summaryrefslogtreecommitdiff
path: root/sql/sql_partition.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/sql_partition.cc')
-rw-r--r--sql/sql_partition.cc7148
1 files changed, 7148 insertions, 0 deletions
diff --git a/sql/sql_partition.cc b/sql/sql_partition.cc
new file mode 100644
index 00000000000..8a8a03cb4e4
--- /dev/null
+++ b/sql/sql_partition.cc
@@ -0,0 +1,7148 @@
+/* Copyright (C) 2005, 2006 MySQL AB
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
+
+/*
+ This file is a container for general functionality related
+ to partitioning introduced in MySQL version 5.1. It contains functionality
+ used by all handlers that support partitioning, such as
+ the partitioning handler itself and the NDB handler.
+
+ The first version was written by Mikael Ronstrom.
+
+ This version supports RANGE partitioning, LIST partitioning, HASH
+ partitioning and composite partitioning (hereafter called subpartitioning)
+ where each RANGE/LIST partitioning is HASH partitioned. The hash function
+ can either be supplied by the user or by only a list of fields (also
+ called KEY partitioning), where the MySQL server will use an internal
+ hash function.
+ There are quite a few defaults that can be used as well.
+*/
+
+/* Some general useful functions */
+
+#define MYSQL_LEX 1
+#include "mysql_priv.h"
+#include <errno.h>
+#include <m_ctype.h>
+#include "my_md5.h"
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+#include "ha_partition.h"
+/*
+ Partition related functions declarations and some static constants;
+*/
+const LEX_STRING partition_keywords[]=
+{
+ { C_STRING_WITH_LEN("HASH") },
+ { C_STRING_WITH_LEN("RANGE") },
+ { C_STRING_WITH_LEN("LIST") },
+ { C_STRING_WITH_LEN("KEY") },
+ { C_STRING_WITH_LEN("MAXVALUE") },
+ { C_STRING_WITH_LEN("LINEAR ") }
+};
+static const char *part_str= "PARTITION";
+static const char *sub_str= "SUB";
+static const char *by_str= "BY";
+static const char *space_str= " ";
+static const char *equal_str= "=";
+static const char *end_paren_str= ")";
+static const char *begin_paren_str= "(";
+static const char *comma_str= ",";
+
+static int get_part_id_charset_func_all(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+static int get_part_id_charset_func_part(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+static int get_part_id_charset_func_subpart(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+static int get_part_part_id_charset_func(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+static uint32 get_subpart_id_charset_func(partition_info *part_info);
+int get_partition_id_list(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_list(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_range(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_hash_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_key_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_linear_hash_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_linear_key_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_range_sub_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_range_sub_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_range_sub_linear_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_range_sub_linear_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_list_sub_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_list_sub_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_list_sub_linear_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+int get_partition_id_list_sub_linear_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value);
+uint32 get_partition_id_hash_sub(partition_info *part_info);
+uint32 get_partition_id_key_sub(partition_info *part_info);
+uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
+uint32 get_partition_id_linear_key_sub(partition_info *part_info);
+static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
+static void set_up_range_analysis_info(partition_info *part_info);
+static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
+#endif
+
+uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
+uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
+int get_part_iter_for_interval_via_mapping(partition_info *part_info,
+ bool is_subpart,
+ uchar *min_value, uchar *max_value,
+ uint flags,
+ PARTITION_ITERATOR *part_iter);
+int get_part_iter_for_interval_via_walking(partition_info *part_info,
+ bool is_subpart,
+ uchar *min_value, uchar *max_value,
+ uint flags,
+ PARTITION_ITERATOR *part_iter);
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+/*
+ A support function to check if a name is in a list of strings
+
+ SYNOPSIS
+ is_name_in_list()
+ name String searched for
+ list_names A list of names searched in
+
+ RETURN VALUES
+ TRUE String found
+ FALSE String not found
+*/
+
+bool is_name_in_list(char *name,
+ List<char> list_names)
+{
+ List_iterator<char> names_it(list_names);
+ uint no_names= list_names.elements;
+ uint i= 0;
+
+ do
+ {
+ char *list_name= names_it++;
+ if (!(my_strcasecmp(system_charset_info, name, list_name)))
+ return TRUE;
+ } while (++i < no_names);
+ return FALSE;
+}
+
+
+
+/*
+ Set-up defaults for partitions.
+
+ SYNOPSIS
+ partition_default_handling()
+ table Table object
+ part_info Partition info to set up
+ is_create_table_ind Is this part of a table creation
+ normalized_path Normalized path name of table and database
+
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+*/
+
+bool partition_default_handling(TABLE *table, partition_info *part_info,
+ bool is_create_table_ind,
+ const char *normalized_path)
+{
+ DBUG_ENTER("partition_default_handling");
+
+ if (part_info->use_default_no_partitions)
+ {
+ if (!is_create_table_ind &&
+ table->file->get_no_parts(normalized_path, &part_info->no_parts))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if (part_info->is_sub_partitioned() &&
+ part_info->use_default_no_subpartitions)
+ {
+ uint no_parts;
+ if (!is_create_table_ind &&
+ (table->file->get_no_parts(normalized_path, &no_parts)))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_ASSERT(part_info->no_parts > 0);
+ part_info->no_subparts= no_parts / part_info->no_parts;
+ DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
+ }
+ part_info->set_up_defaults_for_partitioning(table->file,
+ (ulonglong)0, (uint)0);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Check that the reorganized table will not have duplicate partitions.
+
+ SYNOPSIS
+ check_reorganise_list()
+ new_part_info New partition info
+ old_part_info Old partition info
+ list_part_names The list of partition names that will go away and
+ can be reused in the new table.
+
+ RETURN VALUES
+ TRUE Inacceptable name conflict detected.
+ FALSE New names are OK.
+
+ DESCRIPTION
+ Can handle that the 'new_part_info' and 'old_part_info' the same
+ in which case it checks that the list of names in the partitions
+ doesn't contain any duplicated names.
+*/
+
+bool check_reorganise_list(partition_info *new_part_info,
+ partition_info *old_part_info,
+ List<char> list_part_names)
+{
+ uint new_count, old_count;
+ uint no_new_parts= new_part_info->partitions.elements;
+ uint no_old_parts= old_part_info->partitions.elements;
+ List_iterator<partition_element> new_parts_it(new_part_info->partitions);
+ bool same_part_info= (new_part_info == old_part_info);
+ DBUG_ENTER("check_reorganise_list");
+
+ new_count= 0;
+ do
+ {
+ List_iterator<partition_element> old_parts_it(old_part_info->partitions);
+ char *new_name= (new_parts_it++)->partition_name;
+ new_count++;
+ old_count= 0;
+ do
+ {
+ char *old_name= (old_parts_it++)->partition_name;
+ old_count++;
+ if (same_part_info && old_count == new_count)
+ break;
+ if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
+ {
+ if (!is_name_in_list(old_name, list_part_names))
+ DBUG_RETURN(TRUE);
+ }
+ } while (old_count < no_old_parts);
+ } while (new_count < no_new_parts);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ A useful routine used by update_row for partition handlers to calculate
+ the partition ids of the old and the new record.
+
+ SYNOPSIS
+ get_part_for_update()
+ old_data Buffer of old record
+ new_data Buffer of new record
+ rec0 Reference to table->record[0]
+ part_info Reference to partition information
+ out:old_part_id The returned partition id of old record
+ out:new_part_id The returned partition id of new record
+
+ RETURN VALUE
+ 0 Success
+ > 0 Error code
+*/
+
+int get_parts_for_update(const uchar *old_data, uchar *new_data,
+ const uchar *rec0, partition_info *part_info,
+ uint32 *old_part_id, uint32 *new_part_id,
+ longlong *new_func_value)
+{
+ Field **part_field_array= part_info->full_part_field_array;
+ int error;
+ longlong old_func_value;
+ DBUG_ENTER("get_parts_for_update");
+
+ DBUG_ASSERT(new_data == rec0);
+ set_field_ptr(part_field_array, old_data, rec0);
+ error= part_info->get_partition_id(part_info, old_part_id,
+ &old_func_value);
+ set_field_ptr(part_field_array, rec0, old_data);
+ if (unlikely(error)) // Should never happen
+ {
+ DBUG_ASSERT(0);
+ DBUG_RETURN(error);
+ }
+#ifdef NOT_NEEDED
+ if (new_data == rec0)
+#endif
+ {
+ if (unlikely(error= part_info->get_partition_id(part_info,
+ new_part_id,
+ new_func_value)))
+ {
+ DBUG_RETURN(error);
+ }
+ }
+#ifdef NOT_NEEDED
+ else
+ {
+ /*
+ This branch should never execute but it is written anyways for
+ future use. It will be tested by ensuring that the above
+ condition is false in one test situation before pushing the code.
+ */
+ set_field_ptr(part_field_array, new_data, rec0);
+ error= part_info->get_partition_id(part_info, new_part_id,
+ new_func_value);
+ set_field_ptr(part_field_array, rec0, new_data);
+ if (unlikely(error))
+ {
+ DBUG_RETURN(error);
+ }
+ }
+#endif
+ DBUG_RETURN(0);
+}
+
+
+/*
+ A useful routine used by delete_row for partition handlers to calculate
+ the partition id.
+
+ SYNOPSIS
+ get_part_for_delete()
+ buf Buffer of old record
+ rec0 Reference to table->record[0]
+ part_info Reference to partition information
+ out:part_id The returned partition id to delete from
+
+ RETURN VALUE
+ 0 Success
+ > 0 Error code
+
+ DESCRIPTION
+ Dependent on whether buf is not record[0] we need to prepare the
+ fields. Then we call the function pointer get_partition_id to
+ calculate the partition id.
+*/
+
+int get_part_for_delete(const uchar *buf, const uchar *rec0,
+ partition_info *part_info, uint32 *part_id)
+{
+ int error;
+ longlong func_value;
+ DBUG_ENTER("get_part_for_delete");
+
+ if (likely(buf == rec0))
+ {
+ if (unlikely((error= part_info->get_partition_id(part_info, part_id,
+ &func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ DBUG_PRINT("info", ("Delete from partition %d", *part_id));
+ }
+ else
+ {
+ Field **part_field_array= part_info->full_part_field_array;
+ set_field_ptr(part_field_array, buf, rec0);
+ error= part_info->get_partition_id(part_info, part_id, &func_value);
+ set_field_ptr(part_field_array, rec0, buf);
+ if (unlikely(error))
+ {
+ DBUG_RETURN(error);
+ }
+ DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
+ }
+ DBUG_RETURN(0);
+}
+
+
+/*
+ This method is used to set-up both partition and subpartitioning
+ field array and used for all types of partitioning.
+ It is part of the logic around fix_partition_func.
+
+ SYNOPSIS
+ set_up_field_array()
+ table TABLE object for which partition fields are set-up
+ sub_part Is the table subpartitioned as well
+
+ RETURN VALUE
+ TRUE Error, some field didn't meet requirements
+ FALSE Ok, partition field array set-up
+
+ DESCRIPTION
+
+ A great number of functions below here is part of the fix_partition_func
+ method. It is used to set up the partition structures for execution from
+ openfrm. It is called at the end of the openfrm when the table struct has
+ been set-up apart from the partition information.
+ It involves:
+ 1) Setting arrays of fields for the partition functions.
+ 2) Setting up binary search array for LIST partitioning
+ 3) Setting up array for binary search for RANGE partitioning
+ 4) Setting up key_map's to assist in quick evaluation whether one
+ can deduce anything from a given index of what partition to use
+ 5) Checking whether a set of partitions can be derived from a range on
+ a field in the partition function.
+ As part of doing this there is also a great number of error controls.
+ This is actually the place where most of the things are checked for
+ partition information when creating a table.
+ Things that are checked includes
+ 1) All fields of partition function in Primary keys and unique indexes
+ (if not supported)
+
+
+ Create an array of partition fields (NULL terminated). Before this method
+ is called fix_fields or find_table_in_sef has been called to set
+ GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
+ function.
+*/
+
+static bool set_up_field_array(TABLE *table,
+ bool is_sub_part)
+{
+ Field **ptr, *field, **field_array;
+ uint no_fields= 0;
+ uint size_field_array;
+ uint i= 0;
+ partition_info *part_info= table->part_info;
+ int result= FALSE;
+ DBUG_ENTER("set_up_field_array");
+
+ ptr= table->field;
+ while ((field= *(ptr++)))
+ {
+ if (field->flags & GET_FIXED_FIELDS_FLAG)
+ no_fields++;
+ }
+ if (no_fields == 0)
+ {
+ /*
+ We are using hidden key as partitioning field
+ */
+ DBUG_ASSERT(!is_sub_part);
+ DBUG_RETURN(result);
+ }
+ size_field_array= (no_fields+1)*sizeof(Field*);
+ field_array= (Field**)sql_alloc(size_field_array);
+ if (unlikely(!field_array))
+ {
+ mem_alloc_error(size_field_array);
+ result= TRUE;
+ }
+ ptr= table->field;
+ while ((field= *(ptr++)))
+ {
+ if (field->flags & GET_FIXED_FIELDS_FLAG)
+ {
+ field->flags&= ~GET_FIXED_FIELDS_FLAG;
+ field->flags|= FIELD_IN_PART_FUNC_FLAG;
+ if (likely(!result))
+ {
+ field_array[i++]= field;
+
+ /*
+ We check that the fields are proper. It is required for each
+ field in a partition function to:
+ 1) Not be a BLOB of any type
+ A BLOB takes too long time to evaluate so we don't want it for
+ performance reasons.
+ */
+
+ if (unlikely(field->flags & BLOB_FLAG))
+ {
+ my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
+ result= TRUE;
+ }
+ }
+ }
+ }
+ field_array[no_fields]= 0;
+ if (!is_sub_part)
+ {
+ part_info->part_field_array= field_array;
+ part_info->no_part_fields= no_fields;
+ }
+ else
+ {
+ part_info->subpart_field_array= field_array;
+ part_info->no_subpart_fields= no_fields;
+ }
+ DBUG_RETURN(result);
+}
+
+
+
+/*
+ Create a field array including all fields of both the partitioning and the
+ subpartitioning functions.
+
+ SYNOPSIS
+ create_full_part_field_array()
+ thd Thread handle
+ table TABLE object for which partition fields are set-up
+ part_info Reference to partitioning data structure
+
+ RETURN VALUE
+ TRUE Memory allocation of field array failed
+ FALSE Ok
+
+ DESCRIPTION
+ If there is no subpartitioning then the same array is used as for the
+ partitioning. Otherwise a new array is built up using the flag
+ FIELD_IN_PART_FUNC in the field object.
+ This function is called from fix_partition_func
+*/
+
+static bool create_full_part_field_array(THD *thd, TABLE *table,
+ partition_info *part_info)
+{
+ bool result= FALSE;
+ Field **ptr;
+ my_bitmap_map *bitmap_buf;
+ DBUG_ENTER("create_full_part_field_array");
+
+ if (!part_info->is_sub_partitioned())
+ {
+ part_info->full_part_field_array= part_info->part_field_array;
+ part_info->no_full_part_fields= part_info->no_part_fields;
+ }
+ else
+ {
+ Field *field, **field_array;
+ uint no_part_fields=0, size_field_array;
+ ptr= table->field;
+ while ((field= *(ptr++)))
+ {
+ if (field->flags & FIELD_IN_PART_FUNC_FLAG)
+ no_part_fields++;
+ }
+ size_field_array= (no_part_fields+1)*sizeof(Field*);
+ field_array= (Field**)sql_alloc(size_field_array);
+ if (unlikely(!field_array))
+ {
+ mem_alloc_error(size_field_array);
+ result= TRUE;
+ goto end;
+ }
+ no_part_fields= 0;
+ ptr= table->field;
+ while ((field= *(ptr++)))
+ {
+ if (field->flags & FIELD_IN_PART_FUNC_FLAG)
+ field_array[no_part_fields++]= field;
+ }
+ field_array[no_part_fields]=0;
+ part_info->full_part_field_array= field_array;
+ part_info->no_full_part_fields= no_part_fields;
+ }
+
+ /*
+ Initialize the set of all fields used in partition and subpartition
+ expression. Required for testing of partition fields in write_set
+ when updating. We need to set all bits in read_set because the row
+ may need to be inserted in a different [sub]partition.
+ */
+ if (!(bitmap_buf= (my_bitmap_map*)
+ thd->alloc(bitmap_buffer_size(table->s->fields))))
+ {
+ mem_alloc_error(bitmap_buffer_size(table->s->fields));
+ result= TRUE;
+ goto end;
+ }
+ if (bitmap_init(&part_info->full_part_field_set, bitmap_buf,
+ table->s->fields, FALSE))
+ {
+ mem_alloc_error(table->s->fields);
+ result= TRUE;
+ goto end;
+ }
+ /*
+ full_part_field_array may be NULL if storage engine supports native
+ partitioning.
+ */
+ if ((ptr= part_info->full_part_field_array))
+ for (; *ptr; ptr++)
+ bitmap_set_bit(&part_info->full_part_field_set, (*ptr)->field_index);
+
+end:
+ DBUG_RETURN(result);
+}
+
+
+/*
+
+ Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
+ set_indicator_in_key_fields (always used in pairs).
+
+ SYNOPSIS
+ clear_indicator_in_key_fields()
+ key_info Reference to find the key fields
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ These support routines is used to set/reset an indicator of all fields
+ in a certain key. It is used in conjunction with another support routine
+ that traverse all fields in the PF to find if all or some fields in the
+ PF is part of the key. This is used to check primary keys and unique
+ keys involve all fields in PF (unless supported) and to derive the
+ key_map's used to quickly decide whether the index can be used to
+ derive which partitions are needed to scan.
+*/
+
+static void clear_indicator_in_key_fields(KEY *key_info)
+{
+ KEY_PART_INFO *key_part;
+ uint key_parts= key_info->key_parts, i;
+ for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
+ key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
+}
+
+
+/*
+ Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
+
+ SYNOPSIS
+ set_indicator_in_key_fields
+ key_info Reference to find the key fields
+
+ RETURN VALUE
+ NONE
+*/
+
+static void set_indicator_in_key_fields(KEY *key_info)
+{
+ KEY_PART_INFO *key_part;
+ uint key_parts= key_info->key_parts, i;
+ for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
+ key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
+}
+
+
+/*
+ Check if all or some fields in partition field array is part of a key
+ previously used to tag key fields.
+
+ SYNOPSIS
+ check_fields_in_PF()
+ ptr Partition field array
+ out:all_fields Is all fields of partition field array used in key
+ out:some_fields Is some fields of partition field array used in key
+
+ RETURN VALUE
+ all_fields, some_fields
+*/
+
+static void check_fields_in_PF(Field **ptr, bool *all_fields,
+ bool *some_fields)
+{
+ DBUG_ENTER("check_fields_in_PF");
+
+ *all_fields= TRUE;
+ *some_fields= FALSE;
+ if ((!ptr) || !(*ptr))
+ {
+ *all_fields= FALSE;
+ DBUG_VOID_RETURN;
+ }
+ do
+ {
+ /* Check if the field of the PF is part of the current key investigated */
+ if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
+ *some_fields= TRUE;
+ else
+ *all_fields= FALSE;
+ } while (*(++ptr));
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
+ This routine is used for error handling purposes.
+
+ SYNOPSIS
+ clear_field_flag()
+ table TABLE object for which partition fields are set-up
+
+ RETURN VALUE
+ NONE
+*/
+
+static void clear_field_flag(TABLE *table)
+{
+ Field **ptr;
+ DBUG_ENTER("clear_field_flag");
+
+ for (ptr= table->field; *ptr; ptr++)
+ (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ find_field_in_table_sef finds the field given its name. All fields get
+ GET_FIXED_FIELDS_FLAG set.
+
+ SYNOPSIS
+ handle_list_of_fields()
+ it A list of field names for the partition function
+ table TABLE object for which partition fields are set-up
+ part_info Reference to partitioning data structure
+ sub_part Is the table subpartitioned as well
+
+ RETURN VALUE
+ TRUE Fields in list of fields not part of table
+ FALSE All fields ok and array created
+
+ DESCRIPTION
+ This routine sets-up the partition field array for KEY partitioning, it
+ also verifies that all fields in the list of fields is actually a part of
+ the table.
+
+*/
+
+
+static bool handle_list_of_fields(List_iterator<char> it,
+ TABLE *table,
+ partition_info *part_info,
+ bool is_sub_part)
+{
+ Field *field;
+ bool result;
+ char *field_name;
+ bool is_list_empty= TRUE;
+ DBUG_ENTER("handle_list_of_fields");
+
+ while ((field_name= it++))
+ {
+ is_list_empty= FALSE;
+ field= find_field_in_table_sef(table, field_name);
+ if (likely(field != 0))
+ field->flags|= GET_FIXED_FIELDS_FLAG;
+ else
+ {
+ my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
+ clear_field_flag(table);
+ result= TRUE;
+ goto end;
+ }
+ }
+ if (is_list_empty)
+ {
+ uint primary_key= table->s->primary_key;
+ if (primary_key != MAX_KEY)
+ {
+ uint no_key_parts= table->key_info[primary_key].key_parts, i;
+ /*
+ In the case of an empty list we use primary key as partition key.
+ */
+ for (i= 0; i < no_key_parts; i++)
+ {
+ Field *field= table->key_info[primary_key].key_part[i].field;
+ field->flags|= GET_FIXED_FIELDS_FLAG;
+ }
+ }
+ else
+ {
+ if (table->s->db_type()->partition_flags &&
+ (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) &&
+ (table->s->db_type()->partition_flags() & HA_CAN_PARTITION))
+ {
+ /*
+ This engine can handle automatic partitioning and there is no
+ primary key. In this case we rely on that the engine handles
+ partitioning based on a hidden key. Thus we allocate no
+ array for partitioning fields.
+ */
+ DBUG_RETURN(FALSE);
+ }
+ else
+ {
+ my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ }
+ }
+ result= set_up_field_array(table, is_sub_part);
+end:
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Support function to check if all VALUES * (expression) is of the
+ right sign (no signed constants when unsigned partition function)
+
+ SYNOPSIS
+ check_signed_flag()
+ part_info Partition info object
+
+ RETURN VALUES
+ 0 No errors due to sign errors
+ >0 Sign error
+*/
+
+int check_signed_flag(partition_info *part_info)
+{
+ int error= 0;
+ uint i= 0;
+ if (part_info->part_type != HASH_PARTITION &&
+ part_info->part_expr->unsigned_flag)
+ {
+ List_iterator<partition_element> part_it(part_info->partitions);
+ do
+ {
+ partition_element *part_elem= part_it++;
+
+ if (part_elem->signed_flag)
+ {
+ my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
+ error= ER_PARTITION_CONST_DOMAIN_ERROR;
+ break;
+ }
+ } while (++i < part_info->no_parts);
+ }
+ return error;
+}
+
+
+/*
+ The function uses a new feature in fix_fields where the flag
+ GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
+ This field must always be reset before returning from the function
+ since it is used for other purposes as well.
+
+ SYNOPSIS
+ fix_fields_part_func()
+ thd The thread object
+ func_expr The item tree reference of the partition function
+ table The table object
+ part_info Reference to partitioning data structure
+ is_sub_part Is the table subpartitioned as well
+ is_field_to_be_setup Flag if we are to set-up field arrays
+
+ RETURN VALUE
+ TRUE An error occurred, something was wrong with the
+ partition function.
+ FALSE Ok, a partition field array was created
+
+ DESCRIPTION
+ This function is used to build an array of partition fields for the
+ partitioning function and subpartitioning function. The partitioning
+ function is an item tree that must reference at least one field in the
+ table. This is checked first in the parser that the function doesn't
+ contain non-cacheable parts (like a random function) and by checking
+ here that the function isn't a constant function.
+
+ Calculate the number of fields in the partition function.
+ Use it allocate memory for array of Field pointers.
+ Initialise array of field pointers. Use information set when
+ calling fix_fields and reset it immediately after.
+ The get_fields_in_item_tree activates setting of bit in flags
+ on the field object.
+*/
+
+bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table,
+ bool is_sub_part, bool is_field_to_be_setup)
+{
+ partition_info *part_info= table->part_info;
+ uint dir_length, home_dir_length;
+ bool result= TRUE;
+ TABLE_LIST tables;
+ TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
+ int error;
+ Name_resolution_context *context;
+ const char *save_where;
+ char* db_name;
+ char db_name_string[FN_REFLEN];
+ DBUG_ENTER("fix_fields_part_func");
+
+ if (part_info->fixed)
+ {
+ if (!(is_sub_part || (error= check_signed_flag(part_info))))
+ result= FALSE;
+ goto end;
+ }
+
+ /*
+ Set-up the TABLE_LIST object to be a list with a single table
+ Set the object to zero to create NULL pointers and set alias
+ and real name to table name and get database name from file name.
+ */
+
+ bzero((void*)&tables, sizeof(TABLE_LIST));
+ tables.alias= tables.table_name= (char*) table->s->table_name.str;
+ tables.table= table;
+ tables.next_local= 0;
+ tables.next_name_resolution_table= 0;
+ strmov(db_name_string, table->s->normalized_path.str);
+ dir_length= dirname_length(db_name_string);
+ db_name_string[dir_length - 1]= 0;
+ home_dir_length= dirname_length(db_name_string);
+ db_name= &db_name_string[home_dir_length];
+ tables.db= db_name;
+
+ context= thd->lex->current_context();
+ table->map= 1; //To ensure correct calculation of const item
+ table->get_fields_in_item_tree= TRUE;
+ save_table_list= context->table_list;
+ save_first_table= context->first_name_resolution_table;
+ save_last_table= context->last_name_resolution_table;
+ context->table_list= &tables;
+ context->first_name_resolution_table= &tables;
+ context->last_name_resolution_table= NULL;
+ func_expr->walk(&Item::change_context_processor, 0, (uchar*) context);
+ save_where= thd->where;
+ thd->where= "partition function";
+ /*
+ In execution we must avoid the use of thd->change_item_tree since
+ we might release memory before statement is completed. We do this
+ by temporarily setting the stmt_arena->mem_root to be the mem_root
+ of the table object, this also ensures that any memory allocated
+ during fix_fields will not be released at end of execution of this
+ statement. Thus the item tree will remain valid also in subsequent
+ executions of this table object. We do however not at the moment
+ support allocations during execution of val_int so any item class
+ that does this during val_int must be disallowed as partition
+ function.
