe_null, key_part->length);
- }
- if (!(tree=new SEL_ARG(field,str,str2)))
- DBUG_RETURN(0); // out of memory
+ field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
+ if (!(tree= new (alloc) SEL_ARG(field, str, str)))
+ goto end; // out of memory
/*
Check if we are comparing an UNSIGNED integer with a negative constant.
@@ -1464,9 +4435,8 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
negative integers (which otherwise fails because at query execution time
negative integers are cast to unsigned if compared with unsigned).
*/
- Item_result field_result_type= field->result_type();
- Item_result value_result_type= value->result_type();
- if (field_result_type == INT_RESULT && value_result_type == INT_RESULT &&
+ if (field->result_type() == INT_RESULT &&
+ value->result_type() == INT_RESULT &&
((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
{
longlong item_val= value->val_int();
@@ -1475,10 +4445,13 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
{
tree->type= SEL_ARG::IMPOSSIBLE;
- DBUG_RETURN(tree);
+ goto end;
}
if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
- DBUG_RETURN(0);
+ {
+ tree= 0;
+ goto end;
+ }
}
}
@@ -1543,6 +4516,9 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
default:
break;
}
+
+end:
+ param->thd->mem_root= alloc;
DBUG_RETURN(tree);
}
@@ -1552,8 +4528,8 @@ get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
-** IMPOSSIBLE: Condition is never true
-** ALWAYS: Condition is always true
+** IMPOSSIBLE: Condition is never TRUE
+** ALWAYS: Condition is always TRUE
** MAYBE: Condition may exists when tables are read
** MAYBE_KEY: Condition refers to a key that may be used in join loop
** KEY_RANGE: Condition uses a key
@@ -1622,6 +4598,8 @@ tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
tree1->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree1);
}
+ key_map result_keys;
+ result_keys.clear_all();
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
@@ -1639,18 +4617,60 @@ tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
{
tree1->type= SEL_TREE::IMPOSSIBLE;
+ DBUG_RETURN(tree1);
+ }
+ result_keys.set_bit(key1 - tree1->keys);
#ifdef EXTRA_DEBUG
- if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
+ if (*key1 && param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
(*key1)->test_use_count(*key1);
#endif
- break;
- }
}
}
+ tree1->keys_map= result_keys;
+ /* dispose index_merge if there is a "range" option */
+ if (!result_keys.is_clear_all())
+ {
+ tree1->merges.empty();
+ DBUG_RETURN(tree1);
+ }
+
+ /* ok, both trees are index_merge trees */
+ imerge_list_and_list(&tree1->merges, &tree2->merges);
DBUG_RETURN(tree1);
}
+/*
+ Check if two SEL_TREES can be combined into one (i.e. a single key range
+ read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
+ using index_merge.
+*/
+
+bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
+{
+ key_map common_keys= tree1->keys_map;
+ DBUG_ENTER("sel_trees_can_be_ored");
+ common_keys.intersect(tree2->keys_map);
+
+ if (common_keys.is_clear_all())
+ DBUG_RETURN(FALSE);
+
+ /* trees have a common key, check if they refer to same key part */
+ SEL_ARG **key1,**key2;
+ for (uint key_no=0; key_no < param->keys; key_no++)
+ {
+ if (common_keys.is_set(key_no))
+ {
+ key1= tree1->keys + key_no;
+ key2= tree2->keys + key_no;
+ if ((*key1)->part == (*key2)->part)
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
@@ -1667,20 +4687,63 @@ tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
if (tree2->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree2);
- /* Join the trees key per key */
- SEL_ARG **key1,**key2,**end;
- SEL_TREE *result=0;
- for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
- key1 != end ; key1++,key2++)
+ SEL_TREE *result= 0;
+ key_map result_keys;
+ result_keys.clear_all();
+ if (sel_trees_can_be_ored(tree1, tree2, param))
{
- *key1= key_or(param, *key1, *key2);
- if (*key1)
+ /* Join the trees key per key */
+ SEL_ARG **key1,**key2,**end;
+ for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
+ key1 != end ; key1++,key2++)
{
- result=tree1; // Added to tree1
+ *key1=key_or(param, *key1, *key2);
+ if (*key1)
+ {
+ result=tree1; // Added to tree1
+ result_keys.set_bit(key1 - tree1->keys);
#ifdef EXTRA_DEBUG
- if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
- (*key1)->test_use_count(*key1);
+ if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
+ (*key1)->test_use_count(*key1);
#endif
+ }
+ }
+ if (result)
+ result->keys_map= result_keys;
+ }
+ else
+ {
+ /* ok, two trees have KEY type but cannot be used without index merge */
+ if (tree1->merges.is_empty() && tree2->merges.is_empty())
+ {
+ SEL_IMERGE *merge;
+ /* both trees are "range" trees, produce new index merge structure */
+ if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
+ (result->merges.push_back(merge)) ||
+ (merge->or_sel_tree(param, tree1)) ||
+ (merge->or_sel_tree(param, tree2)))
+ result= NULL;
+ else
+ result->type= tree1->type;
+ }
+ else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
+ {
+ if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
+ result= new SEL_TREE(SEL_TREE::ALWAYS);
+ else
+ result= tree1;
+ }
+ else
+ {
+ /* one tree is index merge tree and another is range tree */
+ if (tree1->merges.is_empty())
+ swap_variables(SEL_TREE*, tree1, tree2);
+
+ /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
+ if (imerge_list_or_tree(param, &tree1->merges, tree2))
+ result= new SEL_TREE(SEL_TREE::ALWAYS);
+ else
+ result= tree1;
}
}
DBUG_RETURN(result);
@@ -1731,7 +4794,6 @@ and_all_keys(PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
}
-
/*
Produce a SEL_ARG graph that represents "key1 AND key2"
@@ -1776,7 +4838,7 @@ key_and(PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
clone_flag=swap_clone_flag(clone_flag);
}
- // If one of the key is MAYBE_KEY then the found region may be smaller
+ /* If one of the key is MAYBE_KEY then the found region may be smaller */
if (key2->type == SEL_ARG::MAYBE_KEY)
{
if (key1->use_count > 1)
@@ -1815,6 +4877,13 @@ key_and(PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
return 0; // Can't optimize this
}
+ if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
+ {
+ key1->free_tree();
+ key2->free_tree();
+ return 0; // Can't optimize this
+ }
+
key1->use_count--;
key2->use_count--;
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
@@ -2240,7 +5309,7 @@ SEL_ARG::find_range(SEL_ARG *key)
SYNOPSIS
tree_delete()
key Key that is to be deleted from tree (this)
-
+
NOTE
This also frees all sub trees that is used by the element
@@ -2487,7 +5556,7 @@ SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
}
- /* Test that the proporties for a red-black tree holds */
+ /* Test that the properties for a red-black tree hold */
#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
@@ -2619,7 +5688,7 @@ void SEL_ARG::test_use_count(SEL_ARG *root)
ulong count=count_key_part_usage(root,pos->next_key_part);
if (count > pos->next_key_part->use_count)
{
- sql_print_information("Use_count: Wrong count for key at %lx, %lu "
+ sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu "
"should be %lu", (long unsigned int)pos,
pos->next_key_part->use_count, count);
return;
@@ -2628,68 +5697,175 @@ void SEL_ARG::test_use_count(SEL_ARG *root)
}
}
if (e_count != elements)
- sql_print_warning("Wrong use count: %u (should be %u) for tree at %lx",
+ sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
e_count, elements, (long unsigned int) this);
}
#endif
+/*
+ Calculate estimate of number records that will be retrieved by a range
+ scan on given index using given SEL_ARG intervals tree.
+ SYNOPSIS
+ check_quick_select
+ param Parameter from test_quick_select
+ idx Number of index to use in PARAM::key SEL_TREE::key
+ tree Transformed selection condition, tree->key[idx] holds intervals
+ tree to be used for scanning.
+ NOTES
+ param->is_ror_scan is set to reflect if the key scan is a ROR (see
+ is_key_scan_ror function for more info)
+ param->table->quick_*, param->range_count (and maybe others) are
+ updated with data of given key scan, see check_quick_keys for details.
-/*****************************************************************************
-** Check how many records we will find by using the found tree
-*****************************************************************************/
+ RETURN
+ Estimate # of records to be retrieved.
+ HA_POS_ERROR if estimate calculation failed due to table handler problems.
+
+*/
static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
ha_rows records;
+ bool cpk_scan;
+ uint key;
DBUG_ENTER("check_quick_select");
+ param->is_ror_scan= FALSE;
+ param->first_null_comp= 0;
+
if (!tree)
DBUG_RETURN(HA_POS_ERROR); // Can't use it
param->max_key_part=0;
param->range_count=0;
+ key= param->real_keynr[idx];
+
if (tree->type == SEL_ARG::IMPOSSIBLE)
DBUG_RETURN(0L); // Impossible select. return
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
+
+ enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
+ if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
+ {
+ /* Records are not ordered by rowid for other types of indexes. */
+ cpk_scan= FALSE;
+ }
+ else
+ {
+ /*
+ Clustered PK scan is a special case, check_quick_keys doesn't recognize
+ CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
+ */
+ cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
+ param->table->file->primary_key_is_clustered());
+ param->is_ror_scan= !cpk_scan;
+ }
+ param->n_ranges= 0;
+
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
if (records != HA_POS_ERROR)
{
- uint key=param->real_keynr[idx];
param->table->quick_keys.set_bit(key);
param->table->quick_rows[key]=records;
param->table->quick_key_parts[key]=param->max_key_part+1;
+ param->table->quick_n_ranges[key]= param->n_ranges;
+ if (cpk_scan)
+ param->is_ror_scan= TRUE;
}
+ if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
+ param->is_ror_scan= FALSE;
DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
DBUG_RETURN(records);
}
+/*
+ Recursively calculate estimate of # rows that will be retrieved by
+ key scan on key idx.
+ SYNOPSIS
+ check_quick_keys()
+ param Parameter from test_quick select function.
+ idx Number of key to use in PARAM::keys in list of used keys
+ (param->real_keynr[idx] holds the key number in table)
+ key_tree SEL_ARG tree being examined.
+ min_key Buffer with partial min key value tuple
+ min_key_flag
+ max_key Buffer with partial max key value tuple
+ max_key_flag
+
+ NOTES
+ The function does the recursive descent on the tree via SEL_ARG::left,
+ SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
+ are calculated using records_in_range calls at the leaf nodes and then
+ summed.
+
+ param->min_key and param->max_key are used to hold prefixes of key value
+ tuples.
+
+ The side effects are:
+
+ param->max_key_part is updated to hold the maximum number of key parts used
+ in scan minus 1.
+
+ param->range_count is incremented if the function finds a range that
+ wasn't counted by the caller.
+
+ param->is_ror_scan is cleared if the function detects that the key scan is
+ not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
+ function for description of which key scans are ROR scans)
+*/
+
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
char *min_key,uint min_key_flag, char *max_key,
uint max_key_flag)
{
- ha_rows records=0,tmp;
+ ha_rows records=0, tmp;
+ uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
+ char *tmp_min_key, *tmp_max_key;
+ uint8 save_first_null_comp= param->first_null_comp;
param->max_key_part=max(param->max_key_part,key_tree->part);
if (key_tree->left != &null_element)
{
+ /*
+ There are at least two intervals for current key part, i.e. condition
+ was converted to something like
+ (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
+ This is not a ROR scan if the key is not Clustered Primary Key.
+ */
+ param->is_ror_scan= FALSE;
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
max_key,max_key_flag);
if (records == HA_POS_ERROR) // Impossible
return records;
}
- uint tmp_min_flag,tmp_max_flag,keynr;
- char *tmp_min_key=min_key,*tmp_max_key=max_key;
-
+ tmp_min_key= min_key;
+ tmp_max_key= max_key;
key_tree->store(param->key[idx][key_tree->part].store_length,
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
- uint min_key_length= (uint) (tmp_min_key- param->min_key);
- uint max_key_length= (uint) (tmp_max_key- param->max_key);
+ min_key_length= (uint) (tmp_min_key- param->min_key);
+ max_key_length= (uint) (tmp_max_key- param->max_key);
+
+ if (param->is_ror_scan)
+ {
+ /*
+ If the index doesn't cover entire key, mark the scan as non-ROR scan.
+ Actually we're cutting off some ROR scans here.
+ */
+ uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
+ key_part[key_tree->part].fieldnr - 1;
+ if (param->table->field[fieldnr]->key_length() !=
+ param->key[idx][key_tree->part].length)
+ param->is_ror_scan= FALSE;
+ }
+
+ if (!param->first_null_comp && key_tree->is_null_interval())
+ param->first_null_comp= key_tree->part+1;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
@@ -2704,6 +5880,12 @@ check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
tmp_max_key, max_key_flag | key_tree->max_flag);
goto end; // Ugly, but efficient
}
+ else
+ {
+ /* The interval for current key part is not c1 <= keyXpartY <= c1 */
+ param->is_ror_scan= FALSE;
+ }
+
tmp_min_flag=key_tree->min_flag;
tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
@@ -2728,10 +5910,33 @@ check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
(param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
HA_NOSAME &&
min_key_length == max_key_length &&
- !memcmp(param->min_key,param->max_key,min_key_length))
+ !memcmp(param->min_key,param->max_key,min_key_length) &&
+ !param->first_null_comp)
+ {
tmp=1; // Max one record
+ param->n_ranges++;
+ }
else
{
+ if (param->is_ror_scan)
+ {
+ /*
+ If we get here, the condition on the key was converted to form
+ "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
+ somecond(keyXpart{key_tree->part})"
+ Check if
+ somecond is "keyXpart{key_tree->part} = const" and
+ uncovered "tail" of KeyX parts is either empty or is identical to
+ first members of clustered primary key.
+ */
+ if (!(min_key_length == max_key_length &&
+ !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
+ !key_tree->min_flag && !key_tree->max_flag &&
+ is_key_scan_ror(param, keynr, key_tree->part + 1)))
+ param->is_ror_scan= FALSE;
+ }
+ param->n_ranges++;
+
if (tmp_min_flag & GEOM_FLAG)
{
key_range min_range;
@@ -2768,32 +5973,128 @@ check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
records+=tmp;
if (key_tree->right != &null_element)
{
+ /*
+ There are at least two intervals for current key part, i.e. condition
+ was converted to something like
+ (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
+ This is not a ROR scan if the key is not Clustered Primary Key.
+ */
+ param->is_ror_scan= FALSE;
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
max_key,max_key_flag);
if (tmp == HA_POS_ERROR)
return tmp;
records+=tmp;
}
+ param->first_null_comp= save_first_null_comp;
return records;
}
-/****************************************************************************
-** change a tree to a structure to be used by quick_select
-** This uses it's own malloc tree
-****************************************************************************/
+/*
+ Check if key scan on given index with equality conditions on first n key
+ parts is a ROR scan.
+
+ SYNOPSIS
+ is_key_scan_ror()
+ param Parameter from test_quick_select
+ keynr Number of key in the table. The key must not be a clustered
+ primary key.
