/****************************************************** The low-level file system (c) 1995 Innobase Oy Created 10/25/1995 Heikki Tuuri *******************************************************/ #include "fil0fil.h" #include "mem0mem.h" #include "sync0sync.h" #include "hash0hash.h" #include "os0file.h" #include "os0sync.h" #include "mach0data.h" #include "ibuf0ibuf.h" #include "buf0buf.h" #include "log0log.h" #include "log0recv.h" #include "fsp0fsp.h" #include "srv0srv.h" /* IMPLEMENTATION OF THE LOW-LEVEL FILE SYSTEM =========================================== The file system is responsible for providing fast read/write access to tablespaces and logs of the database. File creation and deletion is done in other modules which know more of the logic of the operation, however. A tablespace consists of a chain of files. The size of the files does not have to be divisible by the database block size, because we may just leave the last incomplete block unused. When a new file is appended to the tablespace, the maximum size of the file is also specified. At the moment, we think that it is best to extend the file to its maximum size already at the creation of the file, because then we can avoid dynamically extending the file when more space is needed for the tablespace. A block's position in the tablespace is specified with a 32-bit unsigned integer. The files in the chain are thought to be catenated, and the block corresponding to an address n is the nth block in the catenated file (where the first block is named the 0th block, and the incomplete block fragments at the end of files are not taken into account). A tablespace can be extended by appending a new file at the end of the chain. Our tablespace concept is similar to the one of Oracle. To acquire more speed in disk transfers, a technique called disk striping is sometimes used. This means that logical block addresses are divided in a round-robin fashion across several disks. Windows NT supports disk striping, so there we do not need to support it in the database. Disk striping is implemented in hardware in RAID disks. We conclude that it is not necessary to implement it in the database. Oracle 7 does not support disk striping, either. Another trick used at some database sites is replacing tablespace files by raw disks, that is, the whole physical disk drive, or a partition of it, is opened as a single file, and it is accessed through byte offsets calculated from the start of the disk or the partition. This is recommended in some books on database tuning to achieve more speed in i/o. Using raw disk certainly prevents the OS from fragmenting disk space, but it is not clear if it really adds speed. We measured on the Pentium 100 MHz + NT + NTFS file system + EIDE Conner disk only a negligible difference in speed when reading from a file, versus reading from a raw disk. To have fast access to a tablespace or a log file, we put the data structures to a hash table. Each tablespace and log file is given an unique 32-bit identifier. Some operating systems do not support many open files at the same time, though NT seems to tolerate at least 900 open files. Therefore, we put the open files in an LRU-list. If we need to open another file, we may close the file at the end of the LRU-list. When an i/o-operation is pending on a file, the file cannot be closed. We take the file nodes with pending i/o-operations out of the LRU-list and keep a count of pending operations. When an operation completes, we decrement the count and return the file node to the LRU-list if the count drops to zero. */ ulint fil_n_pending_log_flushes = 0; ulint fil_n_pending_tablespace_flushes = 0; /* Null file address */ fil_addr_t fil_addr_null = {FIL_NULL, 0}; /* File system file node data structure */ typedef struct fil_node_struct fil_node_t; struct fil_node_struct { char* name; /* the file name or path */ ibool open; /* TRUE if file open */ os_file_t handle; /* OS handle to the file, if file open */ ulint size; /* size of the file in database pages (where the possible last incomplete megabyte is ignored) */ ulint n_pending; /* count of pending i/o-ops on this file */ ibool is_modified; /* this is set to TRUE when we write to the file and FALSE when we call fil_flush for this file space */ UT_LIST_NODE_T(fil_node_t) chain; /* link field for the file chain */ UT_LIST_NODE_T(fil_node_t) LRU; /* link field for the LRU list */ ulint magic_n; }; #define FIL_NODE_MAGIC_N 89389 /* File system tablespace or log data structure: let us call them by a common name space */ struct fil_space_struct { char* name; /* space name */ ulint id; /* space id */ ulint purpose;/* FIL_TABLESPACE, FIL_LOG, or