diff options
Diffstat (limited to 'sql/uniques.cc')
-rw-r--r-- | sql/uniques.cc | 477 |
1 files changed, 476 insertions, 1 deletions
diff --git a/sql/uniques.cc b/sql/uniques.cc index d060965aa66..b08727705e4 100644 --- a/sql/uniques.cc +++ b/sql/uniques.cc @@ -63,12 +63,255 @@ Unique::Unique(qsort_cmp2 comp_func, void * comp_func_fixed_arg, comp_func_fixed_arg); /* If the following fail's the next add will also fail */ my_init_dynamic_array(&file_ptrs, sizeof(BUFFPEK), 16, 16); + /* + If you change the following, change it in get_max_elements function, too. + */ max_elements= max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+size); open_cached_file(&file, mysql_tmpdir,TEMP_PREFIX, DISK_BUFFER_SIZE, MYF(MY_WME)); } +/* + Calculate log2(n!) + + NOTES + Stirling's approximate formula is used: + + n! ~= sqrt(2*M_PI*n) * (n/M_E)^n + + Derivation of formula used for calculations is as follows: + + log2(n!) = log(n!)/log(2) = log(sqrt(2*M_PI*n)*(n/M_E)^n) / log(2) = + + = (log(2*M_PI*n)/2 + n*log(n/M_E)) / log(2). +*/ + +inline double log2_n_fact(double x) +{ + return (log(2*M_PI*x)/2 + x*log(x/M_E)) / M_LN2; +} + + +/* + Calculate cost of merge_buffers function call for given sequence of + input stream lengths and store the number of rows in result stream in *last. + + SYNOPSIS + get_merge_buffers_cost() + buff_elems Array of #s of elements in buffers + elem_size Size of element stored in buffer + first Pointer to first merged element size + last Pointer to last merged element size + + RETURN + Cost of merge_buffers operation in disk seeks. + + NOTES + It is assumed that no rows are eliminated during merge. + The cost is calculated as + + cost(read_and_write) + cost(merge_comparisons). + + All bytes in the sequences is read and written back during merge so cost + of disk io is 2*elem_size*total_buf_elems/IO_SIZE (2 is for read + write) + + For comparisons cost calculations we assume that all merged sequences have + the same length, so each of total_buf_size elements will be added to a sort + heap with (n_buffers-1) elements. This gives the comparison cost: + + total_buf_elems* log2(n_buffers) / TIME_FOR_COMPARE_ROWID; +*/ + +static double get_merge_buffers_cost(uint *buff_elems, uint elem_size, + uint *first, uint *last) +{ + uint total_buf_elems= 0; + for (uint *pbuf= first; pbuf <= last; pbuf++) + total_buf_elems+= *pbuf; + *last= total_buf_elems; + + int n_buffers= last - first + 1; + + /* Using log2(n)=log(n)/log(2) formula */ + return 2*((double)total_buf_elems*elem_size) / IO_SIZE + + total_buf_elems*log((double) n_buffers) / (TIME_FOR_COMPARE_ROWID * M_LN2); +} + + +/* + Calculate cost of merging buffers into one in Unique::get, i.e. calculate + how long (in terms of disk seeks) the two calls + merge_many_buffs(...); + merge_buffers(...); + will take. + + SYNOPSIS + get_merge_many_buffs_cost() + buffer buffer space for temporary data, at least + Unique::get_cost_calc_buff_size bytes + maxbuffer # of full buffers + max_n_elems # of elements in first maxbuffer buffers + last_n_elems # of elements in last buffer + elem_size size of buffer element + + NOTES + maxbuffer+1 buffers are merged, where first maxbuffer buffers contain + max_n_elems elements each and last buffer contains last_n_elems elements. + + The current implementation does a dumb simulation of merge_many_buffs + function actions. + + RETURN + Cost of merge in disk seeks. +*/ + +static double get_merge_many_buffs_cost(uint *buffer, + uint maxbuffer, uint max_n_elems, + uint last_n_elems, int elem_size) +{ + register int i; + double total_cost= 0.0; + uint *buff_elems= buffer; /* #s of elements in each of merged sequences */ + + /* + Set initial state: first maxbuffer sequences contain max_n_elems elements + each, last sequence contains last_n_elems elements. + */ + for(i = 0; i < (int)maxbuffer; i++) + buff_elems[i]= max_n_elems; + buff_elems[maxbuffer]= last_n_elems; + + /* + Do it exactly as merge_many_buff function does, calling + get_merge_buffers_cost to get cost of merge_buffers. + */ + if (maxbuffer >= MERGEBUFF2) + { + while (maxbuffer >= MERGEBUFF2) + { + uint lastbuff= 0; + for (i = 0; i <= (int) maxbuffer - MERGEBUFF*3/2; i += MERGEBUFF) + { + total_cost+=get_merge_buffers_cost(buff_elems, elem_size, + buff_elems + i, + buff_elems + i + MERGEBUFF-1); + lastbuff++; + } + total_cost+=get_merge_buffers_cost(buff_elems, elem_size, + buff_elems + i, + buff_elems + maxbuffer); + maxbuffer= lastbuff; + } + } + + /* Simulate final merge_buff call. */ + total_cost += get_merge_buffers_cost(buff_elems, elem_size, + buff_elems, buff_elems + maxbuffer); + return total_cost; +} + + +/* + Calculate cost of using Unique for processing nkeys elements of size + key_size using max_in_memory_size memory. + + SYNOPSIS + Unique::get_use_cost() + buffer space for temporary data, use Unique::get_cost_calc_buff_size + to get # bytes needed. + nkeys #of elements in Unique + key_size size of each elements in bytes + max_in_memory_size amount of memory Unique will be allowed to use + + RETURN + Cost in disk seeks. + + NOTES + cost(using_unqiue) = + cost(create_trees) + (see #1) + cost(merge) + (see #2) + cost(read_result) (see #3) + + 1. Cost of trees creation + For each Unique::put operation there will be 2*log2(n+1) elements + comparisons, where n runs from 1 tree_size (we assume that all added + elements are different). Together this gives: + + n_compares = 2*(log2(2) + log2(3) + ... + log2(N+1)) = 2*log2((N+1)!) + + then cost(tree_creation) = n_compares*ROWID_COMPARE_COST; + + Total cost of creating trees: + (n_trees - 1)*max_size_tree_cost + non_max_size_tree_cost. + + Approximate value of log2(N!) is calculated by log2_n_fact function. + + 2. Cost of merging. + If only one tree is created by Unique no merging will be necessary. + Otherwise, we model execution of merge_many_buff function and count + #of merges. (The reason behind this is that number of buffers is small, + while size of buffers is big and we don't want to loose precision with + O(x)-style formula) + + 3. If only one tree is created by Unique no disk io will happen. + Otherwise, ceil(key_len*n_keys) disk seeks are necessary. We assume + these will be random seeks. +*/ + +double Unique::get_use_cost(uint *buffer, uint nkeys, uint key_size, + ulong max_in_memory_size) +{ + ulong max_elements_in_tree; + ulong last_tree_elems; + int n_full_trees; /* number of trees in unique - 1 */ + double result; + + max_elements_in_tree= + max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size); + + n_full_trees= nkeys / max_elements_in_tree; + last_tree_elems= nkeys % max_elements_in_tree; + + /* Calculate cost of creating trees */ + result= 2*log2_n_fact(last_tree_elems + 1.0); + if (n_full_trees) + result+= n_full_trees * log2_n_fact(max_elements_in_tree + 1.0); + result /= TIME_FOR_COMPARE_ROWID; + + DBUG_PRINT("info",("unique trees sizes: %u=%u*%lu + %lu", nkeys, + n_full_trees, n_full_trees?max_elements_in_tree:0, + last_tree_elems)); + + if (!n_full_trees) + return result; + + /* + There is more then one tree and merging is necessary. + First, add cost of writing all trees to disk, assuming that all disk + writes are sequential. + */ + result += DISK_SEEK_BASE_COST * n_full_trees * + ceil(((double) key_size)*max_elements_in_tree / IO_SIZE); + result += DISK_SEEK_BASE_COST * ceil(((double) key_size)*last_tree_elems / IO_SIZE); + + /* Cost of merge */ + double merge_cost= get_merge_many_buffs_cost(buffer, n_full_trees, + max_elements_in_tree, + last_tree_elems, key_size); + if (merge_cost < 0.0) + return merge_cost; + + result += merge_cost; + /* + Add cost of reading the resulting sequence, assuming there were no + duplicate elements. + */ + result += ceil((double)key_size*nkeys/IO_SIZE); + + return result; +} + Unique::~Unique() { close_cached_file(&file); @@ -84,6 +327,7 @@ bool Unique::flush() elements+= tree.elements_in_tree; file_ptr.count=tree.elements_in_tree; file_ptr.file_pos=my_b_tell(&file); + if (tree_walk(&tree, (tree_walk_action) unique_write_to_file, (void*) this, left_root_right) || insert_dynamic(&file_ptrs, (gptr) &file_ptr)) @@ -94,6 +338,237 @@ bool Unique::flush() /* + Clear the tree and the file. + You must call reset() if you want to reuse Unique after walk(). +*/ + +void +Unique::reset() +{ + reset_tree(&tree); + /* + If elements != 0, some trees were stored in the file (see how + flush() works). Note, that we can not count on my_b_tell(&file) == 0 + here, because it can return 0 right after walk(), and walk() does not + reset any Unique member. + */ + if (elements) + { + reset_dynamic(&file_ptrs); + reinit_io_cache(&file, WRITE_CACHE, 0L, 0, 1); + } + elements= 0; +} + +/* + The comparison function, passed to queue_init() in merge_walk() must + use comparison function of Uniques::tree, but compare members of struct + BUFFPEK. +*/ + +struct BUFFPEK_COMPARE_CONTEXT +{ + qsort_cmp2 key_compare; + void *key_compare_arg; +}; + +C_MODE_START + +static int buffpek_compare(void *arg, byte *key_ptr1, byte *key_ptr2) +{ + BUFFPEK_COMPARE_CONTEXT *ctx= (BUFFPEK_COMPARE_CONTEXT *) arg; + return ctx->key_compare(ctx->key_compare_arg, + *((byte **) key_ptr1), *((byte **)key_ptr2)); +} + +C_MODE_END + + +/* + DESCRIPTION + Function is very similar to merge_buffers, but instead of writing sorted + unique keys to the output file, it invokes walk_action for each key. + This saves I/O if you need to pass through all unique keys only once. + SYNOPSIS + merge_walk() + All params are 'IN' (but see comment for begin, end): + merge_buffer buffer to perform cached piece-by-piece loading + of trees; initially the buffer is empty + merge_buffer_size size of merge_buffer. Must be aligned with + key_length + key_length size of tree element; key_length * (end - begin) + must be less or equal than merge_buffer_size. + begin pointer to BUFFPEK struct for the first tree. + end pointer to BUFFPEK struct for the last tree; + end > begin and [begin, end) form a consecutive + range. BUFFPEKs structs in that range are used and + overwritten in merge_walk(). + walk_action element visitor. Action is called for each unique + key. + walk_action_arg argument to walk action. Passed to it on each call. + compare elements comparison function + compare_arg comparison function argument + file file with all trees dumped. Trees in the file + must contain sorted unique values. Cache must be + initialized in read mode. + RETURN VALUE + 0 ok + <> 0 error +*/ + +static bool merge_walk(uchar *merge_buffer, uint merge_buffer_size, + uint key_length, BUFFPEK *begin, BUFFPEK *end, + tree_walk_action walk_action, void *walk_action_arg, + qsort_cmp2 compare, void *compare_arg, + IO_CACHE *file) +{ + BUFFPEK_COMPARE_CONTEXT compare_context = { compare, compare_arg }; + QUEUE queue; + if (end <= begin || + merge_buffer_size < key_length * (end - begin + 1) || + init_queue(&queue, end - begin, offsetof(BUFFPEK, key), 0, + buffpek_compare, &compare_context)) + return 1; + /* we need space for one key when a piece of merge buffer is re-read */ + merge_buffer_size-= key_length; + uchar *save_key_buff= merge_buffer + merge_buffer_size; + uint max_key_count_per_piece= merge_buffer_size/(end-begin)/key_length; + /* if piece_size is aligned reuse_freed_buffer will always hit */ + uint piece_size= max_key_count_per_piece * key_length; + uint bytes_read; /* to hold return value of read_to_buffer */ + BUFFPEK *top; + int res= 1; + /* + Invariant: queue must contain top element from each tree, until a tree + is not completely walked through. + Here we're forcing the invariant, inserting one element from each tree + to the queue. + */ + for (top= begin; top != end; ++top) + { + top->base= merge_buffer + (top - begin) * piece_size; + top->max_keys= max_key_count_per_piece; + bytes_read= read_to_buffer(file, top, key_length); + if (bytes_read == (uint) (-1)) + goto end; + DBUG_ASSERT(bytes_read); + queue_insert(&queue, (byte *) top); + } + top= (BUFFPEK *) queue_top(&queue); + while (queue.elements > 1) + { + /* + Every iteration one element is removed from the queue, and one is + inserted by the rules of the invariant. If two adjacent elements on + the top of the queue are not equal, biggest one is unique, because all + elements in each tree are unique. Action is applied only to unique + elements. + */ + void *old_key= top->key; + /* + read next key from the cache or from the file and push it to the + queue; this gives new top. + */ + top->key+= key_length; + if (--top->mem_count) + queue_replaced(&queue); + else /* next piece should be read */ + { + /* save old_key not to overwrite it in read_to_buffer */ + memcpy(save_key_buff, old_key, key_length); + old_key= save_key_buff; + bytes_read= read_to_buffer(file, top, key_length); + if (bytes_read == (uint) (-1)) + goto end; + else if (bytes_read > 0) /* top->key, top->mem_count are reset */ + queue_replaced(&queue); /* in read_to_buffer */ + else + { + /* + Tree for old 'top' element is empty: remove it from the queue and + give all its memory to the nearest tree. + */ + queue_remove(&queue, 0); + reuse_freed_buff(&queue, top, key_length); + } + } + top= (BUFFPEK *) queue_top(&queue); + /* new top has been obtained; if old top is unique, apply the action */ + if (compare(compare_arg, old_key, top->key)) + { + if (walk_action(old_key, 1, walk_action_arg)) + goto end; + } + } + /* + Applying walk_action to the tail of the last tree: this is safe because + either we had only one tree in the beginning, either we work with the + last tree in the queue. + */ + do + { + do + { + if (walk_action(top->key, 1, walk_action_arg)) + goto end; + top->key+= key_length; + } + while (--top->mem_count); + bytes_read= read_to_buffer(file, top, key_length); + if (bytes_read == (uint) (-1)) + goto end; + } + while (bytes_read); + res= 0; +end: + delete_queue(&queue); + return res; +} + + +/* + DESCRIPTION + Walks consecutively through all unique elements: + if all elements are in memory, then it simply invokes 'tree_walk', else + all flushed trees are loaded to memory piece-by-piece, pieces are + sorted, and action is called for each unique value. + Note: so as merging resets file_ptrs state, this method can change + internal Unique state to undefined: if you want to reuse Unique after + walk() you must call reset() first! + SYNOPSIS + Unique:walk() + All params are 'IN': + action function-visitor, typed in include/my_tree.h + function is called for each unique element + arg argument for visitor, which is passed to it on each call + RETURN VALUE + 0 OK + <> 0 error + */ + +bool Unique::walk(tree_walk_action action, void *walk_action_arg) +{ + if (elements == 0) /* the whole tree is in memory */ + return tree_walk(&tree, action, walk_action_arg, left_root_right); + + /* flush current tree to the file to have some memory for merge buffer */ + if (flush()) + return 1; + if (flush_io_cache(&file) || reinit_io_cache(&file, READ_CACHE, 0L, 0, 0)) + return 1; + uchar *merge_buffer= (uchar *) my_malloc(max_in_memory_size, MYF(0)); + if (merge_buffer == 0) + return 1; + int res= merge_walk(merge_buffer, max_in_memory_size, size, + (BUFFPEK *) file_ptrs.buffer, + (BUFFPEK *) file_ptrs.buffer + file_ptrs.elements, + action, walk_action_arg, + tree.compare, tree.custom_arg, &file); + x_free(merge_buffer); + return res; +} + +/* Modify the TABLE element so that when one calls init_records() the rows will be read in priority order. */ @@ -114,7 +589,7 @@ bool Unique::get(TABLE *table) return 0; } } - /* Not enough memory; Save the result to file */ + /* Not enough memory; Save the result to file && free memory used by tree */ if (flush()) return 1; |