/* * Copyright (c) 1987, 1989 Regents of the University of California. * Copyright (c) 1994 Chris Provenzano, proven@mit.edu * All rights reserved. * * This code is derived from software contributed to Berkeley by * Arthur David Olson of the National Cancer Institute. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)ctime.c 5.26 (Berkeley) 2/23/91"; #endif /* LIBC_SCCS and not lint */ /* ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu). ** POSIX-style TZ environment variable handling from Guy Harris ** (guy@auspex.com). */ /*LINTLIBRARY*/ #include "config.h" #include #include #include #include #include #include #include #include #include #include #ifndef WILDABBR /* ** Someone might make incorrect use of a time zone abbreviation: ** 1. They might reference tzname[0] before calling tzset (explicitly ** or implicitly). ** 2. They might reference tzname[1] before calling tzset (explicitly ** or implicitly). ** 3. They might reference tzname[1] after setting to a time zone ** in which Daylight Saving Time is never observed. ** 4. They might reference tzname[0] after setting to a time zone ** in which Standard Time is never observed. ** 5. They might reference tm.TM_ZONE after calling offtime. ** What's best to do in the above cases is open to debate; ** for now, we just set things up so that in any of the five cases ** WILDABBR is used. Another possibility: initialize tzname[0] to the ** string "tzname[0] used before set", and similarly for the other cases. ** And another: initialize tzname[0] to "ERA", with an explanation in the ** manual page of what this "time zone abbreviation" means (doing this so ** that tzname[0] has the "normal" length of three characters). */ #define WILDABBR " " #endif /* !defined WILDABBR */ #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif /* !defined TRUE */ static const char GMT[] = "GMT"; struct ttinfo { /* time type information */ long tt_gmtoff; /* GMT offset in seconds */ int tt_isdst; /* used to set tm_isdst */ int tt_abbrind; /* abbreviation list index */ int tt_ttisstd; /* TRUE if transition is std time */ }; struct lsinfo { /* leap second information */ time_t ls_trans; /* transition time */ long ls_corr; /* correction to apply */ }; struct state { int leapcnt; int timecnt; int typecnt; int charcnt; time_t ats[TZ_MAX_TIMES]; unsigned char types[TZ_MAX_TIMES]; struct ttinfo ttis[TZ_MAX_TYPES]; char chars[(TZ_MAX_CHARS + 1 > sizeof GMT) ? TZ_MAX_CHARS + 1 : sizeof GMT]; struct lsinfo lsis[TZ_MAX_LEAPS]; }; struct rule { int r_type; /* type of rule--see below */ int r_day; /* day number of rule */ int r_week; /* week number of rule */ int r_mon; /* month number of rule */ long r_time; /* transition time of rule */ }; #define JULIAN_DAY 0 /* Jn - Julian day */ #define DAY_OF_YEAR 1 /* n - day of year */ #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ /* ** Prototypes for static functions. */ static long detzcode __P_((const char *)); static const char * getnum __P_((const char *, int *, int, int)); static const char * getsecs __P_((const char *, long *)); static const char * getoffset __P_((const char *, long *)); static const char * getrule __P_((const char *, struct rule *)); static const char * getzname __P_((const char *)); static void gmtload __P_((struct state *)); static void gmtsub __P_((const time_t *, long, struct tm *)); static void localsub __P_((const time_t *, long, struct tm *)); static void normalize __P_((int *, int *, int)); static void settzname __P_((struct state *)); static time_t time1 __P_((struct tm *, long)); static time_t time2 __P_((struct tm *, long, int *)); static void timesub __P_((const time_t *, long, const struct state *, struct tm *)); static int tmcomp __P_((const struct tm *, const struct tm *)); static time_t transtime __P_((time_t, int, const struct rule *, long)); static int tzload __P_((const char *, struct state *)); static int tzparse __P_((const char *, struct state *, int)); static void tzset_basic __P_((void)); static void tzsetwall_basic __P_((void)); static pthread_mutex_t lcl_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t gmt_mutex = PTHREAD_MUTEX_INITIALIZER; static int lcl_is_set = FALSE; static int gmt_is_set = FALSE; static struct state lclmem; static struct state gmtmem; #define lclptr (&lclmem) #define gmtptr (&gmtmem) char * tzname[2] = { WILDABBR, WILDABBR }; #ifdef USG_COMPAT time_t timezone = 0; int daylight = 0; #endif /* defined USG_COMPAT */ #ifdef ALTZONE time_t altzone = 0; #endif /* defined ALTZONE */ static long detzcode(const char * codep) { long result; int i; result = 0; for (i = 0; i < 4; ++i) result = (result << 8) | (codep[i] & 0xff); return result; } static void settzname(struct state * sp) { register int i; tzname[0] = WILDABBR; tzname[1] = WILDABBR; #ifdef USG_COMPAT daylight = 0; timezone = 0; #endif /* defined USG_COMPAT */ #ifdef ALTZONE altzone = 0; #endif /* defined ALTZONE */ for (i = 0; i < sp->typecnt; ++i) { register const struct ttinfo * const ttisp = &sp->ttis[i]; tzname[ttisp->tt_isdst] = (char *) &sp->chars[ttisp->tt_abbrind]; #ifdef USG_COMPAT if (ttisp->tt_isdst) daylight = 1; if (i == 0 || !ttisp->tt_isdst) timezone = -(ttisp->tt_gmtoff); #endif /* defined USG_COMPAT */ #ifdef ALTZONE if (i == 0 || ttisp->tt_isdst) altzone = -(ttisp->tt_gmtoff); #endif /* defined ALTZONE */ } /* ** And to get the latest zone names into tzname. . . */ for (i = 0; i < sp->timecnt; ++i) { register const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]]; tzname[ttisp->tt_isdst] = (char *) &sp->chars[ttisp->tt_abbrind]; } } static int tzload(const char * name, struct state * sp) { register const char * p; register int i; register int fid; if (name == NULL && (name = TZDEFAULT) == NULL) return -1; { char fullname[FILENAME_MAX + 1]; if (name[0] == ':') ++name; if (name[0] != '/') { if ((p = TZDIR) == NULL) return -1; if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) return -1; (void) strcpy(fullname, p); (void) strcat(fullname, "/"); (void) strcat(fullname, name); name = fullname; } if ((fid = open(name, O_RDONLY)) == -1) return -1; } { register const struct tzhead * tzhp; char buf[sizeof *sp + sizeof *tzhp]; int ttisstdcnt; i = read(fid, buf, sizeof buf); if (close(fid) != 0 || i < sizeof *tzhp) return -1; tzhp = (struct tzhead *) buf; ttisstdcnt = (int) detzcode(tzhp->tzh_ttisstdcnt); sp->leapcnt = (int) detzcode(tzhp->tzh_leapcnt); sp->timecnt = (int) detzcode(tzhp->tzh_timecnt); sp->typecnt = (int) detzcode(tzhp->tzh_typecnt); sp->charcnt = (int) detzcode(tzhp->tzh_charcnt); if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || (ttisstdcnt != sp->typecnt && ttisstdcnt != 0)) return -1; if (i < sizeof *tzhp + sp->timecnt * (4 + sizeof (char)) + sp->typecnt * (4 + 2 * sizeof (char)) + sp->charcnt * sizeof (char) + sp->leapcnt * 2 * 4 + ttisstdcnt * sizeof (char)) return -1; p = buf + sizeof *tzhp; for (i = 0; i < sp->timecnt; ++i) { sp->ats[i] = detzcode(p); p += 4; } for (i = 0; i < sp->timecnt; ++i) { sp->types[i] = (unsigned char) *p++; if (sp->types[i] >= sp->typecnt) return -1; } for (i = 0; i < sp->typecnt; ++i) { register struct ttinfo * ttisp; ttisp = &sp->ttis[i]; ttisp->tt_gmtoff = detzcode(p); p += 4; ttisp->tt_isdst = (unsigned char) *p++; if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) return -1; ttisp->tt_abbrind = (unsigned char) *p++; if (ttisp->tt_abbrind < 0 || ttisp->tt_abbrind > sp->charcnt) return -1; } for (i = 0; i < sp->charcnt; ++i) sp->chars[i] = *p++; sp->chars[i] = '\0'; /* ensure '\0' at end */ for (i = 0; i < sp->leapcnt; ++i) { register struct lsinfo * lsisp; lsisp = &sp->lsis[i]; lsisp->ls_trans = detzcode(p); p += 4; lsisp->ls_corr = detzcode(p); p += 4; } for (i = 0; i < sp->typecnt; ++i) { register struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisstdcnt == 0) ttisp->tt_ttisstd = FALSE; else { ttisp->tt_ttisstd = *p++; if (ttisp->tt_ttisstd != TRUE && ttisp->tt_ttisstd != FALSE) return -1; } } } return 0; } static const int mon_lengths[2][MONSPERYEAR] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static const int year_lengths[2] = { DAYSPERNYEAR, DAYSPERLYEAR }; /* ** Given a pointer into a time zone string, scan until a character that is not ** a valid character in a zone name is found. Return a pointer to that ** character. */ static const char * getzname(const char * strp) { register char c; while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' && c != '+') ++strp; return strp; } /* ** Given a pointer into a time zone string, extract a number from that string. ** Check that the number is within a specified range; if it is not, return ** NULL. ** Otherwise, return a pointer to the first character not part of the number. */ static const char *getnum(const char * strp, int * nump, int min, int max) { char c; int num; if (strp == NULL || !isdigit(*strp)) return NULL; num = 0; while ((c = *strp) != '\0' && isdigit(c)) { num = num * 10 + (c - '0'); if (num > max) return NULL; /* illegal value */ ++strp; } if (num < min) return NULL; /* illegal value */ *nump = num; return strp; } /* ** Given a pointer into a time zone string, extract a number of seconds, ** in hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the number ** of seconds. */ static const char * getsecs(const char * strp, long * secsp) { int num; strp = getnum(strp, &num, 0, HOURSPERDAY); if (strp == NULL) return NULL; *secsp = num * SECSPERHOUR; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, MINSPERHOUR - 1); if (strp == NULL) return NULL; *secsp += num * SECSPERMIN; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, SECSPERMIN - 1); if (strp == NULL) return NULL; *secsp += num; } } return strp; } /* ** Given a pointer into a time zone string, extract an offset, in ** [+-]hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the time. */ static const char * getoffset(const char * strp, long * offsetp) { int neg; if (*strp == '-') { neg = 1; ++strp; } else if (isdigit(*strp) || *strp++ == '+') neg = 0; else return NULL; /* illegal offset */ strp = getsecs(strp, offsetp); if (strp == NULL) return NULL; /* illegal time */ if (neg) *offsetp = -*offsetp; return strp; } /* ** Given a pointer into a time zone string, extract a rule in the form ** date[/time]. See POSIX section 8 for the format of "date" and "time". ** If a valid rule is not found, return NULL. ** Otherwise, return a pointer to the first character not part of the rule. */ static const char * getrule(const char * strp, struct rule * rulep) { if (*strp == 'J') { /* ** Julian day. */ rulep->r_type = JULIAN_DAY; ++strp; strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); } else if (*strp == 'M') { /* ** Month, week, day. */ rulep->r_type = MONTH_NTH_DAY_OF_WEEK; ++strp; strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_week, 1, 5); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); } else if (isdigit(*strp)) { /* ** Day of year. */ rulep->r_type = DAY_OF_YEAR; strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); } else return NULL; /* invalid format */ if (strp == NULL) return NULL; if (*strp == '/') { /* ** Time specified. */ ++strp; strp = getsecs(strp, &rulep->r_time); } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ return strp; } /* ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the ** year, a rule, and the offset from GMT at the time that rule takes effect, ** calculate the Epoch-relative time that rule takes effect. */ static time_t transtime(time_t janfirst, int year, const struct rule * rulep, long offset) { register int leapyear; register time_t value; register int i; int d, m1, yy0, yy1, yy2, dow; leapyear = isleap(year); switch (rulep->r_type) { case JULIAN_DAY: /* ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap ** years. ** In non-leap years, or if the day number is 59 or less, just ** add SECSPERDAY times the day number-1 to the time of ** January 1, midnight, to get the day. */ value = janfirst + (rulep->r_day - 1) * SECSPERDAY; if (leapyear && rulep->r_day >= 60) value += SECSPERDAY; break; case DAY_OF_YEAR: /* ** n - day of year. ** Just add SECSPERDAY times the day number to the time of ** January 1, midnight, to get the day. */ value = janfirst + rulep->r_day * SECSPERDAY; break; case MONTH_NTH_DAY_OF_WEEK: /* ** Mm.n.d - nth "dth day" of month m. */ value = janfirst; for (i = 0; i < rulep->r_mon - 1; ++i) value += mon_lengths[leapyear][i] * SECSPERDAY; /* ** Use Zeller's Congruence to get day-of-week of first day of ** month. */ m1 = (rulep->r_mon + 9) % 12 + 1; yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; yy1 = yy0 / 100; yy2 = yy0 % 100; dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; if (dow < 0) dow += DAYSPERWEEK; /* ** "dow" is the day-of-week of the first day of the month. Get ** the day-of-month (zero-origin) of the first "dow" day of the ** month. */ d = rulep->r_day - dow; if (d < 0) d += DAYSPERWEEK; for (i = 1; i < rulep->r_week; ++i) { if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1]) break; d += DAYSPERWEEK; } /* ** "d" is the day-of-month (zero-origin) of the day we want. */ value += d * SECSPERDAY; break; } /* ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in ** question. To get the Epoch-relative time of the specified local ** time on that day, add the transition time and the current offset ** from GMT. */ return value + rulep->r_time + offset; } /* ** Given a POSIX section 8-style TZ string, fill in the rule tables as ** appropriate. */ static int tzparse(const char * name, struct state * sp, int lastditch) { const char * stdname; const char * dstname; int stdlen; int dstlen; long stdoffset; long dstoffset; register time_t * atp; register unsigned char * typep; register char * cp; register int load_result; stdname = name; if (lastditch) { stdlen = strlen(name); /* length of standard zone name */ name += stdlen; if (stdlen >= sizeof sp->chars) stdlen = (sizeof sp->chars) - 1; } else { name = getzname(name); stdlen = name - stdname; if (stdlen < 3) return -1; } if (*name == '\0') return -1; else { name = getoffset(name, &stdoffset); if (name == NULL) return -1; } load_result = tzload(TZDEFRULES, sp); if (load_result != 0) sp->leapcnt = 0; /* so, we're off a little */ if (*name != '\0') { dstname = name; name = getzname(name); dstlen = name - dstname; /* length of DST zone name */ if (dstlen < 3) return -1; if (*name != '\0' && *name != ',' && *name != ';') { name = getoffset(name, &dstoffset); if (name == NULL) return -1; } else dstoffset = stdoffset - SECSPERHOUR; if (*name == ',' || *name == ';') { struct rule start; struct rule end; register int year; register time_t janfirst; time_t starttime; time_t endtime; ++name; if ((name = getrule(name, &start)) == NULL) return -1; if (*name++ != ',') return -1; if ((name = getrule(name, &end)) == NULL) return -1; if (*name != '\0') return -1; sp->typecnt = 2; /* standard