FIL_ARCH_LOG */ UT_LIST_BASE_NODE_T(fil_node_t) chain; /* base node for the file chain */ ulint size; /* space size in pages */ ulint n_reserved_extents; /* number of reserved free extents for ongoing operations like B-tree page split */ hash_node_t hash; /* hash chain node */ rw_lock_t latch; /* latch protecting the file space storage allocation */ UT_LIST_NODE_T(fil_space_t) space_list; /* list of all spaces */ ibuf_data_t* ibuf_data; /* insert buffer data */ ulint magic_n; }; #define FIL_SPACE_MAGIC_N 89472 /* The file system data structure */ typedef struct fil_system_struct fil_system_t; struct fil_system_struct { mutex_t mutex; /* The mutex protecting the system */ hash_table_t* spaces; /* The hash table of spaces in the system */ UT_LIST_BASE_NODE_T(fil_node_t) LRU; /* base node for the LRU list of the most recently used open files */ ulint n_open_pending; /* current number of open files with pending i/o-ops on them */ ulint max_n_open; /* maximum allowed open files */ os_event_t can_open; /* this event is set to the signaled state when the system is capable of opening a new file, i.e., n_open_pending < max_n_open */ UT_LIST_BASE_NODE_T(fil_space_t) space_list; /* list of all file spaces */ }; /* The file system. This variable is NULL before the module is initialized. */ fil_system_t* fil_system = NULL; /* The file system hash table size */ #define FIL_SYSTEM_HASH_SIZE 500 /*********************************************************************** Reserves a right to open a single file. The right must be released with fil_release_right_to_open. */ void fil_reserve_right_to_open(void) /*===========================*/ { loop: mutex_enter(&(fil_system->mutex)); if (fil_system->n_open_pending == fil_system->max_n_open) { /* It is not sure we can open the file if it is closed: wait */ os_event_reset(fil_system->can_open); mutex_exit(&(fil_system->mutex)); os_event_wait(fil_system->can_open); goto loop; } fil_system->max_n_open--; mutex_exit(&(fil_system->mutex)); } /*********************************************************************** Releases a right to open a single file. */ void fil_release_right_to_open(void) /*===========================*/ { mutex_enter(&(fil_system->mutex)); if (fil_system->n_open_pending == fil_system->max_n_open) { os_event_set(fil_system->can_open); } fil_system->max_n_open++; mutex_exit(&(fil_system->mutex)); } /*********************************************************************** Returns the latch of a file space. */ rw_lock_t* fil_space_get_latch( /*================*/ /* out: latch protecting storage allocation */ ulint id) /* in: space id */ { fil_space_t* space; fil_system_t* system = fil_system; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); mutex_exit(&(system->mutex)); return(&(space->latch)); } /*********************************************************************** Returns the type of a file space. */ ulint fil_space_get_type( /*===============*/ /* out: FIL_TABLESPACE or FIL_LOG */ ulint id) /* in: space id */ { fil_space_t* space; fil_system_t* system = fil_system; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); mutex_exit(&(system->mutex)); return(space->purpose); } /*********************************************************************** Returns the ibuf data of a file space. */ ibuf_data_t* fil_space_get_ibuf_data( /*====================*/ /* out: ibuf data for this space */ ulint id) /* in: space id */ { fil_space_t* space; fil_system_t* system = fil_system; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); mutex_exit(&(system->mutex)); return(space->ibuf_data); } /*********************************************************************** Appends a new file to the chain of files of a space. File must be closed. */ void fil_node_create( /*============*/ char* name, /* in: file name (file must be closed) */ ulint size, /* in: file size in database blocks, rounded downwards to an integer */ ulint id) /* in: space id where to append */ { fil_node_t* node; fil_space_t* space; char* name2; fil_system_t* system = fil_system; ut_a(system); ut_a(name); ut_a(size > 0); mutex_enter(&(system->mutex)); node = mem_alloc(sizeof(fil_node_t)); name2 = mem_alloc(ut_strlen(name) + 1); ut_strcpy(name2, name); node->name = name2; node->open = FALSE; node->size = size; node->magic_n = FIL_NODE_MAGIC_N; node->n_pending = 0; node->is_modified = FALSE; HASH_SEARCH(hash, system->spaces, id, space, space->id == id); space->size += size; UT_LIST_ADD_LAST(chain, space->chain, node); mutex_exit(&(system->mutex)); } /************************************************************************** Closes a file. */ static void