/* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "runtime.hpp" #include "hc128.hpp" namespace TaoCrypt { #ifdef BIG_ENDIAN_ORDER #define LITTLE32(x) ByteReverse((word32)x) #else #define LITTLE32(x) (x) #endif /*h1 function*/ #define h1(x, y) { \ byte a,c; \ a = (byte) (x); \ c = (byte) ((x) >> 16); \ y = (T_[512+a])+(T_[512+256+c]); \ } /*h2 function*/ #define h2(x, y) { \ byte a,c; \ a = (byte) (x); \ c = (byte) ((x) >> 16); \ y = (T_[a])+(T_[256+c]); \ } /*one step of HC-128, update P and generate 32 bits keystream*/ #define step_P(u,v,a,b,c,d,n){ \ word32 tem0,tem1,tem2,tem3; \ h1((X_[(d)]),tem3); \ tem0 = rotrFixed((T_[(v)]),23); \ tem1 = rotrFixed((X_[(c)]),10); \ tem2 = rotrFixed((X_[(b)]),8); \ (T_[(u)]) += tem2+(tem0 ^ tem1); \ (X_[(a)]) = (T_[(u)]); \ (n) = tem3 ^ (T_[(u)]) ; \ } /*one step of HC-128, update Q and generate 32 bits keystream*/ #define step_Q(u,v,a,b,c,d,n){ \ word32 tem0,tem1,tem2,tem3; \ h2((Y_[(d)]),tem3); \ tem0 = rotrFixed((T_[(v)]),(32-23)); \ tem1 = rotrFixed((Y_[(c)]),(32-10)); \ tem2 = rotrFixed((Y_[(b)]),(32-8)); \ (T_[(u)]) += tem2 + (tem0 ^ tem1); \ (Y_[(a)]) = (T_[(u)]); \ (n) = tem3 ^ (T_[(u)]) ; \ } /*16 steps of HC-128, generate 512 bits keystream*/ void HC128::GenerateKeystream(word32* keystream) { word32 cc,dd; cc = counter1024_ & 0x1ff; dd = (cc+16)&0x1ff; if (counter1024_ < 512) { counter1024_ = (counter1024_ + 16) & 0x3ff; step_P(cc+0, cc+1, 0, 6, 13,4, keystream[0]); step_P(cc+1, cc+2, 1, 7, 14,5, keystream[1]); step_P(cc+2, cc+3, 2, 8, 15,6, keystream[2]); step_P(cc+3, cc+4, 3, 9, 0, 7, keystream[3]); step_P(cc+4, cc+5, 4, 10,1, 8, keystream[4]); step_P(cc+5, cc+6, 5, 11,2, 9, keystream[5]); step_P(cc+6, cc+7, 6, 12,3, 10,keystream[6]); step_P(cc+7, cc+8, 7, 13,4, 11,keystream[7]); step_P(cc+8, cc+9, 8, 14,5, 12,keystream[8]); step_P(cc+9, cc+10,9, 15,6, 13,keystream[9]); step_P(cc+10,cc+11,10,0, 7, 14,keystream[10]); step_P(cc+11,cc+12,11,1, 8, 15,keystream[11]); step_P(cc+12,cc+13,12,2, 9, 0, keystream[12]); step_P(cc+13,cc+14,13,3, 10,1, keystream[13]); step_P(cc+14,cc+15,14,4, 11,2, keystream[14]); step_P(cc+15,dd+0, 15,5, 12,3, keystream[15]); } else { counter1024_ = (counter1024_ + 16) & 0x3ff; step_Q(512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]); step_Q(512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]); step_Q(512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]); step_Q(512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]); step_Q(512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]); step_Q(512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]); step_Q(512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]); step_Q(512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]); step_Q(512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]); step_Q(512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]); step_Q(512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]); step_Q(512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]); step_Q(512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]); step_Q(512+cc+13,512+cc+14,13,3, 10,1, keystream[13]); step_Q(512+cc+14,512+cc+15,14,4, 11,2, keystream[14]); step_Q(512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]); } } /* The following defines the initialization functions */ #define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3)) #define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10)) /*update table P*/ #define update_P(u,v,a,b,c,d){ \ word32 tem0,tem1,tem2,tem3; \ tem0 = rotrFixed((T_[(v)]),23); \ tem1 = rotrFixed((X_[(c)]),10); \ tem2 = rotrFixed((X_[(b)]),8); \ h1((X_[(d)]),tem3); \ (T_[(u)]) = ((T_[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ (X_[(a)]) = (T_[(u)]); \ } /*update table Q*/ #define update_Q(u,v,a,b,c,d){ \ word32 tem0,tem1,tem2,tem3; \ tem0 = rotrFixed((T_[(v)]),(32-23)); \ tem1 = rotrFixed((Y_[(c)]),(32-10)); \ tem2 = rotrFixed((Y_[(b)]),(32-8)); \ h2((Y_[(d)]),tem3); \ (T_[(u)]) = ((T_[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ (Y_[(a)]) = (T_[(u)]); \ } /*16 steps of HC-128, without generating keystream, */ /*but use the outputs to update P and Q*/ void HC128::SetupUpdate() /*each time 16 steps*/ { word32 cc,dd; cc = counter1024_ & 0x1ff; dd = (cc+16)&0x1ff; if (counter1024_ < 512) { counter1024_ = (counter1024_ + 16) & 0x3ff; update_P(cc+0, cc+1, 0, 6, 13, 