+ SEE Bug #21658
+ */
+ /*
+ This is a tricky call to prepare for since it can have a large number
+ of interesting side effects, both desirable and undesirable.
+ */
+ error= func_expr->fix_fields(thd, (Item**)0);
+
+ context->table_list= save_table_list;
+ context->first_name_resolution_table= save_first_table;
+ context->last_name_resolution_table= save_last_table;
+ if (unlikely(error))
+ {
+ DBUG_PRINT("info", ("Field in partition function not part of table"));
+ if (is_field_to_be_setup)
+ clear_field_flag(table);
+ goto end;
+ }
+ thd->where= save_where;
+ if (unlikely(func_expr->const_item()))
+ {
+ my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
+ clear_field_flag(table);
+ goto end;
+ }
+ if ((!is_sub_part) && (error= check_signed_flag(part_info)))
+ goto end;
+ result= FALSE;
+ if (is_field_to_be_setup)
+ result= set_up_field_array(table, is_sub_part);
+ if (!is_sub_part)
+ part_info->fixed= TRUE;
+end:
+ table->get_fields_in_item_tree= FALSE;
+ table->map= 0; //Restore old value
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Check that the primary key contains all partition fields if defined
+
+ SYNOPSIS
+ check_primary_key()
+ table TABLE object for which partition fields are set-up
+
+ RETURN VALUES
+ TRUE Not all fields in partitioning function was part
+ of primary key
+ FALSE Ok, all fields of partitioning function were part
+ of primary key
+
+ DESCRIPTION
+ This function verifies that if there is a primary key that it contains
+ all the fields of the partition function.
+ This is a temporary limitation that will hopefully be removed after a
+ while.
+*/
+
+static bool check_primary_key(TABLE *table)
+{
+ uint primary_key= table->s->primary_key;
+ bool all_fields, some_fields;
+ bool result= FALSE;
+ DBUG_ENTER("check_primary_key");
+
+ if (primary_key < MAX_KEY)
+ {
+ set_indicator_in_key_fields(table->key_info+primary_key);
+ check_fields_in_PF(table->part_info->full_part_field_array,
+ &all_fields, &some_fields);
+ clear_indicator_in_key_fields(table->key_info+primary_key);
+ if (unlikely(!all_fields))
+ {
+ my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
+ result= TRUE;
+ }
+ }
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Check that unique keys contains all partition fields
+
+ SYNOPSIS
+ check_unique_keys()
+ table TABLE object for which partition fields are set-up
+
+ RETURN VALUES
+ TRUE Not all fields in partitioning function was part
+ of all unique keys
+ FALSE Ok, all fields of partitioning function were part
+ of unique keys
+
+ DESCRIPTION
+ This function verifies that if there is a unique index that it contains
+ all the fields of the partition function.
+ This is a temporary limitation that will hopefully be removed after a
+ while.
+*/
+
+static bool check_unique_keys(TABLE *table)
+{
+ bool all_fields, some_fields;
+ bool result= FALSE;
+ uint keys= table->s->keys;
+ uint i;
+ DBUG_ENTER("check_unique_keys");
+
+ for (i= 0; i < keys; i++)
+ {
+ if (table->key_info[i].flags & HA_NOSAME) //Unique index
+ {
+ set_indicator_in_key_fields(table->key_info+i);
+ check_fields_in_PF(table->part_info->full_part_field_array,
+ &all_fields, &some_fields);
+ clear_indicator_in_key_fields(table->key_info+i);
+ if (unlikely(!all_fields))
+ {
+ my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
+ result= TRUE;
+ break;
+ }
+ }
+ }
+ DBUG_RETURN(result);
+}
+
+
+/*
+ An important optimisation is whether a range on a field can select a subset
+ of the partitions.
+ A prerequisite for this to happen is that the PF is a growing function OR
+ a shrinking function.
+ This can never happen for a multi-dimensional PF. Thus this can only happen
+ with PF with at most one field involved in the PF.
+ The idea is that if the function is a growing function and you know that
+ the field of the PF is 4 <= A <= 6 then we can convert this to a range
+ in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
+ case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
+ calculate a set of partitions rather than scanning all of them.
+ Thus the following prerequisites are there to check if sets of partitions
+ can be found.
+ 1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
+ 2) Only possible if PF only contains 1 field
+ 3) Possible if PF is a growing function of the field
+ 4) Possible if PF is a shrinking function of the field
+ OBSERVATION:
+ 1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
+ f1(A) + f2(A) is a growing function
+ f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
+ 2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
+ f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
+ 3) IF A is a growing function then a function f(A) that removes the
+ least significant portion of A is a growing function
+ E.g. DATE(datetime) is a growing function
+ MONTH(datetime) is not a growing/shrinking function
+ 4) IF f1(A) is a growing function and f2(A) is a growing function THEN
+ f1(f2(A)) and f2(f1(A)) are also growing functions
+ 5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
+ f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
+ 6) f1(A) = A is a growing function
+ 7) f1(A) = A*a + b (where a and b are constants) is a growing function
+
+ By analysing the item tree of the PF we can use these deducements and
+ derive whether the PF is a growing function or a shrinking function or
+ neither of it.
+
+ If the PF is range capable then a flag is set on the table object
+ indicating this to notify that we can use also ranges on the field
+ of the PF to deduce a set of partitions if the fields of the PF were
+ not all fully bound.
+
+ SYNOPSIS
+ check_range_capable_PF()
+ table TABLE object for which partition fields are set-up
+
+ DESCRIPTION
+ Support for this is not implemented yet.
+*/
+
+void check_range_capable_PF(TABLE *table)
+{
+ DBUG_ENTER("check_range_capable_PF");
+
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Set up partition bitmap
+
+ SYNOPSIS
+ set_up_partition_bitmap()
+ thd Thread object
+ part_info Reference to partitioning data structure
+
+ RETURN VALUE
+ TRUE Memory allocation failure
+ FALSE Success
+
+ DESCRIPTION
+ Allocate memory for bitmap of the partitioned table
+ and initialise it.
+*/
+
+static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
+{
+ uint32 *bitmap_buf;
+ uint bitmap_bits= part_info->no_subparts?
+ (part_info->no_subparts* part_info->no_parts):
+ part_info->no_parts;
+ uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
+ DBUG_ENTER("set_up_partition_bitmap");
+
+ if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
+ {
+ mem_alloc_error(bitmap_bytes);
+ DBUG_RETURN(TRUE);
+ }
+ bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
+ bitmap_set_all(&part_info->used_partitions);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Set up partition key maps
+
+ SYNOPSIS
+ set_up_partition_key_maps()
+ table TABLE object for which partition fields are set-up
+ part_info Reference to partitioning data structure
+
+ RETURN VALUES
+ None
+
+ DESCRIPTION
+ This function sets up a couple of key maps to be able to quickly check
+ if an index ever can be used to deduce the partition fields or even
+ a part of the fields of the partition function.
+ We set up the following key_map's.
+ PF = Partition Function
+ 1) All fields of the PF is set even by equal on the first fields in the
+ key
+ 2) All fields of the PF is set if all fields of the key is set
+ 3) At least one field in the PF is set if all fields is set
+ 4) At least one field in the PF is part of the key
+*/
+
+static void set_up_partition_key_maps(TABLE *table,
+ partition_info *part_info)
+{
+ uint keys= table->s->keys;
+ uint i;
+ bool all_fields, some_fields;
+ DBUG_ENTER("set_up_partition_key_maps");
+
+ part_info->all_fields_in_PF.clear_all();
+ part_info->all_fields_in_PPF.clear_all();
+ part_info->all_fields_in_SPF.clear_all();
+ part_info->some_fields_in_PF.clear_all();
+ for (i= 0; i < keys; i++)
+ {
+ set_indicator_in_key_fields(table->key_info+i);
+ check_fields_in_PF(part_info->full_part_field_array,
+ &all_fields, &some_fields);
+ if (all_fields)
+ part_info->all_fields_in_PF.set_bit(i);
+ if (some_fields)
+ part_info->some_fields_in_PF.set_bit(i);
+ if (part_info->is_sub_partitioned())
+ {
+ check_fields_in_PF(part_info->part_field_array,
+ &all_fields, &some_fields);
+ if (all_fields)
+ part_info->all_fields_in_PPF.set_bit(i);
+ check_fields_in_PF(part_info->subpart_field_array,
+ &all_fields, &some_fields);
+ if (all_fields)
+ part_info->all_fields_in_SPF.set_bit(i);
+ }
+ clear_indicator_in_key_fields(table->key_info+i);
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Set up function pointers for partition function
+
+ SYNOPSIS
+ set_up_partition_func_pointers()
+ part_info Reference to partitioning data structure
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ Set-up all function pointers for calculation of partition id,
+ subpartition id and the upper part in subpartitioning. This is to speed up
+ execution of get_partition_id which is executed once every record to be
+ written and deleted and twice for updates.
+*/
+
+static void set_up_partition_func_pointers(partition_info *part_info)
+{
+ DBUG_ENTER("set_up_partition_func_pointers");
+
+ if (part_info->is_sub_partitioned())
+ {
+ if (part_info->part_type == RANGE_PARTITION)
+ {
+ part_info->get_part_partition_id= get_partition_id_range;
+ if (part_info->list_of_subpart_fields)
+ {
+ if (part_info->linear_hash_ind)
+ {
+ part_info->get_partition_id= get_partition_id_range_sub_linear_key;
+ part_info->get_subpartition_id= get_partition_id_linear_key_sub;
+ }
+ else
+ {
+ part_info->get_partition_id= get_partition_id_range_sub_key;
+ part_info->get_subpartition_id= get_partition_id_key_sub;
+ }
+ }
+ else
+ {
+ if (part_info->linear_hash_ind)
+ {
+ part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
+ part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
+ }
+ else
+ {
+ part_info->get_partition_id= get_partition_id_range_sub_hash;
+ part_info->get_subpartition_id= get_partition_id_hash_sub;
+ }
+ }
+ }
+ else /* LIST Partitioning */
+ {
+ part_info->get_part_partition_id= get_partition_id_list;
+ if (part_info->list_of_subpart_fields)
+ {
+ if (part_info->linear_hash_ind)
+ {
+ part_info->get_partition_id= get_partition_id_list_sub_linear_key;
+ part_info->get_subpartition_id= get_partition_id_linear_key_sub;
+ }
+ else
+ {
+ part_info->get_partition_id= get_partition_id_list_sub_key;
+ part_info->get_subpartition_id= get_partition_id_key_sub;
+ }
+ }
+ else
+ {
+ if (part_info->linear_hash_ind)
+ {
+ part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
+ part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
+ }
+ else
+ {
+ part_info->get_partition_id= get_partition_id_list_sub_hash;
+ part_info->get_subpartition_id= get_partition_id_hash_sub;
+ }
+ }
+ }
+ }
+ else /* No subpartitioning */
+ {
+ part_info->get_part_partition_id= NULL;
+ part_info->get_subpartition_id= NULL;
+ if (part_info->part_type == RANGE_PARTITION)
+ part_info->get_partition_id= get_partition_id_range;
+ else if (part_info->part_type == LIST_PARTITION)
+ part_info->get_partition_id= get_partition_id_list;
+ else /* HASH partitioning */
+ {
+ if (part_info->list_of_part_fields)
+ {
+ if (part_info->linear_hash_ind)
+ part_info->get_partition_id= get_partition_id_linear_key_nosub;
+ else
+ part_info->get_partition_id= get_partition_id_key_nosub;
+ }
+ else
+ {
+ if (part_info->linear_hash_ind)
+ part_info->get_partition_id= get_partition_id_linear_hash_nosub;
+ else
+ part_info->get_partition_id= get_partition_id_hash_nosub;
+ }
+ }
+ }
+ if (part_info->full_part_charset_field_array)
+ {
+ DBUG_ASSERT(part_info->get_partition_id);
+ part_info->get_partition_id_charset= part_info->get_partition_id;
+ if (part_info->part_charset_field_array &&
+ part_info->subpart_charset_field_array)
+ part_info->get_partition_id= get_part_id_charset_func_all;
+ else if (part_info->part_charset_field_array)
+ part_info->get_partition_id= get_part_id_charset_func_part;
+ else
+ part_info->get_partition_id= get_part_id_charset_func_subpart;
+ }
+ if (part_info->part_charset_field_array &&
+ part_info->is_sub_partitioned())
+ {
+ DBUG_ASSERT(part_info->get_part_partition_id);
+ part_info->get_part_partition_id_charset=
+ part_info->get_part_partition_id;
+ part_info->get_part_partition_id= get_part_part_id_charset_func;
+ }
+ if (part_info->subpart_charset_field_array)
+ {
+ DBUG_ASSERT(part_info->get_subpartition_id);
+ part_info->get_subpartition_id_charset=
+ part_info->get_subpartition_id;
+ part_info->get_subpartition_id= get_subpart_id_charset_func;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ For linear hashing we need a mask which is on the form 2**n - 1 where
+ 2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
+
+ SYNOPSIS
+ set_linear_hash_mask()
+ part_info Reference to partitioning data structure
+ no_parts Number of parts in linear hash partitioning
+
+ RETURN VALUE
+ NONE
+*/
+
+static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
+{
+ uint mask;
+
+ for (mask= 1; mask < no_parts; mask<<=1)
+ ;
+ part_info->linear_hash_mask= mask - 1;
+}
+
+
+/*
+ This function calculates the partition id provided the result of the hash
+ function using linear hashing parameters, mask and number of partitions.
+
+ SYNOPSIS
+ get_part_id_from_linear_hash()
+ hash_value Hash value calculated by HASH function or KEY function
+ mask Mask calculated previously by set_linear_hash_mask
+ no_parts Number of partitions in HASH partitioned part
+
+ RETURN VALUE
+ part_id The calculated partition identity (starting at 0)
+
+ DESCRIPTION
+ The partition is calculated according to the theory of linear hashing.
+ See e.g. Linear hashing: a new tool for file and table addressing,
+ Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
+ (ed.), Morgan Kaufmann 1994.
+*/
+
+static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
+ uint no_parts)
+{
+ uint32 part_id= (uint32)(hash_value & mask);
+
+ if (part_id >= no_parts)
+ {
+ uint new_mask= ((mask + 1) >> 1) - 1;
+ part_id= (uint32)(hash_value & new_mask);
+ }
+ return part_id;
+}
+
+
+/*
+ Check if a particular field is in need of character set
+ handling for partition functions.
+
+ SYNOPSIS
+ field_is_partition_charset()
+ field The field to check
+
+ RETURN VALUES
+ FALSE Not in need of character set handling
+ TRUE In need of character set handling
+*/
+
+bool field_is_partition_charset(Field *field)
+{
+ if (!(field->type() == MYSQL_TYPE_STRING) &&
+ !(field->type() == MYSQL_TYPE_VARCHAR))
+ return FALSE;
+ {
+ CHARSET_INFO *cs= ((Field_str*)field)->charset();
+ if (!(field->type() == MYSQL_TYPE_STRING) ||
+ !(cs->state & MY_CS_BINSORT))
+ return TRUE;
+ return FALSE;
+ }
+}
+
+
+/*
+ Check that partition function doesn't contain any forbidden
+ character sets and collations.
+
+ SYNOPSIS
+ check_part_func_fields()
+ ptr Array of Field pointers
+ ok_with_charsets Will we report allowed charset
+ fields as ok
+ RETURN VALUES
+ FALSE Success
+ TRUE Error
+
+ DESCRIPTION
+ We will check in this routine that the fields of the partition functions
+ do not contain unallowed parts. It can also be used to check if there
+ are fields that require special care by calling my_strnxfrm before
+ calling the functions to calculate partition id.
+*/
+
+bool check_part_func_fields(Field **ptr, bool ok_with_charsets)
+{
+ Field *field;
+ DBUG_ENTER("check_part_func_fields");
+
+ while ((field= *(ptr++)))
+ {
+ /*
+ For CHAR/VARCHAR fields we need to take special precautions.
+ Binary collation with CHAR is automatically supported. Other
+ types need some kind of standardisation function handling
+ */
+ if (field_is_partition_charset(field))
+ {
+ CHARSET_INFO *cs= ((Field_str*)field)->charset();
+ if (!ok_with_charsets ||
+ cs->mbmaxlen > 1 ||
+ cs->strxfrm_multiply > 1)
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ fix partition functions
+
+ SYNOPSIS
+ fix_partition_func()
+ thd The thread object
+ table TABLE object for which partition fields are set-up
+ is_create_table_ind Indicator of whether openfrm was called as part of
+ CREATE or ALTER TABLE
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Success
+
+ DESCRIPTION
+ The name parameter contains the full table name and is used to get the
+ database name of the table which is used to set-up a correct
+ TABLE_LIST object for use in fix_fields.
+
+NOTES
+ This function is called as part of opening the table by opening the .frm
+ file. It is a part of CREATE TABLE to do this so it is quite permissible
+ that errors due to erroneus syntax isn't found until we come here.
+ If the user has used a non-existing field in the table is one such example
+ of an error that is not discovered until here.
+*/
+
+bool fix_partition_func(THD *thd, TABLE *table,
+ bool is_create_table_ind)
+{
+ bool result= TRUE;
+ partition_info *part_info= table->part_info;
+ enum_mark_columns save_mark_used_columns= thd->mark_used_columns;
+ DBUG_ENTER("fix_partition_func");
+
+ if (part_info->fixed)
+ {
+ DBUG_RETURN(FALSE);
+ }
+ thd->mark_used_columns= MARK_COLUMNS_NONE;
+ DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
+
+ if (!is_create_table_ind ||
+ thd->lex->sql_command != SQLCOM_CREATE_TABLE)
+ {
+ if (partition_default_handling(table, part_info,
+ is_create_table_ind,
+ table->s->normalized_path.str))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ if (part_info->is_sub_partitioned())
+ {
+ DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
+ /*
+ Subpartition is defined. We need to verify that subpartitioning
+ function is correct.
+ */
+ if (part_info->linear_hash_ind)
+ set_linear_hash_mask(part_info, part_info->no_subparts);
+ if (part_info->list_of_subpart_fields)
+ {
+ List_iterator<char> it(part_info->subpart_field_list);
+ if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
+ goto end;
+ }
+ else
+ {
+ if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr,
+ table, TRUE, TRUE)))
+ goto end;
+ if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
+ {
+ my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
+ "SUBPARTITION");
+ goto end;
+ }
+ }
+ }
+ DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
+ /*
+ Partition is defined. We need to verify that partitioning
+ function is correct.
+ */
+ if (part_info->part_type == HASH_PARTITION)
+ {
+ if (part_info->linear_hash_ind)
+ set_linear_hash_mask(part_info, part_info->no_parts);
+ if (part_info->list_of_part_fields)
+ {
+ List_iterator<char> it(part_info->part_field_list);
+ if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
+ goto end;
+ }
+ else
+ {
+ if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
+ table, FALSE, TRUE)))
+ goto end;
+ if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
+ {
+ my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
+ goto end;
+ }
+ part_info->part_result_type= INT_RESULT;
+ }
+ }
+ else
+ {
+ const char *error_str;
+ if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
+ table, FALSE, TRUE)))
+ goto end;
+ if (part_info->part_type == RANGE_PARTITION)
+ {
+ error_str= partition_keywords[PKW_RANGE].str;
+ if (unlikely(part_info->check_range_constants()))
+ goto end;
+ }
+ else if (part_info->part_type == LIST_PARTITION)
+ {
+ error_str= partition_keywords[PKW_LIST].str;
+ if (unlikely(part_info->check_list_constants()))
+ goto end;
+ }
+ else
+ {
+ DBUG_ASSERT(0);
+ my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
+ goto end;
+ }
+ if (unlikely(part_info->no_parts < 1))
+ {
+ my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
+ goto end;
+ }
+ if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
+ {
+ my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
+ goto end;
+ }
+ }
+ if (((part_info->part_type != HASH_PARTITION ||
+ part_info->list_of_part_fields == FALSE) &&
+ check_part_func_fields(part_info->part_field_array, TRUE)) ||
+ (part_info->list_of_part_fields == FALSE &&
+ part_info->is_sub_partitioned() &&
+ check_part_func_fields(part_info->subpart_field_array, TRUE)))
+ {
+ my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
+ goto end;
+ }
+ if (unlikely(create_full_part_field_array(thd, table, part_info)))
+ goto end;
+ if (unlikely(check_primary_key(table)))
+ goto end;
+ if (unlikely((!(table->s->db_type()->partition_flags &&
+ (table->s->db_type()->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
+ check_unique_keys(table)))
+ goto end;
+ if (unlikely(set_up_partition_bitmap(thd, part_info)))
+ goto end;
+ if (unlikely(part_info->set_up_charset_field_preps()))
+ {
+ my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
+ goto end;
+ }
+ check_range_capable_PF(table);
+ set_up_partition_key_maps(table, part_info);
+ set_up_partition_func_pointers(part_info);
+ set_up_range_analysis_info(part_info);
+ result= FALSE;
+end:
+ thd->mark_used_columns= save_mark_used_columns;
+ DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
+ DBUG_RETURN(result);
+}
+
+
+/*
+ The code below is support routines for the reverse parsing of the
+ partitioning syntax. This feature is very useful to generate syntax for
+ all default values to avoid all default checking when opening the frm
+ file. It is also used when altering the partitioning by use of various
+ ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
+*/
+
+static int add_write(File fptr, const char *buf, uint len)
+{
+ uint len_written= my_write(fptr, (const uchar*)buf, len, MYF(0));
+
+ if (likely(len == len_written))
+ return 0;
+ else
+ return 1;
+}
+
+static int add_string_object(File fptr, String *string)
+{
+ return add_write(fptr, string->ptr(), string->length());
+}
+
+static int add_string(File fptr, const char *string)
+{
+ return add_write(fptr, string, strlen(string));
+}
+
+static int add_string_len(File fptr, const char *string, uint len)
+{
+ return add_write(fptr, string, len);
+}
+
+static int add_space(File fptr)
+{
+ return add_string(fptr, space_str);
+}
+
+static int add_comma(File fptr)
+{
+ return add_string(fptr, comma_str);
+}
+
+static int add_equal(File fptr)
+{
+ return add_string(fptr, equal_str);
+}
+
+static int add_end_parenthesis(File fptr)
+{
+ return add_string(fptr, end_paren_str);
+}
+
+static int add_begin_parenthesis(File fptr)
+{
+ return add_string(fptr, begin_paren_str);
+}
+
+static int add_part_key_word(File fptr, const char *key_string)
+{
+ int err= add_string(fptr, key_string);
+
+ err+= add_space(fptr);
+ return err + add_begin_parenthesis(fptr);
+}
+
+static int add_hash(File fptr)
+{
+ return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
+}
+
+static int add_partition(File fptr)
+{
+ char buff[22];
+ strxmov(buff, part_str, space_str, NullS);
+ return add_string(fptr, buff);
+}
+
+static int add_subpartition(File fptr)
+{
+ int err= add_string(fptr, sub_str);
+
+ return err + add_partition(fptr);
+}
+
+static int add_partition_by(File fptr)
+{
+ char buff[22];
+ strxmov(buff, part_str, space_str, by_str, space_str, NullS);
+ return add_string(fptr, buff);
+}
+
+static int add_subpartition_by(File fptr)
+{
+ int err= add_string(fptr, sub_str);
+
+ return err + add_partition_by(fptr);
+}
+
+static int add_key_partition(File fptr, List<char> field_list)
+{
+ uint i, no_fields;
+ int err;
+
+ List_iterator<char> part_it(field_list);
+ err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
+ no_fields= field_list.elements;
+ i= 0;
+ while (i < no_fields)
+ {
+ const char *field_str= part_it++;
+ String field_string("", 0, system_charset_info);
+ THD *thd= current_thd;
+ ulonglong save_options= thd->options;
+ thd->options= 0;
+ append_identifier(thd, &field_string, field_str,
+ strlen(field_str));
+ thd->options= save_options;
+ err+= add_string_object(fptr, &field_string);
+ if (i != (no_fields-1))
+ err+= add_comma(fptr);
+ i++;
+ }
+ return err;
+}
+
+static int add_name_string(File fptr, const char *name)
+{
+ int err;
+ String name_string("", 0, system_charset_info);
+ THD *thd= current_thd;
+ ulonglong save_options= thd->options;
+
+ thd->options= 0;
+ append_identifier(thd, &name_string, name,
+ strlen(name));
+ thd->options= save_options;
+ err= add_string_object(fptr, &name_string);
+ return err;
+}
+
+static int add_int(File fptr, longlong number)
+{
+ char buff[32];
+ llstr(number, buff);
+ return add_string(fptr, buff);
+}
+
+static int add_uint(File fptr, ulonglong number)
+{
+ char buff[32];
+ longlong2str(number, buff, 10);
+ return add_string(fptr, buff);
+}
+
+static int add_keyword_string(File fptr, const char *keyword,
+ bool should_use_quotes,
+ const char *keystr)
+{
+ int err= add_string(fptr, keyword);
+
+ err+= add_space(fptr);
+ err+= add_equal(fptr);
+ err+= add_space(fptr);
+ if (should_use_quotes)
+ err+= add_string(fptr, "'");
+ err+= add_string(fptr, keystr);
+ if (should_use_quotes)
+ err+= add_string(fptr, "'");
+ return err + add_space(fptr);
+}
+
+static int add_keyword_int(File fptr, const char *keyword, longlong num)
+{
+ int err= add_string(fptr, keyword);
+
+ err+= add_space(fptr);
+ err+= add_equal(fptr);
+ err+= add_space(fptr);
+ err+= add_int(fptr, num);
+ return err + add_space(fptr);
+}
+
+static int add_engine(File fptr, handlerton *engine_type)
+{
+ const char *engine_str= ha_resolve_storage_engine_name(engine_type);
+ DBUG_PRINT("info", ("ENGINE: %s", engine_str));
+ int err= add_string(fptr, "ENGINE = ");
+ return err + add_string(fptr, engine_str);
+}
+
+static int add_partition_options(File fptr, partition_element *p_elem)
+{
+ int err= 0;
+
+ err+= add_space(fptr);
+ if (p_elem->tablespace_name)
+ err+= add_keyword_string(fptr,"TABLESPACE", FALSE,
+ p_elem->tablespace_name);
+ if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
+ err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
+ if (p_elem->part_max_rows)
+ err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
+ if (p_elem->part_min_rows)
+ err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
+ if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE))
+ {
+ if (p_elem->data_file_name)
+ err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE,
+ p_elem->data_file_name);
+ if (p_elem->index_file_name)
+ err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE,
+ p_elem->index_file_name);
+ }
+ if (p_elem->part_comment)
+ err+= add_keyword_string(fptr, "COMMENT", TRUE, p_elem->part_comment);
+ return err + add_engine(fptr,p_elem->engine_type);
+}
+
+static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem)
+{
+ int err= 0;
+
+ if (part_info->part_type == RANGE_PARTITION)
+ {
+ err+= add_string(fptr, " VALUES LESS THAN ");
+ if (!p_elem->max_value)
+ {
+ err+= add_begin_parenthesis(fptr);
+ if (p_elem->signed_flag)
+ err+= add_int(fptr, p_elem->range_value);
+ else
+ err+= add_uint(fptr, p_elem->range_value);
+ err+= add_end_parenthesis(fptr);
+ }
+ else
+ err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
+ }
+ else if (part_info->part_type == LIST_PARTITION)
+ {
+ uint i;
+ List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
+ err+= add_string(fptr, " VALUES IN ");
+ uint no_items= p_elem->list_val_list.elements;
+
+ err+= add_begin_parenthesis(fptr);
+ if (p_elem->has_null_value)
+ {
+ err+= add_string(fptr, "NULL");
+ if (no_items == 0)
+ {
+ err+= add_end_parenthesis(fptr);
+ goto end;
+ }
+ err+= add_comma(fptr);
+ }
+ i= 0;
+ do
+ {
+ part_elem_value *list_value= list_val_it++;
+
+ if (!list_value->unsigned_flag)
+ err+= add_int(fptr, list_value->value);
+ else
+ err+= add_uint(fptr, list_value->value);
+ if (i != (no_items-1))
+ err+= add_comma(fptr);
+ } while (++i < no_items);
+ err+= add_end_parenthesis(fptr);
+ }
+end:
+ return err;
+}
+
+/*
+ Generate the partition syntax from the partition data structure.
+ Useful for support of generating defaults, SHOW CREATE TABLES
+ and easy partition management.
+
+ SYNOPSIS
+ generate_partition_syntax()
+ part_info The partitioning data structure
+ buf_length A pointer to the returned buffer length
+ use_sql_alloc Allocate buffer from sql_alloc if true
+ otherwise use my_malloc
+ show_partition_options Should we display partition options
+
+ RETURN VALUES
+ NULL error
+ buf, buf_length Buffer and its length
+
+ DESCRIPTION
+ Here we will generate the full syntax for the given command where all
+ defaults have been expanded. By so doing the it is also possible to
+ make lots of checks of correctness while at it.
+ This could will also be reused for SHOW CREATE TABLES and also for all
+ type ALTER TABLE commands focusing on changing the PARTITION structure
+ in any fashion.
+
+ The implementation writes the syntax to a temporary file (essentially
+ an abstraction of a dynamic array) and if all writes goes well it
+ allocates a buffer and writes the syntax into this one and returns it.
+
+ As a security precaution the file is deleted before writing into it. This
+ means that no other processes on the machine can open and read the file
+ while this processing is ongoing.
+
+ The code is optimised for minimal code size since it is not used in any
+ common queries.
+*/
+
+char *generate_partition_syntax(partition_info *part_info,
+ uint *buf_length,
+ bool use_sql_alloc,
+ bool show_partition_options)
+{
+ uint i,j, tot_no_parts, no_subparts;
+ partition_element *part_elem;
+ ulonglong buffer_length;
+ char path[FN_REFLEN];
+ int err= 0;
+ List_iterator<partition_element> part_it(part_info->partitions);
+ File fptr;
+ char *buf= NULL; //Return buffer
+ DBUG_ENTER("generate_partition_syntax");
+
+ if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy",
+ O_RDWR | O_BINARY | O_TRUNC |
+ O_TEMPORARY, MYF(MY_WME)))) < 0))
+ DBUG_RETURN(NULL);
+#ifndef __WIN__
+ unlink(path);
+#endif
+ err+= add_space(fptr);
+ err+= add_partition_by(fptr);
+ switch (part_info->part_type)
+ {
+ case RANGE_PARTITION:
+ err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
+ break;
+ case LIST_PARTITION:
+ err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
+ break;
+ case HASH_PARTITION:
+ if (part_info->linear_hash_ind)
+ err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
+ if (part_info->list_of_part_fields)
+ err+= add_key_partition(fptr, part_info->part_field_list);
+ else
+ err+= add_hash(fptr);
+ break;
+ default:
+ DBUG_ASSERT(0);
+ /* We really shouldn't get here, no use in continuing from here */
+ current_thd->fatal_error();
+ DBUG_RETURN(NULL);
+ }
+ if (part_info->part_expr)
+ err+= add_string_len(fptr, part_info->part_func_string,
+ part_info->part_func_len);
+ err+= add_end_parenthesis(fptr);
+ err+= add_space(fptr);
+ if ((!part_info->use_default_no_partitions) &&
+ part_info->use_default_partitions)
+ {
+ err+= add_string(fptr, "PARTITIONS ");
+ err+= add_int(fptr, part_info->no_parts);
+ err+= add_space(fptr);
+ }
+ if (part_info->is_sub_partitioned())
+ {
+ err+= add_subpartition_by(fptr);
+ /* Must be hash partitioning for subpartitioning */
+ if (part_info->linear_hash_ind)
+ err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
+ if (part_info->list_of_subpart_fields)
+ err+= add_key_partition(fptr, part_info->subpart_field_list);
+ else
+ err+= add_hash(fptr);
+ if (part_info->subpart_expr)
+ err+= add_string_len(fptr, part_info->subpart_func_string,
+ part_info->subpart_func_len);
+ err+= add_end_parenthesis(fptr);
+ err+= add_space(fptr);
+ if ((!part_info->use_default_no_subpartitions) &&
+ part_info->use_default_subpartitions)
+ {
+ err+= add_string(fptr, "SUBPARTITIONS ");
+ err+= add_int(fptr, part_info->no_subparts);
+ err+= add_space(fptr);
+ }
+ }
+ tot_no_parts= part_info->partitions.elements;
+ no_subparts= part_info->no_subparts;
+
+ if (!part_info->use_default_partitions)
+ {
+ bool first= TRUE;
+ err+= add_begin_parenthesis(fptr);
+ i= 0;
+ do
+ {
+ part_elem= part_it++;
+ if (part_elem->part_state != PART_TO_BE_DROPPED &&
+ part_elem->part_state != PART_REORGED_DROPPED)
+ {
+ if (!first)
+ {
+ err+= add_comma(fptr);
+ err+= add_space(fptr);
+ }
+ first= FALSE;
+ err+= add_partition(fptr);
+ err+= add_name_string(fptr, part_elem->partition_name);
+ err+= add_partition_values(fptr, part_info, part_elem);
+ if (!part_info->is_sub_partitioned() ||
+ part_info->use_default_subpartitions)
+ {
+ if (show_partition_options)
+ err+= add_partition_options(fptr, part_elem);
+ }
+ else
+ {
+ err+= add_space(fptr);
+ err+= add_begin_parenthesis(fptr);
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ j= 0;
+ do
+ {
+ part_elem= sub_it++;
+ err+= add_subpartition(fptr);
+ err+= add_name_string(fptr, part_elem->partition_name);
+ if (show_partition_options)
+ err+= add_partition_options(fptr, part_elem);
+ if (j != (no_subparts-1))
+ {
+ err+= add_comma(fptr);
+ err+= add_space(fptr);
+ }
+ else
+ err+= add_end_parenthesis(fptr);
+ } while (++j < no_subparts);
+ }
+ }
+ if (i == (tot_no_parts-1))
+ err+= add_end_parenthesis(fptr);
+ } while (++i < tot_no_parts);
+ }
+ if (err)
+ goto close_file;
+ buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
+ if (unlikely(buffer_length == MY_FILEPOS_ERROR))
+ goto close_file;
+ if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
+ goto close_file;
+ *buf_length= (uint)buffer_length;
+ if (use_sql_alloc)
+ buf= (char*) sql_alloc(*buf_length+1);
+ else
+ buf= (char*) my_malloc(*buf_length+1, MYF(MY_WME));
+ if (!buf)
+ goto close_file;
+
+ if (unlikely(my_read(fptr, (uchar*)buf, *buf_length, MYF(MY_FNABP))))
+ {
+ if (!use_sql_alloc)
+ my_free(buf, MYF(0));
+ else
+ buf= NULL;
+ }
+ else
+ buf[*buf_length]= 0;
+
+close_file:
+ my_close(fptr, MYF(0));
+ DBUG_RETURN(buf);
+}
+
+
+/*
+ Check if partition key fields are modified and if it can be handled by the
+ underlying storage engine.
+
+ SYNOPSIS
+ partition_key_modified
+ table TABLE object for which partition fields are set-up
+ fields Bitmap representing fields to be modified
+
+ RETURN VALUES
+ TRUE Need special handling of UPDATE
+ FALSE Normal UPDATE handling is ok
+*/
+
+bool partition_key_modified(TABLE *table, const MY_BITMAP *fields)
+{
+ Field **fld;
+ partition_info *part_info= table->part_info;
+ DBUG_ENTER("partition_key_modified");
+
+ if (!part_info)
+ DBUG_RETURN(FALSE);
+ if (table->s->db_type()->partition_flags &&
+ (table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
+ DBUG_RETURN(FALSE);
+ for (fld= part_info->full_part_field_array; *fld; fld++)
+ if (bitmap_is_set(fields, (*fld)->field_index))
+ DBUG_RETURN(TRUE);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ A function to handle correct handling of NULL values in partition
+ functions.
+ SYNOPSIS
+ part_val_int()
+ item_expr The item expression to evaluate
+ RETURN VALUES
+ The value of the partition function, LONGLONG_MIN if any null value
+ in function
+*/
+
+static inline longlong part_val_int(Item *item_expr)
+{
+ longlong value= item_expr->val_int();
+ if (item_expr->null_value)
+ value= LONGLONG_MIN;
+ return value;
+}
+
+
+/*
+ The next set of functions are used to calculate the partition identity.
+ A handler sets up a variable that corresponds to one of these functions
+ to be able to quickly call it whenever the partition id needs to calculated
+ based on the record in table->record[0] (or set up to fake that).
+ There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
+ In addition there are 4 variants for RANGE subpartitioning and 4 variants
+ for LIST subpartitioning thus in total there are 14 variants of this
+ function.
+
+ We have a set of support functions for these 14 variants. There are 4
+ variants of hash functions and there is a function for each. The KEY
+ partitioning uses the function calculate_key_value to calculate the hash
+ value based on an array of fields. The linear hash variants uses the
+ method get_part_id_from_linear_hash to get the partition id using the
+ hash value and some parameters calculated from the number of partitions.
+*/
+
+/*
+ Calculate hash value for KEY partitioning using an array of fields.
+
+ SYNOPSIS
+ calculate_key_value()
+ field_array An array of the fields in KEY partitioning
+
+ RETURN VALUE
+ hash_value calculated
+
+ DESCRIPTION
+ Uses the hash function on the character set of the field. Integer and
+ floating point fields use the binary character set by default.
+*/
+
+static uint32 calculate_key_value(Field **field_array)
+{
+ ulong nr1= 1;
+ ulong nr2= 4;
+
+ do
+ {
+ Field *field= *field_array;
+ field->hash(&nr1, &nr2);
+ } while (*(++field_array));
+ return (uint32) nr1;
+}
+
+
+/*
+ A simple support function to calculate part_id given local part and
+ sub part.
+
+ SYNOPSIS
+ get_part_id_for_sub()
+ loc_part_id Local partition id
+ sub_part_id Subpartition id
+ no_subparts Number of subparts
+*/
+
+inline
+static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
+ uint no_subparts)
+{
+ return (uint32)((loc_part_id * no_subparts) + sub_part_id);
+}
+
+
+/*
+ Calculate part_id for (SUB)PARTITION BY HASH
+
+ SYNOPSIS
+ get_part_id_hash()
+ no_parts Number of hash partitions
+ part_expr Item tree of hash function
+ out:func_value Value of hash function
+
+ RETURN VALUE
+ Calculated partition id
+*/
+
+inline
+static uint32 get_part_id_hash(uint no_parts,
+ Item *part_expr,
+ longlong *func_value)
+{
+ longlong int_hash_id;
+ DBUG_ENTER("get_part_id_hash");
+
+ *func_value= part_val_int(part_expr);
+ int_hash_id= *func_value % no_parts;
+
+ DBUG_RETURN(int_hash_id < 0 ? (uint32) -int_hash_id : (uint32) int_hash_id);
+}
+
+
+/*
+ Calculate part_id for (SUB)PARTITION BY LINEAR HASH
+
+ SYNOPSIS
+ get_part_id_linear_hash()
+ part_info A reference to the partition_info struct where all the
+ desired information is given
+ no_parts Number of hash partitions
+ part_expr Item tree of hash function
+ out:func_value Value of hash function
+
+ RETURN VALUE
+ Calculated partition id
+*/
+
+inline
+static uint32 get_part_id_linear_hash(partition_info *part_info,
+ uint no_parts,
+ Item *part_expr,
+ longlong *func_value)
+{
+ DBUG_ENTER("get_part_id_linear_hash");
+
+ *func_value= part_val_int(part_expr);
+ DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
+ part_info->linear_hash_mask,
+ no_parts));
+}
+
+
+/*
+ Calculate part_id for (SUB)PARTITION BY KEY
+
+ SYNOPSIS
+ get_part_id_key()
+ field_array Array of fields for PARTTION KEY
+ no_parts Number of KEY partitions
+
+ RETURN VALUE
+ Calculated partition id
+*/
+
+inline
+static uint32 get_part_id_key(Field **field_array,
+ uint no_parts,
+ longlong *func_value)
+{
+ DBUG_ENTER("get_part_id_key");
+ *func_value= calculate_key_value(field_array);
+ DBUG_RETURN((uint32) (*func_value % no_parts));
+}
+
+
+/*
+ Calculate part_id for (SUB)PARTITION BY LINEAR KEY
+
+ SYNOPSIS
+ get_part_id_linear_key()
+ part_info A reference to the partition_info struct where all the
+ desired information is given
+ field_array Array of fields for PARTTION KEY
+ no_parts Number of KEY partitions
+
+ RETURN VALUE
+ Calculated partition id
+*/
+
+inline
+static uint32 get_part_id_linear_key(partition_info *part_info,
+ Field **field_array,
+ uint no_parts,
+ longlong *func_value)
+{
+ DBUG_ENTER("get_partition_id_linear_key");
+
+ *func_value= calculate_key_value(field_array);
+ DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
+ part_info->linear_hash_mask,
+ no_parts));
+}
+
+/*
+ Copy to field buffers and set up field pointers
+
+ SYNOPSIS
+ copy_to_part_field_buffers()
+ ptr Array of fields to copy
+ field_bufs Array of field buffers to copy to
+ restore_ptr Array of pointers to restore to
+
+ RETURN VALUES
+ NONE
+ DESCRIPTION
+ This routine is used to take the data from field pointer, convert
+ it to a standard format and store this format in a field buffer
+ allocated for this purpose. Next the field pointers are moved to
+ point to the field buffers. There is a separate to restore the
+ field pointers after this call.
+*/
+
+static void copy_to_part_field_buffers(Field **ptr,
+ uchar **field_bufs,
+ uchar **restore_ptr)
+{
+ Field *field;
+ while ((field= *(ptr++)))
+ {
+ *restore_ptr= field->ptr;
+ restore_ptr++;
+ if (!field->maybe_null() || !field->is_null())
+ {
+ CHARSET_INFO *cs= ((Field_str*)field)->charset();
+ uint len= field->pack_length();
+ uchar *field_buf= *field_bufs;
+ /*
+ We only use the field buffer for VARCHAR and CHAR strings
+ which isn't of a binary collation. We also only use the
+ field buffer for fields which are not currently NULL.
+ The field buffer will store a normalised string. We use
+ the strnxfrm method to normalise the string.
+ */
+ if (field->type() == MYSQL_TYPE_VARCHAR)
+ {
+ uint len_bytes= ((Field_varstring*)field)->length_bytes;
+ my_strnxfrm(cs, field_buf + len_bytes, (len - len_bytes),
+ field->ptr + len_bytes, field->field_length);
+ if (len_bytes == 1)
+ *field_buf= (uchar) field->field_length;
+ else
+ int2store(field_buf, field->field_length);
+ }
+ else
+ {
+ my_strnxfrm(cs, field_buf, len,
+ field->ptr, field->field_length);
+ }
+ field->ptr= field_buf;
+ }
+ field_bufs++;
+ }
+ return;
+}
+
+/*
+ Restore field pointers
+ SYNOPSIS
+ restore_part_field_pointers()
+ ptr Array of fields to restore
+ restore_ptr Array of field pointers to restore to
+
+ RETURN VALUES
+*/
+
+static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr)
+{
+ Field *field;
+ while ((field= *(ptr++)))
+ {
+ field->ptr= *restore_ptr;
+ restore_ptr++;
+ }
+ return;
+}
+/*
+ This function is used to calculate the partition id where all partition
+ fields have been prepared to point to a record where the partition field
+ values are bound.
+
+ SYNOPSIS
+ get_partition_id()
+ part_info A reference to the partition_info struct where all the
+ desired information is given
+ out:part_id The partition id is returned through this pointer
+ out: func_value Value of partition function (longlong)
+
+ RETURN VALUE
+ part_id Partition id of partition that would contain
+ row with given values of PF-fields
+ HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
+ fit into any partition and thus the values of
+ the PF-fields are not allowed.
+
+ DESCRIPTION
+ A routine used from write_row, update_row and delete_row from any
+ handler supporting partitioning. It is also a support routine for
+ get_partition_set used to find the set of partitions needed to scan
+ for a certain index scan or full table scan.
+
+ It is actually 14 different variants of this function which are called
+ through a function pointer.
+
+ get_partition_id_list
+ get_partition_id_range
+ get_partition_id_hash_nosub
+ get_partition_id_key_nosub
+ get_partition_id_linear_hash_nosub
+ get_partition_id_linear_key_nosub
+ get_partition_id_range_sub_hash
+ get_partition_id_range_sub_key
+ get_partition_id_range_sub_linear_hash
+ get_partition_id_range_sub_linear_key
+ get_partition_id_list_sub_hash
+ get_partition_id_list_sub_key
+ get_partition_id_list_sub_linear_hash
+ get_partition_id_list_sub_linear_key
+*/
+
+/*
+ This function is used to calculate the main partition to use in the case of
+ subpartitioning and we don't know enough to get the partition identity in
+ total.
+
+ SYNOPSIS
+ get_part_partition_id()
+ part_info A reference to the partition_info struct where all the
+ desired information is given
+ out:part_id The partition id is returned through this pointer
+ out: func_value The value calculated by partition function
+
+ RETURN VALUE
+ part_id Partition id of partition that would contain
+ row with given values of PF-fields
+ HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
+ fit into any partition and thus the values of
+ the PF-fields are not allowed.
+
+ DESCRIPTION
+
+ It is actually 6 different variants of this function which are called
+ through a function pointer.
+
+ get_partition_id_list
+ get_partition_id_range
+ get_partition_id_hash_nosub
+ get_partition_id_key_nosub
+ get_partition_id_linear_hash_nosub
+ get_partition_id_linear_key_nosub
+*/
+
+static int get_part_id_charset_func_subpart(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ int res;
+ copy_to_part_field_buffers(part_info->subpart_charset_field_array,
+ part_info->subpart_field_buffers,
+ part_info->restore_subpart_field_ptrs);
+ res= part_info->get_partition_id_charset(part_info, part_id, func_value);
+ restore_part_field_pointers(part_info->subpart_charset_field_array,
+ part_info->restore_subpart_field_ptrs);
+ return res;
+}
+
+
+static int get_part_id_charset_func_part(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ int res;
+ copy_to_part_field_buffers(part_info->part_charset_field_array,
+ part_info->part_field_buffers,
+ part_info->restore_part_field_ptrs);
+ res= part_info->get_partition_id_charset(part_info, part_id, func_value);
+ restore_part_field_pointers(part_info->part_charset_field_array,
+ part_info->restore_part_field_ptrs);
+ return res;
+}
+
+
+static int get_part_id_charset_func_all(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ int res;
+ copy_to_part_field_buffers(part_info->full_part_field_array,
+ part_info->full_part_field_buffers,
+ part_info->restore_full_part_field_ptrs);
+ res= part_info->get_partition_id_charset(part_info, part_id, func_value);
+ restore_part_field_pointers(part_info->full_part_field_array,
+ part_info->restore_full_part_field_ptrs);
+ return res;
+}
+
+
+static int get_part_part_id_charset_func(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ int res;
+ copy_to_part_field_buffers(part_info->part_charset_field_array,
+ part_info->part_field_buffers,
+ part_info->restore_part_field_ptrs);
+ res= part_info->get_part_partition_id_charset(part_info,
+ part_id, func_value);
+ restore_part_field_pointers(part_info->part_charset_field_array,
+ part_info->restore_part_field_ptrs);
+ return res;
+}
+
+
+static uint32 get_subpart_id_charset_func(partition_info *part_info)
+{
+ int res;
+ copy_to_part_field_buffers(part_info->subpart_charset_field_array,
+ part_info->subpart_field_buffers,
+ part_info->restore_subpart_field_ptrs);
+ res= part_info->get_subpartition_id_charset(part_info);
+ restore_part_field_pointers(part_info->subpart_charset_field_array,
+ part_info->restore_subpart_field_ptrs);
+ return res;
+}
+
+
+int get_partition_id_list(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ LIST_PART_ENTRY *list_array= part_info->list_array;
+ int list_index;
+ int min_list_index= 0;
+ int max_list_index= part_info->no_list_values - 1;
+ longlong part_func_value= part_val_int(part_info->part_expr);
+ longlong list_value;
+ bool unsigned_flag= part_info->part_expr->unsigned_flag;
+ DBUG_ENTER("get_partition_id_list");
+
+ if (part_info->part_expr->null_value)
+ {
+ if (part_info->has_null_value)
+ {
+ *part_id= part_info->has_null_part_id;
+ DBUG_RETURN(0);
+ }
+ goto notfound;
+ }
+ *func_value= part_func_value;
+ if (unsigned_flag)
+ part_func_value-= 0x8000000000000000ULL;
+ while (max_list_index >= min_list_index)
+ {
+ list_index= (max_list_index + min_list_index) >> 1;
+ list_value= list_array[list_index].list_value;
+ if (list_value < part_func_value)
+ min_list_index= list_index + 1;
+ else if (list_value > part_func_value)
+ {
+ if (!list_index)
+ goto notfound;
+ max_list_index= list_index - 1;
+ }
+ else
+ {
+ *part_id= (uint32)list_array[list_index].partition_id;
+ DBUG_RETURN(0);
+ }
+ }
+notfound:
+ *part_id= 0;
+ DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
+}
+
+
+/*
+ Find the sub-array part_info->list_array that corresponds to given interval
+
+ SYNOPSIS
+ get_list_array_idx_for_endpoint()
+ part_info Partitioning info (partitioning type must be LIST)
+ left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
+ FALSE - the interval is (-inf; a] or (-inf; a)
+ include_endpoint TRUE iff the interval includes the endpoint
+
+ DESCRIPTION
+ This function finds the sub-array of part_info->list_array where values of
+ list_array[idx].list_value are contained within the specifed interval.
+ list_array is ordered by list_value, so
+ 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
+ sought sub-array starts at some index idx and continues till array end.
+ The function returns first number idx, such that
+ list_array[idx].list_value is contained within the passed interval.
+
+ 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
+ sought sub-array starts at array start and continues till some last
+ index idx.
+ The function returns first number idx, such that
+ list_array[idx].list_value is NOT contained within the passed interval.
+ If all array elements are contained, part_info->no_list_values is
+ returned.
+
+ NOTE
+ The caller will call this function and then will run along the sub-array of
+ list_array to collect partition ids. If the number of list values is
+ significantly higher then number of partitions, this could be slow and
+ we could invent some other approach. The "run over list array" part is
+ already wrapped in a get_next()-like function.