fil_node_close( /*===========*/ fil_node_t* node, /* in: file node */ fil_system_t* system) /* in: file system */ { ibool ret; ut_ad(node && system); ut_ad(mutex_own(&(system->mutex))); ut_a(node->open); ut_a(node->n_pending == 0); ret = os_file_close(node->handle); ut_a(ret); node->open = FALSE; /* The node is in the LRU list, remove it */ UT_LIST_REMOVE(LRU, system->LRU, node); } /*********************************************************************** Frees a file node object from a file system. */ static void fil_node_free( /*==========*/ fil_node_t* node, /* in, own: file node */ fil_system_t* system, /* in: file system */ fil_space_t* space) /* in: space where the file node is chained */ { ut_ad(node && system && space); ut_ad(mutex_own(&(system->mutex))); ut_a(node->magic_n == FIL_NODE_MAGIC_N); if (node->open) { fil_node_close(node, system); } space->size -= node->size; UT_LIST_REMOVE(chain, space->chain, node); mem_free(node->name); mem_free(node); } /******************************************************************** Drops files from the start of a file space, so that its size is cut by the amount given. */ void fil_space_truncate_start( /*=====================*/ ulint id, /* in: space id */ ulint trunc_len) /* in: truncate by this much; it is an error if this does not equal to the combined size of some initial files in the space */ { fil_node_t* node; fil_space_t* space; fil_system_t* system = fil_system; mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); ut_a(space); while (trunc_len > 0) { node = UT_LIST_GET_FIRST(space->chain); ut_a(node->size * UNIV_PAGE_SIZE >= trunc_len); trunc_len -= node->size * UNIV_PAGE_SIZE; fil_node_free(node, system, space); } mutex_exit(&(system->mutex)); } /******************************************************************** Creates a file system object. */ static fil_system_t* fil_system_create( /*==============*/ /* out, own: file system object */ ulint hash_size, /* in: hash table size */ ulint max_n_open) /* in: maximum number of open files */ { fil_system_t* system; ut_a(hash_size > 0); ut_a(max_n_open > 0); system = mem_alloc(sizeof(fil_system_t)); mutex_create(&(system->mutex)); mutex_set_level(&(system->mutex), SYNC_ANY_LATCH); system->spaces = hash_create(hash_size); UT_LIST_INIT(system->LRU); system->n_open_pending = 0; system->max_n_open = max_n_open; system->can_open = os_event_create(NULL); UT_LIST_INIT(system->space_list); return(system); } /******************************************************************** Initializes the file system of this module. */ void fil_init( /*=====*/ ulint max_n_open) /* in: max number of open files */ { ut_a(fil_system == NULL); fil_system = fil_system_create(FIL_SYSTEM_HASH_SIZE, max_n_open); } /******************************************************************** Writes the flushed lsn to the header of each file space. */ void fil_ibuf_init_at_db_start(void) /*===========================*/ { fil_space_t* space; space = UT_LIST_GET_FIRST(fil_system->space_list); while (space) { if (space->purpose == FIL_TABLESPACE) { space->ibuf_data = ibuf_data_init_for_space(space->id); } space = UT_LIST_GET_NEXT(space_list, space); } } /******************************************************************** Writes the flushed lsn and the latest archived log number to the page header of the first page of a data file. */ static ulint fil_write_lsn_and_arch_no_to_file( /*==============================*/ ulint space_id, /* in: space number */ ulint sum_of_sizes, /* in: combined size of previous files in space, in database pages */ dulint lsn, /* in: lsn to write */ ulint arch_log_no) /* in: archived log number to write */ { byte* buf1; byte* buf; buf1 = mem_alloc(2 * UNIV_PAGE_SIZE); buf = ut_align(buf1, UNIV_PAGE_SIZE); fil_read(TRUE, space_id, sum_of_sizes, 0, UNIV_PAGE_SIZE, buf, NULL); mach_write_to_8(buf + FIL_PAGE_FILE_FLUSH_LSN, lsn); mach_write_to_4(buf + FIL_PAGE_ARCH_LOG_NO, arch_log_no); fil_write(TRUE, space_id, sum_of_sizes, 0, UNIV_PAGE_SIZE, buf, NULL); return(DB_SUCCESS); } /******************************************************************** Writes the flushed lsn and the latest archived log number to the page header of the first page of each data file. */ ulint fil_write_flushed_lsn_to_data_files( /*================================*/ /* out: DB_SUCCESS or error number */ dulint lsn, /* in: lsn to write */ ulint arch_log_no) /* in: latest archived log file number */ { fil_space_t* space; fil_node_t* node; ulint sum_of_sizes; ulint err; mutex_enter(&(fil_system->mutex)); space = UT_LIST_GET_FIRST(fil_system->space_list); while (space) { if (space->purpose == FIL_TABLESPACE) { sum_of_sizes = 