/* readline.c -- a general facility for reading lines of input with emacs style editing and completion. */ /* Copyright (C) 1987-2005 Free Software Foundation, Inc. This file is part of the GNU Readline Library, a library for reading lines of text with interactive input and history editing. The GNU Readline Library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Readline Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. The GNU General Public License is often shipped with GNU software, and is generally kept in a file called COPYING or LICENSE. If you do not have a copy of the license, write to the Free Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. */ #define READLINE_LIBRARY #if defined (HAVE_CONFIG_H) # include "config_readline.h" #endif #include #include "posixstat.h" #include #if defined (HAVE_SYS_FILE_H) # include #endif /* HAVE_SYS_FILE_H */ #if defined (HAVE_UNISTD_H) # include #endif /* HAVE_UNISTD_H */ #if defined (HAVE_STDLIB_H) # include #else # include "ansi_stdlib.h" #endif /* HAVE_STDLIB_H */ #if defined (HAVE_LOCALE_H) # include #endif #include #include "posixjmp.h" #include #if !defined (errno) extern int errno; #endif /* !errno */ /* System-specific feature definitions and include files. */ #include "rldefs.h" #include "rlmbutil.h" #if defined (__EMX__) # define INCL_DOSPROCESS # include #endif /* __EMX__ */ /* Some standard library routines. */ #include "readline.h" #include "history.h" #include "rlprivate.h" #include "rlshell.h" #include "xmalloc.h" #ifndef RL_LIBRARY_VERSION # define RL_LIBRARY_VERSION "5.1" #endif #ifndef RL_READLINE_VERSION # define RL_READLINE_VERSION 0x0501 #endif extern void _rl_free_history_entry PARAMS((HIST_ENTRY *)); /* Forward declarations used in this file. */ static char *readline_internal PARAMS((void)); static void readline_initialize_everything PARAMS((void)); static void bind_arrow_keys_internal PARAMS((Keymap)); static void bind_arrow_keys PARAMS((void)); static void readline_default_bindings PARAMS((void)); static void reset_default_bindings PARAMS((void)) __attribute__((unused)); static int _rl_subseq_result PARAMS((int, Keymap, int, int)); static int _rl_subseq_getchar PARAMS((int)); /* **************************************************************** */ /* */ /* Line editing input utility */ /* */ /* **************************************************************** */ const char *rl_library_version = RL_LIBRARY_VERSION; int rl_readline_version = RL_READLINE_VERSION; /* True if this is `real' readline as opposed to some stub substitute. */ int rl_gnu_readline_p = 1; /* A pointer to the keymap that is currently in use. By default, it is the standard emacs keymap. */ Keymap _rl_keymap = emacs_standard_keymap; /* The current style of editing. */ int rl_editing_mode = emacs_mode; /* The current insert mode: input (the default) or overwrite */ int rl_insert_mode = RL_IM_DEFAULT; /* Non-zero if we called this function from _rl_dispatch(). It's present so functions can find out whether they were called from a key binding or directly from an application. */ int rl_dispatching; /* Non-zero if the previous command was a kill command. */ int _rl_last_command_was_kill = 0; /* The current value of the numeric argument specified by the user. */ int rl_numeric_arg = 1; /* Non-zero if an argument was typed. */ int rl_explicit_arg = 0; /* Temporary value used while generating the argument. */ int rl_arg_sign = 1; /* Non-zero means we have been called at least once before. */ static int rl_initialized; #if 0 /* If non-zero, this program is running in an EMACS buffer. */ static int running_in_emacs; #endif /* Flags word encapsulating