+
+ RETURN
+ The edge of corresponding sub-array of part_info->list_array
+*/
+
+uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info,
+ bool left_endpoint,
+ bool include_endpoint)
+{
+ uint32 res;
+ copy_to_part_field_buffers(part_info->part_field_array,
+ part_info->part_field_buffers,
+ part_info->restore_part_field_ptrs);
+ res= get_list_array_idx_for_endpoint(part_info, left_endpoint,
+ include_endpoint);
+ restore_part_field_pointers(part_info->part_field_array,
+ part_info->restore_part_field_ptrs);
+ return res;
+}
+
+uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
+ bool left_endpoint,
+ bool include_endpoint)
+{
+ LIST_PART_ENTRY *list_array= part_info->list_array;
+ uint list_index;
+ uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
+ longlong list_value;
+ /* Get the partitioning function value for the endpoint */
+ longlong part_func_value=
+ part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
+ bool unsigned_flag= part_info->part_expr->unsigned_flag;
+ DBUG_ENTER("get_list_array_idx_for_endpoint");
+
+ if (part_info->part_expr->null_value)
+ {
+ DBUG_RETURN(0);
+ }
+ if (unsigned_flag)
+ part_func_value-= 0x8000000000000000ULL;
+ DBUG_ASSERT(part_info->no_list_values);
+ do
+ {
+ list_index= (max_list_index + min_list_index) >> 1;
+ list_value= list_array[list_index].list_value;
+ if (list_value < part_func_value)
+ min_list_index= list_index + 1;
+ else if (list_value > part_func_value)
+ {
+ if (!list_index)
+ goto notfound;
+ max_list_index= list_index - 1;
+ }
+ else
+ {
+ DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
+ }
+ } while (max_list_index >= min_list_index);
+notfound:
+ if (list_value < part_func_value)
+ list_index++;
+ DBUG_RETURN(list_index);
+}
+
+
+int get_partition_id_range(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ longlong *range_array= part_info->range_int_array;
+ uint max_partition= part_info->no_parts - 1;
+ uint min_part_id= 0;
+ uint max_part_id= max_partition;
+ uint loc_part_id;
+ longlong part_func_value= part_val_int(part_info->part_expr);
+ bool unsigned_flag= part_info->part_expr->unsigned_flag;
+ DBUG_ENTER("get_partition_id_range");
+
+ if (part_info->part_expr->null_value)
+ {
+ *part_id= 0;
+ DBUG_RETURN(0);
+ }
+ *func_value= part_func_value;
+ if (unsigned_flag)
+ part_func_value-= 0x8000000000000000ULL;
+ while (max_part_id > min_part_id)
+ {
+ loc_part_id= (max_part_id + min_part_id + 1) >> 1;
+ if (range_array[loc_part_id] <= part_func_value)
+ min_part_id= loc_part_id + 1;
+ else
+ max_part_id= loc_part_id - 1;
+ }
+ loc_part_id= max_part_id;
+ if (part_func_value >= range_array[loc_part_id])
+ if (loc_part_id != max_partition)
+ loc_part_id++;
+ *part_id= (uint32)loc_part_id;
+ if (loc_part_id == max_partition &&
+ range_array[loc_part_id] != LONGLONG_MAX &&
+ part_func_value >= range_array[loc_part_id])
+ DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
+
+ DBUG_PRINT("exit",("partition: %d", *part_id));
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Find the sub-array of part_info->range_int_array that covers given interval
+
+ SYNOPSIS
+ get_partition_id_range_for_endpoint()
+ part_info Partitioning info (partitioning type must be RANGE)
+ left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
+ FALSE - the interval is (-inf; a] or (-inf; a).
+ include_endpoint TRUE <=> the endpoint itself is included in the
+ interval
+
+ DESCRIPTION
+ This function finds the sub-array of part_info->range_int_array where the
+ elements have non-empty intersections with the given interval.
+
+ A range_int_array element at index idx represents the interval
+
+ [range_int_array[idx-1], range_int_array[idx]),
+
+ intervals are disjoint and ordered by their right bound, so
+
+ 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
+ sought sub-array starts at some index idx and continues till array end.
+ The function returns first number idx, such that the interval
+ represented by range_int_array[idx] has non empty intersection with
+ the passed interval.
+
+ 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
+ sought sub-array starts at array start and continues till some last
+ index idx.
+ The function returns first number idx, such that the interval
+ represented by range_int_array[idx] has EMPTY intersection with the
+ passed interval.
+ If the interval represented by the last array element has non-empty
+ intersection with the passed interval, part_info->no_parts is
+ returned.
+
+ RETURN
+ The edge of corresponding part_info->range_int_array sub-array.
+*/
+
+static uint32
+get_partition_id_range_for_endpoint_charset(partition_info *part_info,
+ bool left_endpoint,
+ bool include_endpoint)
+{
+ uint32 res;
+ copy_to_part_field_buffers(part_info->part_field_array,
+ part_info->part_field_buffers,
+ part_info->restore_part_field_ptrs);
+ res= get_partition_id_range_for_endpoint(part_info, left_endpoint,
+ include_endpoint);
+ restore_part_field_pointers(part_info->part_field_array,
+ part_info->restore_part_field_ptrs);
+ return res;
+}
+
+uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
+ bool left_endpoint,
+ bool include_endpoint)
+{
+ longlong *range_array= part_info->range_int_array;
+ uint max_partition= part_info->no_parts - 1;
+ uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
+ /* Get the partitioning function value for the endpoint */
+ longlong part_func_value=
+ part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
+
+ bool unsigned_flag= part_info->part_expr->unsigned_flag;
+ DBUG_ENTER("get_partition_id_range_for_endpoint");
+
+ if (part_info->part_expr->null_value)
+ {
+ uint32 ret_part_id= 0;
+ if (!left_endpoint && include_endpoint)
+ ret_part_id= 1;
+ DBUG_RETURN(ret_part_id);
+ }
+ if (unsigned_flag)
+ part_func_value-= 0x8000000000000000ULL;
+ if (left_endpoint && !include_endpoint)
+ part_func_value++;
+ while (max_part_id > min_part_id)
+ {
+ loc_part_id= (max_part_id + min_part_id + 1) >> 1;
+ if (range_array[loc_part_id] <= part_func_value)
+ min_part_id= loc_part_id + 1;
+ else
+ max_part_id= loc_part_id - 1;
+ }
+ loc_part_id= max_part_id;
+ if (loc_part_id < max_partition &&
+ part_func_value >= range_array[loc_part_id+1])
+ {
+ loc_part_id++;
+ }
+ if (left_endpoint)
+ {
+ if (part_func_value >= range_array[loc_part_id])
+ loc_part_id++;
+ }
+ else
+ {
+ if (loc_part_id < max_partition)
+ {
+ if (part_func_value == range_array[loc_part_id])
+ loc_part_id += test(include_endpoint);
+ else if (part_func_value > range_array[loc_part_id])
+ loc_part_id++;
+ }
+ loc_part_id++;
+ }
+ DBUG_RETURN(loc_part_id);
+}
+
+
+int get_partition_id_hash_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr,
+ func_value);
+ return 0;
+}
+
+
+int get_partition_id_linear_hash_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ *part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
+ part_info->part_expr, func_value);
+ return 0;
+}
+
+
+int get_partition_id_key_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ *part_id= get_part_id_key(part_info->part_field_array,
+ part_info->no_parts, func_value);
+ return 0;
+}
+
+
+int get_partition_id_linear_key_nosub(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ *part_id= get_part_id_linear_key(part_info,
+ part_info->part_field_array,
+ part_info->no_parts, func_value);
+ return 0;
+}
+
+
+int get_partition_id_range_sub_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_range_sub_hash");
+
+ if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
+ &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_range_sub_linear_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_range_sub_linear_hash");
+
+ if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
+ part_info->subpart_expr,
+ &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_range_sub_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_range_sub_key");
+
+ if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_key(part_info->subpart_field_array,
+ no_subparts, &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_range_sub_linear_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_range_sub_linear_key");
+
+ if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_linear_key(part_info,
+ part_info->subpart_field_array,
+ no_subparts, &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_list_sub_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_list_sub_hash");
+
+ if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
+ &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_list_sub_linear_hash(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_list_sub_linear_hash");
+
+ if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
+ part_info->subpart_expr,
+ &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_list_sub_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_range_sub_key");
+
+ if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_key(part_info->subpart_field_array,
+ no_subparts, &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+int get_partition_id_list_sub_linear_key(partition_info *part_info,
+ uint32 *part_id,
+ longlong *func_value)
+{
+ uint32 loc_part_id, sub_part_id;
+ uint no_subparts;
+ longlong local_func_value;
+ int error;
+ DBUG_ENTER("get_partition_id_list_sub_linear_key");
+
+ if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
+ func_value))))
+ {
+ DBUG_RETURN(error);
+ }
+ no_subparts= part_info->no_subparts;
+ sub_part_id= get_part_id_linear_key(part_info,
+ part_info->subpart_field_array,
+ no_subparts, &local_func_value);
+ *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
+ DBUG_RETURN(0);
+}
+
+
+/*
+ This function is used to calculate the subpartition id
+
+ SYNOPSIS
+ get_subpartition_id()
+ part_info A reference to the partition_info struct where all the
+ desired information is given
+
+ RETURN VALUE
+ part_id The subpartition identity
+
+ DESCRIPTION
+ A routine used in some SELECT's when only partial knowledge of the
+ partitions is known.
+
+ It is actually 4 different variants of this function which are called
+ through a function pointer.
+
+ get_partition_id_hash_sub
+ get_partition_id_key_sub
+ get_partition_id_linear_hash_sub
+ get_partition_id_linear_key_sub
+*/
+
+uint32 get_partition_id_hash_sub(partition_info *part_info)
+{
+ longlong func_value;
+ return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
+ &func_value);
+}
+
+
+uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
+{
+ longlong func_value;
+ return get_part_id_linear_hash(part_info, part_info->no_subparts,
+ part_info->subpart_expr, &func_value);
+}
+
+
+uint32 get_partition_id_key_sub(partition_info *part_info)
+{
+ longlong func_value;
+ return get_part_id_key(part_info->subpart_field_array,
+ part_info->no_subparts, &func_value);
+}
+
+
+uint32 get_partition_id_linear_key_sub(partition_info *part_info)
+{
+ longlong func_value;
+ return get_part_id_linear_key(part_info,
+ part_info->subpart_field_array,
+ part_info->no_subparts, &func_value);
+}
+
+
+/*
+ Set an indicator on all partition fields that are set by the key
+
+ SYNOPSIS
+ set_PF_fields_in_key()
+ key_info Information about the index
+ key_length Length of key
+
+ RETURN VALUE
+ TRUE Found partition field set by key
+ FALSE No partition field set by key
+*/
+
+static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
+{
+ KEY_PART_INFO *key_part;
+ bool found_part_field= FALSE;
+ DBUG_ENTER("set_PF_fields_in_key");
+
+ for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
+ {
+ if (key_part->null_bit)
+ key_length--;
+ if (key_part->type == HA_KEYTYPE_BIT)
+ {
+ if (((Field_bit*)key_part->field)->bit_len)
+ key_length--;
+ }
+ if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
+ {
+ key_length-= HA_KEY_BLOB_LENGTH;
+ }
+ if (key_length < key_part->length)
+ break;
+ key_length-= key_part->length;
+ if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
+ {
+ found_part_field= TRUE;
+ key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
+ }
+ }
+ DBUG_RETURN(found_part_field);
+}
+
+
+/*
+ We have found that at least one partition field was set by a key, now
+ check if a partition function has all its fields bound or not.
+
+ SYNOPSIS
+ check_part_func_bound()
+ ptr Array of fields NULL terminated (partition fields)
+
+ RETURN VALUE
+ TRUE All fields in partition function are set
+ FALSE Not all fields in partition function are set
+*/
+
+static bool check_part_func_bound(Field **ptr)
+{
+ bool result= TRUE;
+ DBUG_ENTER("check_part_func_bound");
+
+ for (; *ptr; ptr++)
+ {
+ if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
+ {
+ result= FALSE;
+ break;
+ }
+ }
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Get the id of the subpartitioning part by using the key buffer of the
+ index scan.
+
+ SYNOPSIS
+ get_sub_part_id_from_key()
+ table The table object
+ buf A buffer that can be used to evaluate the partition function
+ key_info The index object
+ key_spec A key_range containing key and key length
+
+ RETURN VALUES
+ part_id Subpartition id to use
+
+ DESCRIPTION
+ Use key buffer to set-up record in buf, move field pointers and
+ get the partition identity and restore field pointers afterwards.
+*/
+
+static uint32 get_sub_part_id_from_key(const TABLE *table,uchar *buf,
+ KEY *key_info,
+ const key_range *key_spec)
+{
+ uchar *rec0= table->record[0];
+ partition_info *part_info= table->part_info;
+ uint32 part_id;
+ DBUG_ENTER("get_sub_part_id_from_key");
+
+ key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
+ if (likely(rec0 == buf))
+ {
+ part_id= part_info->get_subpartition_id(part_info);
+ }
+ else
+ {
+ Field **part_field_array= part_info->subpart_field_array;
+ set_field_ptr(part_field_array, buf, rec0);
+ part_id= part_info->get_subpartition_id(part_info);
+ set_field_ptr(part_field_array, rec0, buf);
+ }
+ DBUG_RETURN(part_id);
+}
+
+/*
+ Get the id of the partitioning part by using the key buffer of the
+ index scan.
+
+ SYNOPSIS
+ get_part_id_from_key()
+ table The table object
+ buf A buffer that can be used to evaluate the partition function
+ key_info The index object
+ key_spec A key_range containing key and key length
+ out:part_id Partition to use
+
+ RETURN VALUES
+ TRUE Partition to use not found
+ FALSE Ok, part_id indicates partition to use
+
+ DESCRIPTION
+ Use key buffer to set-up record in buf, move field pointers and
+ get the partition identity and restore field pointers afterwards.
+*/
+
+bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info,
+ const key_range *key_spec, uint32 *part_id)
+{
+ bool result;
+ uchar *rec0= table->record[0];
+ partition_info *part_info= table->part_info;
+ longlong func_value;
+ DBUG_ENTER("get_part_id_from_key");
+
+ key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
+ if (likely(rec0 == buf))
+ {
+ result= part_info->get_part_partition_id(part_info, part_id,
+ &func_value);
+ }
+ else
+ {
+ Field **part_field_array= part_info->part_field_array;
+ set_field_ptr(part_field_array, buf, rec0);
+ result= part_info->get_part_partition_id(part_info, part_id,
+ &func_value);
+ set_field_ptr(part_field_array, rec0, buf);
+ }
+ DBUG_RETURN(result);
+}
+
+/*
+ Get the partitioning id of the full PF by using the key buffer of the
+ index scan.
+
+ SYNOPSIS
+ get_full_part_id_from_key()
+ table The table object
+ buf A buffer that is used to evaluate the partition function
+ key_info The index object
+ key_spec A key_range containing key and key length
+ out:part_spec A partition id containing start part and end part
+
+ RETURN VALUES
+ part_spec
+ No partitions to scan is indicated by end_part > start_part when returning
+
+ DESCRIPTION
+ Use key buffer to set-up record in buf, move field pointers if needed and
+ get the partition identity and restore field pointers afterwards.
+*/
+
+void get_full_part_id_from_key(const TABLE *table, uchar *buf,
+ KEY *key_info,
+ const key_range *key_spec,
+ part_id_range *part_spec)
+{
+ bool result;
+ partition_info *part_info= table->part_info;
+ uchar *rec0= table->record[0];
+ longlong func_value;
+ DBUG_ENTER("get_full_part_id_from_key");
+
+ key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
+ if (likely(rec0 == buf))
+ {
+ result= part_info->get_partition_id(part_info, &part_spec->start_part,
+ &func_value);
+ }
+ else
+ {
+ Field **part_field_array= part_info->full_part_field_array;
+ set_field_ptr(part_field_array, buf, rec0);
+ result= part_info->get_partition_id(part_info, &part_spec->start_part,
+ &func_value);
+ set_field_ptr(part_field_array, rec0, buf);
+ }
+ part_spec->end_part= part_spec->start_part;
+ if (unlikely(result))
+ part_spec->start_part++;
+ DBUG_VOID_RETURN;
+}
+
+/*
+ Prune the set of partitions to use in query
+
+ SYNOPSIS
+ prune_partition_set()
+ table The table object
+ out:part_spec Contains start part, end part
+
+ DESCRIPTION
+ This function is called to prune the range of partitions to scan by
+ checking the used_partitions bitmap.
+ If start_part > end_part at return it means no partition needs to be
+ scanned. If start_part == end_part it always means a single partition
+ needs to be scanned.
+
+ RETURN VALUE
+ part_spec
+*/
+void prune_partition_set(const TABLE *table, part_id_range *part_spec)
+{
+ int last_partition= -1;
+ uint i;
+ partition_info *part_info= table->part_info;
+
+ DBUG_ENTER("prune_partition_set");
+ for (i= part_spec->start_part; i <= part_spec->end_part; i++)
+ {
+ if (bitmap_is_set(&(part_info->used_partitions), i))
+ {
+ DBUG_PRINT("info", ("Partition %d is set", i));
+ if (last_partition == -1)
+ /* First partition found in set and pruned bitmap */
+ part_spec->start_part= i;
+ last_partition= i;
+ }
+ }
+ if (last_partition == -1)
+ /* No partition found in pruned bitmap */
+ part_spec->start_part= part_spec->end_part + 1;
+ else //if (last_partition != -1)
+ part_spec->end_part= last_partition;
+
+ DBUG_VOID_RETURN;
+}
+
+/*
+ Get the set of partitions to use in query.
+
+ SYNOPSIS
+ get_partition_set()
+ table The table object
+ buf A buffer that can be used to evaluate the partition function
+ index The index of the key used, if MAX_KEY no index used
+ key_spec A key_range containing key and key length
+ out:part_spec Contains start part, end part and indicator if bitmap is
+ used for which partitions to scan
+
+ DESCRIPTION
+ This function is called to discover which partitions to use in an index
+ scan or a full table scan.
+ It returns a range of partitions to scan. If there are holes in this
+ range with partitions that are not needed to scan a bit array is used
+ to signal which partitions to use and which not to use.
+ If start_part > end_part at return it means no partition needs to be
+ scanned. If start_part == end_part it always means a single partition
+ needs to be scanned.
+
+ RETURN VALUE
+ part_spec
+*/
+void get_partition_set(const TABLE *table, uchar *buf, const uint index,
+ const key_range *key_spec, part_id_range *part_spec)
+{
+ partition_info *part_info= table->part_info;
+ uint no_parts= part_info->get_tot_partitions();
+ uint i, part_id;
+ uint sub_part= no_parts;
+ uint32 part_part= no_parts;
+ KEY *key_info= NULL;
+ bool found_part_field= FALSE;
+ DBUG_ENTER("get_partition_set");
+
+ part_spec->start_part= 0;
+ part_spec->end_part= no_parts - 1;
+ if ((index < MAX_KEY) &&
+ key_spec->flag == (uint)HA_READ_KEY_EXACT &&
+ part_info->some_fields_in_PF.is_set(index))
+ {
+ key_info= table->key_info+index;
+ /*
+ The index can potentially provide at least one PF-field (field in the
+ partition function). Thus it is interesting to continue our probe.
+ */
+ if (key_spec->length == key_info->key_length)
+ {
+ /*
+ The entire key is set so we can check whether we can immediately
+ derive either the complete PF or if we can derive either
+ the top PF or the subpartitioning PF. This can be established by
+ checking precalculated bits on each index.
+ */
+ if (part_info->all_fields_in_PF.is_set(index))
+ {
+ /*
+ We can derive the exact partition to use, no more than this one
+ is needed.
+ */
+ get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
+ /*
+ Check if range can be adjusted by looking in used_partitions
+ */
+ prune_partition_set(table, part_spec);
+ DBUG_VOID_RETURN;
+ }
+ else if (part_info->is_sub_partitioned())
+ {
+ if (part_info->all_fields_in_SPF.is_set(index))
+ sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
+ else if (part_info->all_fields_in_PPF.is_set(index))
+ {
+ if (get_part_id_from_key(table,buf,key_info,
+ key_spec,(uint32*)&part_part))
+ {
+ /*
+ The value of the RANGE or LIST partitioning was outside of
+ allowed values. Thus it is certain that the result of this
+ scan will be empty.
+ */
+ part_spec->start_part= no_parts;
+ DBUG_VOID_RETURN;
+ }
+ }
+ }
+ }
+ else
+ {
+ /*
+ Set an indicator on all partition fields that are bound.
+ If at least one PF-field was bound it pays off to check whether
+ the PF or PPF or SPF has been bound.
+ (PF = Partition Function, SPF = Subpartition Function and
+ PPF = Partition Function part of subpartitioning)
+ */
+ if ((found_part_field= set_PF_fields_in_key(key_info,
+ key_spec->length)))
+ {
+ if (check_part_func_bound(part_info->full_part_field_array))
+ {
+ /*
+ We were able to bind all fields in the partition function even
+ by using only a part of the key. Calculate the partition to use.
+ */
+ get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
+ clear_indicator_in_key_fields(key_info);
+ /*
+ Check if range can be adjusted by looking in used_partitions
+ */
+ prune_partition_set(table, part_spec);
+ DBUG_VOID_RETURN;
+ }
+ else if (part_info->is_sub_partitioned())
+ {
+ if (check_part_func_bound(part_info->subpart_field_array))
+ sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
+ else if (check_part_func_bound(part_info->part_field_array))
+ {
+ if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
+ {
+ part_spec->start_part= no_parts;
+ clear_indicator_in_key_fields(key_info);
+ DBUG_VOID_RETURN;
+ }
+ }
+ }
+ }
+ }
+ }
+ {
+ /*
+ The next step is to analyse the table condition to see whether any
+ information about which partitions to scan can be derived from there.
+ Currently not implemented.
+ */
+ }
+ /*
+ If we come here we have found a range of sorts we have either discovered
+ nothing or we have discovered a range of partitions with possible holes
+ in it. We need a bitvector to further the work here.
+ */
+ if (!(part_part == no_parts && sub_part == no_parts))
+ {
+ /*
+ We can only arrive here if we are using subpartitioning.
+ */
+ if (part_part != no_parts)
+ {
+ /*
+ We know the top partition and need to scan all underlying
+ subpartitions. This is a range without holes.
+ */
+ DBUG_ASSERT(sub_part == no_parts);
+ part_spec->start_part= part_part * part_info->no_subparts;
+ part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
+ }
+ else
+ {
+ DBUG_ASSERT(sub_part != no_parts);
+ part_spec->start_part= sub_part;
+ part_spec->end_part=sub_part+
+ (part_info->no_subparts*(part_info->no_parts-1));
+ for (i= 0, part_id= sub_part; i < part_info->no_parts;
+ i++, part_id+= part_info->no_subparts)
+ ; //Set bit part_id in bit array
+ }
+ }
+ if (found_part_field)
+ clear_indicator_in_key_fields(key_info);
+ /*
+ Check if range can be adjusted by looking in used_partitions
+ */
+ prune_partition_set(table, part_spec);
+ DBUG_VOID_RETURN;
+}
+
+/*
+ If the table is partitioned we will read the partition info into the
+ .frm file here.
+ -------------------------------
+ | Fileinfo 64 bytes |
+ -------------------------------
+ | Formnames 7 bytes |
+ -------------------------------
+ | Not used 4021 bytes |
+ -------------------------------
+ | Keyinfo + record |
+ -------------------------------
+ | Padded to next multiple |
+ | of IO_SIZE |
+ -------------------------------
+ | Forminfo 288 bytes |
+ -------------------------------
+ | Screen buffer, to make |
+ |field names readable |
+ -------------------------------
+ | Packed field info |
+ |17 + 1 + strlen(field_name) |
+ | + 1 end of file character |
+ -------------------------------
+ | Partition info |
+ -------------------------------
+ We provide the length of partition length in Fileinfo[55-58].
+
+ Read the partition syntax from the frm file and parse it to get the
+ data structures of the partitioning.
+
+ SYNOPSIS
+ mysql_unpack_partition()
+ thd Thread object
+ part_buf Partition info from frm file
+ part_info_len Length of partition syntax
+ table Table object of partitioned table
+ create_table_ind Is it called from CREATE TABLE
+ default_db_type What is the default engine of the table
+ work_part_info_used Flag is raised if we don't create new
+ part_info, but used thd->work_part_info
+
+ RETURN VALUE
+ TRUE Error
+ FALSE Sucess
+
+ DESCRIPTION
+ Read the partition syntax from the current position in the frm file.
+ Initiate a LEX object, save the list of item tree objects to free after
+ the query is done. Set-up partition info object such that parser knows
+ it is called from internally. Call parser to create data structures
+ (best possible recreation of item trees and so forth since there is no
+ serialisation of these objects other than in parseable text format).
+ We need to save the text of the partition functions since it is not
+ possible to retrace this given an item tree.
+*/
+
+bool mysql_unpack_partition(THD *thd,
+ const char *part_buf, uint part_info_len,
+ const char *part_state, uint part_state_len,
+ TABLE* table, bool is_create_table_ind,
+ handlerton *default_db_type,
+ bool *work_part_info_used)
+{
+ bool result= TRUE;
+ partition_info *part_info;
+ CHARSET_INFO *old_character_set_client= thd->variables.character_set_client;
+ LEX *old_lex= thd->lex;
+ LEX lex;
+ DBUG_ENTER("mysql_unpack_partition");
+
+ thd->lex= &lex;
+ thd->variables.character_set_client= system_charset_info;
+
+ Lex_input_stream lip(thd, part_buf, part_info_len);
+
+ lex_start(thd);
+ *work_part_info_used= false;
+ /*
+ We need to use the current SELECT_LEX since I need to keep the
+ Name_resolution_context object which is referenced from the
+ Item_field objects.