0; node = UT_LIST_GET_FIRST(space->chain); while (node) { mutex_exit(&(fil_system->mutex)); err = fil_write_lsn_and_arch_no_to_file( space->id, sum_of_sizes, lsn, arch_log_no); if (err != DB_SUCCESS) { return(err); } mutex_enter(&(fil_system->mutex)); sum_of_sizes += node->size; node = UT_LIST_GET_NEXT(chain, node); } } space = UT_LIST_GET_NEXT(space_list, space); } mutex_exit(&(fil_system->mutex)); return(DB_SUCCESS); } /*********************************************************************** Reads the flushed lsn and arch no fields from a data file at database startup. */ void fil_read_flushed_lsn_and_arch_log_no( /*=================================*/ os_file_t data_file, /* in: open data file */ ibool one_read_already, /* in: TRUE if min and max parameters below already contain sensible data */ dulint* min_flushed_lsn, /* in/out: */ ulint* min_arch_log_no, /* in/out: */ dulint* max_flushed_lsn, /* in/out: */ ulint* max_arch_log_no) /* in/out: */ { byte* buf; byte* buf2; dulint flushed_lsn; ulint arch_log_no; buf2 = ut_malloc(2 * UNIV_PAGE_SIZE); /* Align the memory for a possible read from a raw device */ buf = ut_align(buf2, UNIV_PAGE_SIZE); os_file_read(data_file, buf, 0, 0, UNIV_PAGE_SIZE); flushed_lsn = mach_read_from_8(buf + FIL_PAGE_FILE_FLUSH_LSN); arch_log_no = mach_read_from_4(buf + FIL_PAGE_ARCH_LOG_NO); ut_free(buf2); if (!one_read_already) { *min_flushed_lsn = flushed_lsn; *max_flushed_lsn = flushed_lsn; *min_arch_log_no = arch_log_no; *max_arch_log_no = arch_log_no; return; } if (ut_dulint_cmp(*min_flushed_lsn, flushed_lsn) > 0) { *min_flushed_lsn = flushed_lsn; } if (ut_dulint_cmp(*max_flushed_lsn, flushed_lsn) < 0) { *max_flushed_lsn = flushed_lsn; } if (*min_arch_log_no > arch_log_no) { *min_arch_log_no = arch_log_no; } if (*max_arch_log_no < arch_log_no) { *max_arch_log_no = arch_log_no; } } /*********************************************************************** Creates a space object and puts it to the file system. */ void fil_space_create( /*=============*/ char* name, /* in: space name */ ulint id, /* in: space id */ ulint purpose)/* in: FIL_TABLESPACE, or FIL_LOG if log */ { fil_space_t* space; char* name2; fil_system_t* system = fil_system; ut_a(system); ut_a(name); #ifndef UNIV_BASIC_LOG_DEBUG /* Spaces with an odd id number are reserved to replicate spaces used in log debugging */ ut_a((purpose == FIL_LOG) || (id % 2 == 0)); #endif mutex_enter(&(system->mutex)); space = mem_alloc(sizeof(fil_space_t)); name2 = mem_alloc(ut_strlen(name) + 1); ut_strcpy(name2, name); space->name = name2; space->id = id; space->purpose = purpose; space->size = 0; space->n_reserved_extents = 0; UT_LIST_INIT(space->chain); space->magic_n = FIL_SPACE_MAGIC_N; space->ibuf_data = NULL; rw_lock_create(&(space->latch)); rw_lock_set_level(&(space->latch), SYNC_FSP); HASH_INSERT(fil_space_t, hash, system->spaces, id, space); UT_LIST_ADD_LAST(space_list, system->space_list, space); mutex_exit(&(system->mutex)); } /*********************************************************************** Frees a space object from a file system. Closes the files in the chain but does not delete them. */ void fil_space_free( /*===========*/ ulint id) /* in: space id */ { fil_space_t* space; fil_node_t* fil_node; fil_system_t* system = fil_system; mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); HASH_DELETE(fil_space_t, hash, system->spaces, id, space); UT_LIST_REMOVE(space_list, system->space_list, space); ut_a(space->magic_n == FIL_SPACE_MAGIC_N); fil_node = UT_LIST_GET_FIRST(space->chain); ut_d(UT_LIST_VALIDATE(chain, fil_node_t, space->chain)); while (fil_node != NULL) { fil_node_free(fil_node, system, space); fil_node = UT_LIST_GET_FIRST(space->chain); } ut_d(UT_LIST_VALIDATE(chain, fil_node_t, space->chain)); ut_ad(0 == UT_LIST_GET_LEN(space->chain)); mutex_exit(&(system->mutex)); mem_free(space->name); mem_free(space); } /*********************************************************************** Returns the size of the space in pages. */ ulint fil_space_get_size( /*===============*/ /* out: space size */ ulint id) /* in: space id */ { fil_space_t* space; fil_system_t* system = fil_system; ulint size; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); size = space->size; mutex_exit(&(system->mutex)); return(size); } /*********************************************************************** Checks if the pair space, page_no refers to an existing page in a tablespace file space. */ ibool fil_check_adress_in_tablespace( /*===========================*/ /* out: TRUE if the address is meaningful */ ulint id, /* in: space id */ ulint page_no)/* in: page number */ { fil_space_t* space; fil_system_t* system = fil_system; ulint size; ibool ret; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); if (space == NULL) { ret = FALSE; } else { size = space->size; if (page_no > size) { ret = FALSE; } else if (space->purpose != FIL_TABLESPACE) { ret = FALSE; } else { ret = TRUE; } } mutex_exit(&(system->mutex)); return(ret); } /*********************************************************************** Tries to reserve free extents in a file space. */ ibool fil_space_reserve_free_extents( /*===========================*/ /* out: TRUE if succeed */ ulint id, /* in: space id */ ulint n_free_now, /* in: number of free extents now */ ulint n_to_reserve) /* in: how many one wants to reserve */ { fil_space_t* space; fil_system_t* system = fil_system; ibool success; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); if (space->n_reserved_extents + n_to_reserve > n_free_now) { success = FALSE; } else { space->n_reserved_extents += n_to_reserve; success = TRUE; } mutex_exit(&(system->mutex)); return(success); } /*********************************************************************** Releases free extents in a file space. */ void fil_space_release_free_extents( /*===========================*/ ulint id, /* in: space id */ ulint n_reserved) /* in: how many one reserved */ { fil_space_t* space; fil_system_t* system = fil_system; ut_ad(system); mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, id, space, space->id == id); ut_a(space->n_reserved_extents >= n_reserved); space->n_reserved_extents -= n_reserved; mutex_exit(&(system->mutex)); } /************************************************************************ Prepares a file node for i/o. Opens the file if it is closed. Updates the pending i/o's field in the node and the system appropriately. Takes the node off the LRU list if it is in the LRU list. */ static void fil_node_prepare_for_io( /*====================*/ fil_node_t* node, /* in: file node */ fil_system_t* system, /* in: file system */ fil_space_t* space) /* in: space */ { ibool ret; fil_node_t* last_node; ut_ad(node && system && space); ut_ad(mutex_own(&(system->mutex))); if (node->open == FALSE) { /* File is closed */ ut_a(node->n_pending == 0); /* If too many files are open, close one */ if (system->n_open_pending + UT_LIST_GET_LEN(system->LRU) == system->max_n_open) { ut_a(UT_LIST_GET_LEN(system->LRU) > 0); last_node = UT_LIST_GET_LAST(system->LRU); if (last_node == NULL) { fprintf(stderr, "InnoDB: Error: cannot close any file to open another for i/o\n" "InnoDB: Pending i/o's on %lu files exist\n", system->n_open_pending); ut_a(0); } fil_node_close(last_node, system); } if (space->purpose == FIL_LOG) { node->handle = os_file_create(node->name, OS_FILE_OPEN, OS_FILE_AIO, OS_LOG_FILE, &ret); } else { node->handle = os_file_create(node->name, OS_FILE_OPEN, OS_FILE_AIO, OS_DATA_FILE, &ret); } ut_a(ret); node->open = TRUE; system->n_open_pending++; node->n_pending = 1; /* File was closed: the node was not in the LRU list */ return; } /* File is open */ if (node->n_pending == 0) { /* The node is in the LRU list, remove it */ UT_LIST_REMOVE(LRU, system->LRU, node); system->n_open_pending++; node->n_pending = 1; } else { /* There is already a pending i/o-op on the file: the node is not in the LRU list */ node->n_pending++; } } /************************************************************************ Updates the data structures when an i/o operation finishes. Updates the pending i/os field in the node and the system appropriately. Puts the node in the LRU list if there are no other pending i/os. */ static void fil_node_complete_io( /*=================*/ fil_node_t* node, /* in: file node */ fil_system_t* system, /* in: file system */ ulint type) /* in: OS_FILE_WRITE or ..._READ */ { ut_ad(node); ut_ad(system); ut_ad(mutex_own(&(system->mutex))); ut_a(node->n_pending > 0); node->n_pending--; if (type != OS_FILE_READ) { node->is_modified = TRUE; } if (node->n_pending == 0) { /* The node must be put back to the LRU list */ UT_LIST_ADD_FIRST(LRU, system->LRU, node); ut_a(system->n_open_pending > 0); system->n_open_pending--; if (system->n_open_pending == system->max_n_open - 1) { os_event_set(system->can_open); } } } /************************************************************************** Tries to extend a data file by the number of pages given. Any fractions of a megabyte are ignored. */ ibool fil_extend_last_data_file( /*======================*/ /* out: TRUE if success, also if we run out of disk space we may return TRUE */ ulint* actual_increase,/* out: number of pages we were able to extend, here the orginal size of the file and the resulting size of the file are rounded