+ nparts Number of first key parts for which equality conditions
+ are present.
+
+ NOTES
+ ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
+ ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
+
+ An index scan is a ROR scan if it is done using a condition in form
+
+ "key1_1=c_1 AND ... AND key1_n=c_n" (1)
+
+ where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])
+
+ and the table has a clustered Primary Key
+
+ PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
+ identical to uncovered parts ot the key being scanned (2)
+
+ Scans on HASH indexes are not ROR scans,
+ any range scan on clustered primary key is ROR scan (3)
+
+ Check (1) is made in check_quick_keys()
+ Check (3) is made check_quick_select()
+ Check (2) is made by this function.
+
+ RETURN
+ TRUE If the scan is ROR-scan
+ FALSE otherwise
+*/
+
+static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
+{
+ KEY *table_key= param->table->key_info + keynr;
+ KEY_PART_INFO *key_part= table_key->key_part + nparts;
+ KEY_PART_INFO *key_part_end= (table_key->key_part +
+ table_key->key_parts);
+ uint pk_number;
+
+ if (key_part == key_part_end)
+ return TRUE;
+ pk_number= param->table->s->primary_key;
+ if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
+ return FALSE;
+
+ KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
+ KEY_PART_INFO *pk_part_end= pk_part +
+ param->table->key_info[pk_number].key_parts;
+ for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
+ ++key_part, ++pk_part)
+ {
+ if ((key_part->field != pk_part->field) ||
+ (key_part->length != pk_part->length))
+ return FALSE;
+ }
+ return (key_part == key_part_end);
+}
+
+
+/*
+ Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
-static QUICK_SELECT *
-get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
+ SYNOPSIS
+ get_quick_select()
+ param
+ idx Index of used key in param->key.
+ key_tree SEL_ARG tree for the used key
+ parent_alloc If not NULL, use it to allocate memory for
+ quick select data. Otherwise use quick->alloc.
+ NOTES
+ The caller must call QUICK_SELECT::init for returned quick select
+
+ CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
+ deallocated when the returned quick select is deleted.
+
+ RETURN
+ NULL on error
+ otherwise created quick select
+*/
+
+QUICK_RANGE_SELECT *
+get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
+ MEM_ROOT *parent_alloc)
{
- QUICK_SELECT *quick;
+ QUICK_RANGE_SELECT *quick;
DBUG_ENTER("get_quick_select");
if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
- quick=new QUICK_SELECT_GEOM(param->thd, param->table, param->real_keynr[idx],
- 0);
+ quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
+ param->real_keynr[idx],
+ test(parent_alloc),
+ parent_alloc);
else
- quick=new QUICK_SELECT(param->thd, param->table, param->real_keynr[idx]);
+ quick=new QUICK_RANGE_SELECT(param->thd, param->table,
+ param->real_keynr[idx],
+ test(parent_alloc));
if (quick)
{
@@ -2807,9 +6108,10 @@ get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
else
{
quick->key_parts=(KEY_PART*)
- memdup_root(&quick->alloc,(char*) param->key[idx],
- sizeof(KEY_PART)*
- param->table->key_info[param->real_keynr[idx]].key_parts);
+ memdup_root(parent_alloc? parent_alloc : &quick->alloc,
+ (char*) param->key[idx],
+ sizeof(KEY_PART)*
+ param->table->key_info[param->real_keynr[idx]].key_parts);
}
}
DBUG_RETURN(quick);
@@ -2819,9 +6121,8 @@ get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
/*
** Fix this to get all possible sub_ranges
*/
-
-static bool
-get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
+bool
+get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag)
{
@@ -2917,7 +6218,8 @@ get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
set_if_bigger(quick->max_used_key_length,range->min_length);
set_if_bigger(quick->max_used_key_length,range->max_length);
set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
- quick->ranges.push_back(range);
+ if (insert_dynamic(&quick->ranges, (gptr)&range))
+ return 1;
end:
if (key_tree->right != &null_element)
@@ -2931,12 +6233,12 @@ get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
Return 1 if there is only one range and this uses the whole primary key
*/
-bool QUICK_SELECT::unique_key_range()
+bool QUICK_RANGE_SELECT::unique_key_range()
{
if (ranges.elements == 1)
{
- QUICK_RANGE *tmp;
- if (((tmp=ranges.head())->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
+ QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
+ if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
{
KEY *key=head->key_info+index;
return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
@@ -2947,11 +6249,11 @@ bool QUICK_SELECT::unique_key_range()
}
-/* Returns true if any part of the key is NULL */
+/* Returns TRUE if any part of the key is NULL */
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
- for (const char *end=key+length ;
+ for (const char *end=key+length ;
key < end;
key+= key_part++->store_length)
{
@@ -2962,31 +6264,97 @@ static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
}
-/****************************************************************************
- Create a QUICK RANGE based on a key
-****************************************************************************/
+bool QUICK_SELECT_I::is_keys_used(List<Item> *fields)
+{
+ return is_key_used(head, index, *fields);
+}
-QUICK_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref)
+bool QUICK_INDEX_MERGE_SELECT::is_keys_used(List<Item> *fields)
{
- MEM_ROOT *old_root= thd->mem_root;
- /* The following call may change thd->mem_root */
- QUICK_SELECT *quick= new QUICK_SELECT(thd, table, ref->key);
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (is_key_used(head, quick->index, *fields))
+ return 1;
+ }
+ return 0;
+}
+
+bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(List<Item> *fields)
+{
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (is_key_used(head, quick->index, *fields))
+ return 1;
+ }
+ return 0;
+}
+
+bool QUICK_ROR_UNION_SELECT::is_keys_used(List<Item> *fields)
+{
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (quick->is_keys_used(fields))
+ return 1;
+ }
+ return 0;
+}
+
+
+/*
+ Create quick select from ref/ref_or_null scan.
+
+ SYNOPSIS
+ get_quick_select_for_ref()
+ thd Thread handle
+ table Table to access
+ ref ref[_or_null] scan parameters
+ records Estimate of number of records (needed only to construct
+ quick select)
+ NOTES
+ This allocates things in a new memory root, as this may be called many
+ times during a query.
+
+ RETURN
+ Quick select that retrieves the same rows as passed ref scan
+ NULL on error.
+*/
+
+QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
+ TABLE_REF *ref, ha_rows records)
+{
+ MEM_ROOT *old_root, *alloc;
+ QUICK_RANGE_SELECT *quick;
KEY *key_info = &table->key_info[ref->key];
KEY_PART *key_part;
QUICK_RANGE *range;
uint part;
+ old_root= thd->mem_root;
+ /* The following call may change thd->mem_root */
+ quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
+ /* save mem_root set by QUICK_RANGE_SELECT constructor */
+ alloc= thd->mem_root;
+ /*
+ return back default mem_root (thd->mem_root) changed by
+ QUICK_RANGE_SELECT constructor
+ */
+ thd->mem_root= old_root;
+
if (!quick)
return 0; /* no ranges found */
- if (cp_buffer_from_ref(thd, ref))
- {
- if (thd->is_fatal_error)
- goto err; // out of memory
- goto ok; // empty range
- }
+ if (quick->init())
+ goto err;
+ quick->records= records;
- if (!(range= new QUICK_RANGE()))
- goto err; // out of memory
+ if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
+ !(range= new(alloc) QUICK_RANGE()))
+ goto err; // out of memory
range->min_key=range->max_key=(char*) ref->key_buff;
range->min_length=range->max_length=ref->key_length;
@@ -3005,12 +6373,12 @@ QUICK_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref)
key_part->length= key_info->key_part[part].length;
key_part->store_length= key_info->key_part[part].store_length;
key_part->null_bit= key_info->key_part[part].null_bit;
- key_part->flag= key_info->key_part[part].key_part_flag;
+ key_part->flag= (uint8) key_info->key_part[part].key_part_flag;
}
- if (quick->ranges.push_back(range))
+ if (insert_dynamic(&quick->ranges,(gptr)&range))
goto err;
- /*
+ /*
Add a NULL range if REF_OR_NULL optimization is used.
For example:
if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
@@ -3021,115 +6389,638 @@ QUICK_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref)
QUICK_RANGE *null_range;
*ref->null_ref_key= 1; // Set null byte then create a range
- if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length,
- (char*)ref->key_buff, ref->key_length,
- EQ_RANGE)))
+ if (!(null_range= new (alloc) QUICK_RANGE((char*)ref->key_buff,
+ ref->key_length,
+ (char*)ref->key_buff,
+ ref->key_length,
+ EQ_RANGE)))
goto err;
*ref->null_ref_key= 0; // Clear null byte
- if (quick->ranges.push_back(null_range))
+ if (insert_dynamic(&quick->ranges,(gptr)&null_range))
goto err;
}
-ok:
- thd->mem_root= old_root;
return quick;
err:
- thd->mem_root= old_root;
delete quick;
return 0;
}
- /* get next possible record using quick-struct */
-int QUICK_SELECT::get_next()
+/*
+ Perform key scans for all used indexes (except CPK), get rowids and merge
+ them into an ordered non-recurrent sequence of rowids.
+
+ The merge/duplicate removal is performed using Unique class. We put all
+ rowids into Unique, get the sorted sequence and destroy the Unique.
+
+ If table has a clustered primary key that covers all rows (TRUE for bdb
+ and innodb currently) and one of the index_merge scans is a scan on PK,
+ then
+ rows that will be retrieved by PK scan are not put into Unique and
+ primary key scan is not performed here, it is performed later separately.
+
+ RETURN
+ 0 OK
+ other error
+*/
+
+int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
{
- DBUG_ENTER("get_next");
+ List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
+ QUICK_RANGE_SELECT* cur_quick;
+ int result;
+ Unique *unique;
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
+ /* We're going to just read rowids. */
+ if (head->file->extra(HA_EXTRA_KEYREAD))
+ DBUG_RETURN(1);
+
+ /*
+ Make innodb retrieve all PK member fields, so
+ * ha_innobase::position (which uses them) call works.
+ * We can filter out rows that will be retrieved by clustered PK.
+ (This also creates a deficiency - it is possible that we will retrieve
+ parts of key that are not used by current query at all.)
+ */
+ if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY))
+ DBUG_RETURN(1);
+
+ cur_quick_it.rewind();
+ cur_quick= cur_quick_it++;
+ DBUG_ASSERT(cur_quick != 0);
+
+ /*
+ We reuse the same instance of handler so we need to call both init and
+ reset here.
+ */
+ if (cur_quick->init() || cur_quick->reset())
+ DBUG_RETURN(1);
+
+ unique= new Unique(refpos_order_cmp, (void *)head->file,
+ head->file->ref_length,
+ thd->variables.sortbuff_size);
+ if (!unique)
+ DBUG_RETURN(1);
for (;;)
{
- int result;
- key_range start_key, end_key;
- if (range)
+ while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
+ {
+ cur_quick->range_end();
+ cur_quick= cur_quick_it++;
+ if (!cur_quick)
+ break;
+
+ if (cur_quick->file->inited != handler::NONE)
+ cur_quick->file->ha_index_end();
+ if (cur_quick->init() || cur_quick->reset())
+ DBUG_RETURN(1);
+ }
+
+ if (result)
{
- // Already read through key
- result= file->read_range_next();
if (result != HA_ERR_END_OF_FILE)
+ {
+ cur_quick->range_end();
+ DBUG_RETURN(result);
+ }
+ break;
+ }
+
+ if (thd->killed)
+ DBUG_RETURN(1);
+
+ /* skip row if it will be retrieved by clustered PK scan */
+ if (pk_quick_select && pk_quick_select->row_in_ranges())
+ continue;
+
+ cur_quick->file->position(cur_quick->record);
+ result= unique->unique_add((char*)cur_quick->file->ref);
+ if (result)
+ DBUG_RETURN(1);
+
+ }
+
+ /* ok, all row ids are in Unique */
+ result= unique->get(head);
+ delete unique;
+ doing_pk_scan= FALSE;
+ /* start table scan */
+ init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
+ /* index_merge currently doesn't support "using index" at all */
+ head->file->extra(HA_EXTRA_NO_KEYREAD);
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Get next row for index_merge.
+ NOTES
+ The rows are read from
+ 1. rowids stored in Unique.
+ 2. QUICK_RANGE_SELECT with clustered primary key (if any).
+ The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
+*/
+
+int QUICK_INDEX_MERGE_SELECT::get_next()
+{
+ int result;
+ DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
+
+ if (doing_pk_scan)
+ DBUG_RETURN(pk_quick_select->get_next());
+
+ result= read_record.read_record(&read_record);
+
+ if (result == -1)
+ {
+ result= HA_ERR_END_OF_FILE;
+ end_read_record(&read_record);
+ /* All rows from Unique have been retrieved, do a clustered PK scan */
+ if (pk_quick_select)
+ {
+ doing_pk_scan= TRUE;
+ if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
+ DBUG_RETURN(result);
+ DBUG_RETURN(pk_quick_select->get_next());
+ }
+ }
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve next record.
+ SYNOPSIS
+ QUICK_ROR_INTERSECT_SELECT::get_next()
+
+ NOTES
+ Invariant on enter/exit: all intersected selects have retrieved all index
+ records with rowid <= some_rowid_val and no intersected select has
+ retrieved any index records with rowid > some_rowid_val.
+ We start fresh and loop until we have retrieved the same rowid in each of
+ the key scans or we got an error.
+
+ If a Clustered PK scan is present, it is used only to check if row
+ satisfies its condition (and never used for row retrieval).
+
+ RETURN
+ 0 - Ok
+ other - Error code if any error occurred.
+*/
+
+int QUICK_ROR_INTERSECT_SELECT::get_next()
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
+ QUICK_RANGE_SELECT* quick;
+ int error, cmp;
+ uint last_rowid_count=0;
+ DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
+
+ /* Get a rowid for first quick and save it as a 'candidate' */
+ quick= quick_it++;
+ if (cpk_quick)
+ {
+ do {
+ error= quick->get_next();
+ }while (!error && !cpk_quick->row_in_ranges());
+ }
+ else
+ error= quick->get_next();
+
+ if (error)
+ DBUG_RETURN(error);
+
+ quick->file->position(quick->record);
+ memcpy(last_rowid, quick->file->ref, head->file->ref_length);
+ last_rowid_count= 1;
+
+ while (last_rowid_count < quick_selects.elements)
+ {
+ if (!(quick= quick_it++))
+ {
+ quick_it.rewind();
+ quick= quick_it++;
+ }
+
+ do {
+ if ((error= quick->get_next()))
+ DBUG_RETURN(error);
+ quick->file->position(quick->record);
+ cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
+ } while (cmp < 0);
+
+ /* Ok, current select 'caught up' and returned ref >= cur_ref */
+ if (cmp > 0)
+ {
+ /* Found a row with ref > cur_ref. Make it a new 'candidate' */
+ if (cpk_quick)
+ {
+ while (!cpk_quick->row_in_ranges())
+ {
+ if ((error= quick->get_next()))
+ DBUG_RETURN(error);
+ }
+ }
+ memcpy(last_rowid, quick->file->ref, head->file->ref_length);
+ last_rowid_count= 1;
+ }
+ else
+ {
+ /* current 'candidate' row confirmed by this select */
+ last_rowid_count++;
+ }
+ }
+
+ /* We get here iff we got the same row ref in all scans. */
+ if (need_to_fetch_row)
+ error= head->file->rnd_pos(head->record[0], last_rowid);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Retrieve next record.