+ This is not a nice solution since if the parser uses current_select
+ for anything else it will corrupt the current LEX object.
+ */
+ thd->lex->current_select= old_lex->current_select;
+ /*
+ All Items created is put into a free list on the THD object. This list
+ is used to free all Item objects after completing a query. We don't
+ want that to happen with the Item tree created as part of the partition
+ info. This should be attached to the table object and remain so until
+ the table object is released.
+ Thus we move away the current list temporarily and start a new list that
+ we then save in the partition info structure.
+ */
+ lex.part_info= new partition_info();/* Indicates MYSQLparse from this place */
+ if (!lex.part_info)
+ {
+ mem_alloc_error(sizeof(partition_info));
+ goto end;
+ }
+ lex.part_info->part_state= part_state;
+ lex.part_info->part_state_len= part_state_len;
+ DBUG_PRINT("info", ("Parse: %s", part_buf));
+ if (parse_sql(thd, &lip, NULL))
+ {
+ thd->free_items();
+ goto end;
+ }
+ /*
+ The parsed syntax residing in the frm file can still contain defaults.
+ The reason is that the frm file is sometimes saved outside of this
+ MySQL Server and used in backup and restore of clusters or partitioned
+ tables. It is not certain that the restore will restore exactly the
+ same default partitioning.
+
+ The easiest manner of handling this is to simply continue using the
+ part_info we already built up during mysql_create_table if we are
+ in the process of creating a table. If the table already exists we
+ need to discover the number of partitions for the default parts. Since
+ the handler object hasn't been created here yet we need to postpone this
+ to the fix_partition_func method.
+ */
+
+ DBUG_PRINT("info", ("Successful parse"));
+ part_info= lex.part_info;
+ DBUG_PRINT("info", ("default engine = %d, default_db_type = %d",
+ ha_legacy_type(part_info->default_engine_type),
+ ha_legacy_type(default_db_type)));
+ if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE)
+ {
+ if (old_lex->create_info.options & HA_LEX_CREATE_TABLE_LIKE)
+ {
+ /*
+ This code is executed when we create table in CREATE TABLE t1 LIKE t2.
+ old_lex->query_tables contains table list element for t2 and the table
+ we are opening has name t1.
+ */
+ if (partition_default_handling(table, part_info, FALSE,
+ old_lex->query_tables->table->s->path.str))
+ {
+ result= TRUE;
+ goto end;
+ }
+ }
+ else
+ {
+ /*
+ When we come here we are doing a create table. In this case we
+ have already done some preparatory work on the old part_info
+ object. We don't really need this new partition_info object.
+ Thus we go back to the old partition info object.
+ We need to free any memory objects allocated on item_free_list
+ by the parser since we are keeping the old info from the first
+ parser call in CREATE TABLE.
+ We'll ensure that this object isn't put into table cache also
+ just to ensure we don't get into strange situations with the
+ item objects.
+ */
+ thd->free_items();
+ part_info= thd->work_part_info;
+ table->s->version= 0UL;
+ *work_part_info_used= true;
+ }
+ }
+ table->part_info= part_info;
+ table->file->set_part_info(part_info);
+ if (!part_info->default_engine_type)
+ part_info->default_engine_type= default_db_type;
+ DBUG_ASSERT(part_info->default_engine_type == default_db_type);
+
+ {
+ /*
+ This code part allocates memory for the serialised item information for
+ the partition functions. In most cases this is not needed but if the
+ table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
+ partition information it is needed and the info is lost if we don't
+ save it here so unfortunately we have to do it here even if in most
+ cases it is not needed. This is a consequence of that item trees are
+ not serialisable.
+ */
+ uint part_func_len= part_info->part_func_len;
+ uint subpart_func_len= part_info->subpart_func_len;
+ char *part_func_string= NULL;
+ char *subpart_func_string= NULL;
+ if ((part_func_len &&
+ !((part_func_string= (char*) thd->alloc(part_func_len)))) ||
+ (subpart_func_len &&
+ !((subpart_func_string= (char*) thd->alloc(subpart_func_len)))))
+ {
+ mem_alloc_error(part_func_len);
+ thd->free_items();
+ goto end;
+ }
+ if (part_func_len)
+ memcpy(part_func_string, part_info->part_func_string, part_func_len);
+ if (subpart_func_len)
+ memcpy(subpart_func_string, part_info->subpart_func_string,
+ subpart_func_len);
+ part_info->part_func_string= part_func_string;
+ part_info->subpart_func_string= subpart_func_string;
+ }
+
+ result= FALSE;
+end:
+ lex_end(thd->lex);
+ thd->lex= old_lex;
+ thd->variables.character_set_client= old_character_set_client;
+ DBUG_RETURN(result);
+}
+
+
+/*
+ Set engine type on all partition element objects
+ SYNOPSIS
+ set_engine_all_partitions()
+ part_info Partition info
+ engine_type Handlerton reference of engine
+ RETURN VALUES
+ NONE
+*/
+
+static
+void
+set_engine_all_partitions(partition_info *part_info,
+ handlerton *engine_type)
+{
+ uint i= 0;
+ List_iterator<partition_element> part_it(part_info->partitions);
+ do
+ {
+ partition_element *part_elem= part_it++;
+
+ part_elem->engine_type= engine_type;
+ if (part_info->is_sub_partitioned())
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint j= 0;
+
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+
+ sub_elem->engine_type= engine_type;
+ } while (++j < part_info->no_subparts);
+ }
+ } while (++i < part_info->no_parts);
+}
+/*
+ SYNOPSIS
+ fast_end_partition()
+ thd Thread object
+ out:copied Number of records copied
+ out:deleted Number of records deleted
+ table_list Table list with the one table in it
+ empty Has nothing been done
+ lpt Struct to be used by error handler
+
+ RETURN VALUES
+ FALSE Success
+ TRUE Failure
+
+ DESCRIPTION
+ Support routine to handle the successful cases for partition
+ management.
+*/
+
+static int fast_end_partition(THD *thd, ulonglong copied,
+ ulonglong deleted,
+ TABLE *table,
+ TABLE_LIST *table_list, bool is_empty,
+ ALTER_PARTITION_PARAM_TYPE *lpt,
+ bool written_bin_log)
+{
+ int error;
+ DBUG_ENTER("fast_end_partition");
+
+ thd->proc_info="end";
+ if (!is_empty)
+ query_cache_invalidate3(thd, table_list, 0);
+ error= ha_commit_stmt(thd);
+ if (ha_commit(thd))
+ error= 1;
+ if (!error || is_empty)
+ {
+ char tmp_name[80];
+ if ((!is_empty) && (!written_bin_log) &&
+ (!thd->lex->no_write_to_binlog))
+ write_bin_log(thd, FALSE, thd->query, thd->query_length);
+ close_thread_tables(thd);
+ my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
+ (ulong) (copied + deleted),
+ (ulong) deleted,
+ (ulong) 0);
+ send_ok(thd, (ha_rows) (copied+deleted),0L,tmp_name);
+ DBUG_RETURN(FALSE);
+ }
+ table->file->print_error(error, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Check engine mix that it is correct
+ SYNOPSIS
+ check_engine_condition()
+ p_elem Partition element
+ default_engine Have user specified engine on table level
+ inout::engine_type Current engine used
+ inout::first Is it first partition
+ RETURN VALUE
+ TRUE Failed check
+ FALSE Ok
+ DESCRIPTION
+ (specified partition handler ) specified table handler
+ (NDB, NDB) NDB OK
+ (MYISAM, MYISAM) - OK
+ (MYISAM, -) - NOT OK
+ (MYISAM, -) MYISAM OK
+ (- , MYISAM) - NOT OK
+ (- , -) MYISAM OK
+ (-,-) - OK
+ (NDB, MYISAM) * NOT OK
+*/
+
+static bool check_engine_condition(partition_element *p_elem,
+ bool default_engine,
+ handlerton **engine_type,
+ bool *first)
+{
+ DBUG_ENTER("check_engine_condition");
+
+ DBUG_PRINT("enter", ("def_eng = %u, first = %u", default_engine, *first));
+ if (*first && default_engine)
+ {
+ *engine_type= p_elem->engine_type;
+ }
+ *first= FALSE;
+ if ((!default_engine &&
+ (p_elem->engine_type != (*engine_type) &&
+ p_elem->engine_type)) ||
+ (default_engine &&
+ p_elem->engine_type != (*engine_type)))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ else
+ {
+ DBUG_RETURN(FALSE);
+ }
+}
+
+/*
+ We need to check if engine used by all partitions can handle
+ partitioning natively.
+
+ SYNOPSIS
+ check_native_partitioned()
+ create_info Create info in CREATE TABLE
+ out:ret_val Return value
+ part_info Partition info
+ thd Thread object
+
+ RETURN VALUES
+ Value returned in bool ret_value
+ TRUE Native partitioning supported by engine
+ FALSE Need to use partition handler
+
+ Return value from function
+ TRUE Error
+ FALSE Success
+*/
+
+static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
+ partition_info *part_info, THD *thd)
+{
+ List_iterator<partition_element> part_it(part_info->partitions);
+ bool first= TRUE;
+ bool default_engine;
+ handlerton *engine_type= create_info->db_type;
+ handlerton *old_engine_type= engine_type;
+ uint i= 0;
+ uint no_parts= part_info->partitions.elements;
+ DBUG_ENTER("check_native_partitioned");
+
+ default_engine= (create_info->used_fields & HA_CREATE_USED_ENGINE) ?
+ FALSE : TRUE;
+ DBUG_PRINT("info", ("engine_type = %u, default = %u",
+ ha_legacy_type(engine_type),
+ default_engine));
+ if (no_parts)
+ {
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_info->is_sub_partitioned() &&
+ part_elem->subpartitions.elements)
+ {
+ uint no_subparts= part_elem->subpartitions.elements;
+ uint j= 0;
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+ if (check_engine_condition(sub_elem, default_engine,
+ &engine_type, &first))
+ goto error;
+ } while (++j < no_subparts);
+ /*
+ In case of subpartitioning and defaults we allow that only
+ subparts have specified engines, as long as the parts haven't
+ specified the wrong engine it's ok.
+ */
+ if (check_engine_condition(part_elem, FALSE,
+ &engine_type, &first))
+ goto error;
+ }
+ else if (check_engine_condition(part_elem, default_engine,
+ &engine_type, &first))
+ goto error;
+ } while (++i < no_parts);
+ }
+
+ /*
+ All engines are of the same type. Check if this engine supports
+ native partitioning.
+ */
+
+ if (!engine_type)
+ engine_type= old_engine_type;
+ DBUG_PRINT("info", ("engine_type = %s",
+ ha_resolve_storage_engine_name(engine_type)));
+ if (engine_type->partition_flags &&
+ (engine_type->partition_flags() & HA_CAN_PARTITION))
+ {
+ create_info->db_type= engine_type;
+ DBUG_PRINT("info", ("Changed to native partitioning"));
+ *ret_val= TRUE;
+ }
+ DBUG_RETURN(FALSE);
+error:
+ /*
+ Mixed engines not yet supported but when supported it will need
+ the partition handler
+ */
+ my_error(ER_MIX_HANDLER_ERROR, MYF(0));
+ *ret_val= FALSE;
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Prepare for ALTER TABLE of partition structure
+
+ SYNOPSIS
+ prep_alter_part_table()
+ thd Thread object
+ table Table object
+ inout:alter_info Alter information
+ inout:create_info Create info for CREATE TABLE
+ old_db_type Old engine type
+ out:partition_changed Boolean indicating whether partition changed
+ out:fast_alter_partition Boolean indicating whether fast partition
+ change is requested
+
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ partition_changed
+ fast_alter_partition
+
+ DESCRIPTION
+ This method handles all preparations for ALTER TABLE for partitioned
+ tables
+ We need to handle both partition management command such as Add Partition
+ and others here as well as an ALTER TABLE that completely changes the
+ partitioning and yet others that don't change anything at all. We start
+ by checking the partition management variants and then check the general
+ change patterns.
+*/
+
+uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info,
+ HA_CREATE_INFO *create_info,
+ handlerton *old_db_type,
+ bool *partition_changed,
+ uint *fast_alter_partition)
+{
+ DBUG_ENTER("prep_alter_part_table");
+
+ /*
+ We are going to manipulate the partition info on the table object
+ so we need to ensure that the data structure of the table object
+ is freed by setting version to 0. table->s->version= 0 forces a
+ flush of the table object in close_thread_tables().
+ */
+ if (table->part_info)
+ table->s->version= 0L;
+
+ thd->work_part_info= thd->lex->part_info;
+ if (thd->work_part_info &&
+ !(thd->work_part_info= thd->lex->part_info->get_clone()))
+ DBUG_RETURN(TRUE);
+
+ if (alter_info->flags &
+ (ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
+ ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
+ ALTER_TABLE_REORG | ALTER_OPTIMIZE_PARTITION |
+ ALTER_CHECK_PARTITION | ALTER_ANALYZE_PARTITION |
+ ALTER_REPAIR_PARTITION | ALTER_REBUILD_PARTITION))
+ {
+ partition_info *tab_part_info= table->part_info;
+ partition_info *alt_part_info= thd->work_part_info;
+ uint flags= 0;
+ if (!tab_part_info)
+ {
+ my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (alter_info->flags == ALTER_TABLE_REORG)
+ {
+ uint new_part_no, curr_part_no;
+ if (tab_part_info->part_type != HASH_PARTITION ||
+ tab_part_info->use_default_no_partitions)
+ {
+ my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ new_part_no= table->file->get_default_no_partitions(create_info);
+ curr_part_no= tab_part_info->no_parts;
+ if (new_part_no == curr_part_no)
+ {
+ /*
+ No change is needed, we will have the same number of partitions
+ after the change as before. Thus we can reply ok immediately
+ without any changes at all.
+ */
+ DBUG_RETURN(fast_end_partition(thd, ULL(0), ULL(0),
+ table, NULL,
+ TRUE, NULL, FALSE));
+ }
+ else if (new_part_no > curr_part_no)
+ {
+ /*
+ We will add more partitions, we use the ADD PARTITION without
+ setting the flag for no default number of partitions
+ */
+ alter_info->flags|= ALTER_ADD_PARTITION;
+ thd->work_part_info->no_parts= new_part_no - curr_part_no;
+ }
+ else
+ {
+ /*
+ We will remove hash partitions, we use the COALESCE PARTITION
+ without setting the flag for no default number of partitions
+ */
+ alter_info->flags|= ALTER_COALESCE_PARTITION;
+ alter_info->no_parts= curr_part_no - new_part_no;
+ }
+ }
+ if (table->s->db_type()->alter_table_flags &&
+ (!(flags= table->s->db_type()->alter_table_flags(alter_info->flags))))
+ {
+ my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
+ DBUG_RETURN(1);
+ }
+ *fast_alter_partition=
+ ((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0);
+ DBUG_PRINT("info", ("*fast_alter_partition: %d flags: 0x%x",
+ *fast_alter_partition, flags));
+ if (((alter_info->flags & ALTER_ADD_PARTITION) ||
+ (alter_info->flags & ALTER_REORGANIZE_PARTITION)) &&
+ (thd->work_part_info->part_type != tab_part_info->part_type) &&
+ (thd->work_part_info->part_type != NOT_A_PARTITION))
+ {
+ if (thd->work_part_info->part_type == RANGE_PARTITION)
+ {
+ my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
+ "RANGE", "LESS THAN");
+ }
+ else if (thd->work_part_info->part_type == LIST_PARTITION)
+ {
+ DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION);
+ my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
+ "LIST", "IN");
+ }
+ else if (tab_part_info->part_type == RANGE_PARTITION)
+ {
+ my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
+ "RANGE", "LESS THAN");
+ }
+ else
+ {
+ DBUG_ASSERT(tab_part_info->part_type == LIST_PARTITION);
+ my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
+ "LIST", "IN");
+ }
+ DBUG_RETURN(TRUE);
+ }
+ if (alter_info->flags & ALTER_ADD_PARTITION)
+ {
+ /*
+ We start by moving the new partitions to the list of temporary
+ partitions. We will then check that the new partitions fit in the
+ partitioning scheme as currently set-up.
+ Partitions are always added at the end in ADD PARTITION.
+ */
+ uint no_new_partitions= alt_part_info->no_parts;
+ uint no_orig_partitions= tab_part_info->no_parts;
+ uint check_total_partitions= no_new_partitions + no_orig_partitions;
+ uint new_total_partitions= check_total_partitions;
+ /*
+ We allow quite a lot of values to be supplied by defaults, however we
+ must know the number of new partitions in this case.
+ */
+ if (thd->lex->no_write_to_binlog &&
+ tab_part_info->part_type != HASH_PARTITION)
+ {
+ my_error(ER_NO_BINLOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (no_new_partitions == 0)
+ {
+ my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (tab_part_info->is_sub_partitioned())
+ {
+ if (alt_part_info->no_subparts == 0)
+ alt_part_info->no_subparts= tab_part_info->no_subparts;
+ else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
+ {
+ my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ check_total_partitions= new_total_partitions*
+ alt_part_info->no_subparts;
+ }
+ if (check_total_partitions > MAX_PARTITIONS)
+ {
+ my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ alt_part_info->part_type= tab_part_info->part_type;
+ alt_part_info->subpart_type= tab_part_info->subpart_type;
+ if (alt_part_info->set_up_defaults_for_partitioning(table->file,
+ ULL(0),
+ tab_part_info->no_parts))
+ {
+ DBUG_RETURN(TRUE);
+ }
+/*
+Handling of on-line cases:
+
+ADD PARTITION for RANGE/LIST PARTITIONING:
+------------------------------------------
+For range and list partitions add partition is simply adding a
+new empty partition to the table. If the handler support this we
+will use the simple method of doing this. The figure below shows
+an example of this and the states involved in making this change.
+
+Existing partitions New added partitions
+------ ------ ------ ------ | ------ ------
+| | | | | | | | | | | | |
+| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
+------ ------ ------ ------ | ------ ------
+PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2
+PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2
+
+The first line is the states before adding the new partitions and the
+second line is after the new partitions are added. All the partitions are
+in the partitions list, no partitions are placed in the temp_partitions
+list.
+
+ADD PARTITION for HASH PARTITIONING
+-----------------------------------
+This little figure tries to show the various partitions involved when
+adding two new partitions to a linear hash based partitioned table with
+four partitions to start with, which lists are used and the states they
+pass through. Adding partitions to a normal hash based is similar except
+that it is always all the existing partitions that are reorganised not
+only a subset of them.
+
+Existing partitions New added partitions
+------ ------ ------ ------ | ------ ------
+| | | | | | | | | | | | |
+| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
+------ ------ ------ ------ | ------ ------
+PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED
+PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED
+PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED
+
+Reorganised existing partitions
+------ ------
+| | | |
+| p0'| | p1'|
+------ ------
+
+p0 - p5 will be in the partitions list of partitions.
+p0' and p1' will actually not exist as separate objects, there presence can
+be deduced from the state of the partition and also the names of those
+partitions can be deduced this way.
+
+After adding the partitions and copying the partition data to p0', p1',
+p4 and p5 from p0 and p1 the states change to adapt for the new situation
+where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
+p5 are in the table again.
+
+The first line above shows the states of the partitions before we start
+adding and copying partitions, the second after completing the adding
+and copying and finally the third line after also dropping the partitions
+that are reorganised.
+*/
+ if (*fast_alter_partition &&
+ tab_part_info->part_type == HASH_PARTITION)
+ {
+ uint part_no= 0, start_part= 1, start_sec_part= 1;
+ uint end_part= 0, end_sec_part= 0;
+ uint upper_2n= tab_part_info->linear_hash_mask + 1;
+ uint lower_2n= upper_2n >> 1;
+ bool all_parts= TRUE;
+ if (tab_part_info->linear_hash_ind &&
+ no_new_partitions < upper_2n)
+ {
+ /*
+ An analysis of which parts needs reorganisation shows that it is
+ divided into two intervals. The first interval is those parts
+ that are reorganised up until upper_2n - 1. From upper_2n and
+ onwards it starts again from partition 0 and goes on until
+ it reaches p(upper_2n - 1). If the last new partition reaches
+ beyond upper_2n - 1 then the first interval will end with
+ p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
+ If lower_2n partitions are added then p0 to p(lower_2n - 1) will
+ be reorganised which means that the two interval becomes one
+ interval at this point. Thus only when adding less than
+ lower_2n partitions and going beyond a total of upper_2n we
+ actually get two intervals.
+
+ To exemplify this assume we have 6 partitions to start with and
+ add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
+ The first to add after p5 is p6 = 110 in bit numbers. Thus we
+ can see that 10 = p2 will be partition to reorganise if only one
+ partition.
+ If 2 partitions are added we reorganise [p2, p3]. Those two
+ cases are covered by the second if part below.
+ If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
+ part is covered by the else part below.
+ If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
+ This is covered by the first if part where we need the max check
+ to here use lower_2n - 1.
+ If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
+ This is covered by the first if part but here we use the first
+ calculated end_part.
+ Finally with 9 new partitions we would also reorganise p6 if we
+ used the method below but we cannot reorganise more partitions
+ than what we had from the start and thus we simply set all_parts
+ to TRUE. In this case we don't get into this if-part at all.
+ */
+ all_parts= FALSE;
+ if (no_new_partitions >= lower_2n)
+ {
+ /*
+ In this case there is only one interval since the two intervals
+ overlap and this starts from zero to last_part_no - upper_2n
+ */
+ start_part= 0;
+ end_part= new_total_partitions - (upper_2n + 1);
+ end_part= max(lower_2n - 1, end_part);
+ }
+ else if (new_total_partitions <= upper_2n)
+ {
+ /*
+ Also in this case there is only one interval since we are not
+ going over a 2**n boundary
+ */
+ start_part= no_orig_partitions - lower_2n;
+ end_part= start_part + (no_new_partitions - 1);
+ }
+ else
+ {
+ /* We have two non-overlapping intervals since we are not
+ passing a 2**n border and we have not at least lower_2n
+ new parts that would ensure that the intervals become
+ overlapping.
+ */
+ start_part= no_orig_partitions - lower_2n;
+ end_part= upper_2n - 1;
+ start_sec_part= 0;
+ end_sec_part= new_total_partitions - (upper_2n + 1);
+ }
+ }
+ List_iterator<partition_element> tab_it(tab_part_info->partitions);
+ part_no= 0;
+ do
+ {
+ partition_element *p_elem= tab_it++;
+ if (all_parts ||
+ (part_no >= start_part && part_no <= end_part) ||
+ (part_no >= start_sec_part && part_no <= end_sec_part))
+ {
+ p_elem->part_state= PART_CHANGED;
+ }
+ } while (++part_no < no_orig_partitions);
+ }
+ /*
+ Need to concatenate the lists here to make it possible to check the
+ partition info for correctness using check_partition_info.
+ For on-line add partition we set the state of this partition to
+ PART_TO_BE_ADDED to ensure that it is known that it is not yet
+ usable (becomes usable when partition is created and the switch of
+ partition configuration is made.
+ */
+ {
+ List_iterator<partition_element> alt_it(alt_part_info->partitions);
+ uint part_count= 0;
+ do
+ {
+ partition_element *part_elem= alt_it++;
+ if (*fast_alter_partition)
+ part_elem->part_state= PART_TO_BE_ADDED;
+ if (tab_part_info->partitions.push_back(part_elem))
+ {
+ mem_alloc_error(1);
+ DBUG_RETURN(TRUE);
+ }
+ } while (++part_count < no_new_partitions);
+ tab_part_info->no_parts+= no_new_partitions;
+ }
+ /*
+ If we specify partitions explicitly we don't use defaults anymore.
+ Using ADD PARTITION also means that we don't have the default number
+ of partitions anymore. We use this code also for Table reorganisations
+ and here we don't set any default flags to FALSE.
+ */
+ if (!(alter_info->flags & ALTER_TABLE_REORG))
+ {
+ if (!alt_part_info->use_default_partitions)
+ {
+ DBUG_PRINT("info", ("part_info: 0x%lx", (long) tab_part_info));
+ tab_part_info->use_default_partitions= FALSE;
+ }
+ tab_part_info->use_default_no_partitions= FALSE;
+ tab_part_info->is_auto_partitioned= FALSE;
+ }
+ }
+ else if (alter_info->flags == ALTER_DROP_PARTITION)
+ {
+ /*
+ Drop a partition from a range partition and list partitioning is
+ always safe and can be made more or less immediate. It is necessary
+ however to ensure that the partition to be removed is safely removed
+ and that REPAIR TABLE can remove the partition if for some reason the
+ command to drop the partition failed in the middle.
+ */
+ uint part_count= 0;
+ uint no_parts_dropped= alter_info->partition_names.elements;
+ uint no_parts_found= 0;
+ List_iterator<partition_element> part_it(tab_part_info->partitions);
+
+ tab_part_info->is_auto_partitioned= FALSE;
+ if (!(tab_part_info->part_type == RANGE_PARTITION ||
+ tab_part_info->part_type == LIST_PARTITION))
+ {
+ my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
+ DBUG_RETURN(TRUE);
+ }
+ if (no_parts_dropped >= tab_part_info->no_parts)
+ {
+ my_error(ER_DROP_LAST_PARTITION, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (is_name_in_list(part_elem->partition_name,
+ alter_info->partition_names))
+ {
+ /*
+ Set state to indicate that the partition is to be dropped.