downwards to a full megabyte, and the difference expressed in pages is returned */ ulint size_increase) /* in: try to extend this many pages */ { fil_node_t* node; fil_space_t* space; fil_system_t* system = fil_system; byte* buf2; byte* buf; ibool success; ulint i; mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, 0, space, space->id == 0); ut_a(space); node = UT_LIST_GET_LAST(space->chain); fil_node_prepare_for_io(node, system, space); buf2 = mem_alloc(1024 * 1024 + UNIV_PAGE_SIZE); buf = ut_align(buf2, UNIV_PAGE_SIZE); memset(buf, '\0', 1024 * 1024); for (i = 0; i < size_increase / ((1024 * 1024) / UNIV_PAGE_SIZE); i++) { /* If we use native Windows aio, then also this write is done using it */ success = os_aio(OS_FILE_WRITE, OS_AIO_SYNC, node->name, node->handle, buf, (node->size << UNIV_PAGE_SIZE_SHIFT) & 0xFFFFFFFF, node->size >> (32 - UNIV_PAGE_SIZE_SHIFT), 1024 * 1024, NULL, NULL); if (!success) { break; } node->size += ((1024 * 1024) / UNIV_PAGE_SIZE); space->size += ((1024 * 1024) / UNIV_PAGE_SIZE); os_has_said_disk_full = FALSE; } mem_free(buf2); fil_node_complete_io(node, system, OS_FILE_WRITE); mutex_exit(&(system->mutex)); *actual_increase = i * ((1024 * 1024) / UNIV_PAGE_SIZE); fil_flush(0); srv_data_file_sizes[srv_n_data_files - 1] += *actual_increase; return(TRUE); } /************************************************************************ Reads or writes data. This operation is asynchronous (aio). */ void fil_io( /*===*/ ulint type, /* in: OS_FILE_READ or OS_FILE_WRITE, ORed to OS_FILE_LOG, if a log i/o and ORed to OS_AIO_SIMULATED_WAKE_LATER if simulated aio and we want to post a batch of i/os; NOTE that a simulated batch may introduce hidden chances of deadlocks, because i/os are not actually handled until all have been posted: use with great caution! */ ibool sync, /* in: TRUE if synchronous aio is desired */ ulint space_id, /* in: space id */ ulint block_offset, /* in: offset in number of blocks */ ulint byte_offset, /* in: remainder of offset in bytes; in aio this must be divisible by the OS block size */ ulint len, /* in: how many bytes to read or write; this must not cross a file boundary; in aio this must be a block size multiple */ void* buf, /* in/out: buffer where to store read data or from where to write; in aio this must be appropriately aligned */ void* message) /* in: message for aio handler if non-sync aio used, else ignored */ { ulint mode; fil_space_t* space; fil_node_t* node; ulint offset_high; ulint offset_low; fil_system_t* system; os_event_t event; ibool ret; ulint is_log; ulint wake_later; ulint count; is_log = type & OS_FILE_LOG; type = type & ~OS_FILE_LOG; wake_later = type & OS_AIO_SIMULATED_WAKE_LATER; type = type & ~OS_AIO_SIMULATED_WAKE_LATER; ut_ad(byte_offset < UNIV_PAGE_SIZE); ut_ad(buf); ut_ad(len > 0); ut_ad((1 << UNIV_PAGE_SIZE_SHIFT) == UNIV_PAGE_SIZE); ut_ad(fil_validate()); #ifndef UNIV_LOG_DEBUG /* ibuf bitmap pages must be read in the sync aio mode: */ ut_ad(recv_no_ibuf_operations || (type == OS_FILE_WRITE) || !ibuf_bitmap_page(block_offset) || sync || is_log); #ifdef UNIV_SYNC_DEBUG ut_ad(!ibuf_inside() || is_log || (type == OS_FILE_WRITE) || ibuf_page(space_id, block_offset)); #endif #endif if (sync) { mode = OS_AIO_SYNC; } else if (type == OS_FILE_READ && !is_log && ibuf_page(space_id, block_offset)) { mode = OS_AIO_IBUF; } else if (is_log) { mode = OS_AIO_LOG; } else { mode = OS_AIO_NORMAL; } system = fil_system; count = 0; loop: count++; /* NOTE that there is a possibility of a hang here: if the read i/o-handler thread needs to complete a read by reading from the insert buffer, it may need to post another read. But if the maximum number of files are already open, it cannot proceed from here! */ mutex_enter(&(system->mutex)); if (count < 500 && !is_log && !ibuf_inside() && system->n_open_pending >= (3 * system->max_n_open) / 4) { /* We are not doing an ibuf operation: leave a safety margin of openable files for possible ibuf merges needed in page read completion */ mutex_exit(&(system->mutex)); /* Wake the i/o-handler threads to make sure pending i/o's are handled and eventually we can open the file */ os_aio_simulated_wake_handler_threads(); os_thread_sleep(100000); if (count > 50) { fprintf(stderr, "InnoDB: Warning: waiting for file closes to proceed\n" "InnoDB: round %lu\n", count); } goto loop; } if (system->n_open_pending == system->max_n_open) { /* It is not sure we can open the file if it is closed: wait */ event = system->can_open; os_event_reset(event); mutex_exit(&(system->mutex)); /* Wake the i/o-handler threads to make sure pending i/o's are handled and eventually we can open the file */ os_aio_simulated_wake_handler_threads(); fprintf(stderr, "InnoDB: Warning: max allowed number of files is open\n"); os_event_wait(event); goto loop; } HASH_SEARCH(hash, system->spaces, space_id, space, space->id == space_id); ut_a(space); ut_ad((mode != OS_AIO_IBUF) || (space->purpose == FIL_TABLESPACE)); node = UT_LIST_GET_FIRST(space->chain); for (;;) { if (node == NULL) { fprintf(stderr, "InnoDB: Error: trying to access page number %lu in space %lu\n" "InnoDB: which is outside the tablespace bounds.