+ SYNOPSIS
+ QUICK_ROR_UNION_SELECT::get_next()
+
+ NOTES
+ Enter/exit invariant:
+ For each quick select in the queue a {key,rowid} tuple has been
+ retrieved but the corresponding row hasn't been passed to output.
+
+ RETURN
+ 0 - Ok
+ other - Error code if any error occurred.
+*/
+
+int QUICK_ROR_UNION_SELECT::get_next()
+{
+ int error, dup_row;
+ QUICK_SELECT_I *quick;
+ byte *tmp;
+ DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
+
+ do
+ {
+ if (!queue.elements)
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ /* Ok, we have a queue with >= 1 scans */
+
+ quick= (QUICK_SELECT_I*)queue_top(&queue);
+ memcpy(cur_rowid, quick->last_rowid, rowid_length);
+
+ /* put into queue rowid from the same stream as top element */
+ if ((error= quick->get_next()))
+ {
+ if (error != HA_ERR_END_OF_FILE)
+ DBUG_RETURN(error);
+ queue_remove(&queue, 0);
+ }
+ else
+ {
+ quick->save_last_pos();
+ queue_replaced(&queue);
+ }
+
+ if (!have_prev_rowid)
+ {
+ /* No rows have been returned yet */
+ dup_row= FALSE;
+ have_prev_rowid= TRUE;
+ }
+ else
+ dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
+ }while (dup_row);
+
+ tmp= cur_rowid;
+ cur_rowid= prev_rowid;
+ prev_rowid= tmp;
+
+ error= head->file->rnd_pos(quick->record, prev_rowid);
+ DBUG_RETURN(error);
+}
+
+int QUICK_RANGE_SELECT::reset()
+{
+ uint mrange_bufsiz;
+ byte *mrange_buff;
+ DBUG_ENTER("QUICK_RANGE_SELECT::reset");
+ next=0;
+ last_range= NULL;
+ in_range= FALSE;
+ cur_range= (QUICK_RANGE**) ranges.buffer;
+
+ if (file->inited == handler::NONE && (error= file->ha_index_init(index)))
+ DBUG_RETURN(error);
+
+ /* Do not allocate the buffers twice. */
+ if (multi_range_length)
+ {
+ DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
+ DBUG_RETURN(0);
+ }
+
+ /* Allocate the ranges array. */
+ DBUG_ASSERT(ranges.elements);
+ multi_range_length= min(multi_range_count, ranges.elements);
+ DBUG_ASSERT(multi_range_length > 0);
+ while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
+ my_malloc(multi_range_length *
+ sizeof(KEY_MULTI_RANGE),
+ MYF(MY_WME))))
+ {
+ /* Try to shrink the buffers until it is 0. */
+ multi_range_length/= 2;
+ }
+ if (! multi_range)
+ {
+ multi_range_length= 0;
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+
+ /* Allocate the handler buffer if necessary. */
+ if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
+ {
+ mrange_bufsiz= min(multi_range_bufsiz,
+ (QUICK_SELECT_I::records + 1)* head->s->reclength);
+
+ while (mrange_bufsiz &&
+ ! my_multi_malloc(MYF(MY_WME),
+ &multi_range_buff, sizeof(*multi_range_buff),
+ &mrange_buff, mrange_bufsiz,
+ NullS))
+ {
+ /* Try to shrink the buffers until both are 0. */
+ mrange_bufsiz/= 2;
+ }
+ if (! multi_range_buff)
+ {
+ my_free((char*) multi_range, MYF(0));
+ multi_range= NULL;
+ multi_range_length= 0;
+ DBUG_RETURN(HA_ERR_OUT_OF_MEM);
+ }
+
+ /* Initialize the handler buffer. */
+ multi_range_buff->buffer= mrange_buff;
+ multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
+ multi_range_buff->end_of_used_area= mrange_buff;
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Get next possible record using quick-struct.
+
+ SYNOPSIS
+ QUICK_RANGE_SELECT::get_next()
+
+ NOTES
+ Record is read into table->record[0]
+
+ RETURN
+ 0 Found row
+ HA_ERR_END_OF_FILE No (more) rows in range
+ # Error code
+*/
+
+int QUICK_RANGE_SELECT::get_next()
+{
+ int result;
+ KEY_MULTI_RANGE *mrange;
+ key_range *start_key;
+ key_range *end_key;
+ DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
+ DBUG_ASSERT(multi_range_length && multi_range &&
+ (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
+ (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
+
+ for (;;)
+ {
+ if (in_range)
+ {
+ /* We did already start to read this key. */
+ result= file->read_multi_range_next(&mrange);
+ if (result != HA_ERR_END_OF_FILE)
+ {
+ in_range= ! result;
DBUG_RETURN(result);
+ }
}
- if (!(range= it++))
- DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
+ uint count= min(multi_range_length, ranges.elements -
+ (cur_range - (QUICK_RANGE**) ranges.buffer));
+ if (count == 0)
+ {
+ /* Ranges have already been used up before. None is left for read. */
+ in_range= FALSE;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ KEY_MULTI_RANGE *mrange_slot, *mrange_end;
+ for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
+ mrange_slot < mrange_end;
+ mrange_slot++)
+ {
+ start_key= &mrange_slot->start_key;
+ end_key= &mrange_slot->end_key;
+ last_range= *(cur_range++);
+
+ start_key->key= (const byte*) last_range->min_key;
+ start_key->length= last_range->min_length;
+ start_key->flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
+ (last_range->flag & EQ_RANGE) ?
+ HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
+ end_key->key= (const byte*) last_range->max_key;
+ end_key->length= last_range->max_length;
+ /*
+ We use HA_READ_AFTER_KEY here because if we are reading on a key
+ prefix. We want to find all keys with this prefix.
+ */
+ end_key->flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
+ HA_READ_AFTER_KEY);
- start_key.key= (const byte*) range->min_key;
- start_key.length= range->min_length;
- start_key.flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
- (range->flag & EQ_RANGE) ?
+ mrange_slot->range_flag= last_range->flag;
+ }
+
+ result= file->read_multi_range_first(&mrange, multi_range, count,
+ sorted, multi_range_buff);
+ if (result != HA_ERR_END_OF_FILE)
+ {
+ in_range= ! result;
+ DBUG_RETURN(result);
+ }
+ in_range= FALSE; /* No matching rows; go to next set of ranges. */
+ }
+}
+
+/*
+ Get the next record with a different prefix.
+
+ SYNOPSIS
+ QUICK_RANGE_SELECT::get_next_prefix()
+ prefix_length length of cur_prefix
+ cur_prefix prefix of a key to be searched for
+
+ DESCRIPTION
+ Each subsequent call to the method retrieves the first record that has a
+ prefix with length prefix_length different from cur_prefix, such that the
+ record with the new prefix is within the ranges described by
+ this->ranges. The record found is stored into the buffer pointed by
+ this->record.
+ The method is useful for GROUP-BY queries with range conditions to
+ discover the prefix of the next group that satisfies the range conditions.
+
+ TODO
+ This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
+ methods should be unified into a more general one to reduce code
+ duplication.
+
+ RETURN
+ 0 on success
+ HA_ERR_END_OF_FILE if returned all keys
+ other if some error occurred
+*/
+
+int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
+{
+ DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");
+
+ for (;;)
+ {
+ int result;
+ key_range start_key, end_key;
+ if (last_range)
+ {
+ /* Read the next record in the same range with prefix after cur_prefix. */
+ DBUG_ASSERT(cur_prefix != 0);
+ result= file->index_read(record, cur_prefix, prefix_length,
+ HA_READ_AFTER_KEY);
+ if (result || (file->compare_key(file->end_range) <= 0))
+ DBUG_RETURN(result);
+ }
+
+ uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
+ if (count == 0)
+ {
+ /* Ranges have already been used up before. None is left for read. */
+ last_range= 0;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ last_range= *(cur_range++);
+
+ start_key.key= (const byte*) last_range->min_key;
+ start_key.length= min(last_range->min_length, prefix_length);
+ start_key.flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
+ (last_range->flag & EQ_RANGE) ?
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
- end_key.key= (const byte*) range->max_key;
- end_key.length= range->max_length;
+ end_key.key= (const byte*) last_range->max_key;
+ end_key.length= min(last_range->max_length, prefix_length);
/*
We use READ_AFTER_KEY here because if we are reading on a key
prefix we want to find all keys with this prefix
*/
- end_key.flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
+ end_key.flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
HA_READ_AFTER_KEY);
- result= file->read_range_first(range->min_length ? &start_key : 0,
- range->max_length ? &end_key : 0,
- test(range->flag & EQ_RANGE),
+ result= file->read_range_first(last_range->min_length ? &start_key : 0,
+ last_range->max_length ? &end_key : 0,
+ test(last_range->flag & EQ_RANGE),
sorted);
- if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
- range=0; // Stop searching
+ if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
+ last_range= 0; // Stop searching
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
- range=0; // No matching rows; go to next range
+ last_range= 0; // No matching rows; go to next range
}
}
-void QUICK_SELECT::reset(void)
-{
- next= 0;
- it.rewind();
- range= 0;
- if (file->inited == handler::NONE)
- file->ha_index_init(index);
-}
/* Get next for geometrical indexes */
-int QUICK_SELECT_GEOM::get_next()
+int QUICK_RANGE_SELECT_GEOM::get_next()
{
- DBUG_ENTER(" QUICK_SELECT_GEOM::get_next");
+ DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
for (;;)
{
int result;
- if (range)
+ if (last_range)
{
// Already read through key
- result= file->index_next_same(record, (byte*) range->min_key,
- range->min_length);
+ result= file->index_next_same(record, (byte*) last_range->min_key,
+ last_range->min_length);
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
}
- if (!(range= it++))
- DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
+ uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
+ if (count == 0)
+ {
+ /* Ranges have already been used up before. None is left for read. */
+ last_range= 0;
+ DBUG_RETURN(HA_ERR_END_OF_FILE);
+ }
+ last_range= *(cur_range++);
result= file->index_read(record,
- (byte*) range->min_key,
- range->min_length,
- (ha_rkey_function)(range->flag ^ GEOM_FLAG));
+ (byte*) last_range->min_key,
+ last_range->min_length,
+ (ha_rkey_function)(last_range->flag ^ GEOM_FLAG));
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
- range=0; // Not found, to next range
+ last_range= 0; // Not found, to next range
}
}
/*
+ Check if current row will be retrieved by this QUICK_RANGE_SELECT
+
+ NOTES
+ It is assumed that currently a scan is being done on another index
+ which reads all necessary parts of the index that is scanned by this
+ quick select.
+ The implementation does a binary search on sorted array of disjoint
+ ranges, without taking size of range into account.
+
+ This function is used to filter out clustered PK scan rows in
+ index_merge quick select.
+
+ RETURN
+ TRUE if current row will be retrieved by this quick select
+ FALSE if not
+*/
+
+bool QUICK_RANGE_SELECT::row_in_ranges()
+{
+ QUICK_RANGE *res;
+ uint min= 0;
+ uint max= ranges.elements - 1;
+ uint mid= (max + min)/2;
+
+ while (min != max)
+ {
+ if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
+ {
+ /* current row value > mid->max */
+ min= mid + 1;
+ }
+ else
+ max= mid;
+ mid= (min + max) / 2;
+ }
+ res= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
+ return (!cmp_next(res) && !cmp_prev(res));
+}
+
+/*
This is a hack: we inherit from QUICK_SELECT so that we can use the
get_next() interface, but we have to hold a pointer to the original
QUICK_SELECT because its data are used all over the place. What
@@ -3139,16 +7030,17 @@ int QUICK_SELECT_GEOM::get_next()
for now, this seems to work right at least.
*/
-QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_SELECT *q, uint used_key_parts)
- : QUICK_SELECT(*q), rev_it(rev_ranges)
+QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
+ uint used_key_parts_arg)
+ : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
{
QUICK_RANGE *r;
- it.rewind();
- for (r = it++; r; r = it++)
- {
- rev_ranges.push_front(r);
- }
+ QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
+ QUICK_RANGE **end_range= pr + ranges.elements;
+ for (; pr!=end_range; pr++)
+ rev_ranges.push_front(*pr);
+
/* Remove EQ_RANGE flag for keys that are not using the full key */
for (r = rev_it++; r; r = rev_it++)
{
@@ -3180,11 +7072,11 @@ int QUICK_SELECT_DESC::get_next()
for (;;)
{
int result;
- if (range)
+ if (last_range)
{ // Already read through key
- result = ((range->flag & EQ_RANGE)
- ? file->index_next_same(record, (byte*) range->min_key,
- range->min_length) :
+ result = ((last_range->flag & EQ_RANGE)
+ ? file->index_next_same(record, (byte*) last_range->min_key,
+ last_range->min_length) :
file->index_prev(record));
if (!result)
{
@@ -3195,56 +7087,99 @@ int QUICK_SELECT_DESC::get_next()
DBUG_RETURN(result);
}
- if (!(range=rev_it++))
+ if (!(last_range= rev_it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
- if (range->flag & NO_MAX_RANGE) // Read last record
+ if (last_range->flag & NO_MAX_RANGE) // Read last record
{
int local_error;
if ((local_error=file->index_last(record)))
DBUG_RETURN(local_error); // Empty table
- if (cmp_prev(range) == 0)
+ if (cmp_prev(last_range) == 0)
DBUG_RETURN(0);
- range=0; // No matching records; go to next range
+ last_range= 0; // No match; go to next range
continue;
}
- if (range->flag & EQ_RANGE)
+ if (last_range->flag & EQ_RANGE)
{
- result = file->index_read(record, (byte*) range->max_key,
- range->max_length, HA_READ_KEY_EXACT);
+ result= file->index_read(record, (byte*) last_range->max_key,
+ last_range->max_length, HA_READ_KEY_EXACT);
}
else
{
- DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
- result=file->index_read(record, (byte*) range->max_key,
- range->max_length,
- ((range->flag & NEAR_MAX) ?
- HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
+ DBUG_ASSERT(last_range->flag & NEAR_MAX ||
+ range_reads_after_key(last_range));
+ result=file->index_read(record, (byte*) last_range->max_key,
+ last_range->max_length,
+ ((last_range->flag & NEAR_MAX) ?