+ */
+ no_parts_found++;
+ part_elem->part_state= PART_TO_BE_DROPPED;
+ }
+ } while (++part_count < tab_part_info->no_parts);
+ if (no_parts_found != no_parts_dropped)
+ {
+ my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
+ DBUG_RETURN(TRUE);
+ }
+ if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
+ {
+ my_error(ER_ROW_IS_REFERENCED, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ tab_part_info->no_parts-= no_parts_dropped;
+ }
+ else if ((alter_info->flags & ALTER_OPTIMIZE_PARTITION) ||
+ (alter_info->flags & ALTER_ANALYZE_PARTITION) ||
+ (alter_info->flags & ALTER_CHECK_PARTITION) ||
+ (alter_info->flags & ALTER_REPAIR_PARTITION) ||
+ (alter_info->flags & ALTER_REBUILD_PARTITION))
+ {
+ uint no_parts_opt= alter_info->partition_names.elements;
+ uint part_count= 0;
+ uint no_parts_found= 0;
+ List_iterator<partition_element> part_it(tab_part_info->partitions);
+
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if ((alter_info->flags & ALTER_ALL_PARTITION) ||
+ (is_name_in_list(part_elem->partition_name,
+ alter_info->partition_names)))
+ {
+ /*
+ Mark the partition as a partition to be "changed" by
+ analyzing/optimizing/rebuilding/checking/repairing
+ */
+ no_parts_found++;
+ part_elem->part_state= PART_CHANGED;
+ }
+ } while (++part_count < tab_part_info->no_parts);
+ if (no_parts_found != no_parts_opt &&
+ (!(alter_info->flags & ALTER_ALL_PARTITION)))
+ {
+ const char *ptr;
+ if (alter_info->flags & ALTER_OPTIMIZE_PARTITION)
+ ptr= "OPTIMIZE";
+ else if (alter_info->flags & ALTER_ANALYZE_PARTITION)
+ ptr= "ANALYZE";
+ else if (alter_info->flags & ALTER_CHECK_PARTITION)
+ ptr= "CHECK";
+ else if (alter_info->flags & ALTER_REPAIR_PARTITION)
+ ptr= "REPAIR";
+ else
+ ptr= "REBUILD";
+ my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), ptr);
+ DBUG_RETURN(TRUE);
+ }
+ if (!(*fast_alter_partition))
+ {
+ table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if (alter_info->flags & ALTER_COALESCE_PARTITION)
+ {
+ uint no_parts_coalesced= alter_info->no_parts;
+ uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
+ List_iterator<partition_element> part_it(tab_part_info->partitions);
+ if (tab_part_info->part_type != HASH_PARTITION)
+ {
+ my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (no_parts_coalesced == 0)
+ {
+ my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (no_parts_coalesced >= tab_part_info->no_parts)
+ {
+ my_error(ER_DROP_LAST_PARTITION, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+/*
+Online handling:
+COALESCE PARTITION:
+-------------------
+The figure below shows the manner in which partitions are handled when
+performing an on-line coalesce partition and which states they go through
+at start, after adding and copying partitions and finally after dropping
+the partitions to drop. The figure shows an example using four partitions
+to start with, using linear hash and coalescing one partition (always the
+last partition).
+
+Using linear hash then all remaining partitions will have a new reorganised
+part.
+
+Existing partitions Coalesced partition
+------ ------ ------ | ------
+| | | | | | | | |
+| p0 | | p1 | | p2 | | | p3 |
+------ ------ ------ | ------
+PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED
+PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED
+PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED
+
+Reorganised existing partitions
+ ------
+ | |
+ | p1'|
+ ------
+
+p0 - p3 is in the partitions list.
+The p1' partition will actually not be in any list it is deduced from the
+state of p1.
+*/
+ {
+ uint part_count= 0, start_part= 1, start_sec_part= 1;
+ uint end_part= 0, end_sec_part= 0;
+ bool all_parts= TRUE;
+ if (*fast_alter_partition &&
+ tab_part_info->linear_hash_ind)
+ {
+ uint upper_2n= tab_part_info->linear_hash_mask + 1;
+ uint lower_2n= upper_2n >> 1;
+ all_parts= FALSE;
+ if (no_parts_coalesced >= lower_2n)
+ {
+ all_parts= TRUE;
+ }
+ else if (no_parts_remain >= lower_2n)
+ {
+ end_part= tab_part_info->no_parts - (lower_2n + 1);
+ start_part= no_parts_remain - lower_2n;
+ }
+ else
+ {
+ start_part= 0;
+ end_part= tab_part_info->no_parts - (lower_2n + 1);
+ end_sec_part= (lower_2n >> 1) - 1;
+ start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
+ }
+ }
+ do
+ {
+ partition_element *p_elem= part_it++;
+ if (*fast_alter_partition &&
+ (all_parts ||
+ (part_count >= start_part && part_count <= end_part) ||
+ (part_count >= start_sec_part && part_count <= end_sec_part)))
+ p_elem->part_state= PART_CHANGED;
+ if (++part_count > no_parts_remain)
+ {
+ if (*fast_alter_partition)
+ p_elem->part_state= PART_REORGED_DROPPED;
+ else
+ part_it.remove();
+ }
+ } while (part_count < tab_part_info->no_parts);
+ tab_part_info->no_parts= no_parts_remain;
+ }
+ if (!(alter_info->flags & ALTER_TABLE_REORG))
+ {
+ tab_part_info->use_default_no_partitions= FALSE;
+ tab_part_info->is_auto_partitioned= FALSE;
+ }
+ }
+ else if (alter_info->flags == ALTER_REORGANIZE_PARTITION)
+ {
+ /*
+ Reorganise partitions takes a number of partitions that are next
+ to each other (at least for RANGE PARTITIONS) and then uses those
+ to create a set of new partitions. So data is copied from those
+ partitions into the new set of partitions. Those new partitions
+ can have more values in the LIST value specifications or less both
+ are allowed. The ranges can be different but since they are
+ changing a set of consecutive partitions they must cover the same
+ range as those changed from.
+ This command can be used on RANGE and LIST partitions.
+ */
+ uint no_parts_reorged= alter_info->partition_names.elements;
+ uint no_parts_new= thd->work_part_info->partitions.elements;
+ partition_info *alt_part_info= thd->work_part_info;
+ uint check_total_partitions;
+
+ tab_part_info->is_auto_partitioned= FALSE;
+ if (no_parts_reorged > tab_part_info->no_parts)
+ {
+ my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (!(tab_part_info->part_type == RANGE_PARTITION ||
+ tab_part_info->part_type == LIST_PARTITION) &&
+ (no_parts_new != no_parts_reorged))
+ {
+ my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ if (tab_part_info->is_sub_partitioned() &&
+ alt_part_info->no_subparts &&
+ alt_part_info->no_subparts != tab_part_info->no_subparts)
+ {
+ my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ check_total_partitions= tab_part_info->no_parts + no_parts_new;
+ check_total_partitions-= no_parts_reorged;
+ if (check_total_partitions > MAX_PARTITIONS)
+ {
+ my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ alt_part_info->part_type= tab_part_info->part_type;
+ alt_part_info->subpart_type= tab_part_info->subpart_type;
+ alt_part_info->no_subparts= tab_part_info->no_subparts;
+ DBUG_ASSERT(!alt_part_info->use_default_partitions);
+ if (alt_part_info->set_up_defaults_for_partitioning(table->file,
+ ULL(0),
+ 0))
+ {
+ DBUG_RETURN(TRUE);
+ }
+/*
+Online handling:
+REORGANIZE PARTITION:
+---------------------
+The figure exemplifies the handling of partitions, their state changes and
+how they are organised. It exemplifies four partitions where two of the
+partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
+The reason of this change could be to change range limits, change list
+values or for hash partitions simply reorganise the partition which could
+also involve moving them to new disks or new node groups (MySQL Cluster).
+
+Existing partitions
+------ ------ ------ ------
+| | | | | | | |
+| p0 | | p1 | | p2 | | p3 |
+------ ------ ------ ------
+PART_NORMAL PART_TO_BE_REORGED PART_NORMAL
+PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL
+PART_NORMAL PART_IS_DROPPED PART_NORMAL
+
+Reorganised new partitions (replacing p1 and p2)
+------ ------
+| | | |
+| p4 | | p5 |
+------ ------
+PART_TO_BE_ADDED
+PART_IS_ADDED
+PART_IS_ADDED
+
+All unchanged partitions and the new partitions are in the partitions list
+in the order they will have when the change is completed. The reorganised
+partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
+temporary state not written in the frm file. It is used to ensure we write
+the generated partition syntax in a correct manner.
+*/
+ {
+ List_iterator<partition_element> tab_it(tab_part_info->partitions);
+ uint part_count= 0;
+ bool found_first= FALSE;
+ bool found_last= FALSE;
+ bool is_last_partition_reorged;
+ uint drop_count= 0;
+ longlong tab_max_range= 0, alt_max_range= 0;
+ do
+ {
+ partition_element *part_elem= tab_it++;
+ is_last_partition_reorged= FALSE;
+ if (is_name_in_list(part_elem->partition_name,
+ alter_info->partition_names))
+ {
+ is_last_partition_reorged= TRUE;
+ drop_count++;
+ tab_max_range= part_elem->range_value;
+ if (*fast_alter_partition &&
+ tab_part_info->temp_partitions.push_back(part_elem))
+ {
+ mem_alloc_error(1);
+ DBUG_RETURN(TRUE);
+ }
+ if (*fast_alter_partition)
+ part_elem->part_state= PART_TO_BE_REORGED;
+ if (!found_first)
+ {
+ uint alt_part_count= 0;
+ found_first= TRUE;
+ List_iterator<partition_element>
+ alt_it(alt_part_info->partitions);
+ do
+ {
+ partition_element *alt_part_elem= alt_it++;
+ alt_max_range= alt_part_elem->range_value;
+ if (*fast_alter_partition)
+ alt_part_elem->part_state= PART_TO_BE_ADDED;
+ if (alt_part_count == 0)
+ tab_it.replace(alt_part_elem);
+ else
+ tab_it.after(alt_part_elem);
+ } while (++alt_part_count < no_parts_new);
+ }
+ else if (found_last)
+ {
+ my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ else
+ tab_it.remove();
+ }
+ else
+ {
+ if (found_first)
+ found_last= TRUE;
+ }
+ } while (++part_count < tab_part_info->no_parts);
+ if (drop_count != no_parts_reorged)
+ {
+ my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
+ DBUG_RETURN(TRUE);
+ }
+ if (tab_part_info->part_type == RANGE_PARTITION &&
+ ((is_last_partition_reorged &&
+ alt_max_range < tab_max_range) ||
+ (!is_last_partition_reorged &&
+ alt_max_range != tab_max_range)))
+ {
+ /*
+ For range partitioning the total resulting range before and
+ after the change must be the same except in one case. This is
+ when the last partition is reorganised, in this case it is
+ acceptable to increase the total range.
+ The reason is that it is not allowed to have "holes" in the
+ middle of the ranges and thus we should not allow to reorganise
+ to create "holes". Also we should not allow using REORGANIZE
+ to drop data.
+ */
+ my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ tab_part_info->no_parts= check_total_partitions;
+ }
+ }
+ else
+ {
+ DBUG_ASSERT(FALSE);
+ }
+ *partition_changed= TRUE;
+ thd->work_part_info= tab_part_info;
+ if (alter_info->flags == ALTER_ADD_PARTITION ||
+ alter_info->flags == ALTER_REORGANIZE_PARTITION)
+ {
+ if (tab_part_info->use_default_subpartitions &&
+ !alt_part_info->use_default_subpartitions)
+ {
+ tab_part_info->use_default_subpartitions= FALSE;
+ tab_part_info->use_default_no_subpartitions= FALSE;
+ }
+ if (tab_part_info->check_partition_info(thd, (handlerton**)NULL,
+ table->file, ULL(0), FALSE))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ }
+ else
+ {
+ /*
+ When thd->lex->part_info has a reference to a partition_info the
+ ALTER TABLE contained a definition of a partitioning.
+
+ Case I:
+ If there was a partition before and there is a new one defined.
+ We use the new partitioning. The new partitioning is already
+ defined in the correct variable so no work is needed to
+ accomplish this.
+ We do however need to update partition_changed to ensure that not
+ only the frm file is changed in the ALTER TABLE command.
+
+ Case IIa:
+ There was a partitioning before and there is no new one defined.
+ Also the user has not specified to remove partitioning explicitly.
+
+ We use the old partitioning also for the new table. We do this
+ by assigning the partition_info from the table loaded in
+ open_ltable to the partition_info struct used by mysql_create_table
+ later in this method.
+
+ Case IIb:
+ There was a partitioning before and there is no new one defined.
+ The user has specified explicitly to remove partitioning
+
+ Since the user has specified explicitly to remove partitioning
+ we override the old partitioning info and create a new table using
+ the specified engine.
+ In this case the partition also is changed.
+
+ Case III:
+ There was no partitioning before altering the table, there is
+ partitioning defined in the altered table. Use the new partitioning.
+ No work needed since the partitioning info is already in the
+ correct variable.
+
+ In this case we discover one case where the new partitioning is using
+ the same partition function as the default (PARTITION BY KEY or
+ PARTITION BY LINEAR KEY with the list of fields equal to the primary
+ key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
+ key)
+ Also here partition has changed and thus a new table must be
+ created.
+
+ Case IV:
+ There was no partitioning before and no partitioning defined.
+ Obviously no work needed.
+ */
+ if (table->part_info)
+ {
+ if (alter_info->flags & ALTER_REMOVE_PARTITIONING)
+ {
+ DBUG_PRINT("info", ("Remove partitioning"));
+ if (!(create_info->used_fields & HA_CREATE_USED_ENGINE))
+ {
+ DBUG_PRINT("info", ("No explicit engine used"));
+ create_info->db_type= table->part_info->default_engine_type;
+ }
+ DBUG_PRINT("info", ("New engine type: %s",
+ ha_resolve_storage_engine_name(create_info->db_type)));
+ thd->work_part_info= NULL;
+ *partition_changed= TRUE;
+ }
+ else if (!thd->work_part_info)
+ {
+ /*
+ Retain partitioning but possibly with a new storage engine
+ beneath.
+ */
+ thd->work_part_info= table->part_info;
+ if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
+ create_info->db_type != table->part_info->default_engine_type)
+ {
+ /*
+ Make sure change of engine happens to all partitions.
+ */
+ DBUG_PRINT("info", ("partition changed"));
+ if (table->part_info->is_auto_partitioned)
+ {
+ /*
+ If the user originally didn't specify partitioning to be
+ used we can remove it now.
+ */
+ thd->work_part_info= NULL;
+ }
+ else
+ {
+ /*
+ Ensure that all partitions have the proper engine set-up
+ */
+ set_engine_all_partitions(thd->work_part_info,
+ create_info->db_type);
+ }
+ *partition_changed= TRUE;
+ }
+ }
+ }
+ if (thd->work_part_info)
+ {
+ partition_info *part_info= thd->work_part_info;
+ bool is_native_partitioned= FALSE;
+ /*
+ Need to cater for engine types that can handle partition without
+ using the partition handler.
+ */
+ if (thd->work_part_info != table->part_info)
+ {
+ DBUG_PRINT("info", ("partition changed"));
+ *partition_changed= TRUE;
+ }
+ if (create_info->db_type == partition_hton)
+ part_info->default_engine_type= table->part_info->default_engine_type;
+ else
+ part_info->default_engine_type= create_info->db_type;
+ if (check_native_partitioned(create_info, &is_native_partitioned,
+ part_info, thd))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ if (!is_native_partitioned)
+ {
+ DBUG_ASSERT(create_info->db_type);
+ create_info->db_type= partition_hton;
+ }
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
+ partitions. This method is used to implement both single-phase and multi-
+ phase implementations of ADD/REORGANIZE/COALESCE partitions.
+
+ SYNOPSIS
+ mysql_change_partitions()
+ lpt Struct containing parameters
+
+ RETURN VALUES
+ TRUE Failure
+ FALSE Success
+
+ DESCRIPTION
+ Request handler to add partitions as set in states of the partition
+
+ Elements of the lpt parameters used:
+ create_info Create information used to create partitions
+ db Database name
+ table_name Table name
+ copied Output parameter where number of copied
+ records are added
+ deleted Output parameter where number of deleted
+ records are added
+*/
+
+static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ char path[FN_REFLEN+1];
+ int error;
+ handler *file= lpt->table->file;
+ DBUG_ENTER("mysql_change_partitions");
+
+ build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
+ if ((error= file->change_partitions(lpt->create_info, path, &lpt->copied,
+ &lpt->deleted, lpt->pack_frm_data,
+ lpt->pack_frm_len)))
+ {
+ if (error != ER_OUTOFMEMORY)
+ file->print_error(error, MYF(0));
+ else
+ lpt->thd->fatal_error();
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Rename partitions in an ALTER TABLE of partitions
+
+ SYNOPSIS
+ mysql_rename_partitions()
+ lpt Struct containing parameters
+
+ RETURN VALUES
+ TRUE Failure
+ FALSE Success
+
+ DESCRIPTION
+ Request handler to rename partitions as set in states of the partition
+
+ Parameters used:
+ db Database name
+ table_name Table name
+*/
+
+static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ char path[FN_REFLEN+1];
+ int error;
+ DBUG_ENTER("mysql_rename_partitions");
+
+ build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
+ if ((error= lpt->table->file->rename_partitions(path)))
+ {
+ if (error != 1)
+ lpt->table->file->print_error(error, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Drop partitions in an ALTER TABLE of partitions
+
+ SYNOPSIS
+ mysql_drop_partitions()
+ lpt Struct containing parameters
+
+ RETURN VALUES
+ TRUE Failure
+ FALSE Success
+ DESCRIPTION
+ Drop the partitions marked with PART_TO_BE_DROPPED state and remove
+ those partitions from the list.
+
+ Parameters used:
+ table Table object
+ db Database name
+ table_name Table name
+*/
+
+static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ char path[FN_REFLEN+1];
+ partition_info *part_info= lpt->table->part_info;
+ List_iterator<partition_element> part_it(part_info->partitions);
+ uint i= 0;
+ uint remove_count= 0;
+ int error;
+ DBUG_ENTER("mysql_drop_partitions");
+
+ build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
+ if ((error= lpt->table->file->drop_partitions(path)))
+ {
+ lpt->table->file->print_error(error, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_IS_DROPPED)
+ {
+ part_it.remove();
+ remove_count++;
+ }
+ } while (++i < part_info->no_parts);
+ part_info->no_parts-= remove_count;
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Insert log entry into list
+ SYNOPSIS
+ insert_part_info_log_entry_list()
+ log_entry
+ RETURN VALUES
+ NONE
+*/
+
+static void insert_part_info_log_entry_list(partition_info *part_info,
+ DDL_LOG_MEMORY_ENTRY *log_entry)
+{
+ log_entry->next_active_log_entry= part_info->first_log_entry;
+ part_info->first_log_entry= log_entry;
+}
+
+
+/*
+ Release all log entries for this partition info struct
+ SYNOPSIS
+ release_part_info_log_entries()
+ first_log_entry First log entry in list to release
+ RETURN VALUES
+ NONE
+*/
+
+static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry)
+{
+ DBUG_ENTER("release_part_info_log_entries");
+
+ while (log_entry)
+ {
+ release_ddl_log_memory_entry(log_entry);
+ log_entry= log_entry->next_active_log_entry;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Log an delete/rename frm file
+ SYNOPSIS
+ write_log_replace_delete_frm()
+ lpt Struct for parameters
+ next_entry Next reference to use in log record
+ from_path Name to rename from
+ to_path Name to rename to
+ replace_flag TRUE if replace, else delete
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ Support routine that writes a replace or delete of an frm file into the
+ ddl log. It also inserts an entry that keeps track of used space into
+ the partition info object
+*/
+
+static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt,
+ uint next_entry,
+ const char *from_path,
+ const char *to_path,
+ bool replace_flag)
+{
+ DDL_LOG_ENTRY ddl_log_entry;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DBUG_ENTER("write_log_replace_delete_frm");
+
+ if (replace_flag)
+ ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
+ else
+ ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
+ ddl_log_entry.next_entry= next_entry;
+ ddl_log_entry.handler_name= reg_ext;
+ ddl_log_entry.name= to_path;
+ if (replace_flag)
+ ddl_log_entry.from_name= from_path;
+ if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ insert_part_info_log_entry_list(lpt->part_info, log_entry);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Log final partition changes in change partition
+ SYNOPSIS
+ write_log_changed_partitions()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ This code is used to perform safe ADD PARTITION for HASH partitions
+ and COALESCE for HASH partitions and REORGANIZE for any type of
+ partitions.
+ We prepare entries for all partitions except the reorganised partitions
+ in REORGANIZE partition, those are handled by
+ write_log_dropped_partitions. For those partitions that are replaced
+ special care is needed to ensure that this is performed correctly and
+ this requires a two-phased approach with this log as a helper for this.
+
+ This code is closely intertwined with the code in rename_partitions in
+ the partition handler.
+*/
+
+static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
+ uint *next_entry, const char *path)
+{
+ DDL_LOG_ENTRY ddl_log_entry;
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ char tmp_path[FN_LEN];
+ char normal_path[FN_LEN];
+ List_iterator<partition_element> part_it(part_info->partitions);
+ uint temp_partitions= part_info->temp_partitions.elements;
+ uint no_elements= part_info->partitions.elements;
+ uint i= 0;
+ DBUG_ENTER("write_log_changed_partitions");
+
+ do
+ {
+ partition_element *part_elem= part_it++;
+ if (part_elem->part_state == PART_IS_CHANGED ||
+ (part_elem->part_state == PART_IS_ADDED && temp_partitions))
+ {
+ if (part_info->is_sub_partitioned())
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint no_subparts= part_info->no_subparts;
+ uint j= 0;
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+ ddl_log_entry.next_entry= *next_entry;
+ ddl_log_entry.handler_name=
+ ha_resolve_storage_engine_name(sub_elem->engine_type);
+ create_subpartition_name(tmp_path, path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ TEMP_PART_NAME);
+ create_subpartition_name(normal_path, path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ NORMAL_PART_NAME);
+ ddl_log_entry.name= normal_path;
+ ddl_log_entry.from_name= tmp_path;
+ if (part_elem->part_state == PART_IS_CHANGED)
+ ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
+ else
+ ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
+ if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ *next_entry= log_entry->entry_pos;
+ sub_elem->log_entry= log_entry;
+ insert_part_info_log_entry_list(part_info, log_entry);
+ } while (++j < no_subparts);
+ }
+ else
+ {
+ ddl_log_entry.next_entry= *next_entry;
+ ddl_log_entry.handler_name=
+ ha_resolve_storage_engine_name(part_elem->engine_type);
+ create_partition_name(tmp_path, path,
+ part_elem->partition_name,
+ TEMP_PART_NAME, TRUE);
+ create_partition_name(normal_path, path,
+ part_elem->partition_name,
+ NORMAL_PART_NAME, TRUE);
+ ddl_log_entry.name= normal_path;
+ ddl_log_entry.from_name= tmp_path;
+ if (part_elem->part_state == PART_IS_CHANGED)
+ ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
+ else
+ ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
+ if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ *next_entry= log_entry->entry_pos;
+ part_elem->log_entry= log_entry;
+ insert_part_info_log_entry_list(part_info, log_entry);
+ }
+ }
+ } while (++i < no_elements);
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Log dropped partitions
+ SYNOPSIS
+ write_log_dropped_partitions()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+*/
+
+static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
+ uint *next_entry,
+ const char *path,
+ bool temp_list)
+{
+ DDL_LOG_ENTRY ddl_log_entry;
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ char tmp_path[FN_LEN];
+ List_iterator<partition_element> part_it(part_info->partitions);
+ List_iterator<partition_element> temp_it(part_info->temp_partitions);
+ uint no_temp_partitions= part_info->temp_partitions.elements;
+ uint no_elements= part_info->partitions.elements;
+ DBUG_ENTER("write_log_dropped_partitions");
+
+ ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
+ if (temp_list)
+ no_elements= no_temp_partitions;
+ while (no_elements--)
+ {
+ partition_element *part_elem;
+ if (temp_list)
+ part_elem= temp_it++;
+ else
+ part_elem= part_it++;
+ if (part_elem->part_state == PART_TO_BE_DROPPED ||
+ part_elem->part_state == PART_TO_BE_ADDED ||
+ part_elem->part_state == PART_CHANGED)
+ {
+ uint name_variant;
+ if (part_elem->part_state == PART_CHANGED ||
+ (part_elem->part_state == PART_TO_BE_ADDED &&
+ no_temp_partitions))
+ name_variant= TEMP_PART_NAME;
+ else
+ name_variant= NORMAL_PART_NAME;
+ if (part_info->is_sub_partitioned())
+ {
+ List_iterator<partition_element> sub_it(part_elem->subpartitions);
+ uint no_subparts= part_info->no_subparts;
+ uint j= 0;
+ do
+ {
+ partition_element *sub_elem= sub_it++;
+ ddl_log_entry.next_entry= *next_entry;
+ ddl_log_entry.handler_name=
+ ha_resolve_storage_engine_name(sub_elem->engine_type);
+ create_subpartition_name(tmp_path, path,
+ part_elem->partition_name,
+ sub_elem->partition_name,
+ name_variant);
+ ddl_log_entry.name= tmp_path;
+ if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ *next_entry= log_entry->entry_pos;
+ sub_elem->log_entry= log_entry;
+ insert_part_info_log_entry_list(part_info, log_entry);
+ } while (++j < no_subparts);
+ }
+ else
+ {
+ ddl_log_entry.next_entry= *next_entry;
+ ddl_log_entry.handler_name=
+ ha_resolve_storage_engine_name(part_elem->engine_type);
+ create_partition_name(tmp_path, path,
+ part_elem->partition_name,
+ name_variant, TRUE);
+ ddl_log_entry.name= tmp_path;
+ if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ *next_entry= log_entry->entry_pos;
+ part_elem->log_entry= log_entry;
+ insert_part_info_log_entry_list(part_info, log_entry);
+ }
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Set execute log entry in ddl log for this partitioned table
+ SYNOPSIS
+ set_part_info_exec_log_entry()
+ part_info Partition info object
+ exec_log_entry Log entry
+ RETURN VALUES
+ NONE
+*/
+
+static void set_part_info_exec_log_entry(partition_info *part_info,
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry)
+{
+ part_info->exec_log_entry= exec_log_entry;
+ exec_log_entry->next_active_log_entry= NULL;
+}
+
+
+/*
+ Write the log entry to ensure that the shadow frm file is removed at
+ crash.