\n" "InnoDB: Byte offset %lu, len %lu, i/o type %lu\n", block_offset, space_id, byte_offset, len, type); ut_a(0); } if (node->size > block_offset) { /* Found! */ break; } else { block_offset -= node->size; node = UT_LIST_GET_NEXT(chain, node); } } /* Open file if closed */ fil_node_prepare_for_io(node, system, space); /* Now we have made the changes in the data structures of system */ mutex_exit(&(system->mutex)); /* Calculate the low 32 bits and the high 32 bits of the file offset */ offset_high = (block_offset >> (32 - UNIV_PAGE_SIZE_SHIFT)); offset_low = ((block_offset << UNIV_PAGE_SIZE_SHIFT) & 0xFFFFFFFF) + byte_offset; ut_a(node->size - block_offset >= (byte_offset + len + (UNIV_PAGE_SIZE - 1)) / UNIV_PAGE_SIZE); /* Do aio */ ut_a(byte_offset % OS_FILE_LOG_BLOCK_SIZE == 0); ut_a((len % OS_FILE_LOG_BLOCK_SIZE) == 0); /* Queue the aio request */ ret = os_aio(type, mode | wake_later, node->name, node->handle, buf, offset_low, offset_high, len, node, message); ut_a(ret); if (mode == OS_AIO_SYNC) { /* The i/o operation is already completed when we return from os_aio: */ mutex_enter(&(system->mutex)); fil_node_complete_io(node, system, type); mutex_exit(&(system->mutex)); ut_ad(fil_validate()); } } /************************************************************************ Reads data from a space to a buffer. Remember that the possible incomplete blocks at the end of file are ignored: they are not taken into account when calculating the byte offset within a space. */ void fil_read( /*=====*/ ibool sync, /* in: TRUE if synchronous aio is desired */ ulint space_id, /* in: space id */ ulint block_offset, /* in: offset in number of blocks */ ulint byte_offset, /* in: remainder of offset in bytes; in aio this must be divisible by the OS block size */ ulint len, /* in: how many bytes to read; this must not cross a file boundary; in aio this must be a block size multiple */ void* buf, /* in/out: buffer where to store data read; in aio this must be appropriately aligned */ void* message) /* in: message for aio handler if non-sync aio used, else ignored */ { fil_io(OS_FILE_READ, sync, space_id, block_offset, byte_offset, len, buf, message); } /************************************************************************ Writes data to a space from a buffer. Remember that the possible incomplete blocks at the end of file are ignored: they are not taken into account when calculating the byte offset within a space. */ void fil_write( /*======*/ ibool sync, /* in: TRUE if synchronous aio is desired */ ulint space_id, /* in: space id */ ulint block_offset, /* in: offset in number of blocks */ ulint byte_offset, /* in: remainder of offset in bytes; in aio this must be divisible by the OS block size */ ulint len, /* in: how many bytes to write; this must not cross a file boundary; in aio this must be a block size multiple */ void* buf, /* in: buffer from which to write; in aio this must be appropriately aligned */ void* message) /* in: message for aio handler if non-sync aio used, else ignored */ { fil_io(OS_FILE_WRITE, sync, space_id, block_offset, byte_offset, len, buf, message); } /************************************************************************** Waits for an aio operation to complete. This function is used to write the handler for completed requests. The aio array of pending requests is divided into segments (see os0file.c for more info). The thread specifies which segment it wants to wait for. */ void fil_aio_wait( /*=========*/ ulint segment) /* in: the number of the segment in the aio array to wait for */ { ibool ret; fil_node_t* fil_node; fil_system_t* system = fil_system; void* message; ulint type; ut_ad(fil_validate()); if (os_aio_use_native_aio) { srv_io_thread_op_info[segment] = (char *) "native aio handle"; #ifdef WIN_ASYNC_IO ret = os_aio_windows_handle(segment, 0, &fil_node, &message, &type); #elif defined(POSIX_ASYNC_IO) ret = os_aio_posix_handle(segment, &fil_node, &message); #else ret = 0; /* Eliminate compiler warning */ ut_a(0); #endif } else { srv_io_thread_op_info[segment] =(char *)"simulated aio handle"; ret = os_aio_simulated_handle(segment, (void**) &fil_node, &message, &type); } ut_a(ret); srv_io_thread_op_info[segment] = (char *) "complete io for fil node"; mutex_enter(&(system->mutex)); fil_node_complete_io(fil_node, fil_system, type); mutex_exit(&(system->mutex)); ut_ad(fil_validate()); /* Do the i/o handling */ if (buf_pool_is_block(message)) { srv_io_thread_op_info[segment] = (char *) "complete io for buf page"; buf_page_io_complete(message); } else { srv_io_thread_op_info[segment] =(char *) "complete io for log"; log_io_complete(message); } } /************************************************************************** Flushes to disk possible writes cached by the OS. */ void fil_flush( /*======*/ ulint space_id) /* in: file space id (this can be a group of log files or a tablespace of the database) */ { fil_system_t* system = fil_system; fil_space_t* space; fil_node_t* node; os_file_t file; mutex_enter(&(system->mutex)); HASH_SEARCH(hash, system->spaces, space_id, space, space->id == space_id); ut_a(space); node = UT_LIST_GET_FIRST(space->chain); while (node) { if (node->open && node->is_modified) { file = node->handle; node->is_modified = FALSE; if (space->purpose == FIL_TABLESPACE) { fil_n_pending_tablespace_flushes++; } else { fil_n_pending_log_flushes++; } mutex_exit(&(system->mutex)); /* Note that it is not certain, when we have released the mutex above, that the file of the handle is still open: we assume that the OS will not crash or trap even if we pass a handle to a closed file below in os_file_flush! */ /* printf("Flushing to file %s\n", node->name); */ os_file_flush(file); mutex_enter(&(system->mutex)); if (space->purpose == FIL_TABLESPACE) { fil_n_pending_tablespace_flushes--; } else { fil_n_pending_log_flushes--; } } node = UT_LIST_GET_NEXT(chain, node); } mutex_exit(&(system->mutex)); } /************************************************************************** Flushes to disk writes in file spaces of the given type possibly cached by the OS. */ void fil_flush_file_spaces( /*==================*/ ulint purpose) /* in: FIL_TABLESPACE, FIL_LOG */ { fil_system_t* system = fil_system; fil_space_t* space; mutex_enter(&(system->mutex)); space = UT_LIST_GET_FIRST(system->space_list); while (space) { if (space->purpose == purpose) { mutex_exit(&(system->mutex)); fil_flush(space->id); mutex_enter(&(system->mutex)); } space = UT_LIST_GET_NEXT(space_list, space); } mutex_exit(&(system->mutex)); } /********************************************************************** Checks the consistency of the file system. */ ibool fil_validate(void) /*==============*/ /* out: TRUE if ok */ { fil_space_t* space; fil_node_t* fil_node; ulint pending_count = 0; fil_system_t* system; ulint i; system = fil_system; mutex_enter(&(system->mutex)); /* Look for spaces in the hash table */ for (i = 0; i < hash_get_n_cells(system->spaces); i++) { space = HASH_GET_FIRST(system->spaces, i); while (space != NULL) { UT_LIST_VALIDATE(chain, fil_node_t, space->chain); fil_node = UT_LIST_GET_FIRST(space->chain); while (fil_node != NULL) { if (fil_node->n_pending > 0) { pending_count++; ut_a(fil_node->open); } fil_node = UT_LIST_GET_NEXT(chain, fil_node); } space = HASH_GET_NEXT(hash, space); } } ut_a(pending_count == system->n_open_pending); UT_LIST_VALIDATE(LRU, fil_node_t, system->LRU); fil_node = UT_LIST_GET_FIRST(system->LRU); while (fil_node != NULL) { ut_a(fil_node->n_pending == 0); ut_a(fil_node->open); fil_node = UT_LIST_GET_NEXT(LRU, fil_node); } mutex_exit(&(system->mutex)); return(TRUE); } /************************************************************************ Returns TRUE if file address is undefined. */ ibool fil_addr_is_null( /*=============*/ /* out: TRUE if undefined */ fil_addr_t addr) /* in: address */ { if (addr.page == FIL_NULL) { return(TRUE); } return(FALSE); } /************************************************************************ Accessor functions for a file page */ ulint fil_page_get_prev(byte* page) { return(mach_read_from_4(page + FIL_PAGE_PREV)); } ulint fil_page_get_next(byte* page) { return(mach_read_from_4(page + FIL_PAGE_NEXT)); } /************************************************************************* Sets the file page type. */ void fil_page_set_type( /*==============*/ byte* page, /* in: file page */ ulint type) /* in: type */ { ut_ad(page); mach_write_to_2(page + FIL_PAGE_TYPE, type); } /************************************************************************* Gets the file page type. */ ulint fil_page_get_type( /*==============*/ /* out: type; NOTE that if the type has not been written to page, the return value not defined */ byte* page) /* in: file page */ { ut_ad(page); return(mach_read_from_2(page + FIL_PAGE_TYPE)); }