+ HA_READ_BEFORE_KEY :
+ HA_READ_PREFIX_LAST_OR_PREV));
}
if (result)
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
- range=0; // Not found, to next range
+ last_range= 0; // Not found, to next range
continue;
}
- if (cmp_prev(range) == 0)
+ if (cmp_prev(last_range) == 0)
{
- if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
- range = 0; // Stop searching
+ if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
+ last_range= 0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
- range = 0; // To next range
+ last_range= 0; // To next range
}
}
/*
+ Compare if found key is over max-value
+ Returns 0 if key <= range->max_key
+*/
+
+int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
+{
+ if (range_arg->flag & NO_MAX_RANGE)
+ return 0; /* key can't be to large */
+
+ KEY_PART *key_part=key_parts;
+ uint store_length;
+
+ for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
+ key < end;
+ key+= store_length, key_part++)
+ {
+ int cmp;
+ store_length= key_part->store_length;
+ if (key_part->null_bit)
+ {
+ if (*key)
+ {
+ if (!key_part->field->is_null())
+ return 1;
+ continue;
+ }
+ else if (key_part->field->is_null())
+ return 0;
+ key++; // Skip null byte
+ store_length--;
+ }
+ if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
+ return 0;
+ if (cmp > 0)
+ return 1;
+ }
+ return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
+}
+
+
+/*
Returns 0 if found key is inside range (found key >= range->min_key).
*/
-int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
+int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
{
int cmp;
if (range_arg->flag & NO_MIN_RANGE)
@@ -3259,7 +7194,7 @@ int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
/*
- * True if this range will require using HA_READ_AFTER_KEY
+ * TRUE if this range will require using HA_READ_AFTER_KEY
See comment in get_next() about this
*/
@@ -3271,7 +7206,7 @@ bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
}
-/* True if we are reading over a key that may have a NULL value */
+/* TRUE if we are reading over a key that may have a NULL value */
#ifdef NOT_USED
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
@@ -3317,10 +7252,2309 @@ bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
return 0;
}
#endif
-void QUICK_SELECT_DESC::reset(void)
-{
- rev_it.rewind();
- QUICK_SELECT::reset();
+
+
+void QUICK_RANGE_SELECT::add_info_string(String *str)
+{
+ KEY *key_info= head->key_info + index;
+ str->append(key_info->name);
+}
+
+void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
+{
+ QUICK_RANGE_SELECT *quick;
+ bool first= TRUE;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ str->append(STRING_WITH_LEN("sort_union("));
+ while ((quick= it++))
+ {
+ if (!first)
+ str->append(',');
+ else
+ first= FALSE;
+ quick->add_info_string(str);
+ }
+ if (pk_quick_select)
+ {
+ str->append(',');
+ pk_quick_select->add_info_string(str);
+ }
+ str->append(')');
+}
+
+void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
+{
+ bool first= TRUE;
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ str->append(STRING_WITH_LEN("intersect("));
+ while ((quick= it++))
+ {
+ KEY *key_info= head->key_info + quick->index;
+ if (!first)
+ str->append(',');
+ else
+ first= FALSE;
+ str->append(key_info->name);
+ }
+ if (cpk_quick)
+ {
+ KEY *key_info= head->key_info + cpk_quick->index;
+ str->append(',');
+ str->append(key_info->name);
+ }
+ str->append(')');
+}
+
+void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
+{
+ bool first= TRUE;
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ str->append(STRING_WITH_LEN("union("));
+ while ((quick= it++))
+ {
+ if (!first)
+ str->append(',');
+ else
+ first= FALSE;
+ quick->add_info_string(str);
+ }
+ str->append(')');
+}
+
+
+void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ char buf[64];
+ uint length;
+ KEY *key_info= head->key_info + index;
+ key_names->append(key_info->name);
+ length= longlong2str(max_used_key_length, buf, 10) - buf;
+ used_lengths->append(buf, length);
+}
+
+void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ char buf[64];
+ uint length;
+ bool first= TRUE;
+ QUICK_RANGE_SELECT *quick;
+
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (first)
+ first= FALSE;
+ else
+ {
+ key_names->append(',');
+ used_lengths->append(',');
+ }
+
+ KEY *key_info= head->key_info + quick->index;
+ key_names->append(key_info->name);
+ length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
+ used_lengths->append(buf, length);
+ }
+ if (pk_quick_select)
+ {
+ KEY *key_info= head->key_info + pk_quick_select->index;
+ key_names->append(',');
+ key_names->append(key_info->name);
+ length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
+ used_lengths->append(',');
+ used_lengths->append(buf, length);
+ }
+}
+
+void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ char buf[64];
+ uint length;
+ bool first= TRUE;
+ QUICK_RANGE_SELECT *quick;
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ while ((quick= it++))
+ {
+ KEY *key_info= head->key_info + quick->index;
+ if (first)
+ first= FALSE;
+ else
+ {
+ key_names->append(',');
+ used_lengths->append(',');
+ }
+ key_names->append(key_info->name);
+ length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
+ used_lengths->append(buf, length);
+ }
+
+ if (cpk_quick)
+ {
+ KEY *key_info= head->key_info + cpk_quick->index;
+ key_names->append(',');
+ key_names->append(key_info->name);
+ length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
+ used_lengths->append(',');
+ used_lengths->append(buf, length);
+ }
+}
+
+void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ bool first= TRUE;
+ QUICK_SELECT_I *quick;
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ while ((quick= it++))
+ {
+ if (first)
+ first= FALSE;
+ else
+ {
+ used_lengths->append(',');
+ key_names->append(',');
+ }
+ quick->add_keys_and_lengths(key_names, used_lengths);
+ }
+}
+
+
+/*******************************************************************************
+* Implementation of QUICK_GROUP_MIN_MAX_SELECT
+*******************************************************************************/
+
+static inline uint get_field_keypart(KEY *index, Field *field);
+static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
+ PARAM *param, uint *param_idx);
+static bool
+get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
+ KEY_PART_INFO *first_non_group_part,
+ KEY_PART_INFO *min_max_arg_part,
+ KEY_PART_INFO *last_part, THD *thd,
+ byte *key_infix, uint *key_infix_len,
+ KEY_PART_INFO **first_non_infix_part);
+static bool
+check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
+ Field::imagetype image_type);
+
+static void
+cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
+ uint group_key_parts, SEL_TREE *range_tree,
+ SEL_ARG *index_tree, ha_rows quick_prefix_records,
+ bool have_min, bool have_max,
+ double *read_cost, ha_rows *records);
+
+
+/*
+ Test if this access method is applicable to a GROUP query with MIN/MAX
+ functions, and if so, construct a new TRP object.
+
+ SYNOPSIS
+ get_best_group_min_max()
+ param Parameter from test_quick_select
+ sel_tree Range tree generated by get_mm_tree
+
+ DESCRIPTION
+ Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
+ Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
+ following conditions:
+ A) Table T has at least one compound index I of the form:
+ I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
+ B) Query conditions:
+ B0. Q is over a single table T.
+ B1. The attributes referenced by Q are a subset of the attributes of I.
+ B2. All attributes QA in Q can be divided into 3 overlapping groups:
+ - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
+ referenced by any number of MIN and/or MAX functions if present.
+ - WA = {W_1, ..., W_p} - from the WHERE clause
+ - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
+ = SA - if Q is a DISTINCT query (based on the
+ equivalence of DISTINCT and GROUP queries.
+ - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
+ GROUP BY and not referenced by MIN/MAX functions.
+ with the following properties specified below.
+ B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not
+ applicable.
+
+ SA1. There is at most one attribute in SA referenced by any number of
+ MIN and/or MAX functions which, which if present, is denoted as C.
+ SA2. The position of the C attribute in the index is after the last A_k.
+ SA3. The attribute C can be referenced in the WHERE clause only in
+ predicates of the forms:
+ - (C {< | <= | > | >= | =} const)
+ - (const {< | <= | > | >= | =} C)
+ - (C between const_i and const_j)
+ - C IS NULL
+ - C IS NOT NULL
+ - C != const
+ SA4. If Q has a GROUP BY clause, there are no other aggregate functions
+ except MIN and MAX. For queries with DISTINCT, aggregate functions
+ are allowed.
+ SA5. The select list in DISTINCT queries should not contain expressions.
+ GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
+ G_i = A_j => i = j.
+ GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
+ forms a prefix of I. This permutation is used as the GROUP clause
+ when the DISTINCT query is converted to a GROUP query.
+ GA3. The attributes in GA may participate in arbitrary predicates, divided
+ into two groups:
+ - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
+ attributes of a prefix of GA
+ - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
+ of GA. Since P is applied to only GROUP attributes it filters some
+ groups, and thus can be applied after the grouping.
+ GA4. There are no expressions among G_i, just direct column references.
+ NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
+ and the MIN/MAX attribute C, then NGA must consist of exactly the index
+ attributes that constitute the gap. As a result there is a permutation
+ of NGA that coincides with the gap in the index <B_1, ..., B_m>.
+ NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
+ equality conditions for all NG_i of the form (NG_i = const) or
+ (const = NG_i), such that each NG_i is referenced in exactly one
+ conjunct. Informally, the predicates provide constants to fill the
+ gap in the index.
+ WA1. There are no other attributes in the WHERE clause except the ones
+ referenced in predicates RNG, PA, PC, EQ defined above. Therefore
+ WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
+ tests. By transitivity then it also follows that each WA_i participates
+ in the index I (if this was already tested for GA, NGA and C).
+
+ C) Overall query form:
+ SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
+ FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND EQ(B_1,...,B_m)]
+ [AND PC(C)]
+ [AND PA(A_i1,...,A_iq)]
+ GROUP BY A_1,...,A_k
+ [HAVING PH(A_1, ..., B_1,..., C)]
+ where EXPR(...) is an arbitrary expression over some or all SELECT fields,
+ or:
+ SELECT DISTINCT A_i1,...,A_ik
+ FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND PA(A_i1,...,A_iq)];
+
+ NOTES
+ If the current query satisfies the conditions above, and if
+ (mem_root! = NULL), then the function constructs and returns a new TRP
+ object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
+ If (mem_root == NULL), then the function only tests whether the current
+ query satisfies the conditions above, and, if so, sets
+ is_applicable = TRUE.
+
+ Queries with DISTINCT for which index access can be used are transformed
+ into equivalent group-by queries of the form:
+
+ SELECT A_1,...,A_k FROM T
+ WHERE [RNG(A_1,...,A_p ; where p <= k)]
+ [AND PA(A_i1,...,A_iq)]
+ GROUP BY A_1,...,A_k;
+
+ The group-by list is a permutation of the select attributes, according
+ to their order in the index.
+
+ TODO
+ - What happens if the query groups by the MIN/MAX field, and there is no
+ other field as in: "select min(a) from t1 group by a" ?
+ - We assume that the general correctness of the GROUP-BY query was checked
+ before this point. Is this correct, or do we have to check it completely?
+ - Lift the limitation in condition (B3), that is, make this access method
+ applicable to ROLLUP queries.
+
+ RETURN
+ If mem_root != NULL
+ - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
+ the query
+ - NULL o/w.
+ If mem_root == NULL
+ - NULL
+*/
+
+static TRP_GROUP_MIN_MAX *
+get_best_group_min_max(PARAM *param, SEL_TREE *tree)
+{
+ THD *thd= param->thd;
+ JOIN *join= thd->lex->current_select->join;
+ TABLE *table= param->table;
+ bool have_min= FALSE; /* TRUE if there is a MIN function. */
+ bool have_max= FALSE; /* TRUE if there is a MAX function. */
+ Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
+ KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
+ uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
+ KEY *index_info= NULL; /* The index chosen for data access. */
+ uint index= 0; /* The id of the chosen index. */
+ uint group_key_parts= 0; /* Number of index key parts in the group prefix. */
+ uint used_key_parts= 0; /* Number of index key parts used for access. */
+ byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
+ uint key_infix_len= 0; /* Length of key_infix. */
+ TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
+ uint key_part_nr;
+ ORDER *tmp_group;
+ Item *item;
+ Item_field *item_field;
+ DBUG_ENTER("get_best_group_min_max");
+
+ /* Perform few 'cheap' tests whether this access method is applicable. */
+ if (!join)
+ DBUG_RETURN(NULL); /* This is not a select statement. */
+ if ((join->tables != 1) || /* The query must reference one table. */
+ ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
+ (!join->select_distinct)) ||
+ (join->select_lex->olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
+ DBUG_RETURN(NULL);
+ if (table->s->keys == 0) /* There are no indexes to use. */
+ DBUG_RETURN(NULL);
+
+ /* Analyze the query in more detail. */
+ List_iterator<Item> select_items_it(join->fields_list);
+
+ /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
+ if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
+ DBUG_RETURN(NULL);
+ if (join->sum_funcs[0])
+ {
+ Item_sum *min_max_item;
+ Item_sum **func_ptr= join->sum_funcs;
+ while ((min_max_item= *(func_ptr++)))
+ {
+ if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
+ have_min= TRUE;
+ else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
+ have_max= TRUE;
+ else
+ DBUG_RETURN(NULL);
+
+ /* The argument of MIN/MAX. */
+ Item *expr= min_max_item->args[0]->real_item();
+ if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
+ {
+ if (! min_max_arg_item)
+ min_max_arg_item= (Item_field*) expr;
+ else if (! min_max_arg_item->eq(expr, 1))
+ DBUG_RETURN(NULL);
+ }
+ else
+ DBUG_RETURN(NULL);
+ }
+ }
+
+ /* Check (SA5). */
+ if (join->select_distinct)
+ {
+ while ((item= select_items_it++))
+ {
+ if (item->type() != Item::FIELD_ITEM)
+ DBUG_RETURN(NULL);
+ }
+ }
+
+ /* Check (GA4) - that there are no expressions among the group attributes. */
+ for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
+ {
+ if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
+ DBUG_RETURN(NULL);
+ }
+
+ /*
+ Check that table has at least one compound index such that the conditions
+ (GA1,GA2) are all TRUE. If there is more than one such index, select the
+ first one. Here we set the variables: group_prefix_len and index_info.
+ */
+ KEY *cur_index_info= table->key_info;
+ KEY *cur_index_info_end= cur_index_info + table->s->keys;
+ KEY_PART_INFO *cur_part= NULL;
+ KEY_PART_INFO *end_part; /* Last part for loops. */
+ /* Last index part. */
+ KEY_PART_INFO *last_part= NULL;
+ KEY_PART_INFO *first_non_group_part= NULL;
+ KEY_PART_INFO *first_non_infix_part= NULL;
+ uint key_infix_parts= 0;
+ uint cur_group_key_parts= 0;
+ uint cur_group_prefix_len= 0;
+ /* Cost-related variables for the best index so far. */
+ double best_read_cost= DBL_MAX;
+ ha_rows best_records= 0;
+ SEL_ARG *best_index_tree= NULL;
+ ha_rows best_quick_prefix_records= 0;
+ uint best_param_idx= 0;
+ double cur_read_cost= DBL_MAX;
+ ha_rows cur_records;
+ SEL_ARG *cur_index_tree= NULL;
+ ha_rows cur_quick_prefix_records= 0;
+ uint cur_param_idx=MAX_KEY;
+ key_map cur_used_key_parts;
+ uint pk= param->table->s->primary_key;
+
+ for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
+ cur_index_info++, cur_index++)
+ {
+ /* Check (B1) - if current index is covering. */
+ if (!table->used_keys.is_set(cur_index))
+ goto next_index;
+
+ /*
+ If the current storage manager is such that it appends the primary key to
+ each index, then the above condition is insufficient to check if the
+ index is covering. In such cases it may happen that some fields are
+ covered by the PK index, but not by the current index. Since we can't
+ use the concatenation of both indexes for index lookup, such an index
+ does not qualify as covering in our case. If this is the case, below
+ we check that all query fields are indeed covered by 'cur_index'.