+ SYNOPSIS
+ write_log_drop_shadow_frm()
+ lpt Struct containing parameters
+ install_frm Should we log action to install shadow frm or should
+ the action be to remove the shadow frm file.
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ Prepare an entry to the ddl log indicating a drop/install of the shadow frm
+ file and its corresponding handler file.
+*/
+
+static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
+ char shadow_path[FN_LEN];
+ DBUG_ENTER("write_log_drop_shadow_frm");
+
+ build_table_shadow_filename(shadow_path, sizeof(shadow_path), lpt);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_log_replace_delete_frm(lpt, 0UL, NULL,
+ (const char*)shadow_path, FALSE))
+ goto error;
+ log_entry= part_info->first_log_entry;
+ if (write_execute_ddl_log_entry(log_entry->entry_pos,
+ FALSE, &exec_log_entry))
+ goto error;
+ pthread_mutex_unlock(&LOCK_gdl);
+ set_part_info_exec_log_entry(part_info, exec_log_entry);
+ DBUG_RETURN(FALSE);
+
+error:
+ release_part_info_log_entries(part_info->first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= NULL;
+ my_error(ER_DDL_LOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Log renaming of shadow frm to real frm name and dropping of old frm
+ SYNOPSIS
+ write_log_rename_frm()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ Prepare an entry to ensure that we complete the renaming of the frm
+ file if failure occurs in the middle of the rename process.
+*/
+
+static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
+ char path[FN_LEN];
+ char shadow_path[FN_LEN];
+ DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
+ DBUG_ENTER("write_log_rename_frm");
+
+ part_info->first_log_entry= NULL;
+ build_table_filename(path, sizeof(path), lpt->db,
+ lpt->table_name, "", 0);
+ build_table_shadow_filename(shadow_path, sizeof(shadow_path), lpt);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
+ goto error;
+ log_entry= part_info->first_log_entry;
+ part_info->frm_log_entry= log_entry;
+ if (write_execute_ddl_log_entry(log_entry->entry_pos,
+ FALSE, &exec_log_entry))
+ goto error;
+ release_part_info_log_entries(old_first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ DBUG_RETURN(FALSE);
+
+error:
+ release_part_info_log_entries(part_info->first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= old_first_log_entry;
+ part_info->frm_log_entry= NULL;
+ my_error(ER_DDL_LOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Write the log entries to ensure that the drop partition command is completed
+ even in the presence of a crash.
+
+ SYNOPSIS
+ write_log_drop_partition()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ Prepare entries to the ddl log indicating all partitions to drop and to
+ install the shadow frm file and remove the old frm file.
+*/
+
+static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
+ char tmp_path[FN_LEN];
+ char path[FN_LEN];
+ uint next_entry= 0;
+ DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
+ DBUG_ENTER("write_log_drop_partition");
+
+ part_info->first_log_entry= NULL;
+ build_table_filename(path, sizeof(path), lpt->db,
+ lpt->table_name, "", 0);
+ build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
+ lpt->table_name, "#", 0);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
+ FALSE))
+ goto error;
+ if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path,
+ (const char*)path, TRUE))
+ goto error;
+ log_entry= part_info->first_log_entry;
+ part_info->frm_log_entry= log_entry;
+ if (write_execute_ddl_log_entry(log_entry->entry_pos,
+ FALSE, &exec_log_entry))
+ goto error;
+ release_part_info_log_entries(old_first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ DBUG_RETURN(FALSE);
+
+error:
+ release_part_info_log_entries(part_info->first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= old_first_log_entry;
+ part_info->frm_log_entry= NULL;
+ my_error(ER_DDL_LOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Write the log entries to ensure that the add partition command is not
+ executed at all if a crash before it has completed
+
+ SYNOPSIS
+ write_log_add_change_partition()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ Prepare entries to the ddl log indicating all partitions to drop and to
+ remove the shadow frm file.
+ We always inject entries backwards in the list in the ddl log since we
+ don't know the entry position until we have written it.
+*/
+
+static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
+ char tmp_path[FN_LEN];
+ char path[FN_LEN];
+ uint next_entry= 0;
+ DBUG_ENTER("write_log_add_change_partition");
+
+ build_table_filename(path, sizeof(path), lpt->db,
+ lpt->table_name, "", 0);
+ build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
+ lpt->table_name, "#", 0);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
+ FALSE))
+ goto error;
+ if (write_log_replace_delete_frm(lpt, next_entry, NULL, tmp_path,
+ FALSE))
+ goto error;
+ log_entry= part_info->first_log_entry;
+ if (write_execute_ddl_log_entry(log_entry->entry_pos,
+ FALSE, &exec_log_entry))
+ goto error;
+ pthread_mutex_unlock(&LOCK_gdl);
+ set_part_info_exec_log_entry(part_info, exec_log_entry);
+ DBUG_RETURN(FALSE);
+
+error:
+ release_part_info_log_entries(part_info->first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= NULL;
+ my_error(ER_DDL_LOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Write description of how to complete the operation after first phase of
+ change partitions.
+
+ SYNOPSIS
+ write_log_final_change_partition()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+ DESCRIPTION
+ We will write log entries that specify to remove all partitions reorganised,
+ to rename others to reflect the new naming scheme and to install the shadow
+ frm file.
+*/
+
+static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry;
+ DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
+ char path[FN_LEN];
+ char shadow_path[FN_LEN];
+ DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
+ uint next_entry= 0;
+ DBUG_ENTER("write_log_final_change_partition");
+
+ part_info->first_log_entry= NULL;
+ build_table_filename(path, sizeof(path), lpt->db,
+ lpt->table_name, "", 0);
+ build_table_shadow_filename(shadow_path, sizeof(shadow_path), lpt);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
+ lpt->alter_info->flags & ALTER_REORGANIZE_PARTITION))
+ goto error;
+ if (write_log_changed_partitions(lpt, &next_entry, (const char*)path))
+ goto error;
+ if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
+ goto error;
+ log_entry= part_info->first_log_entry;
+ part_info->frm_log_entry= log_entry;
+ if (write_execute_ddl_log_entry(log_entry->entry_pos,
+ FALSE, &exec_log_entry))
+ goto error;
+ release_part_info_log_entries(old_first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ DBUG_RETURN(FALSE);
+
+error:
+ release_part_info_log_entries(part_info->first_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= old_first_log_entry;
+ part_info->frm_log_entry= NULL;
+ my_error(ER_DDL_LOG_ERROR, MYF(0));
+ DBUG_RETURN(TRUE);
+}
+
+
+/*
+ Remove entry from ddl log and release resources for others to use
+
+ SYNOPSIS
+ write_log_completed()
+ lpt Struct containing parameters
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+*/
+
+static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt,
+ bool dont_crash)
+{
+ partition_info *part_info= lpt->part_info;
+ DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry;
+ DBUG_ENTER("write_log_completed");
+
+ DBUG_ASSERT(log_entry);
+ pthread_mutex_lock(&LOCK_gdl);
+ if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry))
+ {
+ /*
+ Failed to write, Bad...
+ We have completed the operation but have log records to REMOVE
+ stuff that shouldn't be removed. What clever things could one do
+ here? An error output was written to the error output by the
+ above method so we don't do anything here.
+ */
+ ;
+ }
+ release_part_info_log_entries(part_info->first_log_entry);
+ release_part_info_log_entries(part_info->exec_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->exec_log_entry= NULL;
+ part_info->first_log_entry= NULL;
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Release all log entries
+ SYNOPSIS
+ release_log_entries()
+ part_info Partition info struct
+ RETURN VALUES
+ NONE
+*/
+
+static void release_log_entries(partition_info *part_info)
+{
+ pthread_mutex_lock(&LOCK_gdl);
+ release_part_info_log_entries(part_info->first_log_entry);
+ release_part_info_log_entries(part_info->exec_log_entry);
+ pthread_mutex_unlock(&LOCK_gdl);
+ part_info->first_log_entry= NULL;
+ part_info->exec_log_entry= NULL;
+}
+
+
+/*
+ Get a lock on table name to avoid that anyone can open the table in
+ a critical part of the ALTER TABLE.
+ SYNOPSIS
+ get_name_lock()
+ lpt Struct carrying parameters
+ RETURN VALUES
+ FALSE Success
+ TRUE Failure
+*/
+
+static int get_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ int error= 0;
+ DBUG_ENTER("get_name_lock");
+
+ bzero(&lpt->table_list, sizeof(lpt->table_list));
+ lpt->table_list.db= (char*)lpt->db;
+ lpt->table_list.table= lpt->table;
+ lpt->table_list.table_name= (char*)lpt->table_name;
+ pthread_mutex_lock(&LOCK_open);
+ error= lock_table_name(lpt->thd, &lpt->table_list, FALSE);
+ pthread_mutex_unlock(&LOCK_open);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Unlock and close table before renaming and dropping partitions
+ SYNOPSIS
+ alter_close_tables()
+ lpt Struct carrying parameters
+ RETURN VALUES
+ 0
+*/
+
+static int alter_close_tables(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ THD *thd= lpt->thd;
+ TABLE *table= lpt->table;
+ DBUG_ENTER("alter_close_tables");
+ /*
+ We need to also unlock tables and close all handlers.
+ We set lock to zero to ensure we don't do this twice
+ and we set db_stat to zero to ensure we don't close twice.
+ */
+ mysql_unlock_tables(thd, thd->lock);
+ thd->lock= 0;
+ table->file->close();
+ table->db_stat= 0;
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Release a lock name
+ SYNOPSIS
+ release_name_lock()
+ lpt
+ RETURN VALUES
+ 0
+*/
+
+static int release_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
+{
+ DBUG_ENTER("release_name_lock");
+ pthread_mutex_lock(&LOCK_open);
+ unlock_table_name(lpt->thd, &lpt->table_list);
+ pthread_mutex_unlock(&LOCK_open);
+ DBUG_RETURN(0);
+}
+
+
+/*
+ Handle errors for ALTER TABLE for partitioning
+ SYNOPSIS
+ handle_alter_part_error()
+ lpt Struct carrying parameters
+ not_completed Was request in complete phase when error occurred
+ RETURN VALUES
+ NONE
+*/
+
+void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt,
+ bool not_completed,
+ bool drop_partition,
+ bool frm_install)
+{
+ partition_info *part_info= lpt->part_info;
+ DBUG_ENTER("handle_alter_part_error");
+
+ if (!part_info->first_log_entry &&
+ execute_ddl_log_entry(current_thd,
+ part_info->first_log_entry->entry_pos))
+ {
+ /*
+ We couldn't recover from error, most likely manual interaction
+ is required.
+ */
+ write_log_completed(lpt, FALSE);
+ release_log_entries(part_info);
+ if (not_completed)
+ {
+ if (drop_partition)
+ {
+ /* Table is still ok, but we left a shadow frm file behind. */
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
+ "%s %s",
+ "Operation was unsuccessful, table is still intact,",
+ "but it is possible that a shadow frm file was left behind");
+ }
+ else
+ {
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
+ "%s %s %s %s",
+ "Operation was unsuccessful, table is still intact,",
+ "but it is possible that a shadow frm file was left behind.",
+ "It is also possible that temporary partitions are left behind,",
+ "these could be empty or more or less filled with records");
+ }
+ }
+ else
+ {
+ if (frm_install)
+ {
+ /*
+ Failed during install of shadow frm file, table isn't intact
+ and dropped partitions are still there
+ */
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
+ "%s %s %s",
+ "Failed during alter of partitions, table is no longer intact.",
+ "The frm file is in an unknown state, and a backup",
+ "is required.");
+ }
+ else if (drop_partition)
+ {
+ /*
+ Table is ok, we have switched to new table but left dropped
+ partitions still in their places. We remove the log records and
+ ask the user to perform the action manually. We remove the log
+ records and ask the user to perform the action manually.
+ */
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
+ "%s %s",
+ "Failed during drop of partitions, table is intact.",
+ "Manual drop of remaining partitions is required");
+ }
+ else
+ {
+ /*
+ We failed during renaming of partitions. The table is most
+ certainly in a very bad state so we give user warning and disable
+ the table by writing an ancient frm version into it.
+ */
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
+ "%s %s %s",
+ "Failed during renaming of partitions. We are now in a position",
+ "where table is not reusable",
+ "Table is disabled by writing ancient frm file version into it");
+ }
+ }
+ }
+ else
+ {
+ release_log_entries(part_info);
+ if (not_completed)
+ {
+ /*
+ We hit an error before things were completed but managed
+ to recover from the error. An error occurred and we have
+ restored things to original so no need for further action.
+ */
+ ;
+ }
+ else
+ {
+ /*
+ We hit an error after we had completed most of the operation
+ and were successful in a second attempt so the operation
+ actually is successful now. We need to issue a warning that
+ even though we reported an error the operation was successfully
+ completed.
+ */
+ push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,"%s %s",
+ "Operation was successfully completed by failure handling,",
+ "after failure of normal operation");
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Actually perform the change requested by ALTER TABLE of partitions
+ previously prepared.
+
+ SYNOPSIS
+ fast_alter_partition_table()
+ thd Thread object
+ table Table object
+ alter_info ALTER TABLE info
+ create_info Create info for CREATE TABLE
+ table_list List of the table involved
+ db Database name of new table
+ table_name Table name of new table
+
+ RETURN VALUES
+ TRUE Error
+ FALSE Success
+
+ DESCRIPTION
+ Perform all ALTER TABLE operations for partitioned tables that can be
+ performed fast without a full copy of the original table.
+*/
+
+uint fast_alter_partition_table(THD *thd, TABLE *table,
+ Alter_info *alter_info,
+ HA_CREATE_INFO *create_info,
+ TABLE_LIST *table_list,
+ char *db,
+ const char *table_name,
+ uint fast_alter_partition)
+{
+ /* Set-up struct used to write frm files */
+ partition_info *part_info= table->part_info;
+ ALTER_PARTITION_PARAM_TYPE lpt_obj;
+ ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
+ bool written_bin_log= TRUE;
+ bool not_completed= TRUE;
+ bool frm_install= FALSE;
+ DBUG_ENTER("fast_alter_partition_table");
+
+ lpt->thd= thd;
+ lpt->part_info= part_info;
+ lpt->alter_info= alter_info;
+ lpt->create_info= create_info;
+ lpt->db_options= create_info->table_options;
+ if (create_info->row_type == ROW_TYPE_DYNAMIC)
+ lpt->db_options|= HA_OPTION_PACK_RECORD;
+ lpt->table= table;
+ lpt->key_info_buffer= 0;
+ lpt->key_count= 0;
+ lpt->db= db;
+ lpt->table_name= table_name;
+ lpt->copied= 0;
+ lpt->deleted= 0;
+ lpt->pack_frm_data= NULL;
+ lpt->pack_frm_len= 0;
+ thd->work_part_info= part_info;
+
+ if (alter_info->flags & ALTER_OPTIMIZE_PARTITION ||
+ alter_info->flags & ALTER_ANALYZE_PARTITION ||
+ alter_info->flags & ALTER_CHECK_PARTITION ||
+ alter_info->flags & ALTER_REPAIR_PARTITION)
+ {
+ /*
+ In this case the user has specified that he wants a set of partitions
+ to be optimised and the partition engine can handle optimising
+ partitions natively without requiring a full rebuild of the
+ partitions.
+
+ In this case it is enough to call optimise_partitions, there is no
+ need to change frm files or anything else.
+ */
+ int error;
+ written_bin_log= FALSE;
+ if (((alter_info->flags & ALTER_OPTIMIZE_PARTITION) &&
+ (error= table->file->optimize_partitions(thd))) ||
+ ((alter_info->flags & ALTER_ANALYZE_PARTITION) &&
+ (error= table->file->analyze_partitions(thd))) ||
+ ((alter_info->flags & ALTER_CHECK_PARTITION) &&
+ (error= table->file->check_partitions(thd))) ||
+ ((alter_info->flags & ALTER_REPAIR_PARTITION) &&
+ (error= table->file->repair_partitions(thd))))
+ {
+ table->file->print_error(error, MYF(0));
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
+ {
+ /*
+ In the case where the engine supports one phase online partition
+ changes it is not necessary to have any exclusive locks. The
+ correctness is upheld instead by transactions being aborted if they
+ access the table after its partition definition has changed (if they
+ are still using the old partition definition).
+
+ The handler is in this case responsible to ensure that all users
+ start using the new frm file after it has changed. To implement
+ one phase it is necessary for the handler to have the master copy
+ of the frm file and use discovery mechanisms to renew it. Thus
+ write frm will write the frm, pack the new frm and finally
+ the frm is deleted and the discovery mechanisms will either restore
+ back to the old or installing the new after the change is activated.
+
+ Thus all open tables will be discovered that they are old, if not
+ earlier as soon as they try an operation using the old table. One
+ should ensure that this is checked already when opening a table,
+ even if it is found in the cache of open tables.
+
+ change_partitions will perform all operations and it is the duty of
+ the handler to ensure that the frm files in the system gets updated
+ in synch with the changes made and if an error occurs that a proper
+ error handling is done.
+
+ If the MySQL Server crashes at this moment but the handler succeeds
+ in performing the change then the binlog is not written for the
+ change. There is no way to solve this as long as the binlog is not
+ transactional and even then it is hard to solve it completely.
+
+ The first approach here was to downgrade locks. Now a different approach
+ is decided upon. The idea is that the handler will have access to the
+ Alter_info when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
+ handler knows that this functionality can be handled with a lower lock
+ level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
+ Thus the need to downgrade the lock disappears.
+ 1) Write the new frm, pack it and then delete it
+ 2) Perform the change within the handler
+ */
+ if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW | WFRM_PACK_FRM) ||
+ mysql_change_partitions(lpt))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if (alter_info->flags == ALTER_DROP_PARTITION)
+ {
+ /*
+ Now after all checks and setting state on dropped partitions we can
+ start the actual dropping of the partitions.
+
+ Drop partition is actually two things happening. The first is that
+ a lot of records are deleted. The second is that the behaviour of
+ subsequent updates and writes and deletes will change. The delete
+ part can be handled without any particular high lock level by
+ transactional engines whereas non-transactional engines need to
+ ensure that this change is done with an exclusive lock on the table.
+ The second part, the change of partitioning does however require
+ an exclusive lock to install the new partitioning as one atomic
+ operation. If this is not the case, it is possible for two
+ transactions to see the change in a different order than their
+ serialisation order. Thus we need an exclusive lock for both
+ transactional and non-transactional engines.
+
+ For LIST partitions it could be possible to avoid the exclusive lock
+ (and for RANGE partitions if they didn't rearrange range definitions
+ after a DROP PARTITION) if one ensured that failed accesses to the
+ dropped partitions was aborted for sure (thus only possible for
+ transactional engines).
+
+ 0) Write an entry that removes the shadow frm file if crash occurs
+ 1) Write the new frm file as a shadow frm
+ 2) Write the ddl log to ensure that the operation is completed
+ even in the presence of a MySQL Server crash
+ 3) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
+ the table have completed. This ensures that other threads can not
+ execute on the table in parallel.
+ 4) Get a name lock on the table. This ensures that we can release all
+ locks on the table and since no one can open the table, there can
+ be no new threads accessing the table. They will be hanging on the
+ name lock.
+ 5) Close all tables that have already been opened but didn't stumble on
+ the abort locked previously. This is done as part of the
+ get_name_lock call.
+ 6) We are now ready to release all locks we got in this thread.
+ 7) Write the bin log
+ Unfortunately the writing of the binlog is not synchronised with
+ other logging activities. So no matter in which order the binlog
+ is written compared to other activities there will always be cases
+ where crashes make strange things occur. In this placement it can
+ happen that the ALTER TABLE DROP PARTITION gets performed in the
+ master but not in the slaves if we have a crash, after writing the
+ ddl log but before writing the binlog. A solution to this would
+ require writing the statement first in the ddl log and then
+ when recovering from the crash read the binlog and insert it into
+ the binlog if not written already.
+ 8) Install the previously written shadow frm file
+ 9) Prepare handlers for drop of partitions
+ 10) Drop the partitions
+ 11) Remove entries from ddl log
+ 12) Release name lock so that all other threads can access the table
+ again.
+ 13) Complete query
+
+ We insert Error injections at all places where it could be interesting
+ to test if recovery is properly done.
+ */
+ if (write_log_drop_shadow_frm(lpt) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_1") ||
+ mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_2") ||
+ write_log_drop_partition(lpt) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_3") ||
+ (not_completed= FALSE) ||
+ abort_and_upgrade_lock(lpt) || /* Always returns 0 */
+ ERROR_INJECT_CRASH("crash_drop_partition_4") ||
+ get_name_lock(lpt) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_5") ||
+ alter_close_tables(lpt) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_6") ||
+ ((!thd->lex->no_write_to_binlog) &&
+ (write_bin_log(thd, FALSE,
+ thd->query, thd->query_length), FALSE)) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_7") ||
+ ((frm_install= TRUE), FALSE) ||
+ mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
+ ((frm_install= FALSE), FALSE) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_8") ||
+ mysql_drop_partitions(lpt) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_9") ||
+ (write_log_completed(lpt, FALSE), FALSE) ||
+ ERROR_INJECT_CRASH("crash_drop_partition_10") ||
+ (release_name_lock(lpt), FALSE))
+ {
+ handle_alter_part_error(lpt, not_completed, TRUE, frm_install);
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
+ (part_info->part_type == RANGE_PARTITION ||
+ part_info->part_type == LIST_PARTITION))
+ {
+ /*
+ ADD RANGE/LIST PARTITIONS
+ In this case there are no tuples removed and no tuples are added.
+ Thus the operation is merely adding a new partition. Thus it is
+ necessary to perform the change as an atomic operation. Otherwise
+ someone reading without seeing the new partition could potentially
+ miss updates made by a transaction serialised before it that are
+ inserted into the new partition.
+
+ 0) Write an entry that removes the shadow frm file if crash occurs
+ 1) Write the new frm file as a shadow frm file
+ 2) Log the changes to happen in ddl log
+ 2) Add the new partitions
+ 3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
+ are still using the old partitioning scheme. Wait until all
+ ongoing users have completed before progressing.
+ 4) Get a name lock on the table. This ensures that we can release all
+ locks on the table and since no one can open the table, there can
+ be no new threads accessing the table. They will be hanging on the
+ name lock.
+ 5) Close all tables that have already been opened but didn't stumble on
+ the abort locked previously. This is done as part of the
+ get_name_lock call.
+ 6) Close all table handlers and unlock all handlers but retain name lock
+ 7) Write binlog
+ 8) Now the change is completed except for the installation of the
+ new frm file. We thus write an action in the log to change to
+ the shadow frm file
+ 9) Install the new frm file of the table where the partitions are
+ added to the table.
+ 10)Wait until all accesses using the old frm file has completed
+ 11)Remove entries from ddl log
+ 12)Release name lock
+ 13)Complete query
+ */
+ if (write_log_add_change_partition(lpt) ||
+ ERROR_INJECT_CRASH("crash_add_partition_1") ||
+ mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
+ ERROR_INJECT_CRASH("crash_add_partition_2") ||
+ mysql_change_partitions(lpt) ||
+ ERROR_INJECT_CRASH("crash_add_partition_3") ||
+ abort_and_upgrade_lock(lpt) || /* Always returns 0 */
+ ERROR_INJECT_CRASH("crash_add_partition_3") ||
+ get_name_lock(lpt) ||
+ ERROR_INJECT_CRASH("crash_add_partition_4") ||
+ alter_close_tables(lpt) ||
+ ERROR_INJECT_CRASH("crash_add_partition_5") ||
+ ((!thd->lex->no_write_to_binlog) &&
+ (write_bin_log(thd, FALSE,
+ thd->query, thd->query_length), FALSE)) ||
+ ERROR_INJECT_CRASH("crash_add_partition_6") ||
+ write_log_rename_frm(lpt) ||
+ (not_completed= FALSE) ||
+ ERROR_INJECT_CRASH("crash_add_partition_7") ||
+ ((frm_install= TRUE), FALSE) ||
+ mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
+ ERROR_INJECT_CRASH("crash_add_partition_8") ||
+ (write_log_completed(lpt, FALSE), FALSE) ||
+ ERROR_INJECT_CRASH("crash_add_partition_9") ||
+ (release_name_lock(lpt), FALSE))
+ {
+ handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
+ DBUG_RETURN(TRUE);
+ }
+ }
+ else
+ {
+ /*
+ ADD HASH PARTITION/
+ COALESCE PARTITION/
+ REBUILD PARTITION/
+ REORGANIZE PARTITION
+
+ In this case all records are still around after the change although
+ possibly organised into new partitions, thus by ensuring that all
+ updates go to both the old and the new partitioning scheme we can
+ actually perform this operation lock-free. The only exception to
+ this is when REORGANIZE PARTITION adds/drops ranges. In this case
+ there needs to be an exclusive lock during the time when the range
+ changes occur.
+ This is only possible if the handler can ensure double-write for a
+ period. The double write will ensure that it doesn't matter where the
+ data is read from since both places are updated for writes. If such
+ double writing is not performed then it is necessary to perform the
+ change with the usual exclusive lock. With double writes it is even
+ possible to perform writes in parallel with the reorganisation of
+ partitions.