the current readline state. */ int rl_readline_state = RL_STATE_NONE; /* The current offset in the current input line. */ int rl_point; /* Mark in the current input line. */ int rl_mark; /* Length of the current input line. */ int rl_end; /* Make this non-zero to return the current input_line. */ int rl_done; /* The last function executed by readline. */ rl_command_func_t *rl_last_func = (rl_command_func_t *)NULL; /* Top level environment for readline_internal (). */ procenv_t readline_top_level; /* The streams we interact with. */ FILE *_rl_in_stream, *_rl_out_stream; /* The names of the streams that we do input and output to. */ FILE *rl_instream = (FILE *)NULL; FILE *rl_outstream = (FILE *)NULL; /* Non-zero means echo characters as they are read. Defaults to no echo; set to 1 if there is a controlling terminal, we can get its attributes, and the attributes include `echo'. Look at rltty.c:prepare_terminal_settings for the code that sets it. */ int readline_echoing_p = 0; /* Current prompt. */ char *rl_prompt = (char *)NULL; int rl_visible_prompt_length = 0; /* Set to non-zero by calling application if it has already printed rl_prompt and does not want readline to do it the first time. */ int rl_already_prompted = 0; /* The number of characters read in order to type this complete command. */ int rl_key_sequence_length = 0; /* If non-zero, then this is the address of a function to call just before readline_internal_setup () prints the first prompt. */ rl_hook_func_t *rl_startup_hook = (rl_hook_func_t *)NULL; /* If non-zero, this is the address of a function to call just before readline_internal_setup () returns and readline_internal starts reading input characters. */ rl_hook_func_t *rl_pre_input_hook = (rl_hook_func_t *)NULL; /* What we use internally. You should always refer to RL_LINE_BUFFER. */ static char *the_line; /* The character that can generate an EOF. Really read from the terminal driver... just defaulted here. */ int _rl_eof_char = CTRL ('D'); /* Non-zero makes this the next keystroke to read. */ int rl_pending_input = 0; /* Pointer to a useful terminal name. */ const char *rl_terminal_name = (const char *)NULL; /* Non-zero means to always use horizontal scrolling in line display. */ int _rl_horizontal_scroll_mode = 0; /* Non-zero means to display an asterisk at the starts of history lines which have been modified. */ int _rl_mark_modified_lines = 0; /* The style of `bell' notification preferred. This can be set to NO_BELL, AUDIBLE_BELL, or VISIBLE_BELL. */ int _rl_bell_preference = AUDIBLE_BELL; /* String inserted into the line by rl_insert_comment (). */ char *_rl_comment_begin; /* Keymap holding the function currently being executed. */ Keymap rl_executing_keymap; /* Keymap we're currently using to dispatch. */ Keymap _rl_dispatching_keymap; /* Non-zero means to erase entire line, including prompt, on empty input lines. */ int rl_erase_empty_line = 0; /* Non-zero means to read only this many characters rather than up to a character bound to accept-line. */ int rl_num_chars_to_read; /* Line buffer and maintenence. */ char *rl_line_buffer = (char *)NULL; int rl_line_buffer_len = 0; /* Key sequence `contexts' */ _rl_keyseq_cxt *_rl_kscxt = 0; /* Forward declarations used by the display, termcap, and history code. */ /* **************************************************************** */ /* */ /* `Forward' declarations */ /* */ /* **************************************************************** */ /* Non-zero means do not parse any lines other than comments and parser directives. */ unsigned char _rl_parsing_conditionalized_out = 0; /* Non-zero means to convert characters