+ */
+ if (pk < MAX_KEY && cur_index != pk &&
+ (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
+ {
+ /* For each table field */
+ for (uint i= 0; i < table->s->fields; i++)
+ {
+ Field *cur_field= table->field[i];
+ /*
+ If the field is used in the current query, check that the
+ field is covered by some keypart of the current index.
+ */
+ if (thd->query_id == cur_field->query_id)
+ {
+ KEY_PART_INFO *key_part= cur_index_info->key_part;
+ KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts;
+ for (;;)
+ {
+ if (key_part->field == cur_field)
+ break;
+ if (++key_part == key_part_end)
+ goto next_index; // Field was not part of key
+ }
+ }
+ }
+ }
+
+ /*
+ Check (GA1) for GROUP BY queries.
+ */
+ if (join->group_list)
+ {
+ cur_part= cur_index_info->key_part;
+ end_part= cur_part + cur_index_info->key_parts;
+ /* Iterate in parallel over the GROUP list and the index parts. */
+ for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
+ tmp_group= tmp_group->next, cur_part++)
+ {
+ /*
+ TODO:
+ tmp_group::item is an array of Item, is it OK to consider only the
+ first Item? If so, then why? What is the array for?
+ */
+ /* Above we already checked that all group items are fields. */
+ DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
+ Item_field *group_field= (Item_field *) (*tmp_group->item);
+ if (group_field->field->eq(cur_part->field))
+ {
+ cur_group_prefix_len+= cur_part->store_length;
+ ++cur_group_key_parts;
+ }
+ else
+ goto next_index;
+ }
+ }
+ /*
+ Check (GA2) if this is a DISTINCT query.
+ If GA2, then Store a new ORDER object in group_fields_array at the
+ position of the key part of item_field->field. Thus we get the ORDER
+ objects for each field ordered as the corresponding key parts.
+ Later group_fields_array of ORDER objects is used to convert the query
+ to a GROUP query.
+ */
+ else if (join->select_distinct)
+ {
+ select_items_it.rewind();
+ cur_used_key_parts.clear_all();
+ uint max_key_part= 0;
+ while ((item= select_items_it++))
+ {
+ item_field= (Item_field*) item; /* (SA5) already checked above. */
+ /* Find the order of the key part in the index. */
+ key_part_nr= get_field_keypart(cur_index_info, item_field->field);
+ /*
+ Check if this attribute was already present in the select list.
+ If it was present, then its corresponding key part was alredy used.
+ */
+ if (cur_used_key_parts.is_set(key_part_nr))
+ continue;
+ if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
+ goto next_index;
+ cur_part= cur_index_info->key_part + key_part_nr - 1;
+ cur_group_prefix_len+= cur_part->store_length;
+ cur_used_key_parts.set_bit(key_part_nr);
+ ++cur_group_key_parts;
+ max_key_part= max(max_key_part,key_part_nr);
+ }
+ /*
+ Check that used key parts forms a prefix of the index.
+ To check this we compare bits in all_parts and cur_parts.
+ all_parts have all bits set from 0 to (max_key_part-1).
+ cur_parts have bits set for only used keyparts.
+ */
+ ulonglong all_parts, cur_parts;
+ all_parts= (1<<max_key_part) - 1;
+ cur_parts= cur_used_key_parts.to_ulonglong() >> 1;
+ if (all_parts != cur_parts)
+ goto next_index;
+ }
+ else
+ DBUG_ASSERT(FALSE);
+
+ /* Check (SA2). */
+ if (min_max_arg_item)
+ {
+ key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
+ if (key_part_nr <= cur_group_key_parts)
+ goto next_index;
+ min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
+ }
+
+ /*
+ Check (NGA1, NGA2) and extract a sequence of constants to be used as part
+ of all search keys.
+ */
+
+ /*
+ If there is MIN/MAX, each keypart between the last group part and the
+ MIN/MAX part must participate in one equality with constants, and all
+ keyparts after the MIN/MAX part must not be referenced in the query.
+
+ If there is no MIN/MAX, the keyparts after the last group part can be
+ referenced only in equalities with constants, and the referenced keyparts
+ must form a sequence without any gaps that starts immediately after the
+ last group keypart.
+ */
+ last_part= cur_index_info->key_part + cur_index_info->key_parts;
+ first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
+ cur_index_info->key_part + cur_group_key_parts :
+ NULL;
+ first_non_infix_part= min_max_arg_part ?
+ (min_max_arg_part < last_part) ?
+ min_max_arg_part + 1 :
+ NULL :
+ NULL;
+ if (first_non_group_part &&
+ (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
+ {
+ if (tree)
+ {
+ uint dummy;
+ SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
+ &dummy);
+ if (!get_constant_key_infix(cur_index_info, index_range_tree,
+ first_non_group_part, min_max_arg_part,
+ last_part, thd, key_infix, &key_infix_len,
+ &first_non_infix_part))
+ goto next_index;
+ }
+ else if (min_max_arg_part &&
+ (min_max_arg_part - first_non_group_part > 0))
+ {
+ /*
+ There is a gap but no range tree, thus no predicates at all for the
+ non-group keyparts.
+ */
+ goto next_index;
+ }
+ else if (first_non_group_part && join->conds)
+ {
+ /*
+ If there is no MIN/MAX function in the query, but some index
+ key part is referenced in the WHERE clause, then this index
+ cannot be used because the WHERE condition over the keypart's
+ field cannot be 'pushed' to the index (because there is no
+ range 'tree'), and the WHERE clause must be evaluated before
+ GROUP BY/DISTINCT.
+ */
+ /*
+ Store the first and last keyparts that need to be analyzed
+ into one array that can be passed as parameter.
+ */
+ KEY_PART_INFO *key_part_range[2];
+ key_part_range[0]= first_non_group_part;
+ key_part_range[1]= last_part;
+
+ /* Check if cur_part is referenced in the WHERE clause. */
+ if (join->conds->walk(&Item::find_item_in_field_list_processor,
+ (byte*) key_part_range))
+ goto next_index;
+ }
+ }
+
+ /*
+ Test (WA1) partially - that no other keypart after the last infix part is
+ referenced in the query.
+ */
+ if (first_non_infix_part)
+ {
+ for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
+ {
+ if (cur_part->field->query_id == thd->query_id)
+ goto next_index;
+ }
+ }
+
+ /* If we got to this point, cur_index_info passes the test. */
+ key_infix_parts= key_infix_len ?
+ (first_non_infix_part - first_non_group_part) : 0;
+ used_key_parts= cur_group_key_parts + key_infix_parts;
+
+ /* Compute the cost of using this index. */
+ if (tree)
+ {
+ /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
+ cur_index_tree= get_index_range_tree(cur_index, tree, param,
+ &cur_param_idx);
+ /* Check if this range tree can be used for prefix retrieval. */
+ cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
+ cur_index_tree);
+ }
+ cost_group_min_max(table, cur_index_info, used_key_parts,
+ cur_group_key_parts, tree, cur_index_tree,
+ cur_quick_prefix_records, have_min, have_max,
+ &cur_read_cost, &cur_records);
+ /*
+ If cur_read_cost is lower than best_read_cost use cur_index.
+ Do not compare doubles directly because they may have different
+ representations (64 vs. 80 bits).
+ */
+ if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
+ {
+ DBUG_ASSERT(tree != 0 || cur_param_idx == MAX_KEY);
+ index_info= cur_index_info;
+ index= cur_index;
+ best_read_cost= cur_read_cost;
+ best_records= cur_records;
+ best_index_tree= cur_index_tree;
+ best_quick_prefix_records= cur_quick_prefix_records;
+ best_param_idx= cur_param_idx;
+ group_key_parts= cur_group_key_parts;
+ group_prefix_len= cur_group_prefix_len;
+ }
+
+ next_index:
+ cur_group_key_parts= 0;
+ cur_group_prefix_len= 0;
+ }
+ if (!index_info) /* No usable index found. */
+ DBUG_RETURN(NULL);
+
+ /* Check (SA3) for the where clause. */
+ if (join->conds && min_max_arg_item &&
+ !check_group_min_max_predicates(join->conds, min_max_arg_item,
+ (index_info->flags & HA_SPATIAL) ?
+ Field::itMBR : Field::itRAW))
+ DBUG_RETURN(NULL);
+
+ /* The query passes all tests, so construct a new TRP object. */
+ read_plan= new (param->mem_root)
+ TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
+ group_prefix_len, used_key_parts,
+ group_key_parts, index_info, index,
+ key_infix_len,
+ (key_infix_len > 0) ? key_infix : NULL,
+ tree, best_index_tree, best_param_idx,
+ best_quick_prefix_records);
+ if (read_plan)
+ {
+ if (tree && read_plan->quick_prefix_records == 0)
+ DBUG_RETURN(NULL);
+
+ read_plan->read_cost= best_read_cost;
+ read_plan->records= best_records;
+
+ DBUG_PRINT("info",
+ ("Returning group min/max plan: cost: %g, records: %lu",
+ read_plan->read_cost, (ulong) read_plan->records));
+ }
+
+ DBUG_RETURN(read_plan);
+}
+
+
+/*
+ Check that the MIN/MAX attribute participates only in range predicates
+ with constants.
+
+ SYNOPSIS
+ check_group_min_max_predicates()
+ cond tree (or subtree) describing all or part of the WHERE
+ clause being analyzed
+ min_max_arg_item the field referenced by the MIN/MAX function(s)
+ min_max_arg_part the keypart of the MIN/MAX argument if any
+
+ DESCRIPTION
+ The function walks recursively over the cond tree representing a WHERE
+ clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
+ aggregate function, it is referenced only by one of the following
+ predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
+
+ RETURN
+ TRUE if cond passes the test
+ FALSE o/w
+*/
+
+static bool
+check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
+ Field::imagetype image_type)
+{
+ DBUG_ENTER("check_group_min_max_predicates");
+ DBUG_ASSERT(cond && min_max_arg_item);
+
+ cond= cond->real_item();
+ Item::Type cond_type= cond->type();
+ if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
+ {
+ DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *and_or_arg;
+ while ((and_or_arg= li++))
+ {
+ if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
+ image_type))
+ DBUG_RETURN(FALSE);
+ }
+ DBUG_RETURN(TRUE);
+ }
+
+ /*
+ TODO:
+ This is a very crude fix to handle sub-selects in the WHERE clause
+ (Item_subselect objects). With the test below we rule out from the
+ optimization all queries with subselects in the WHERE clause. What has to
+ be done, is that here we should analyze whether the subselect references
+ the MIN/MAX argument field, and disallow the optimization only if this is
+ so.
+ */
+ if (cond_type == Item::SUBSELECT_ITEM)
+ DBUG_RETURN(FALSE);
+
+ /* We presume that at this point there are no other Items than functions. */
+ DBUG_ASSERT(cond_type == Item::FUNC_ITEM);
+
+ /* Test if cond references only group-by or non-group fields. */
+ Item_func *pred= (Item_func*) cond;
+ Item **arguments= pred->arguments();
+ Item *cur_arg;
+ DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
+ for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
+ {
+ cur_arg= arguments[arg_idx]->real_item();
+ DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
+ if (cur_arg->type() == Item::FIELD_ITEM)
+ {
+ if (min_max_arg_item->eq(cur_arg, 1))
+ {
+ /*
+ If pred references the MIN/MAX argument, check whether pred is a range
+ condition that compares the MIN/MAX argument with a constant.
+ */
+ Item_func::Functype pred_type= pred->functype();
+ if (pred_type != Item_func::EQUAL_FUNC &&
+ pred_type != Item_func::LT_FUNC &&
+ pred_type != Item_func::LE_FUNC &&
+ pred_type != Item_func::GT_FUNC &&
+ pred_type != Item_func::GE_FUNC &&
+ pred_type != Item_func::BETWEEN &&
+ pred_type != Item_func::ISNULL_FUNC &&
+ pred_type != Item_func::ISNOTNULL_FUNC &&
+ pred_type != Item_func::EQ_FUNC &&
+ pred_type != Item_func::NE_FUNC)
+ DBUG_RETURN(FALSE);
+
+ /* Check that pred compares min_max_arg_item with a constant. */
+ Item *args[3];
+ bzero(args, 3 * sizeof(Item*));
+ bool inv;
+ /* Test if this is a comparison of a field and a constant. */
+ if (!simple_pred(pred, args, &inv))
+ DBUG_RETURN(FALSE);
+
+ /* Check for compatible string comparisons - similar to get_mm_leaf. */
+ if (args[0] && args[1] && !args[2] && // this is a binary function
+ min_max_arg_item->result_type() == STRING_RESULT &&
+ /*
+ Don't use an index when comparing strings of different collations.
+ */
+ ((args[1]->result_type() == STRING_RESULT &&
+ image_type == Field::itRAW &&
+ ((Field_str*) min_max_arg_item->field)->charset() !=
+ pred->compare_collation())
+ ||
+ /*
+ We can't always use indexes when comparing a string index to a
+ number.
+ */
+ (args[1]->result_type() != STRING_RESULT &&
+ min_max_arg_item->field->cmp_type() != args[1]->result_type())))
+ DBUG_RETURN(FALSE);
+ }
+ }
+ else if (cur_arg->type() == Item::FUNC_ITEM)
+ {
+ if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
+ image_type))
+ DBUG_RETURN(FALSE);
+ }
+ else if (cur_arg->const_item())
+ {
+ DBUG_RETURN(TRUE);
+ }
+ else
+ DBUG_RETURN(FALSE);
+ }
+
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Extract a sequence of constants from a conjunction of equality predicates.
+
+ SYNOPSIS
+ get_constant_key_infix()
+ index_info [in] Descriptor of the chosen index.
+ index_range_tree [in] Range tree for the chosen index
+ first_non_group_part [in] First index part after group attribute parts
+ min_max_arg_part [in] The keypart of the MIN/MAX argument if any
+ last_part [in] Last keypart of the index
+ thd [in] Current thread
+ key_infix [out] Infix of constants to be used for index lookup
+ key_infix_len [out] Lenghth of the infix
+ first_non_infix_part [out] The first keypart after the infix (if any)
+
+ DESCRIPTION
+ Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
+ for each keypart field NGF_i not in GROUP-BY, check that there is a
+ constant equality predicate among conds with the form (NGF_i = const_ci) or
+ (const_ci = NGF_i).