+
+ Without double write procedure we get the following procedure.
+ The only difference with using double write is that we can downgrade
+ the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
+ double writes from old to new. If we had double writing in both
+ directions we could perform the change completely without exclusive
+ lock for HASH partitions.
+ Handlers that perform double writing during the copy phase can actually
+ use a lower lock level. This can be handled inside store_lock in the
+ respective handler.
+
+ 0) Write an entry that removes the shadow frm file if crash occurs
+ 1) Write the shadow frm file of new partitioning
+ 2) Log such that temporary partitions added in change phase are
+ removed in a crash situation
+ 3) Add the new partitions
+ Copy from the reorganised partitions to the new partitions
+ 4) Log that operation is completed and log all complete actions
+ needed to complete operation from here
+ 5) Lock all partitions in TL_WRITE_ONLY to ensure that no users
+ are still using the old partitioning scheme. Wait until all
+ ongoing users have completed before progressing.
+ 6) Get a name lock of the table
+ 7) Close all tables opened but not yet locked, after this call we are
+ certain that no other thread is in the lock wait queue or has
+ opened the table. The name lock will ensure that they are blocked
+ on the open call. This is achieved also by get_name_lock call.
+ 8) Close all partitions opened by this thread, but retain name lock.
+ 9) Write bin log
+ 10) Prepare handlers for rename and delete of partitions
+ 11) Rename and drop the reorged partitions such that they are no
+ longer used and rename those added to their real new names.
+ 12) Install the shadow frm file
+ 13) Release the name lock to enable other threads to start using the
+ table again.
+ 14) Complete query
+ */
+ if (write_log_add_change_partition(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_1") ||
+ mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
+ ERROR_INJECT_CRASH("crash_change_partition_2") ||
+ mysql_change_partitions(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_3") ||
+ write_log_final_change_partition(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_4") ||
+ (not_completed= FALSE) ||
+ abort_and_upgrade_lock(lpt) || /* Always returns 0 */
+ ERROR_INJECT_CRASH("crash_change_partition_5") ||
+ get_name_lock(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_6") ||
+ alter_close_tables(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_7") ||
+ ((!thd->lex->no_write_to_binlog) &&
+ (write_bin_log(thd, FALSE,
+ thd->query, thd->query_length), FALSE)) ||
+ ERROR_INJECT_CRASH("crash_change_partition_8") ||
+ mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
+ ERROR_INJECT_CRASH("crash_change_partition_9") ||
+ mysql_drop_partitions(lpt) ||
+ ERROR_INJECT_CRASH("crash_change_partition_10") ||
+ mysql_rename_partitions(lpt) ||
+ ((frm_install= TRUE), FALSE) ||
+ ERROR_INJECT_CRASH("crash_change_partition_11") ||
+ (write_log_completed(lpt, FALSE), FALSE) ||
+ ERROR_INJECT_CRASH("crash_change_partition_12") ||
+ (release_name_lock(lpt), FALSE))
+ {
+ handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
+ DBUG_RETURN(TRUE);
+ }
+ }
+ /*
+ A final step is to write the query to the binlog and send ok to the
+ user
+ */
+ DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
+ table, table_list, FALSE, NULL,
+ written_bin_log));
+}
+#endif
+
+
+/*
+ Prepare for calling val_int on partition function by setting fields to
+ point to the record where the values of the PF-fields are stored.
+
+ SYNOPSIS
+ set_field_ptr()
+ ptr Array of fields to change ptr
+ new_buf New record pointer
+ old_buf Old record pointer
+
+ DESCRIPTION
+ Set ptr in field objects of field array to refer to new_buf record
+ instead of previously old_buf. Used before calling val_int and after
+ it is used to restore pointers to table->record[0].
+ This routine is placed outside of partition code since it can be useful
+ also for other programs.
+*/
+
+void set_field_ptr(Field **ptr, const uchar *new_buf,
+ const uchar *old_buf)
+{
+ my_ptrdiff_t diff= (new_buf - old_buf);
+ DBUG_ENTER("set_field_ptr");
+
+ do
+ {
+ (*ptr)->move_field_offset(diff);
+ } while (*(++ptr));
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Prepare for calling val_int on partition function by setting fields to
+ point to the record where the values of the PF-fields are stored.
+ This variant works on a key_part reference.
+ It is not required that all fields are NOT NULL fields.
+
+ SYNOPSIS
+ set_key_field_ptr()
+ key_info key info with a set of fields to change ptr
+ new_buf New record pointer
+ old_buf Old record pointer
+
+ DESCRIPTION
+ Set ptr in field objects of field array to refer to new_buf record
+ instead of previously old_buf. Used before calling val_int and after
+ it is used to restore pointers to table->record[0].
+ This routine is placed outside of partition code since it can be useful
+ also for other programs.
+*/
+
+void set_key_field_ptr(KEY *key_info, const uchar *new_buf,
+ const uchar *old_buf)
+{
+ KEY_PART_INFO *key_part= key_info->key_part;
+ uint key_parts= key_info->key_parts;
+ uint i= 0;
+ my_ptrdiff_t diff= (new_buf - old_buf);
+ DBUG_ENTER("set_key_field_ptr");
+
+ do
+ {
+ key_part->field->move_field_offset(diff);
+ key_part++;
+ } while (++i < key_parts);
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ SYNOPSIS
+ mem_alloc_error()
+ size Size of memory attempted to allocate
+ None
+
+ RETURN VALUES
+ None
+
+ DESCRIPTION
+ A routine to use for all the many places in the code where memory
+ allocation error can happen, a tremendous amount of them, needs
+ simple routine that signals this error.
+*/
+
+void mem_alloc_error(size_t size)
+{
+ my_error(ER_OUTOFMEMORY, MYF(0), size);
+}
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+/*
+ Return comma-separated list of used partitions in the provided given string
+
+ SYNOPSIS
+ make_used_partitions_str()
+ part_info IN Partitioning info
+ parts_str OUT The string to fill
+
+ DESCRIPTION
+ Generate a list of used partitions (from bits in part_info->used_partitions
+ bitmap), asd store it into the provided String object.
+
+ NOTE
+ The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
+*/
+
+void make_used_partitions_str(partition_info *part_info, String *parts_str)
+{
+ parts_str->length(0);
+ partition_element *pe;
+ uint partition_id= 0;
+ List_iterator<partition_element> it(part_info->partitions);
+
+ if (part_info->is_sub_partitioned())
+ {
+ partition_element *head_pe;
+ while ((head_pe= it++))
+ {
+ List_iterator<partition_element> it2(head_pe->subpartitions);
+ while ((pe= it2++))
+ {
+ if (bitmap_is_set(&part_info->used_partitions, partition_id))
+ {
+ if (parts_str->length())
+ parts_str->append(',');
+ parts_str->append(head_pe->partition_name,
+ strlen(head_pe->partition_name),
+ system_charset_info);
+ parts_str->append('_');
+ parts_str->append(pe->partition_name,
+ strlen(pe->partition_name),
+ system_charset_info);
+ }
+ partition_id++;
+ }
+ }
+ }
+ else
+ {
+ while ((pe= it++))
+ {
+ if (bitmap_is_set(&part_info->used_partitions, partition_id))
+ {
+ if (parts_str->length())
+ parts_str->append(',');
+ parts_str->append(pe->partition_name, strlen(pe->partition_name),
+ system_charset_info);
+ }
+ partition_id++;
+ }
+ }
+}
+#endif
+
+/****************************************************************************
+ * Partition interval analysis support
+ ***************************************************************************/
+
+/*
+ Setup partition_info::* members related to partitioning range analysis
+
+ SYNOPSIS
+ set_up_partition_func_pointers()
+ part_info Partitioning info structure
+
+ DESCRIPTION
+ Assuming that passed partition_info structure already has correct values
+ for members that specify [sub]partitioning type, table fields, and
+ functions, set up partition_info::* members that are related to
+ Partitioning Interval Analysis (see get_partitions_in_range_iter for its
+ definition)
+
+ IMPLEMENTATION
+ There are two available interval analyzer functions:
+ (1) get_part_iter_for_interval_via_mapping
+ (2) get_part_iter_for_interval_via_walking
+
+ They both have limited applicability:
+ (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
+ func is a monotonic function.
+
+ (2) is applicable for
+ "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
+
+ If both are applicable, (1) is preferred over (2).
+
+ This function sets part_info::get_part_iter_for_interval according to
+ this criteria, and also sets some auxilary fields that the function
+ uses.
+*/
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+static void set_up_range_analysis_info(partition_info *part_info)
+{
+ /* Set the catch-all default */
+ part_info->get_part_iter_for_interval= NULL;
+ part_info->get_subpart_iter_for_interval= NULL;
+
+ /*
+ Check if get_part_iter_for_interval_via_mapping() can be used for
+ partitioning
+ */
+ switch (part_info->part_type) {
+ case RANGE_PARTITION:
+ case LIST_PARTITION:
+ if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC)
+ {
+ part_info->get_part_iter_for_interval=
+ get_part_iter_for_interval_via_mapping;
+ goto setup_subparts;
+ }
+ default:
+ ;
+ }
+
+ /*
+ Check if get_part_iter_for_interval_via_walking() can be used for
+ partitioning
+ */
+ if (part_info->no_part_fields == 1)
+ {
+ Field *field= part_info->part_field_array[0];
+ switch (field->type()) {
+ case MYSQL_TYPE_TINY:
+ case MYSQL_TYPE_SHORT:
+ case MYSQL_TYPE_INT24:
+ case MYSQL_TYPE_LONG:
+ case MYSQL_TYPE_LONGLONG:
+ part_info->get_part_iter_for_interval=
+ get_part_iter_for_interval_via_walking;
+ break;
+ default:
+ ;
+ }
+ }
+
+setup_subparts:
+ /*
+ Check if get_part_iter_for_interval_via_walking() can be used for
+ subpartitioning
+ */
+ if (part_info->no_subpart_fields == 1)
+ {
+ Field *field= part_info->subpart_field_array[0];
+ switch (field->type()) {
+ case MYSQL_TYPE_TINY:
+ case MYSQL_TYPE_SHORT:
+ case MYSQL_TYPE_LONG:
+ case MYSQL_TYPE_LONGLONG:
+ part_info->get_subpart_iter_for_interval=
+ get_part_iter_for_interval_via_walking;
+ break;
+ default:
+ ;
+ }
+ }
+}
+
+
+typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
+ bool include_endpoint);
+
+/*
+ Partitioning Interval Analysis: Initialize the iterator for "mapping" case
+
+ SYNOPSIS
+ get_part_iter_for_interval_via_mapping()
+ part_info Partition info
+ is_subpart TRUE - act for subpartitioning
+ FALSE - act for partitioning
+ min_value minimum field value, in opt_range key format.
+ max_value minimum field value, in opt_range key format.
+ flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
+ NO_MAX_RANGE.
+ part_iter Iterator structure to be initialized
+
+ DESCRIPTION
+ Initialize partition set iterator to walk over the interval in
+ ordered-array-of-partitions (for RANGE partitioning) or
+ ordered-array-of-list-constants (for LIST partitioning) space.
+
+ IMPLEMENTATION
+ This function is used when partitioning is done by
+ <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
+ t.field space into a sub-array of partition_info::range_int_array or
+ partition_info::list_array (see get_partition_id_range_for_endpoint,
+ get_list_array_idx_for_endpoint for details).
+
+ The function performs this interval mapping, and sets the iterator to
+ traverse the sub-array and return appropriate partitions.
+
+ RETURN
+ 0 - No matching partitions (iterator not initialized)
+ 1 - Ok, iterator intialized for traversal of matching partitions.
+ -1 - All partitions would match (iterator not initialized)
+*/
+
+int get_part_iter_for_interval_via_mapping(partition_info *part_info,
+ bool is_subpart,
+ uchar *min_value, uchar *max_value,
+ uint flags,
+ PARTITION_ITERATOR *part_iter)
+{
+ DBUG_ASSERT(!is_subpart);
+ Field *field= part_info->part_field_array[0];
+ uint32 max_endpoint_val;
+ get_endpoint_func get_endpoint;
+ uint field_len= field->pack_length_in_rec();
+
+ if (part_info->part_type == RANGE_PARTITION)
+ {
+ if (part_info->part_charset_field_array)
+ get_endpoint= get_partition_id_range_for_endpoint_charset;
+ else
+ get_endpoint= get_partition_id_range_for_endpoint;
+ max_endpoint_val= part_info->no_parts;
+ part_iter->get_next= get_next_partition_id_range;
+ }
+ else if (part_info->part_type == LIST_PARTITION)
+ {
+
+ if (part_info->part_charset_field_array)
+ get_endpoint= get_list_array_idx_for_endpoint_charset;
+ else
+ get_endpoint= get_list_array_idx_for_endpoint;
+ max_endpoint_val= part_info->no_list_values;
+ part_iter->get_next= get_next_partition_id_list;
+ part_iter->part_info= part_info;
+ part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
+ if (max_endpoint_val == 0)
+ {
+ /*
+ We handle this special case without optimisations since it is
+ of little practical value but causes a great number of complex
+ checks later in the code.
+ */
+ part_iter->part_nums.start= part_iter->part_nums.end= 0;
+ part_iter->part_nums.cur= 0;
+ part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
+ return -1;
+ }
+ }
+ else
+ assert(0);
+
+ /*
+ Find minimum: Do special handling if the interval has left bound in form
+ " NULL <= X ":
+ */
+ if (field->real_maybe_null() && part_info->has_null_value &&
+ !(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value)
+ {
+ part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
+ part_iter->part_nums.start= part_iter->part_nums.cur= 0;
+ if (*max_value && !(flags & NO_MAX_RANGE))
+ {
+ /* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
+ part_iter->part_nums.end= 0;
+ return 1;
+ }
+ }
+ else
+ {
+ if (flags & NO_MIN_RANGE)
+ part_iter->part_nums.start= part_iter->part_nums.cur= 0;
+ else
+ {
+ /*
+ Store the interval edge in the record buffer, and call the
+ function that maps the edge in table-field space to an edge
+ in ordered-set-of-partitions (for RANGE partitioning) or
+ index-in-ordered-array-of-list-constants (for LIST) space.
+ */
+ store_key_image_to_rec(field, min_value, field_len);
+ bool include_endp= !test(flags & NEAR_MIN);
+ part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
+ part_iter->part_nums.cur= part_iter->part_nums.start;
+ if (part_iter->part_nums.start == max_endpoint_val)
+ return 0; /* No partitions */
+ }
+ }
+
+ /* Find maximum, do the same as above but for right interval bound */
+ if (flags & NO_MAX_RANGE)
+ part_iter->part_nums.end= max_endpoint_val;
+ else
+ {
+ store_key_image_to_rec(field, max_value, field_len);
+ bool include_endp= !test(flags & NEAR_MAX);
+ part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
+ if (part_iter->part_nums.start == part_iter->part_nums.end &&
+ !part_iter->ret_null_part)
+ return 0; /* No partitions */
+ }
+ return 1; /* Ok, iterator initialized */
+}
+
+
+/* See get_part_iter_for_interval_via_walking for definition of what this is */
+#define MAX_RANGE_TO_WALK 10
+
+
+/*
+ Partitioning Interval Analysis: Initialize iterator to walk field interval
+
+ SYNOPSIS
+ get_part_iter_for_interval_via_walking()
+ part_info Partition info
+ is_subpart TRUE - act for subpartitioning
+ FALSE - act for partitioning
+ min_value minimum field value, in opt_range key format.
+ max_value minimum field value, in opt_range key format.
+ flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
+ NO_MAX_RANGE.
+ part_iter Iterator structure to be initialized
+
+ DESCRIPTION
+ Initialize partition set iterator to walk over interval in integer field
+ space. That is, for "const1 <=? t.field <=? const2" interval, initialize
+ the iterator to return a set of [sub]partitions obtained with the
+ following procedure:
+ get partition id for t.field = const1, return it
+ get partition id for t.field = const1+1, return it
+ ... t.field = const1+2, ...
+ ... ... ...
+ ... t.field = const2 ...
+
+ IMPLEMENTATION
+ See get_partitions_in_range_iter for general description of interval
+ analysis. We support walking over the following intervals:
+ "t.field IS NULL"
+ "c1 <=? t.field <=? c2", where c1 and c2 are finite.
+ Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
+ that is more tricky and I don't have time to do it right now.
+
+ Additionally we have these requirements:
+ * number of values in the interval must be less then number of
+ [sub]partitions, and
+ * Number of values in the interval must be less then MAX_RANGE_TO_WALK.
+
+ The rationale behind these requirements is that if they are not met
+ we're likely to hit most of the partitions and traversing the interval
+ will only add overhead. So it's better return "all partitions used" in
+ that case.
+
+ RETURN
+ 0 - No matching partitions, iterator not initialized
+ 1 - Some partitions would match, iterator intialized for traversing them
+ -1 - All partitions would match, iterator not initialized
+*/
+
+int get_part_iter_for_interval_via_walking(partition_info *part_info,
+ bool is_subpart,
+ uchar *min_value, uchar *max_value,
+ uint flags,
+ PARTITION_ITERATOR *part_iter)
+{
+ Field *field;
+ uint total_parts;
+ partition_iter_func get_next_func;
+ if (is_subpart)
+ {
+ field= part_info->subpart_field_array[0];
+ total_parts= part_info->no_subparts;
+ get_next_func= get_next_subpartition_via_walking;
+ }
+ else
+ {
+ field= part_info->part_field_array[0];
+ total_parts= part_info->no_parts;
+ get_next_func= get_next_partition_via_walking;
+ }
+
+ /* Handle the "t.field IS NULL" interval, it is a special case */
+ if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
+ *min_value && *max_value)
+ {
+ /*
+ We don't have a part_iter->get_next() function that would find which
+ partition "t.field IS NULL" belongs to, so find partition that contains
+ NULL right here, and return an iterator over singleton set.
+ */
+ uint32 part_id;
+ field->set_null();
+ if (is_subpart)
+ {
+ part_id= part_info->get_subpartition_id(part_info);
+ init_single_partition_iterator(part_id, part_iter);
+ return 1; /* Ok, iterator initialized */
+ }
+ else
+ {
+ longlong dummy;
+ int res= part_info->is_sub_partitioned() ?
+ part_info->get_part_partition_id(part_info, &part_id,
+ &dummy):
+ part_info->get_partition_id(part_info, &part_id, &dummy);
+ if (!res)
+ {
+ init_single_partition_iterator(part_id, part_iter);
+ return 1; /* Ok, iterator initialized */
+ }
+ }
+ return 0; /* No partitions match */
+ }
+
+ if ((field->real_maybe_null() &&
+ ((!(flags & NO_MIN_RANGE) && *min_value) || // NULL <? X
+ (!(flags & NO_MAX_RANGE) && *max_value))) || // X <? NULL
+ (flags & (NO_MIN_RANGE | NO_MAX_RANGE))) // -inf at any bound
+ {
+ return -1; /* Can't handle this interval, have to use all partitions */
+ }
+
+ /* Get integers for left and right interval bound */
+ longlong a, b;
+ uint len= field->pack_length_in_rec();
+ store_key_image_to_rec(field, min_value, len);
+ a= field->val_int();
+
+ store_key_image_to_rec(field, max_value, len);
+ b= field->val_int();
+
+ /*
+ Handle a special case where the distance between interval bounds is
+ exactly 4G-1. This interval is too big for range walking, and if it is an
+ (x,y]-type interval then the following "b +=..." code will convert it to
+ an empty interval by "wrapping around" a + 4G-1 + 1 = a.
+ */
+ if ((ulonglong)b - (ulonglong)a == ~0ULL)
+ return -1;
+
+ a += test(flags & NEAR_MIN);
+ b += test(!(flags & NEAR_MAX));
+ ulonglong n_values= b - a;
+
+ if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
+ return -1;
+
+ part_iter->field_vals.start= part_iter->field_vals.cur= a;
+ part_iter->field_vals.end= b;
+ part_iter->part_info= part_info;
+ part_iter->get_next= get_next_func;
+ return 1;
+}
+
+
+/*
+ PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
+
+ SYNOPSIS
+ get_next_partition_id_range()
+ part_iter Partition set iterator structure
+
+ DESCRIPTION
+ This is implementation of PARTITION_ITERATOR::get_next() that returns
+ [sub]partition ids in [min_partition_id, max_partition_id] range.
+ The function conforms to partition_iter_func type.
+
+ RETURN
+ partition id
+ NOT_A_PARTITION_ID if there are no more partitions
+*/
+
+uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
+{
+ if (part_iter->part_nums.cur == part_iter->part_nums.end)
+ {
+ part_iter->part_nums.cur= part_iter->part_nums.start;
+ return NOT_A_PARTITION_ID;
+ }
+ else
+ return part_iter->part_nums.cur++;
+}
+
+
+/*
+ PARTITION_ITERATOR::get_next implementation for LIST partitioning
+
+ SYNOPSIS
+ get_next_partition_id_list()
+ part_iter Partition set iterator structure
+
+ DESCRIPTION
+ This implementation of PARTITION_ITERATOR::get_next() is special for
+ LIST partitioning: it enumerates partition ids in
+ part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
+ The function conforms to partition_iter_func type.
+
+ RETURN
+ partition id
+ NOT_A_PARTITION_ID if there are no more partitions
+*/
+
+uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
+{
+ if (part_iter->part_nums.cur == part_iter->part_nums.end)
+ {
+ if (part_iter->ret_null_part)
+ {
+ part_iter->ret_null_part= FALSE;
+ return part_iter->part_info->has_null_part_id;
+ }
+ part_iter->part_nums.cur= part_iter->part_nums.start;
+ part_iter->ret_null_part= part_iter->ret_null_part_orig;
+ return NOT_A_PARTITION_ID;
+ }
+ else
+ return part_iter->part_info->list_array[part_iter->
+ part_nums.cur++].partition_id;
+}
+
+
+/*
+ PARTITION_ITERATOR::get_next implementation: walk over field-space interval
+
+ SYNOPSIS
+ get_next_partition_via_walking()
+ part_iter Partitioning iterator
+
+ DESCRIPTION
+ This implementation of PARTITION_ITERATOR::get_next() returns ids of
+ partitions that contain records with partitioning field value within
+ [start_val, end_val] interval.
+ The function conforms to partition_iter_func type.
+
+ RETURN
+ partition id
+ NOT_A_PARTITION_ID if there are no more partitioning.
+*/
+
+static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
+{
+ uint32 part_id;
+ Field *field= part_iter->part_info->part_field_array[0];
+ while (part_iter->field_vals.cur != part_iter->field_vals.end)
+ {
+ longlong dummy;
+ field->store(part_iter->field_vals.cur++,
+ ((Field_num*)field)->unsigned_flag);
+ if (part_iter->part_info->is_sub_partitioned() &&
+ !part_iter->part_info->get_part_partition_id(part_iter->part_info,
+ &part_id, &dummy) ||
+ !part_iter->part_info->get_partition_id(part_iter->part_info,
+ &part_id, &dummy))
+ return part_id;
+ }
+ part_iter->field_vals.cur= part_iter->field_vals.start;
+ return NOT_A_PARTITION_ID;
+}
+
+
+/* Same as get_next_partition_via_walking, but for subpartitions */
+
+static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
+{
+ Field *field= part_iter->part_info->subpart_field_array[0];
+ if (part_iter->field_vals.cur == part_iter->field_vals.end)
+ {
+ part_iter->field_vals.cur= part_iter->field_vals.start;
+ return NOT_A_PARTITION_ID;
+ }
+ field->store(part_iter->field_vals.cur++, FALSE);
+ return part_iter->part_info->get_subpartition_id(part_iter->part_info);
+}
+
+
+/*
+ Create partition names
+
+ SYNOPSIS
+ create_partition_name()
+ out:out Created partition name string
+ in1 First part
+ in2 Second part
+ name_variant Normal, temporary or renamed partition name
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ This method is used to calculate the partition name, service routine to
+ the del_ren_cre_table method.
+*/
+
+void create_partition_name(char *out, const char *in1,
+ const char *in2, uint name_variant,
+ bool translate)
+{
+ char transl_part_name[FN_REFLEN];
+ const char *transl_part;
+
+ if (translate)
+ {
+ tablename_to_filename(in2, transl_part_name, FN_REFLEN);
+ transl_part= transl_part_name;
+ }
+ else
+ transl_part= in2;
+ if (name_variant == NORMAL_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part, NullS);
+ else if (name_variant == TEMP_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part, "#TMP#", NullS);
+ else if (name_variant == RENAMED_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part, "#REN#", NullS);
+}
+
+
+/*
+ Create subpartition name
+
+ SYNOPSIS
+ create_subpartition_name()
+ out:out Created partition name string
+ in1 First part
+ in2 Second part
+ in3 Third part
+ name_variant Normal, temporary or renamed partition name
+
+ RETURN VALUE
+ NONE
+
+ DESCRIPTION
+ This method is used to calculate the subpartition name, service routine to
+ the del_ren_cre_table method.
+*/
+
+void create_subpartition_name(char *out, const char *in1,
+ const char *in2, const char *in3,
+ uint name_variant)
+{
+ char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN];
+
+ tablename_to_filename(in2, transl_part_name, FN_REFLEN);
+ tablename_to_filename(in3, transl_subpart_name, FN_REFLEN);
+ if (name_variant == NORMAL_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part_name,
+ "#SP#", transl_subpart_name, NullS);
+ else if (name_variant == TEMP_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part_name,
+ "#SP#", transl_subpart_name, "#TMP#", NullS);
+ else if (name_variant == RENAMED_PART_NAME)
+ strxmov(out, in1, "#P#", transl_part_name,
+ "#SP#", transl_subpart_name, "#REN#", NullS);
+}
+#endif
+