with the meta bit set to escape-prefixed characters so we can indirect through emacs_meta_keymap or vi_escape_keymap. */ int _rl_convert_meta_chars_to_ascii = 1; /* Non-zero means to output characters with the meta bit set directly rather than as a meta-prefixed escape sequence. */ int _rl_output_meta_chars = 0; /* Non-zero means to look at the termios special characters and bind them to equivalent readline functions at startup. */ int _rl_bind_stty_chars = 1; /* **************************************************************** */ /* */ /* Top Level Functions */ /* */ /* **************************************************************** */ /* Non-zero means treat 0200 bit in terminal input as Meta bit. */ int _rl_meta_flag = 0; /* Forward declaration */ /* Set up the prompt and expand it. Called from readline() and rl_callback_handler_install (). */ int rl_set_prompt (prompt) const char *prompt; { FREE (rl_prompt); rl_prompt = prompt ? savestring (prompt) : (char *)NULL; rl_display_prompt = rl_prompt ? rl_prompt : ""; rl_visible_prompt_length = rl_expand_prompt (rl_prompt); return 0; } /* Read a line of input. Prompt with PROMPT. An empty PROMPT means none. A return value of NULL means that EOF was encountered. */ char * readline (prompt) const char *prompt; { char *value; /* If we are at EOF return a NULL string. */ if (rl_pending_input == EOF) { rl_clear_pending_input (); return ((char *)NULL); } rl_set_prompt (prompt); rl_initialize (); if (rl_prep_term_function) (*rl_prep_term_function) (_rl_meta_flag); #if defined (HANDLE_SIGNALS) rl_set_signals (); #endif value = readline_internal (); if (rl_deprep_term_function) (*rl_deprep_term_function) (); #if defined (HANDLE_SIGNALS) rl_clear_signals (); #endif return (value); } #if defined (READLINE_CALLBACKS) # define STATIC_CALLBACK #else # define STATIC_CALLBACK static #endif STATIC_CALLBACK void readline_internal_setup () { char *nprompt; _rl_in_stream = rl_instream; _rl_out_stream = rl_outstream; if (rl_startup_hook) (*rl_startup_hook) (); /* If we're not echoing, we still want to at least print a prompt, because rl_redisplay will not do it for us. If the calling application has a custom redisplay function, though, let that function handle it. */ if (readline_echoing_p == 0 && rl_redisplay_function == rl_redisplay) { if (rl_prompt && rl_already_prompted == 0) { nprompt = _rl_strip_prompt (rl_prompt); fprintf (_rl_out_stream, "%s", nprompt); fflush (_rl_out_stream); free (nprompt); } } else { if (rl_prompt && rl_already_prompted) rl_on_new_line_with_prompt (); else rl_on_new_line (); (*rl_redisplay_function) (); } #if defined (VI_MODE) if (rl_editing_mode == vi_mode) rl_vi_insertion_mode (1, 'i'); #endif /* VI_MODE */ if (rl_pre_input_hook) (*rl_pre_input_hook) (); } STATIC_CALLBACK char * readline_internal_teardown (eof) int eof; { char *temp; HIST_ENTRY *entry; /* Restore the original of this history line, iff the line that we are editing was originally in the history, AND the line has changed. */ entry = current_history (); if (entry && rl_undo_list) { temp = savestring (the_line); rl_revert_line (1, 0); entry = replace_history_entry (where_history (), the_line, (histdata_t)NULL); _rl_free_history_entry (entry); strcpy (the_line, temp); free (temp); } /* At any rate, it is highly likely that this line has an undo list. Get rid of it now. */ if (rl_undo_list) rl_free_undo_list (); /* Restore normal cursor, if available. */ _rl_set_insert_mode (RL_IM_INSERT, 0); return (eof ? (char *)NULL : savestring (the_line)); } void _rl_internal_char_cleanup () { #if defined (VI_MODE) /* In vi mode, when you exit insert mode, the cursor moves