/****************************************************** The database buffer read (c) 1995 Innobase Oy Created 11/5/1995 Heikki Tuuri *******************************************************/ #ifndef buf0rea_h #define buf0rea_h #include "univ.i" #include "buf0types.h" /************************************************************************ High-level function which reads a page asynchronously from a file to the buffer buf_pool if it is not already there. Sets the io_fix flag and sets an exclusive lock on the buffer frame. The flag is cleared and the x-lock released by the i/o-handler thread. Does a random read-ahead if it seems sensible. */ ulint buf_read_page( /*==========*/ /* out: number of page read requests issued: this can be > 1 if read-ahead occurred */ ulint space, /* in: space id */ ulint offset);/* in: page number */ /************************************************************************ Applies linear read-ahead if in the buf_pool the page is a border page of a linear read-ahead area and all the pages in the area have been accessed. Does not read any page if the read-ahead mechanism is not activated. Note that the the algorithm looks at the 'natural' adjacent successor and predecessor of the page, which on the leaf level of a B-tree are the next and previous page in the chain of leaves. To know these, the page specified in (space, offset) must already be present in the buf_pool. Thus, the natural way to use this function is to call it when a page in the buf_pool is accessed the first time, calling this function just after it has been bufferfixed. NOTE 1: as this function looks at the natural predecessor and successor fields on the page, what happens, if these are not initialized to any sensible value? No problem, before applying read-ahead we check that the area to read is within the span of the space, if not, read-ahead is not applied. An uninitialized value may result in a useless read operation, but only very improbably. NOTE 2: the calling thread may own latches on pages: to avoid deadlocks this function must be written such that it cannot end up waiting for these latches! NOTE 3: the calling thread must want access to the page given: this rule is set to prevent unintended read-aheads performed by ibuf routines, a situation which could result in a deadlock if the OS does not support asynchronous io. */ ulint buf_read_ahead_linear( /*==================*/ /* out: number of page read requests issued */ ulint space, /* in: space id */ ulint offset);/* in: page number of a page; NOTE: the current thread must want access to this page (see NOTE 3 above) */ /************************************************************************ Issues read requests for pages which the ibuf module wants to read in, in order to contract insert buffer trees. Technically, this function is like a read-ahead function. */ void buf_read_ibuf_merge_pages( /*======================*/ ibool sync, /* in: TRUE if the caller wants this function to wait for the highest address page to get read in, before this function returns */ ulint space, /* in: space id */ ulint* page_nos, /* in: array of page numbers to read, with the highest page number last in the array */ ulint n_stored); /* in: number of page numbers in the array */ /************************************************************************ Issues read requests for pages which recovery wants to read in. */ void buf_read_recv_pages( /*================*/ ibool sync, /* in: TRUE if the caller wants this function to wait for the highest address page to get read in, before this function returns */ ulint space, /* in: space id */ ulint* page_nos, /* in: array of page numbers to read, with the highest page number the last in the array */ ulint n_stored); /* in: number of page numbers in the array */ /* The size in pages of the area which the read-ahead algorithms read if invoked */ #define BUF_READ_AHEAD_AREA ut_min(64, ut_2_power_up(buf_pool->curr_size / 32)) /* Modes used in read-ahead */ #define BUF_READ_IBUF_PAGES_ONLY 131 #define BUF_READ_ANY_PAGE 132 #endif