+ Thus all the NGF_i attributes must fill the 'gap' between the last group-by
+ attribute and the MIN/MAX attribute in the index (if present). If these
+ conditions hold, copy each constant from its corresponding predicate into
+ key_infix, in the order its NG_i attribute appears in the index, and update
+ key_infix_len with the total length of the key parts in key_infix.
+
+ RETURN
+ TRUE if the index passes the test
+ FALSE o/w
+*/
+
+static bool
+get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
+ KEY_PART_INFO *first_non_group_part,
+ KEY_PART_INFO *min_max_arg_part,
+ KEY_PART_INFO *last_part, THD *thd,
+ byte *key_infix, uint *key_infix_len,
+ KEY_PART_INFO **first_non_infix_part)
+{
+ SEL_ARG *cur_range;
+ KEY_PART_INFO *cur_part;
+ /* End part for the first loop below. */
+ KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
+
+ *key_infix_len= 0;
+ byte *key_ptr= key_infix;
+ for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
+ {
+ /*
+ Find the range tree for the current keypart. We assume that
+ index_range_tree points to the leftmost keypart in the index.
+ */
+ for (cur_range= index_range_tree; cur_range;
+ cur_range= cur_range->next_key_part)
+ {
+ if (cur_range->field->eq(cur_part->field))
+ break;
+ }
+ if (!cur_range)
+ {
+ if (min_max_arg_part)
+ return FALSE; /* The current keypart has no range predicates at all. */
+ else
+ {
+ *first_non_infix_part= cur_part;
+ return TRUE;
+ }
+ }
+
+ /* Check that the current range tree is a single point interval. */
+ if (cur_range->prev || cur_range->next)
+ return FALSE; /* This is not the only range predicate for the field. */
+ if ((cur_range->min_flag & NO_MIN_RANGE) ||
+ (cur_range->max_flag & NO_MAX_RANGE) ||
+ (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
+ return FALSE;
+
+ uint field_length= cur_part->store_length;
+ if ((cur_range->maybe_null &&
+ cur_range->min_value[0] && cur_range->max_value[0])
+ ||
+ (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
+ { /* cur_range specifies 'IS NULL' or an equality condition. */
+ memcpy(key_ptr, cur_range->min_value, field_length);
+ key_ptr+= field_length;
+ *key_infix_len+= field_length;
+ }
+ else
+ return FALSE;
+ }
+
+ if (!min_max_arg_part && (cur_part == last_part))
+ *first_non_infix_part= last_part;
+
+ return TRUE;
+}
+
+
+/*
+ Find the key part referenced by a field.
+
+ SYNOPSIS
+ get_field_keypart()
+ index descriptor of an index
+ field field that possibly references some key part in index
+
+ NOTES
+ The return value can be used to get a KEY_PART_INFO pointer by
+ part= index->key_part + get_field_keypart(...) - 1;
+
+ RETURN
+ Positive number which is the consecutive number of the key part, or
+ 0 if field does not reference any index field.
+*/
+
+static inline uint
+get_field_keypart(KEY *index, Field *field)
+{
+ KEY_PART_INFO *part, *end;
+
+ for (part= index->key_part, end= part + index->key_parts; part < end; part++)
+ {
+ if (field->eq(part->field))
+ return part - index->key_part + 1;
+ }
+ return 0;
+}
+
+
+/*
+ Find the SEL_ARG sub-tree that corresponds to the chosen index.
+
+ SYNOPSIS
+ get_index_range_tree()
+ index [in] The ID of the index being looked for
+ range_tree[in] Tree of ranges being searched
+ param [in] PARAM from SQL_SELECT::test_quick_select
+ param_idx [out] Index in the array PARAM::key that corresponds to 'index'
+
+ DESCRIPTION
+
+ A SEL_TREE contains range trees for all usable indexes. This procedure
+ finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
+ ordered in the same way as the members of PARAM::key, thus we first find
+ the corresponding index in the array PARAM::key. This index is returned
+ through the variable param_idx, to be used later as argument of
+ check_quick_select().
+
+ RETURN
+ Pointer to the SEL_ARG subtree that corresponds to index.
+*/
+
+SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
+ uint *param_idx)
+{
+ uint idx= 0; /* Index nr in param->key_parts */
+ while (idx < param->keys)
+ {
+ if (index == param->real_keynr[idx])
+ break;
+ idx++;
+ }
+ *param_idx= idx;
+ return(range_tree->keys[idx]);
+}
+
+
+/*
+ Compute the cost of a quick_group_min_max_select for a particular index.
+
+ SYNOPSIS
+ cost_group_min_max()
+ table [in] The table being accessed
+ index_info [in] The index used to access the table
+ used_key_parts [in] Number of key parts used to access the index
+ group_key_parts [in] Number of index key parts in the group prefix
+ range_tree [in] Tree of ranges for all indexes
+ index_tree [in] The range tree for the current index
+ quick_prefix_records [in] Number of records retrieved by the internally
+ used quick range select if any
+ have_min [in] True if there is a MIN function
+ have_max [in] True if there is a MAX function
+ read_cost [out] The cost to retrieve rows via this quick select
+ records [out] The number of rows retrieved
+
+ DESCRIPTION
+ This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
+ the number of rows returned. It updates this->read_cost and this->records.
+
+ NOTES
+ The cost computation distinguishes several cases:
+ 1) No equality predicates over non-group attributes (thus no key_infix).
+ If groups are bigger than blocks on the average, then we assume that it
+ is very unlikely that block ends are aligned with group ends, thus even
+ if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
+ keys, except for the first MIN and the last MAX keys, will be in the
+ same block. If groups are smaller than blocks, then we are going to
+ read all blocks.
+ 2) There are equality predicates over non-group attributes.
+ In this case the group prefix is extended by additional constants, and
+ as a result the min/max values are inside sub-groups of the original
+ groups. The number of blocks that will be read depends on whether the
+ ends of these sub-groups will be contained in the same or in different
+ blocks. We compute the probability for the two ends of a subgroup to be
+ in two different blocks as the ratio of:
+ - the number of positions of the left-end of a subgroup inside a group,
+ such that the right end of the subgroup is past the end of the buffer
+ containing the left-end, and
+ - the total number of possible positions for the left-end of the
+ subgroup, which is the number of keys in the containing group.
+ We assume it is very unlikely that two ends of subsequent subgroups are
+ in the same block.
+ 3) The are range predicates over the group attributes.
+ Then some groups may be filtered by the range predicates. We use the
+ selectivity of the range predicates to decide how many groups will be
+ filtered.
+
+ TODO
+ - Take into account the optional range predicates over the MIN/MAX
+ argument.
+ - Check if we have a PK index and we use all cols - then each key is a
+ group, and it will be better to use an index scan.
+
+ RETURN
+ None
+*/
+
+void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
+ uint group_key_parts, SEL_TREE *range_tree,
+ SEL_ARG *index_tree, ha_rows quick_prefix_records,
+ bool have_min, bool have_max,
+ double *read_cost, ha_rows *records)
+{
+ uint table_records;
+ uint num_groups;
+ uint num_blocks;
+ uint keys_per_block;
+ uint keys_per_group;
+ uint keys_per_subgroup; /* Average number of keys in sub-groups */
+ /* formed by a key infix. */
+ double p_overlap; /* Probability that a sub-group overlaps two blocks. */
+ double quick_prefix_selectivity;
+ double io_cost;
+ double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
+ DBUG_ENTER("cost_group_min_max");
+
+ table_records= table->file->records;
+ keys_per_block= (table->file->block_size / 2 /
+ (index_info->key_length + table->file->ref_length)
+ + 1);
+ num_blocks= (table_records / keys_per_block) + 1;
+
+ /* Compute the number of keys in a group. */
+ keys_per_group= index_info->rec_per_key[group_key_parts - 1];
+ if (keys_per_group == 0) /* If there is no statistics try to guess */
+ /* each group contains 10% of all records */
+ keys_per_group= (table_records / 10) + 1;
+ num_groups= (table_records / keys_per_group) + 1;
+
+ /* Apply the selectivity of the quick select for group prefixes. */
+ if (range_tree && (quick_prefix_records != HA_POS_ERROR))
+ {
+ quick_prefix_selectivity= (double) quick_prefix_records /
+ (double) table_records;
+ num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
+ set_if_bigger(num_groups, 1);
+ }
+
+ if (used_key_parts > group_key_parts)
+ { /*
+ Compute the probability that two ends of a subgroup are inside
+ different blocks.
+ */
+ keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
+ if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
+ p_overlap= 1.0; /* a block, it will overlap at least two blocks. */
+ else
+ {
+ double blocks_per_group= (double) num_blocks / (double) num_groups;
+ p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
+ p_overlap= min(p_overlap, 1.0);
+ }
+ io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
+ }
+ else
+ io_cost= (keys_per_group > keys_per_block) ?
+ (have_min && have_max) ? (double) (num_groups + 1) :
+ (double) num_groups :
+ (double) num_blocks;
+
+ /*
+ TODO: If there is no WHERE clause and no other expressions, there should be
+ no CPU cost. We leave it here to make this cost comparable to that of index
+ scan as computed in SQL_SELECT::test_quick_select().
+ */
+ cpu_cost= (double) num_groups / TIME_FOR_COMPARE;
+
+ *read_cost= io_cost + cpu_cost;
+ *records= num_groups;
+
+ DBUG_PRINT("info",
+ ("table rows: %u keys/block: %u keys/group: %u result rows: %lu blocks: %u",
+ table_records, keys_per_block, keys_per_group, (ulong) *records,
+ num_blocks));
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Construct a new quick select object for queries with group by with min/max.
+
+ SYNOPSIS
+ TRP_GROUP_MIN_MAX::make_quick()
+ param Parameter from test_quick_select
+ retrieve_full_rows ignored
+ parent_alloc Memory pool to use, if any.
+
+ NOTES
+ Make_quick ignores the retrieve_full_rows parameter because
+ QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
+ The other parameter are ignored as well because all necessary
+ data to create the QUICK object is computed at this TRP creation
+ time.
+
+ RETURN
+ New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
+ NULL o/w.
+*/
+
+QUICK_SELECT_I *
+TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
+ MEM_ROOT *parent_alloc)
+{
+ QUICK_GROUP_MIN_MAX_SELECT *quick;
+ DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");
+
+ quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
+ param->thd->lex->current_select->join,
+ have_min, have_max, min_max_arg_part,
+ group_prefix_len, used_key_parts,
+ index_info, index, read_cost, records,
+ key_infix_len, key_infix,
+ parent_alloc);
+ if (!quick)
+ DBUG_RETURN(NULL);
+
+ if (quick->init())
+ {
+ delete quick;
+ DBUG_RETURN(NULL);
+ }
+
+ if (range_tree)
+ {
+ DBUG_ASSERT(quick_prefix_records > 0);
+ if (quick_prefix_records == HA_POS_ERROR)
+ quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
+ else
+ /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
+ quick->quick_prefix_select= get_quick_select(param, param_idx,
+ index_tree,
+ &quick->alloc);
+
+ /*
+ Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
+ attribute, and create an array of QUICK_RANGES to be used by the
+ new quick select.
+ */
+ if (min_max_arg_part)
+ {
+ SEL_ARG *min_max_range= index_tree;
+ while (min_max_range) /* Find the tree for the MIN/MAX key part. */
+ {
+ if (min_max_range->field->eq(min_max_arg_part->field))
+ break;
+ min_max_range= min_max_range->next_key_part;
+ }
+ /* Scroll to the leftmost interval for the MIN/MAX argument. */
+ while (min_max_range && min_max_range->prev)
+ min_max_range= min_max_range->prev;
+ /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
+ while (min_max_range)
+ {
+ if (quick->add_range(min_max_range))
+ {
+ delete quick;
+ quick= NULL;
+ DBUG_RETURN(NULL);
+ }
+ min_max_range= min_max_range->next;
+ }
+ }
+ }
+ else
+ quick->quick_prefix_select= NULL;
+
+ quick->update_key_stat();
+ quick->adjust_prefix_ranges();
+
+ DBUG_RETURN(quick);
+}
+
+
+/*
+ Construct new quick select for group queries with min/max.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
+ table The table being accessed
+ join Descriptor of the current query
+ have_min TRUE if the query selects a MIN function
+ have_max TRUE if the query selects a MAX function
+ min_max_arg_part The only argument field of all MIN/MAX functions
+ group_prefix_len Length of all key parts in the group prefix
+ prefix_key_parts All key parts in the group prefix
+ index_info The index chosen for data access
+ use_index The id of index_info
+ read_cost Cost of this access method
+ records Number of records returned
+ key_infix_len Length of the key infix appended to the group prefix
+ key_infix Infix of constants from equality predicates
+ parent_alloc Memory pool for this and quick_prefix_select data
+
+ RETURN
+ None
+*/
+
+QUICK_GROUP_MIN_MAX_SELECT::
+QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
+ bool have_max_arg,
+ KEY_PART_INFO *min_max_arg_part_arg,
+ uint group_prefix_len_arg,
+ uint used_key_parts_arg, KEY *index_info_arg,
+ uint use_index, double read_cost_arg,
+ ha_rows records_arg, uint key_infix_len_arg,
+ byte *key_infix_arg, MEM_ROOT *parent_alloc)
+ :join(join_arg), index_info(index_info_arg),
+ group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
+ have_max(have_max_arg), seen_first_key(FALSE),
+ min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
+ key_infix_len(key_infix_len_arg), min_functions_it(NULL),
+ max_functions_it(NULL)
+{
+ head= table;
+ file= head->file;
+ index= use_index;
+ record= head->record[0];
+ tmp_record= head->record[1];
+ read_time= read_cost_arg;
+ records= records_arg;
+ used_key_parts= used_key_parts_arg;
+ real_prefix_len= group_prefix_len + key_infix_len;
+ group_prefix= NULL;
+ min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
+
+ /*
+ We can't have parent_alloc set as the init function can't handle this case
+ yet.
+ */
+ DBUG_ASSERT(!parent_alloc);
+ if (!parent_alloc)
+ {
+ init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
+ join->thd->mem_root= &alloc;
+ }
+ else
+ bzero(&alloc, sizeof(MEM_ROOT)); // ensure that it's not used
+}
+
+
+/*
+ Do post-constructor initialization.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::init()
+
+ DESCRIPTION
+ The method performs initialization that cannot be done in the constructor
+ such as memory allocations that may fail. It allocates memory for the
+ group prefix and inifix buffers, and for the lists of MIN/MAX item to be
+ updated during execution.
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::init()
+{
+ if (group_prefix) /* Already initialized. */
+ return 0;
+
+ if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
+ return 1;
+ /*
+ We may use group_prefix to store keys with all select fields, so allocate
+ enough space for it.
+ */
+ if (!(group_prefix= (byte*) alloc_root(&alloc,
+ real_prefix_len + min_max_arg_len)))
+ return 1;
+
+ if (key_infix_len > 0)
+ {
+ /*
+ The memory location pointed to by key_infix will be deleted soon, so
+ allocate a new buffer and copy the key_infix into it.