back over the previous character. We explicitly check for that here. */ if (rl_editing_mode == vi_mode && _rl_keymap == vi_movement_keymap) rl_vi_check (); #endif /* VI_MODE */ if (rl_num_chars_to_read && rl_end >= rl_num_chars_to_read) { (*rl_redisplay_function) (); _rl_want_redisplay = 0; rl_newline (1, '\n'); } if (rl_done == 0) { (*rl_redisplay_function) (); _rl_want_redisplay = 0; } /* If the application writer has told us to erase the entire line if the only character typed was something bound to rl_newline, do so. */ if (rl_erase_empty_line && rl_done && rl_last_func == rl_newline && rl_point == 0 && rl_end == 0) _rl_erase_entire_line (); } STATIC_CALLBACK int #if defined (READLINE_CALLBACKS) readline_internal_char () #else readline_internal_charloop () #endif { static int lastc, eof_found; int c, code, lk; lastc = -1; eof_found = 0; #if !defined (READLINE_CALLBACKS) while (rl_done == 0) { #endif lk = _rl_last_command_was_kill; code = setjmp (readline_top_level); if (code) { (*rl_redisplay_function) (); _rl_want_redisplay = 0; /* If we get here, we're not being called from something dispatched from _rl_callback_read_char(), which sets up its own value of readline_top_level (saving and restoring the old, of course), so we can just return here. */ if (RL_ISSTATE (RL_STATE_CALLBACK)) return (0); } if (rl_pending_input == 0) { /* Then initialize the argument and number of keys read. */ _rl_reset_argument (); rl_key_sequence_length = 0; } RL_SETSTATE(RL_STATE_READCMD); c = rl_read_key (); RL_UNSETSTATE(RL_STATE_READCMD); /* look at input.c:rl_getc() for the circumstances under which this will be returned; punt immediately on read error without converting it to a newline. */ if (c == READERR) { #if defined (READLINE_CALLBACKS) RL_SETSTATE(RL_STATE_DONE); return (rl_done = 1); #else eof_found = 1; break; #endif } /* EOF typed to a non-blank line is a . */ if (c == EOF && rl_end) c = NEWLINE; /* The character _rl_eof_char typed to blank line, and not as the previous character is interpreted as EOF. */ if (((c == _rl_eof_char && lastc != c) || c == EOF) && !rl_end) { #if defined (READLINE_CALLBACKS) RL_SETSTATE(RL_STATE_DONE); return (rl_done = 1); #else eof_found = 1; break; #endif } lastc = c; _rl_dispatch ((unsigned char)c, _rl_keymap); /* If there was no change in _rl_last_command_was_kill, then no kill has taken place. Note that if input is pending we are reading a prefix command, so nothing has changed yet. */ if (rl_pending_input == 0 && lk == _rl_last_command_was_kill) _rl_last_command_was_kill = 0; _rl_internal_char_cleanup (); #if defined (READLINE_CALLBACKS) return 0; #else } return (eof_found); #endif } #if defined (READLINE_CALLBACKS) static int readline_internal_charloop () { int eof = 1; while (rl_done == 0) eof = readline_internal_char (); return (eof); } #endif /* READLINE_CALLBACKS */ /* Read a line of input from the global rl_instream, doing output on the global rl_outstream. If rl_prompt is non-null, then that is our prompt. */ static char * readline_internal () { int eof; readline_internal_setup (); eof = readline_internal_charloop (); return (readline_internal_teardown (eof)); } void _rl_init_line_state () { rl_point = rl_end = rl_mark = 0; the_line = rl_line_buffer; the_line[0] = 0; } void _rl_set_the_line () { the_line = rl_line_buffer; } #if defined (READLINE_CALLBACKS) _rl_keyseq_cxt * _rl_keyseq_cxt_alloc () { _rl_keyseq_cxt *cxt; cxt = (_rl_keyseq_cxt *)xmalloc (sizeof (_rl_keyseq_cxt)); cxt->flags = cxt->subseq_arg = cxt->subseq_retval = 0; cxt->okey = 0; cxt->ocxt = _rl_kscxt; cxt->childval = 42; /* sentinel value */ return cxt; } void _rl_keyseq_cxt_dispose (cxt) _rl_keyseq_cxt *cxt; { free (cxt); } void _rl_keyseq_chain_dispose () { _rl_keyseq_cxt *cxt; while (_rl_kscxt) { cxt = _rl_kscxt; _rl_kscxt = _rl_kscxt->ocxt; _rl_keyseq_cxt_dispose (cxt); } } #endif static int _rl_subseq_getchar (key) int key; { int k; if (key == ESC) RL_SETSTATE(RL_STATE_METANEXT); RL_SETSTATE(RL_STATE_MOREINPUT); k = rl_read_key (); RL_UNSETSTATE(RL_STATE_MOREINPUT); if (key == ESC) RL_UNSETSTATE(RL_STATE_METANEXT); return k; } #if defined (READLINE_CALLBACKS) int _rl_dispatch_callback (cxt) _rl_keyseq_cxt *cxt; { int nkey, r; /* For now */ #if 1 /* The first time this context is used, we want to read input and dispatch on it. When traversing the chain of contexts back `up', we want to use the value from the next context down. We're simulating recursion using a chain of contexts. */ if ((cxt->flags & KSEQ_DISPATCHED) == 0) { nkey = _rl_subseq_getchar (cxt->okey); r = _rl_dispatch_subseq (nkey, cxt->dmap, cxt->subseq_arg); cxt->flags |= KSEQ_DISPATCHED; } else r = cxt->childval; #else r = _rl_dispatch_subseq (nkey, cxt->dmap, cxt->subseq_arg); #endif /* For now */ r = _rl_subseq_result (r, cxt->oldmap, cxt->okey, (cxt->flags & KSEQ_SUBSEQ)); if (r == 0) /* success! */ { _rl_keyseq_chain_dispose (); RL_UNSETSTATE (RL_STATE_MULTIKEY); return r; } if (r != -3) /* magic value that says we added to the chain */ _rl_kscxt = cxt->ocxt; if (_rl_kscxt) _rl_kscxt->childval = r; if (r != -3) _rl_keyseq_cxt_dispose (cxt); return r; } #endif /* READLINE_CALLBACKS */ /* Do the command associated with KEY in MAP. If the associated command is really a keymap, then read another key, and dispatch into that map. */ int _rl_dispatch (key, map) register int key; Keymap map; { _rl_dispatching_keymap = map; return _rl_dispatch_subseq (key, map, 0); } int _rl_dispatch_subseq (key, map, got_subseq) register int key; Keymap map; int got_subseq; { int r, newkey; char *macro; rl_command_func_t *func; #if defined (READLINE_CALLBACKS) _rl_keyseq_cxt *cxt; #endif if (META_CHAR (key) && _rl_convert_meta_chars_to_ascii) { if (map[ESC].type == ISKMAP) { if (RL_ISSTATE (RL_STATE_MACRODEF)) _rl_add_macro_char (ESC); map = FUNCTION_TO_KEYMAP (map, ESC); key = UNMETA (key); rl_key_sequence_length += 2; return (_rl_dispatch (key, map)); } else rl_ding (); return 0; } if (RL_ISSTATE (RL_STATE_MACRODEF)) _rl_add_macro_char (key); r = 0; switch (map[key].type) { case ISFUNC: func = map[key].function; if (func) { /* Special case rl_do_lowercase_version (). */ if (func == rl_do_lowercase_version) return (_rl_dispatch (_rl_to_lower (key), map)); rl_executing_keymap = map; rl_dispatching = 1; RL_SETSTATE(RL_STATE_DISPATCHING); (*map[key].function)(rl_numeric_arg * rl_arg_sign, key); RL_UNSETSTATE(RL_STATE_DISPATCHING); rl_dispatching = 0; /* If we have input pending, then the last command was a prefix command. Don't change the state of rl_last_func. Otherwise, remember the last command executed in this variable. */ if (rl_pending_input == 0 && map[key].function != rl_digit_argument) rl_last_func = map[key].function; } else if (map[ANYOTHERKEY].function) { /* OK, there's no function bound in this map, but there is a shadow function that was overridden when the current keymap was created. Return -2 to note that. */ _rl_unget_char (key); return -2; } else if (got_subseq) { /* Return -1 to note that we're in a subsequence, but we don't have a matching key, nor was one overridden. This means we need to back up the recursion chain and find the last subsequence that is bound to a function. */ _rl_unget_char (key); return -1; } else { #if defined (READLINE_CALLBACKS) RL_UNSETSTATE (RL_STATE_MULTIKEY); _rl_keyseq_chain_dispose (); #endif _rl_abort_internal (); return -1; } break; case ISKMAP: if (map[key].function != 0) { #if defined (VI_MODE) /* The only way this test will be true is if a subsequence has been bound starting with ESC, generally the arrow keys. What we do is check whether there's input in the queue, which there generally will be if an arrow key has been pressed, and, if there's not, just dispatch to (what we assume is) rl_vi_movement_mode right away. This is essentially an input test with a zero timeout. */ if (rl_editing_mode == vi_mode && key == ESC && map == vi_insertion_keymap && _rl_input_queued (0) == 0) return (_rl_dispatch (ANYOTHERKEY, FUNCTION_TO_KEYMAP (map, key))); #endif rl_key_sequence_length++; _rl_dispatching_keymap = FUNCTION_TO_KEYMAP (map, key); /* Allocate new context here. Use linked contexts (linked through cxt->ocxt) to simulate recursion */ #if defined (READLINE_CALLBACKS) if (RL_ISSTATE (RL_STATE_CALLBACK)) { /* Return 0 only the first time, to indicate success to _rl_callback_read_char. The rest of the time, we're called from _rl_dispatch_callback, so we return 3 to indicate special handling is necessary. */ r = RL_ISSTATE (RL_STATE_MULTIKEY) ? -3 : 0; cxt = _rl_keyseq_cxt_alloc (); if (got_subseq) cxt->flags |= KSEQ_SUBSEQ; cxt->okey = key; cxt->oldmap = map; cxt->dmap = _rl_dispatching_keymap; cxt->subseq_arg = got_subseq || cxt->dmap[ANYOTHERKEY].function; RL_SETSTATE (RL_STATE_MULTIKEY); _rl_kscxt = cxt; return r; /* don't indicate immediate success */ } #endif newkey = _rl_subseq_getchar (key); if (newkey < 0) { _rl_abort_internal (); return -1; } r = _rl_dispatch_subseq (newkey, _rl_dispatching_keymap, got_subseq || map[ANYOTHERKEY].function); return _rl_subseq_result (r, map, key, got_subseq); } else { _rl_abort_internal (); return -1; } break; case ISMACR: if (map[key].function != 0) { macro = savestring ((char *)map[key].function); _rl_with_macro_input (macro); return 0; } break; } #if defined (VI_MODE) if (rl_editing_mode == vi_mode && _rl_keymap == vi_movement_keymap && key != ANYOTHERKEY && _rl_vi_textmod_command (key)) _rl_vi_set_last (key, rl_numeric_arg, rl_arg_sign); #endif return (r); } static int _rl_subseq_result (r, map, key, got_subseq) int r; Keymap map; int key, got_subseq; { Keymap m; int type, nt; rl_command_func_t *func, *nf; if (r == -2) /* We didn't match anything, and the keymap we're indexed into shadowed a function previously bound to that prefix. Call the function. The recursive call to _rl_dispatch_subseq has already taken care of pushing any necessary input back onto the input queue with _rl_unget_char. */ { m = _rl_dispatching_keymap; type = m[ANYOTHERKEY].type; func = m[ANYOTHERKEY].function; if (type == ISFUNC && func == rl_do_lowercase_version) r = _rl_dispatch (_rl_to_lower (key), map); else if (type == ISFUNC && func == rl_insert) { /* If the function that was shadowed was self-insert, we somehow need a keymap with map[key].func == self-insert. Let's use this one. */ nt = m[key].type; nf = m[key].function; m[key].type = type; m[key].function = func; r = _rl_dispatch (key, m); m[key].type = nt; m[key].function = nf; } else r = _rl_dispatch (ANYOTHERKEY, m); } else if (r && map[ANYOTHERKEY].function) { /* We didn't match (r is probably -1), so return something to tell the caller that it should try ANYOTHERKEY for an overridden function. */ _rl_unget_char (key); _rl_dispatching_keymap = map; return -2; } else if (r && got_subseq) { /* OK, back up the chain. */ _rl_unget_char (key); _rl_dispatching_keymap = map; return -1; } return r; } /* **************************************************************** */ /* */ /* Initializations */ /* */ /* **************************************************************** */ /* Initialize readline (and terminal if not already). */ int rl_initialize () { /* If we have never been called before, initialize the terminal and data structures. */ if (!rl_initialized) { RL_SETSTATE(RL_STATE_INITIALIZING); readline_initialize_everything (); RL_UNSETSTATE(RL_STATE_INITIALIZING); rl_initialized++; RL_SETSTATE(RL_STATE_INITIALIZED); } /* Initalize the current line information. */ _rl_init_line_state (); /* We aren't done yet. We haven't even gotten started yet! */ rl_done = 0; RL_UNSETSTATE(RL_STATE_DONE); /* Tell the history routines what is going on. */ _rl_start_using_history (); /* Make the display buffer match the state of the line. */ rl_reset_line_state (); /* No such function typed yet. */ rl_last_func = (rl_command_func_t *)NULL; /* Parsing of key-bindings begins in an enabled state. */ _rl_parsing_conditionalized_out = 0; #if defined (VI_MODE) if (rl_editing_mode == vi_mode) _rl_vi_initialize_line (); #endif /* Each line starts in insert mode (the default). */ _rl_set_insert_mode (RL_IM_DEFAULT, 1); return 0; } #if 0 #if defined (__EMX__) static void _emx_build_environ () { TIB *tibp; PIB *pibp; char *t, **tp; int c; DosGetInfoBlocks (&tibp, &pibp); t = pibp->pib_pchenv; for (c = 1; *t; c++) t += strlen (t) + 1; tp = environ = (char **)xmalloc ((c + 1) * sizeof (char *)); t = pibp->pib_pchenv; while (*t) { *tp++ = t; t += strlen (t) + 1; } *tp = 0; } #endif /* __EMX__ */ #endif /* Initialize the entire state of the world. */ static void readline_initialize_everything () { #if 0 #if defined (__EMX__) if (environ == 0) _emx_build_environ (); #endif #endif #if 0 /* Find out if we are running in Emacs -- UNUSED. */ running_in_emacs = sh_get_env_value ("EMACS") != (char *)0; #endif /* Set up input and output if they are not already set up. */ if (!rl_instream) rl_instream = stdin; if (!rl_outstream) rl_outstream = stdout; /* Bind _rl_in_stream and _rl_out_stream immediately. These values may change, but they may also be used before readline_internal () is called. */ _rl_in_stream = rl_instream; _rl_out_stream = rl_outstream; /* Allocate data structures. */ if (rl_line_buffer == 0) rl_line_buffer = (char *)xmalloc (rl_line_buffer_len = DEFAULT_BUFFER_SIZE); /* Initialize the terminal interface. */ if (rl_terminal_name == 0) rl_terminal_name = sh_get_env_value ("TERM"); _rl_init_terminal_io (rl_terminal_name); /* Bind tty characters to readline functions. */ readline_default_bindings (); /* Initialize the function names. */ rl_initialize_funmap (); /* Decide whether we should automatically go into eight-bit mode. */ _rl_init_eightbit (); /* Read in the init file. */ rl_read_init_file ((char *)NULL); /* XXX */ if (_rl_horizontal_scroll_mode && _rl_term_autowrap) { _rl_screenwidth--; _rl_screenchars -= _rl_screenheight; } /* Override the effect of any `set keymap' assignments in the inputrc file. */ rl_set_keymap_from_edit_mode (); /* Try to bind a common arrow key prefix, if not already bound. */ bind_arrow_keys (); /* Enable the meta key, if this terminal has one. */ if (_rl_enable_meta) _rl_enable_meta_key (); /* If the completion parser's default word break characters haven't been set yet, then do so now. */ if (rl_completer_word_break_characters == (char *)NULL) rl_completer_word_break_characters = (char *)rl_basic_word_break_characters; } /* If this system allows us to look at the values of the regular input editing characters, then bind them to their readline equivalents, iff the characters are not bound to keymaps. */ static void readline_default_bindings () { if (_rl_bind_stty_chars) rl_tty_set_default_bindings (_rl_keymap); } /* Reset the default bindings for the terminal special characters we're interested in back to rl_insert and read the new ones. */ static void reset_default_bindings () { if (_rl_bind_stty_chars) { rl_tty_unset_default_bindings (_rl_keymap); rl_tty_set_default_bindings (_rl_keymap); } } /* Bind some common arrow key sequences in MAP. */ static void bind_arrow_keys_internal (map) Keymap map; { Keymap xkeymap; xkeymap = _rl_keymap; _rl_keymap = map; #if defined (__MSDOS__) rl_bind_keyseq_if_unbound ("\033[0A", rl_get_previous_history); rl_bind_keyseq_if_unbound ("\033[0B", rl_backward_char); rl_bind_keyseq_if_unbound ("\033[0C", rl_forward_char); rl_bind_keyseq_if_unbound ("\033[0D", rl_get_next_history); #endif rl_bind_keyseq_if_unbound ("\033[A", rl_get_previous_history); rl_bind_keyseq_if_unbound ("\033[B", rl_get_next_history); rl_bind_keyseq_if_unbound ("\033[C", rl_forward_char); rl_bind_keyseq_if_unbound ("\033[D", rl_backward_char); rl_bind_keyseq_if_unbound ("\033[H", rl_beg_of_line); rl_bind_keyseq_if_unbound ("\033[F", rl_end_of_line); rl_bind_keyseq_if_unbound ("\033OA", rl_get_previous_history); rl_bind_keyseq_if_unbound ("\033OB", rl_get_next_history); rl_bind_keyseq_if_unbound ("\033OC", rl_forward_char); rl_bind_keyseq_if_unbound ("\033OD", rl_backward_char); rl_bind_keyseq_if_unbound ("\033OH", rl_beg_of_line); rl_bind_keyseq_if_unbound ("\033OF", rl_end_of_line); #if defined (__MINGW32__) rl_bind_keyseq_if_unbound ("\340H", rl_get_previous_history); rl_bind_keyseq_if_unbound ("\340P", rl_get_next_history); rl_bind_keyseq_if_unbound ("\340M", rl_forward_char); rl_bind_keyseq_if_unbound ("\340K", rl_backward_char); #endif _rl_keymap = xkeymap; } /* Try and bind the common arrow key prefixes after giving termcap and the inputrc file a chance to bind them and create `real' keymaps for the arrow key prefix. */ static void bind_arrow_keys () { bind_arrow_keys_internal (emacs_standard_keymap); #if defined (VI_MODE) bind_arrow_keys_internal (vi_movement_keymap); bind_arrow_keys_internal (vi_insertion_keymap); #endif } /* **************************************************************** */ /* */ /* Saving and Restoring Readline's state */ /* */ /* **************************************************************** */ int rl_save_state (sp) struct readline_state *sp; { if (sp == 0) return -1; sp->point = rl_point; sp->end = rl_end; sp->mark = rl_mark; sp->buffer = rl_line_buffer; sp->buflen = rl_line_buffer_len; sp->ul = rl_undo_list; sp->prompt = rl_prompt; sp->rlstate = rl_readline_state; sp->done = rl_done; sp->kmap = _rl_keymap; sp->lastfunc = rl_last_func; sp->insmode = rl_insert_mode; sp->edmode = rl_editing_mode; sp->kseqlen = rl_key_sequence_length; sp->inf = rl_instream; sp->outf = rl_outstream; sp->pendingin = rl_pending_input; sp->macro = rl_executing_macro; sp->catchsigs = rl_catch_signals; sp->catchsigwinch = rl_catch_sigwinch; return (0); } int rl_restore_state (sp) struct readline_state *sp; { if (sp == 0) return -1; rl_point = sp->point; rl_end = sp->end; rl_mark = sp->mark; the_line = rl_line_buffer = sp->buffer; rl_line_buffer_len = sp->buflen; rl_undo_list = sp->ul; rl_prompt = sp->prompt; rl_readline_state = sp->rlstate; rl_done = sp->done; _rl_keymap = sp->kmap; rl_last_func = sp->lastfunc; rl_insert_mode = sp->insmode; rl_editing_mode = sp->edmode; rl_key_sequence_length = sp->kseqlen; rl_instream = sp->inf; rl_outstream = sp->outf; rl_pending_input = sp->pendingin; rl_executing_macro = sp->macro; rl_catch_signals = sp->catchsigs; rl_catch_sigwinch = sp->catchsigwinch; return (0); }