4); update_P(cc+1, cc+2, 1, 7, 14, 5); update_P(cc+2, cc+3, 2, 8, 15, 6); update_P(cc+3, cc+4, 3, 9, 0, 7); update_P(cc+4, cc+5, 4, 10,1, 8); update_P(cc+5, cc+6, 5, 11,2, 9); update_P(cc+6, cc+7, 6, 12,3, 10); update_P(cc+7, cc+8, 7, 13,4, 11); update_P(cc+8, cc+9, 8, 14,5, 12); update_P(cc+9, cc+10,9, 15,6, 13); update_P(cc+10,cc+11,10,0, 7, 14); update_P(cc+11,cc+12,11,1, 8, 15); update_P(cc+12,cc+13,12,2, 9, 0); update_P(cc+13,cc+14,13,3, 10, 1); update_P(cc+14,cc+15,14,4, 11, 2); update_P(cc+15,dd+0, 15,5, 12, 3); } else { counter1024_ = (counter1024_ + 16) & 0x3ff; update_Q(512+cc+0, 512+cc+1, 0, 6, 13, 4); update_Q(512+cc+1, 512+cc+2, 1, 7, 14, 5); update_Q(512+cc+2, 512+cc+3, 2, 8, 15, 6); update_Q(512+cc+3, 512+cc+4, 3, 9, 0, 7); update_Q(512+cc+4, 512+cc+5, 4, 10,1, 8); update_Q(512+cc+5, 512+cc+6, 5, 11,2, 9); update_Q(512+cc+6, 512+cc+7, 6, 12,3, 10); update_Q(512+cc+7, 512+cc+8, 7, 13,4, 11); update_Q(512+cc+8, 512+cc+9, 8, 14,5, 12); update_Q(512+cc+9, 512+cc+10,9, 15,6, 13); update_Q(512+cc+10,512+cc+11,10,0, 7, 14); update_Q(512+cc+11,512+cc+12,11,1, 8, 15); update_Q(512+cc+12,512+cc+13,12,2, 9, 0); update_Q(512+cc+13,512+cc+14,13,3, 10, 1); update_Q(512+cc+14,512+cc+15,14,4, 11, 2); update_Q(512+cc+15,512+dd+0, 15,5, 12, 3); } } /* for the 128-bit key: key[0]...key[15] * key[0] is the least significant byte of ctx->key[0] (K_0); * key[3] is the most significant byte of ctx->key[0] (K_0); * ... * key[12] is the least significant byte of ctx->key[3] (K_3) * key[15] is the most significant byte of ctx->key[3] (K_3) * * for the 128-bit iv: iv[0]...iv[15] * iv[0] is the least significant byte of ctx->iv[0] (IV_0); * iv[3] is the most significant byte of ctx->iv[0] (IV_0); * ... * iv[12] is the least significant byte of ctx->iv[3] (IV_3) * iv[15] is the most significant byte of ctx->iv[3] (IV_3) */ void HC128::SetIV(const byte* iv) { word32 i; for (i = 0; i < (128 >> 5); i++) iv_[i] = LITTLE32(((word32*)iv)[i]); for (; i < 8; i++) iv_[i] = iv_[i-4]; /* expand the key and IV into the table T */ /* (expand the key and IV into the table P and Q) */ for (i = 0; i < 8; i++) T_[i] = key_[i]; for (i = 8; i < 16; i++) T_[i] = iv_[i-8]; for (i = 16; i < (256+16); i++) T_[i] = f2(T_[i-2]) + T_[i-7] + f1(T_[i-15]) + T_[i-16]+i; for (i = 0; i < 16; i++) T_[i] = T_[256+i]; for (i = 16; i < 1024; i++) T_[i] = f2(T_[i-2]) + T_[i-7] + f1(T_[i-15]) + T_[i-16]+256+i; /* initialize counter1024, X and Y */ counter1024_ = 0; for (i = 0; i < 16; i++) X_[i] = T_[512-16+i]; for (i = 0; i < 16; i++) Y_[i] = T_[512+512-16+i]; /* run the cipher 1024 steps before generating the output */ for (i = 0; i < 64; i++) SetupUpdate(); } void HC128::SetKey(const byte* key, const byte* iv) { word32 i; /* Key size in bits 128 */ for (i = 0; i < (128 >> 5); i++) key_[i] = LITTLE32(((word32*)key)[i]); for ( ; i < 8 ; i++) key_[i] = key_[i-4]; SetIV(iv); } /* The following defines the encryption of data stream */ void HC128::Process(byte* output, const byte* input, word32 msglen) { word32 i, keystream[16]; for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64) { GenerateKeystream(keystream); /* unroll loop */ ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]); ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]); ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]); ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]); ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]); ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]); ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]); ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]); ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]); ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]); ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]); ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]); ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]); ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]); ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]); ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]); } if (msglen > 0) { GenerateKeystream(keystream); #ifdef BIG_ENDIAN_ORDER { word32 wordsLeft = msglen / sizeof(word32); if (msglen % sizeof(word32)) wordsLeft++; ByteReverse(keystream, keystream, wordsLeft * sizeof(word32)); } #endif for (i = 0; i < msglen; i++) output[i] = input[i] ^ ((byte*)keystream)[i]; } } } // namespace