+ */
+ byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
+ if (!tmp_key_infix)
+ return 1;
+ memcpy(tmp_key_infix, this->key_infix, key_infix_len);
+ this->key_infix= tmp_key_infix;
+ }
+
+ if (min_max_arg_part)
+ {
+ if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
+ return 1;
+
+ if (have_min)
+ {
+ if (!(min_functions= new List<Item_sum>))
+ return 1;
+ }
+ else
+ min_functions= NULL;
+ if (have_max)
+ {
+ if (!(max_functions= new List<Item_sum>))
+ return 1;
+ }
+ else
+ max_functions= NULL;
+
+ Item_sum *min_max_item;
+ Item_sum **func_ptr= join->sum_funcs;
+ while ((min_max_item= *(func_ptr++)))
+ {
+ if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
+ min_functions->push_back(min_max_item);
+ else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
+ max_functions->push_back(min_max_item);
+ }
+
+ if (have_min)
+ {
+ if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
+ return 1;
+ }
+
+ if (have_max)
+ {
+ if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
+ return 1;
+ }
+ }
+ else
+ min_max_ranges.elements= 0;
+
+ return 0;
+}
+
+
+QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
+{
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
+ if (file->inited != handler::NONE)
+ file->ha_index_end();
+ if (min_max_arg_part)
+ delete_dynamic(&min_max_ranges);
+ free_root(&alloc,MYF(0));
+ delete min_functions_it;
+ delete max_functions_it;
+ delete quick_prefix_select;
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Eventually create and add a new quick range object.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::add_range()
+ sel_range Range object from which a
+
+ NOTES
+ Construct a new QUICK_RANGE object from a SEL_ARG object, and
+ add it to the array min_max_ranges. If sel_arg is an infinite
+ range, e.g. (x < 5 or x > 4), then skip it and do not construct
+ a quick range.
+
+ RETURN
+ FALSE on success
+ TRUE otherwise
+*/
+
+bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
+{
+ QUICK_RANGE *range;
+ uint range_flag= sel_range->min_flag | sel_range->max_flag;
+
+ /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
+ if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
+ return FALSE;
+
+ if (!(sel_range->min_flag & NO_MIN_RANGE) &&
+ !(sel_range->max_flag & NO_MAX_RANGE))
+ {
+ if (sel_range->maybe_null &&
+ sel_range->min_value[0] && sel_range->max_value[0])
+ range_flag|= NULL_RANGE; /* IS NULL condition */
+ else if (memcmp(sel_range->min_value, sel_range->max_value,
+ min_max_arg_len) == 0)
+ range_flag|= EQ_RANGE; /* equality condition */
+ }
+ range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
+ sel_range->max_value, min_max_arg_len,
+ range_flag);
+ if (!range)
+ return TRUE;
+ if (insert_dynamic(&min_max_ranges, (gptr)&range))
+ return TRUE;
+ return FALSE;
+}
+
+
+/*
+ Opens the ranges if there are more conditions in quick_prefix_select than
+ the ones used for jumping through the prefixes.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges()
+
+ NOTES
+ quick_prefix_select is made over the conditions on the whole key.
+ It defines a number of ranges of length x.
+ However when jumping through the prefixes we use only the the first
+ few most significant keyparts in the range key. However if there
+ are more keyparts to follow the ones we are using we must make the
+ condition on the key inclusive (because x < "ab" means
+ x[0] < 'a' OR (x[0] == 'a' AND x[1] < 'b').
+ To achive the above we must turn off the NEAR_MIN/NEAR_MAX
+*/
+void QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges ()
+{
+ if (quick_prefix_select &&
+ group_prefix_len < quick_prefix_select->max_used_key_length)
+ {
+ DYNAMIC_ARRAY *arr;
+ uint inx;
+
+ for (inx= 0, arr= &quick_prefix_select->ranges; inx < arr->elements; inx++)
+ {
+ QUICK_RANGE *range;
+
+ get_dynamic(arr, (gptr)&range, inx);
+ range->flag &= ~(NEAR_MIN | NEAR_MAX);
+ }
+ }
+}
+
+
+/*
+ Determine the total number and length of the keys that will be used for
+ index lookup.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
+
+ DESCRIPTION
+ The total length of the keys used for index lookup depends on whether
+ there are any predicates referencing the min/max argument, and/or if
+ the min/max argument field can be NULL.
+ This function does an optimistic analysis whether the search key might
+ be extended by a constant for the min/max keypart. It is 'optimistic'
+ because during actual execution it may happen that a particular range
+ is skipped, and then a shorter key will be used. However this is data
+ dependent and can't be easily estimated here.
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
+{
+ max_used_key_length= real_prefix_len;
+ if (min_max_ranges.elements > 0)
+ {
+ QUICK_RANGE *cur_range;
+ if (have_min)
+ { /* Check if the right-most range has a lower boundary. */
+ get_dynamic(&min_max_ranges, (gptr)&cur_range,
+ min_max_ranges.elements - 1);
+ if (!(cur_range->flag & NO_MIN_RANGE))
+ {
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ return;
+ }
+ }
+ if (have_max)
+ { /* Check if the left-most range has an upper boundary. */
+ get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
+ if (!(cur_range->flag & NO_MAX_RANGE))
+ {
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ return;
+ }
+ }
+ }
+ else if (have_min && min_max_arg_part &&
+ min_max_arg_part->field->real_maybe_null())
+ {
+ /*
+ If a MIN/MAX argument value is NULL, we can quickly determine
+ that we're in the beginning of the next group, because NULLs
+ are always < any other value. This allows us to quickly
+ determine the end of the current group and jump to the next
+ group (see next_min()) and thus effectively increases the
+ usable key length.
+ */
+ max_used_key_length+= min_max_arg_len;
+ used_key_parts++;
+ }
+}
+
+
+/*
+ Initialize a quick group min/max select for key retrieval.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::reset()
+
+ DESCRIPTION
+ Initialize the index chosen for access and find and store the prefix
+ of the last group. The method is expensive since it performs disk access.
+
+ RETURN
+ 0 OK
+ other Error code
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
+{
+ int result;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");
+
+ file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
+ if ((result= file->ha_index_init(index)))
+ DBUG_RETURN(result);
+ if (quick_prefix_select && quick_prefix_select->reset())
+ DBUG_RETURN(1);
+ result= file->index_last(record);
+ if (result == HA_ERR_END_OF_FILE)
+ DBUG_RETURN(0);
+ /* Save the prefix of the last group. */
+ key_copy(last_prefix, record, index_info, group_prefix_len);
+
+ DBUG_RETURN(0);
+}
+
+
+
+/*
+ Get the next key containing the MIN and/or MAX key for the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::get_next()
+
+ DESCRIPTION
+ The method finds the next subsequent group of records that satisfies the
+ query conditions and finds the keys that contain the MIN/MAX values for
+ the key part referenced by the MIN/MAX function(s). Once a group and its
+ MIN/MAX values are found, store these values in the Item_sum objects for
+ the MIN/MAX functions. The rest of the values in the result row are stored
+ in the Item_field::result_field of each select field. If the query does
+ not contain MIN and/or MAX functions, then the function only finds the
+ group prefix, which is a query answer itself.
+
+ NOTES
+ If both MIN and MAX are computed, then we use the fact that if there is
+ no MIN key, there can't be a MAX key as well, so we can skip looking
+ for a MAX key in this case.
+
+ RETURN
+ 0 on success
+ HA_ERR_END_OF_FILE if returned all keys
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::get_next()
+{
+ int min_res= 0;
+ int max_res= 0;
+#ifdef HPUX11
+ /*
+ volatile is required by a bug in the HP compiler due to which the
+ last test of result fails.
+ */
+ volatile int result;
+#else
+ int result;
+#endif
+ int is_last_prefix= 0;
+
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");
+
+ /*
+ Loop until a group is found that satisfies all query conditions or the last
+ group is reached.
+ */
+ do
+ {
+ result= next_prefix();
+ /*
+ Check if this is the last group prefix. Notice that at this point
+ this->record contains the current prefix in record format.
+ */
+ if (!result)
+ {
+ is_last_prefix= key_cmp(index_info->key_part, last_prefix,
+ group_prefix_len);
+ DBUG_ASSERT(is_last_prefix <= 0);
+ }
+ else
+ {
+ if (result == HA_ERR_KEY_NOT_FOUND)
+ continue;
+ break;
+ }
+
+ if (have_min)
+ {
+ min_res= next_min();
+ if (min_res == 0)
+ update_min_result();
+ }
+ /* If there is no MIN in the group, there is no MAX either. */
+ if ((have_max && !have_min) ||
+ (have_max && have_min && (min_res == 0)))
+ {
+ max_res= next_max();
+ if (max_res == 0)
+ update_max_result();
+ /* If a MIN was found, a MAX must have been found as well. */
+ DBUG_ASSERT((have_max && !have_min) ||
+ (have_max && have_min && (max_res == 0)));
+ }
+ /*
+ If this is just a GROUP BY or DISTINCT without MIN or MAX and there
+ are equality predicates for the key parts after the group, find the
+ first sub-group with the extended prefix.
+ */
+ if (!have_min && !have_max && key_infix_len > 0)
+ result= file->index_read(record, group_prefix, real_prefix_len,
+ HA_READ_KEY_EXACT);
+
+ result= have_min ? min_res : have_max ? max_res : result;
+ }
+ while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0);
+
+ if (result == 0)
+ /*
+ Partially mimic the behavior of end_select_send. Copy the
+ field data from Item_field::field into Item_field::result_field
+ of each non-aggregated field (the group fields, and optionally
+ other fields in non-ANSI SQL mode).
+ */
+ copy_fields(&join->tmp_table_param);
+ else if (result == HA_ERR_KEY_NOT_FOUND)
+ result= HA_ERR_END_OF_FILE;
+
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve the minimal key in the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_min()
+
+ DESCRIPTION
+ Find the minimal key within this group such that the key satisfies the query
+ conditions and NULL semantics. The found key is loaded into this->record.
+
+ IMPLEMENTATION
+ Depending on the values of min_max_ranges.elements, key_infix_len, and
+ whether there is a NULL in the MIN field, this function may directly
+ return without any data access. In this case we use the key loaded into
+ this->record by the call to this->next_prefix() just before this call.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_min()
+{
+ int result= 0;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");
+
+ /* Find the MIN key using the eventually extended group prefix. */
+ if (min_max_ranges.elements > 0)
+ {
+ if ((result= next_min_in_range()))
+ DBUG_RETURN(result);
+ }
+ else
+ {
+ /* Apply the constant equality conditions to the non-group select fields */
+ if (key_infix_len > 0)
+ {
+ if ((result= file->index_read(record, group_prefix, real_prefix_len,
+ HA_READ_KEY_EXACT)))
+ DBUG_RETURN(result);
+ }
+
+ /*
+ If the min/max argument field is NULL, skip subsequent rows in the same
+ group with NULL in it. Notice that:
+ - if the first row in a group doesn't have a NULL in the field, no row
+ in the same group has (because NULL < any other value),
+ - min_max_arg_part->field->ptr points to some place in 'record'.
+ */
+ if (min_max_arg_part && min_max_arg_part->field->is_null())
+ {
+ /* Find the first subsequent record without NULL in the MIN/MAX field. */
+ key_copy(tmp_record, record, index_info, 0);
+ result= file->index_read(record, tmp_record,
+ real_prefix_len + min_max_arg_len,
+ HA_READ_AFTER_KEY);
+ /*
+ Check if the new record belongs to the current group by comparing its
+ prefix with the group's prefix. If it is from the next group, then the
+ whole group has NULLs in the MIN/MAX field, so use the first record in
+ the group as a result.
+ TODO:
+ It is possible to reuse this new record as the result candidate for the
+ next call to next_min(), and to save one lookup in the next call. For
+ this add a new member 'this->next_group_prefix'.
+ */
+ if (!result)
+ {
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ key_restore(record, tmp_record, index_info, 0);
+ }
+ else if (result == HA_ERR_KEY_NOT_FOUND)
+ result= 0; /* There is a result in any case. */
+ }
+ }
+
+ /*
+ If the MIN attribute is non-nullable, this->record already contains the
+ MIN key in the group, so just return.
+ */
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Retrieve the maximal key in the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_max()
+
+ DESCRIPTION
+ Lookup the maximal key of the group, and store it into this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
+ other if some error occurred
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_max()
+{
+ int result;
+
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");
+
+ /* Get the last key in the (possibly extended) group. */
+ if (min_max_ranges.elements > 0)
+ result= next_max_in_range();
+ else
+ result= file->index_read(record, group_prefix, real_prefix_len,
+ HA_READ_PREFIX_LAST);
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Determine the prefix of the next group.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
+
+ DESCRIPTION
+ Determine the prefix of the next group that satisfies the query conditions.
+ If there is a range condition referencing the group attributes, use a
+ QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
+ condition. If there is a key infix of constants, append this infix
+ immediately after the group attributes. The possibly extended prefix is
+ stored in this->group_prefix. The first key of the found group is stored in
+ this->record, on which relies this->next_min().
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
+ HA_ERR_END_OF_FILE if there are no more keys
+ other if some error occurred
+*/
+int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
+{
+ int result;
+ DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");
+
+ if (quick_prefix_select)
+ {
+ byte *cur_prefix= seen_first_key ? group_prefix : NULL;
+ if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
+ cur_prefix)))
+ DBUG_RETURN(result);
+ seen_first_key= TRUE;
+ }
+ else
+ {
+ if (!seen_first_key)
+ {
+ result= file->index_first(record);
+ if (result)
+ DBUG_RETURN(result);
+ seen_first_key= TRUE;
+ }
+ else
+ {
+ /* Load the first key in this group into record. */
+ result= file->index_read(record, group_prefix, group_prefix_len,
+ HA_READ_AFTER_KEY);
+ if (result)
+ DBUG_RETURN(result);
+ }
+ }
+
+ /* Save the prefix of this group for subsequent calls. */
+ key_copy(group_prefix, record, index_info, group_prefix_len);
+ /* Append key_infix to group_prefix. */
+ if (key_infix_len > 0)
+ memcpy(group_prefix + group_prefix_len,
+ key_infix, key_infix_len);
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Find the minimal key in a group that satisfies some range conditions for the
+ min/max argument field.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
+
+ DESCRIPTION
+ Given the sequence of ranges min_max_ranges, find the minimal key that is
+ in the left-most possible range. If there is no such key, then the current
+ group does not have a MIN key that satisfies the WHERE clause. If a key is
+ found, its value is stored in this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
+ the ranges
+ other if some error
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
+{
+ ha_rkey_function find_flag;
+ uint search_prefix_len;
+ QUICK_RANGE *cur_range;
+ bool found_null= FALSE;
+ int result= HA_ERR_KEY_NOT_FOUND;
+
+ DBUG_ASSERT(min_max_ranges.elements > 0);
+
+ for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
+ { /* Search from the left-most range to the right. */
+ get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);
+
+ /*
+ If the current value for the min/max argument is bigger than the right
+ boundary of cur_range, there is no need to check this range.