time and DST */ /* ** Two transitions per year, from EPOCH_YEAR to 2037. */ sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1); if (sp->timecnt > TZ_MAX_TIMES) return -1; sp->ttis[0].tt_gmtoff = -dstoffset; sp->ttis[0].tt_isdst = 1; sp->ttis[0].tt_abbrind = stdlen + 1; sp->ttis[1].tt_gmtoff = -stdoffset; sp->ttis[1].tt_isdst = 0; sp->ttis[1].tt_abbrind = 0; atp = sp->ats; typep = sp->types; janfirst = 0; for (year = EPOCH_YEAR; year <= 2037; ++year) { starttime = transtime(janfirst, year, &start, stdoffset); endtime = transtime(janfirst, year, &end, dstoffset); if (starttime > endtime) { *atp++ = endtime; *typep++ = 1; /* DST ends */ *atp++ = starttime; *typep++ = 0; /* DST begins */ } else { *atp++ = starttime; *typep++ = 0; /* DST begins */ *atp++ = endtime; *typep++ = 1; /* DST ends */ } janfirst += year_lengths[isleap(year)] * SECSPERDAY; } } else { int sawstd; int sawdst; long stdfix; long dstfix; long oldfix; int isdst; register int i; if (*name != '\0') return -1; if (load_result != 0) return -1; /* ** Compute the difference between the real and ** prototype standard and summer time offsets ** from GMT, and put the real standard and summer ** time offsets into the rules in place of the ** prototype offsets. */ sawstd = FALSE; sawdst = FALSE; stdfix = 0; dstfix = 0; for (i = 0; i < sp->typecnt; ++i) { if (sp->ttis[i].tt_isdst) { oldfix = dstfix; dstfix = sp->ttis[i].tt_gmtoff + dstoffset; if (sawdst && (oldfix != dstfix)) return -1; sp->ttis[i].tt_gmtoff = -dstoffset; sp->ttis[i].tt_abbrind = stdlen + 1; sawdst = TRUE; } else { oldfix = stdfix; stdfix = sp->ttis[i].tt_gmtoff + stdoffset; if (sawstd && (oldfix != stdfix)) return -1; sp->ttis[i].tt_gmtoff = -stdoffset; sp->ttis[i].tt_abbrind = 0; sawstd = TRUE; } } /* ** Make sure we have both standard and summer time. */ if (!sawdst || !sawstd) return -1; /* ** Now correct the transition times by shifting ** them by the difference between the real and ** prototype offsets. Note that this difference ** can be different in standard and summer time; ** the prototype probably has a 1-hour difference ** between standard and summer time, but a different ** difference can be specified in TZ. */ isdst = FALSE; /* we start in standard time */ for (i = 0; i < sp->timecnt; ++i) { register const struct ttinfo * ttisp; /* ** If summer time is in effect, and the ** transition time was not specified as ** standard time, add the summer time ** offset to the transition time; ** otherwise, add the standard time offset ** to the transition time. */ ttisp = &sp->ttis[sp->types[i]]; sp->ats[i] += (isdst && !ttisp->tt_ttisstd) ? dstfix : stdfix; isdst = ttisp->tt_isdst; } } } else { dstlen = 0; sp->typecnt = 1; /* only standard time */ sp->timecnt = 0; sp->ttis[0].tt_gmtoff = -stdoffset; sp->ttis[0].tt_isdst = 0; sp->ttis[0].tt_abbrind = 0; } sp->charcnt = stdlen + 1; if (dstlen != 0) sp->charcnt += dstlen + 1; if (sp->charcnt > sizeof sp->chars) return -1; cp = sp->chars; (void) strncpy(cp, stdname, stdlen); cp += stdlen; *cp++ = '\0'; if (dstlen != 0) { (void) strncpy(cp, dstname, dstlen); *(cp + dstlen) = '\0'; } return 0; } static void gmtload(struct state * sp) { if (tzload(GMT, sp) != 0) (void) tzparse(GMT, sp, TRUE); } static void tzset_basic() { const char * name; if ((name = getenv("TZ")) == NULL) { tzsetwall_basic(); return; } if (*name == '\0') { /* ** User wants it fast rather than right. */ lclptr->leapcnt = 0; /* so, we're off a little */ lclptr->timecnt = 0; lclptr->ttis[0].tt_gmtoff = 0; lclptr->ttis[0].tt_abbrind = 0; (void) strcpy(lclptr->chars, GMT); } else { if (tzload(name, lclptr) != 0) if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) (void) gmtload(lclptr); } lcl_is_set = TRUE; settzname(lclptr); } void tzset() { pthread_mutex_lock(&lcl_mutex); tzset_basic(); pthread_mutex_unlock(&lcl_mutex); } static void tzsetwall_basic() { if (tzload((char *) NULL, lclptr) != 0) gmtload(lclptr); settzname(lclptr); lcl_is_set = TRUE; } void tzsetwall() { pthread_mutex_lock(&lcl_mutex); tzsetwall_basic(); pthread_mutex_unlock(&lcl_mutex); } /* ** The easy way to behave "as if no library function calls" localtime ** is to not call it--so we drop its guts into "localsub", which can be ** freely called. (And no, the PANS doesn't require the above behavior-- ** but it *is* desirable.) ** ** The unused offset argument is for the benefit of mktime variants. */ static void localsub(const time_t * timep, long offset, struct tm * tmp) { const struct ttinfo * ttisp; const time_t t = *timep; struct state * sp; int i; if (!lcl_is_set) tzset_basic(); sp = lclptr; if (sp->timecnt == 0 || t < sp->ats[0]) { i = 0; while (sp->ttis[i].tt_isdst) if (++i >= sp->typecnt) { i = 0; break; } } else { for (i = 1; i < sp->timecnt; ++i) if (t < sp->ats[i]) break; i = sp->types[i - 1]; } ttisp = &sp->ttis[i]; /* ** To get (wrong) behavior that's compatible with System V Release 2.0 ** you'd replace the statement below with ** t += ttisp->tt_gmtoff; ** timesub(&t, 0L, sp, tmp); */ timesub(&t, ttisp->tt_gmtoff, sp, tmp); tzname[tmp->tm_isdst] = (char *) &sp->chars[ttisp->tt_abbrind]; #ifdef BSD_TM tmp->tm_zone = &sp->chars[ttisp->tt_abbrind]; #endif tmp->tm_isdst = ttisp->tt_isdst; pthread_mutex_unlock(&lcl_mutex); } struct tm * localtime_r(const time_t * timep, struct tm * tm) { pthread_mutex_lock(&lcl_mutex); localsub(timep, 0L, tm); pthread_mutex_unlock(&lcl_mutex); return(tm); } struct tm * localtime(const time_t * timep) { static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_key_t localtime_key = -1; struct tm * tm; pthread_mutex_lock(&localtime_mutex); if (localtime_key < 0) { if (pthread_key_create(&localtime_key, free) < 0) { pthread_mutex_unlock(&localtime_mutex); return(NULL); } } pthread_mutex_unlock(&localtime_mutex); if ((tm = pthread_getspecific(localtime_key)) == NULL) { if ((tm = (struct tm *)malloc(sizeof(struct tm))) == NULL) { return(NULL); } pthread_setspecific(localtime_key, tm); } pthread_mutex_lock(&lcl_mutex); localsub(timep, 0L, tm); pthread_mutex_unlock(&lcl_mutex); return tm; } /* * gmtsub is to gmtime as localsub is to localtime. * * Once set there is no need to lock the gmt_mutex to view gmtptr */ static void gmtsub(const time_t * timep, long offset, struct tm * tmp) { pthread_mutex_lock(&gmt_mutex); if (gmt_is_set == FALSE) { gmt_is_set = TRUE; gmtload(gmtptr); } pthread_mutex_unlock(&gmt_mutex); timesub(timep, offset, gmtptr, tmp); /* ** Could get fancy here and deliver something such as ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero, ** but this is no time for a treasure hunt. */ #ifdef BSD_TM if (offset != 0) { tmp->tm_zone = WILDABBR; } else { tmp->tm_zone = gmtptr->chars; } #endif } struct tm * gmtime_r(const time_t * timep, struct tm * tm) { gmtsub(timep, 0L, tm); return(tm); } struct tm * gmtime(const time_t * timep) { static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_key_t gmtime_key = -1; struct tm * tm; pthread_mutex_lock(&gmtime_mutex); if (gmtime_key < 0) { if (pthread_key_create(&gmtime_key, free) < 0) { pthread_mutex_unlock(&gmtime_mutex); return(NULL); } } pthread_mutex_unlock(&gmtime_mutex); if ((tm = pthread_getspecific(gmtime_key)) == NULL) { if ((tm = (struct tm *)malloc(sizeof(struct tm))) == NULL) { return(NULL); } pthread_setspecific(gmtime_key, tm); } gmtsub(timep, 0L, tm); return(tm); } static void timesub(const time_t * timep, long offset, const struct state * sp, struct tm * tmp) { register const struct lsinfo * lp; register long days; register long rem; register int y; register int yleap; register const int * ip; register long corr; register int hit; register int i; corr = 0; hit = FALSE; i = sp->leapcnt; while (--i >= 0) { lp = &sp->lsis[i]; if (*timep >= lp->ls_trans) { if (*timep == lp->ls_trans) hit = ((i == 0 && lp->ls_corr > 0) || lp->ls_corr > sp->lsis[i - 1].ls_corr); corr = lp->ls_corr; break; } } days = *timep / SECSPERDAY; rem = *timep % SECSPERDAY; #ifdef mc68k if (*timep == 0x80000000) { /* ** A 3B1 muffs the division on the most negative number. */ days = -24855; rem = -11648; } #endif /* mc68k */ rem += (offset - corr); while (rem < 0) { rem += SECSPERDAY; --days; } while (rem >= SECSPERDAY) { rem -= SECSPERDAY; ++days; } tmp->tm_hour = (int) (rem / SECSPERHOUR); rem = rem % SECSPERHOUR; tmp->tm_min = (int) (rem / SECSPERMIN); tmp->tm_sec = (int) (rem % SECSPERMIN); if (hit) /* ** A positive leap second requires a special ** representation. This uses "... ??:59:60". */ ++(tmp->tm_sec); tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK); if (tmp->tm_wday < 0) tmp->tm_wday += DAYSPERWEEK; y = EPOCH_YEAR; if (days >= 0) for ( ; ; ) { yleap = isleap(y); if (days < (long) year_lengths[yleap]) break; ++y; days = days - (long) year_lengths[yleap]; } else do { --y; yleap = isleap(y); days = days + (long) year_lengths[yleap]; } while (days < 0); tmp->tm_year = y - TM_YEAR_BASE; tmp->tm_yday = (int) days; ip = mon_lengths[yleap]; for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon)) days = days - (long) ip[tmp->tm_mon]; tmp->tm_mday = (int) (days + 1); tmp->tm_isdst = 0; #ifdef BSD_TM tmp->tm_gmtoff = offset; #endif } /* * A la X3J11 * * Made thread safe by using thread specific data */ char * asctime_r(const struct tm * timeptr, char * result) { static const char wday_name[DAYSPERWEEK][3] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; static const char mon_name[MONSPERYEAR][3] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; (void) sprintf(result, "%.3s %.3s%3d %02.2d:%02.2d:%02.2d %d\n", wday_name[timeptr->tm_wday], mon_name[timeptr->tm_mon], timeptr->tm_mday, timeptr->tm_hour, timeptr->tm_min, timeptr->tm_sec, TM_YEAR_BASE + timeptr->tm_year); return(result); } char * asctime(const struct tm * timeptr) { static pthread_mutex_t asctime_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_key_t asctime_key = -1; char * result; pthread_mutex_lock(&asctime_mutex); if (asctime_key < 0) { if (pthread_key_create(&asctime_key, free) < 0) { pthread_mutex_unlock(&asctime_mutex); return(NULL); } } pthread_mutex_unlock(&asctime_mutex); if ((result = pthread_getspecific(asctime_key)) == NULL) { if ((result = malloc(26)) == NULL) { return(NULL); } pthread_setspecific(asctime_key, result); } return(asctime_r(timeptr, result)); } char * ctime_r(const time_t * timep, char * buf) { struct tm tm; return asctime_r(localtime_r(timep, &tm), buf); } char * ctime(const time_t * timep) { struct tm tm; return asctime(localtime_r(timep, &tm)); } /* ** Adapted from code provided by Robert Elz, who writes: ** The "best" way to do mktime I think is based on an idea of Bob ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now). ** It does a binary search of the time_t space. Since time_t's are ** just 32 bits, its a max of 32 iterations (even at 64 bits it ** would still be very reasonable). */ static void normalize(int * tensptr,int * unitsptr, int base) { if (*unitsptr >= base) { *tensptr += *unitsptr / base; *unitsptr %= base; } else if (*unitsptr < 0) { --*tensptr; *unitsptr += base; if (*unitsptr < 0) { *tensptr -= 1 + (-*unitsptr) / base; *unitsptr = base - (-*unitsptr) % base; } } } static int tmcomp(const struct tm * atmp, const struct tm * btmp) { register int result; if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && (result = (atmp->tm_min - btmp->tm_min)) == 0) result = atmp->tm_sec - btmp->tm_sec; return result; } static time_t time2(struct tm * tmp, long offset, int * okayp) { register const struct state * sp; register int dir; register int bits; register int i, j ; register int saved_seconds; time_t newt; time_t t; struct tm yourtm, mytm; *okayp = FALSE; yourtm = *tmp; if (yourtm.tm_sec >= SECSPERMIN + 2 || yourtm.tm_sec < 0) normalize(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN); normalize(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR); normalize(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY); normalize(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR); while (yourtm.tm_mday <= 0) { --yourtm.tm_year; yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)]; } for ( ; ; ) { i = mon_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)][yourtm.tm_mon]; if (yourtm.tm_mday <= i) break; yourtm.tm_mday -= i; if (++yourtm.tm_mon >= MONSPERYEAR) { yourtm.tm_mon = 0; ++yourtm.tm_year; } } saved_seconds = yourtm.tm_sec; yourtm.tm_sec = 0; /* ** Calculate the number of magnitude bits in a time_t ** (this works regardless of whether time_t is ** signed or unsigned, though lint complains if unsigned). */ for (bits = 0, t = 1; t > 0; ++bits, t <<= 1) ; /* ** If time_t is signed, then 0 is the median value, ** if time_t is unsigned, then 1 << bits is median. */ t = (t < 0) ? 0 : ((time_t) 1 << bits); for ( ; ; ) { localsub(&t, offset, &mytm); dir = tmcomp(&mytm, &yourtm); if (dir != 0) { if (bits-- < 0) return NOTOK; if (bits < 0) --t; else if (dir > 0) t -= (time_t) 1 << bits; else t += (time_t) 1 << bits; continue; } if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) break; /* ** Right time, wrong type. ** Hunt for right time, right type. ** It's okay to guess wrong since the guess ** gets checked. */ sp = lclptr; for (i = 0; i < sp->typecnt; ++i) { if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) continue; for (j = 0; j < sp->typecnt; ++j) { if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) continue; newt = t + sp->ttis[j].tt_gmtoff - sp->ttis[i].tt_gmtoff; localsub(&newt, offset, &mytm); if (tmcomp(&mytm, &yourtm) != 0) continue; if (mytm.tm_isdst != yourtm.tm_isdst) continue; /* ** We have a match. */ t = newt; goto label; } } return NOTOK; } label: t += saved_seconds; localsub(&t, offset, tmp); *okayp = TRUE; return t; } static time_t time1(struct tm * tmp, long offset) { const struct state * sp; int samei, otheri, okay; time_t t; if (tmp->tm_isdst > 1) tmp->tm_isdst = 1; t = time2(tmp, offset, &okay); if (okay || tmp->tm_isdst < 0) return t; /* ** We're supposed to assume that somebody took a time of one type ** and did some math on it that yielded a "struct tm" that's bad. ** We try to divine the type they started from and adjust to the ** type they need. */ sp = lclptr; for (samei = 0; samei < sp->typecnt; ++samei) { if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) continue; for (otheri = 0; otheri < sp->typecnt; ++otheri) { if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) continue; tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; tmp->tm_isdst = !tmp->tm_isdst; t = time2(tmp, offset, &okay); if (okay) return t; tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; tmp->tm_isdst = !tmp->tm_isdst; } } return NOTOK; } time_t mktime(struct tm * tmp) { time_t mktime_return_value; pthread_mutex_lock(&lcl_mutex); if (lcl_is_set == FALSE) { tzset_basic(); } mktime_return_value = time1(tmp, 0L); pthread_mutex_unlock(&lcl_mutex); return(mktime_return_value); }