+ */
+ if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
+ (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
+ min_max_arg_len) == 1))
+ continue;
+
+ if (cur_range->flag & NO_MIN_RANGE)
+ {
+ find_flag= HA_READ_KEY_EXACT;
+ search_prefix_len= real_prefix_len;
+ }
+ else
+ {
+ /* Extend the search key with the lower boundary for this range. */
+ memcpy(group_prefix + real_prefix_len, cur_range->min_key,
+ cur_range->min_length);
+ search_prefix_len= real_prefix_len + min_max_arg_len;
+ find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
+ HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
+ HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
+ }
+
+ result= file->index_read(record, group_prefix, search_prefix_len,
+ find_flag);
+ if ((result == HA_ERR_KEY_NOT_FOUND) &&
+ (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
+ continue; /* Check the next range. */
+ else if (result)
+ {
+ /*
+ In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
+ HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
+ range, it can't succeed for any other subsequent range.
+ */
+ break;
+ }
+
+ /* A key was found. */
+ if (cur_range->flag & EQ_RANGE)
+ break; /* No need to perform the checks below for equal keys. */
+
+ if (cur_range->flag & NULL_RANGE)
+ {
+ /*
+ Remember this key, and continue looking for a non-NULL key that
+ satisfies some other condition.
+ */
+ memcpy(tmp_record, record, head->s->rec_buff_length);
+ found_null= TRUE;
+ continue;
+ }
+
+ /* Check if record belongs to the current group. */
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ {
+ result = HA_ERR_KEY_NOT_FOUND;
+ continue;
+ }
+
+ /* If there is an upper limit, check if the found key is in the range. */
+ if ( !(cur_range->flag & NO_MAX_RANGE) )
+ {
+ /* Compose the MAX key for the range. */
+ byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
+ memcpy(max_key, group_prefix, real_prefix_len);
+ memcpy(max_key + real_prefix_len, cur_range->max_key,
+ cur_range->max_length);
+ /* Compare the found key with max_key. */
+ int cmp_res= key_cmp(index_info->key_part, max_key,
+ real_prefix_len + min_max_arg_len);
+ if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
+ (cmp_res <= 0)))
+ {
+ result = HA_ERR_KEY_NOT_FOUND;
+ continue;
+ }
+ }
+ /* If we got to this point, the current key qualifies as MIN. */
+ DBUG_ASSERT(result == 0);
+ break;
+ }
+ /*
+ If there was a key with NULL in the MIN/MAX field, and there was no other
+ key without NULL from the same group that satisfies some other condition,
+ then use the key with the NULL.
+ */
+ if (found_null && result)
+ {
+ memcpy(record, tmp_record, head->s->rec_buff_length);
+ result= 0;
+ }
+ return result;
+}
+
+
+/*
+ Find the maximal key in a group that satisfies some range conditions for the
+ min/max argument field.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
+
+ DESCRIPTION
+ Given the sequence of ranges min_max_ranges, find the maximal key that is
+ in the right-most possible range. If there is no such key, then the current
+ group does not have a MAX key that satisfies the WHERE clause. If a key is
+ found, its value is stored in this->record.
+
+ RETURN
+ 0 on success
+ HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
+ the ranges
+ other if some error
+*/
+
+int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
+{
+ ha_rkey_function find_flag;
+ uint search_prefix_len;
+ QUICK_RANGE *cur_range;
+ int result;
+
+ DBUG_ASSERT(min_max_ranges.elements > 0);
+
+ for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
+ { /* Search from the right-most range to the left. */
+ get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);
+
+ /*
+ If the current value for the min/max argument is smaller than the left
+ boundary of cur_range, there is no need to check this range.
+ */
+ if (range_idx != min_max_ranges.elements &&
+ !(cur_range->flag & NO_MIN_RANGE) &&
+ (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
+ min_max_arg_len) == -1))
+ continue;
+
+ if (cur_range->flag & NO_MAX_RANGE)
+ {
+ find_flag= HA_READ_PREFIX_LAST;
+ search_prefix_len= real_prefix_len;
+ }
+ else
+ {
+ /* Extend the search key with the upper boundary for this range. */
+ memcpy(group_prefix + real_prefix_len, cur_range->max_key,
+ cur_range->max_length);
+ search_prefix_len= real_prefix_len + min_max_arg_len;
+ find_flag= (cur_range->flag & EQ_RANGE) ?
+ HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
+ HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
+ }
+
+ result= file->index_read(record, group_prefix, search_prefix_len,
+ find_flag);
+
+ if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE))
+ continue; /* Check the next range. */
+ if (result)
+ {
+ /*
+ In no key was found with this upper bound, there certainly are no keys
+ in the ranges to the left.
+ */
+ return result;
+ }
+ /* A key was found. */
+ if (cur_range->flag & EQ_RANGE)
+ return 0; /* No need to perform the checks below for equal keys. */
+
+ /* Check if record belongs to the current group. */
+ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
+ continue; // Row not found
+
+ /* If there is a lower limit, check if the found key is in the range. */
+ if ( !(cur_range->flag & NO_MIN_RANGE) )
+ {
+ /* Compose the MIN key for the range. */
+ byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
+ memcpy(min_key, group_prefix, real_prefix_len);
+ memcpy(min_key + real_prefix_len, cur_range->min_key,
+ cur_range->min_length);
+ /* Compare the found key with min_key. */
+ int cmp_res= key_cmp(index_info->key_part, min_key,
+ real_prefix_len + min_max_arg_len);
+ if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
+ (cmp_res >= 0)))
+ continue;
+ }
+ /* If we got to this point, the current key qualifies as MAX. */
+ return result;
+ }
+ return HA_ERR_KEY_NOT_FOUND;
+}
+
+
+/*
+ Update all MIN function results with the newly found value.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
+
+ DESCRIPTION
+ The method iterates through all MIN functions and updates the result value
+ of each function by calling Item_sum::reset(), which in turn picks the new
+ result value from this->head->record[0], previously updated by
+ next_min(). The updated value is stored in a member variable of each of the
+ Item_sum objects, depending on the value type.
+
+ IMPLEMENTATION
+ The update must be done separately for MIN and MAX, immediately after
+ next_min() was called and before next_max() is called, because both MIN and
+ MAX take their result value from the same buffer this->head->record[0]
+ (i.e. this->record).
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
+{
+ Item_sum *min_func;
+
+ min_functions_it->rewind();
+ while ((min_func= (*min_functions_it)++))
+ min_func->reset();
+}
+
+
+/*
+ Update all MAX function results with the newly found value.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
+
+ DESCRIPTION
+ The method iterates through all MAX functions and updates the result value
+ of each function by calling Item_sum::reset(), which in turn picks the new
+ result value from this->head->record[0], previously updated by
+ next_max(). The updated value is stored in a member variable of each of the
+ Item_sum objects, depending on the value type.
+
+ IMPLEMENTATION
+ The update must be done separately for MIN and MAX, immediately after
+ next_max() was called, because both MIN and MAX take their result value
+ from the same buffer this->head->record[0] (i.e. this->record).
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
+{
+ Item_sum *max_func;
+
+ max_functions_it->rewind();
+ while ((max_func= (*max_functions_it)++))
+ max_func->reset();
+}
+
+
+/*
+ Append comma-separated list of keys this quick select uses to key_names;
+ append comma-separated list of corresponding used lengths to used_lengths.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
+ key_names [out] Names of used indexes
+ used_lengths [out] Corresponding lengths of the index names
+
+ DESCRIPTION
+ This method is used by select_describe to extract the names of the
+ indexes used by a quick select.
+
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
+ String *used_lengths)
+{
+ char buf[64];
+ uint length;
+ key_names->append(index_info->name);
+ length= longlong2str(max_used_key_length, buf, 10) - buf;
+ used_lengths->append(buf, length);
+}
+
+
+#ifndef DBUG_OFF
+
+static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
+ const char *msg)
+{
+ SEL_ARG **key,**end;
+ int idx;
+ char buff[1024];
+ DBUG_ENTER("print_sel_tree");
+ if (! _db_on_)
+ DBUG_VOID_RETURN;
+
+ String tmp(buff,sizeof(buff),&my_charset_bin);
+ tmp.length(0);
+ for (idx= 0,key=tree->keys, end=key+param->keys ;
+ key != end ;
+ key++,idx++)
+ {
+ if (tree_map->is_set(idx))
+ {
+ uint keynr= param->real_keynr[idx];
+ if (tmp.length())
+ tmp.append(',');
+ tmp.append(param->table->key_info[keynr].name);
+ }
+ }
+ if (!tmp.length())
+ tmp.append(STRING_WITH_LEN("(empty)"));
+
+ DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
+
+ DBUG_VOID_RETURN;
+}
+
+
+static void print_ror_scans_arr(TABLE *table, const char *msg,
+ struct st_ror_scan_info **start,
+ struct st_ror_scan_info **end)
+{
+ DBUG_ENTER("print_ror_scans");
+ if (! _db_on_)
+ DBUG_VOID_RETURN;
+
+ char buff[1024];
+ String tmp(buff,sizeof(buff),&my_charset_bin);
+ tmp.length(0);
+ for (;start != end; start++)
+ {
+ if (tmp.length())
+ tmp.append(',');
+ tmp.append(table->key_info[(*start)->keynr].name);
+ }
+ if (!tmp.length())
+ tmp.append(STRING_WITH_LEN("(empty)"));
+ DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
+ DBUG_VOID_RETURN;
}
/*****************************************************************************
@@ -3330,8 +9564,6 @@ void QUICK_SELECT_DESC::reset(void)
** of locking the DEBUG stream !
*****************************************************************************/
-#ifndef DBUG_OFF
-
static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
@@ -3355,8 +9587,11 @@ print_key(KEY_PART *key_part,const char *key,uint used_length)
key++; // Skip null byte
store_length--;
}
- field->set_key_image((char*) key, key_part->length, field->charset());
- field->val_str(&tmp);
+ field->set_key_image((char*) key, key_part->length);
+ if (field->type() == MYSQL_TYPE_BIT)
+ (void) field->val_int_as_str(&tmp, 1);
+ else
+ field->val_str(&tmp);
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
if (key+store_length < key_end)
fputc('/',DBUG_FILE);
@@ -3364,51 +9599,156 @@ print_key(KEY_PART *key_part,const char *key,uint used_length)
}
-static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg)
+static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
{
- QUICK_RANGE *range;
char buf[MAX_KEY/8+1];
- DBUG_ENTER("print_param");
+ DBUG_ENTER("print_quick");
if (! _db_on_ || !quick)
DBUG_VOID_RETURN;
-
- List_iterator<QUICK_RANGE> li(quick->ranges);
DBUG_LOCK_FILE;
- fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: 0x%s):\n",
- quick->index, needed_reg->print(buf));
- while ((range=li++))
+
+ quick->dbug_dump(0, TRUE);
+ fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
+
+ DBUG_UNLOCK_FILE;
+ DBUG_VOID_RETURN;
+}
+
+
+void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
+{
+ /* purecov: begin inspected */
+ fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
+ indent, "", head->key_info[index].name, max_used_key_length);
+
+ if (verbose)
{
- if (!(range->flag & NO_MIN_RANGE))
+ QUICK_RANGE *range;
+ QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
+ QUICK_RANGE **end_range= pr + ranges.elements;
+ for (; pr != end_range; ++pr)
{
- print_key(quick->key_parts,range->min_key,range->min_length);
- if (range->flag & NEAR_MIN)
- fputs(" < ",DBUG_FILE);
- else
- fputs(" <= ",DBUG_FILE);
- }
- fputs("X",DBUG_FILE);
+ fprintf(DBUG_FILE, "%*s", indent + 2, "");
+ range= *pr;
+ if (!(range->flag & NO_MIN_RANGE))
+ {
+ print_key(key_parts,range->min_key,range->min_length);
+ if (range->flag & NEAR_MIN)
+ fputs(" < ",DBUG_FILE);
+ else
+ fputs(" <= ",DBUG_FILE);
+ }
+ fputs("X",DBUG_FILE);
- if (!(range->flag & NO_MAX_RANGE))
- {
- if (range->flag & NEAR_MAX)
- fputs(" < ",DBUG_FILE);
- else
- fputs(" <= ",DBUG_FILE);
- print_key(quick->key_parts,range->max_key,range->max_length);
+ if (!(range->flag & NO_MAX_RANGE))
+ {
+ if (range->flag & NEAR_MAX)
+ fputs(" < ",DBUG_FILE);
+ else
+ fputs(" <= ",DBUG_FILE);
+ print_key(key_parts,range->max_key,range->max_length);
+ }
+ fputs("\n",DBUG_FILE);
}
- fputs("\n",DBUG_FILE);
}
- DBUG_UNLOCK_FILE;
- DBUG_VOID_RETURN;
+ /* purecov: end */
}
-#endif
+void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ QUICK_RANGE_SELECT *quick;
+ fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((quick= it++))
+ quick->dbug_dump(indent+2, verbose);
+ if (pk_quick_select)
+ {
+ fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
+ pk_quick_select->dbug_dump(indent+2, verbose);
+ }
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
+ QUICK_RANGE_SELECT *quick;
+ fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
+ indent, "", need_to_fetch_row? "":"non-");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((quick= it++))
+ quick->dbug_dump(indent+2, verbose);
+ if (cpk_quick)
+ {
+ fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
+ cpk_quick->dbug_dump(indent+2, verbose);
+ }
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
+{
+ List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
+ QUICK_SELECT_I *quick;
+ fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
+ fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
+ while ((quick= it++))
+ quick->dbug_dump(indent+2, verbose);
+ fprintf(DBUG_FILE, "%*s}\n", indent, "");
+}
+
+
+/*
+ Print quick select information to DBUG_FILE.
+
+ SYNOPSIS
+ QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
+ indent Indentation offset
+ verbose If TRUE show more detailed output.
+
+ DESCRIPTION
+ Print the contents of this quick select to DBUG_FILE. The method also
+ calls dbug_dump() for the used quick select if any.
+
+ IMPLEMENTATION
+ Caller is responsible for locking DBUG_FILE before this call and unlocking
+ it afterwards.
+
+ RETURN
+ None
+*/
+
+void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
+{
+ fprintf(DBUG_FILE,
+ "%*squick_group_min_max_select: index %s (%d), length: %d\n",
+ indent, "", index_info->name, index, max_used_key_length);
+ if (key_infix_len > 0)
+ {
+ fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
+ indent, "", key_infix_len);
+ }
+ if (quick_prefix_select)
+ {
+ fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
+ quick_prefix_select->dbug_dump(indent + 2, verbose);
+ }
+ if (min_max_ranges.elements > 0)
+ {
+ fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
+ indent, "", min_max_ranges.elements);
+ }
+}
+
+
+#endif /* NOT_USED */
/*****************************************************************************
-** Instansiate templates
+** Instantiate templates
*****************************************************************************/
-#ifdef __GNUC__
+#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif