/* ** It turns out that the printf functions in the stock MIT pthread library ** is busted. It isn't thread safe. If two threads try to do a printf ** of a floating point value at the same time, a core-dump might result. ** So this code is substituted. */ /* ** NAME: $Source$ ** VERSION: $Revision$ ** DATE: $Date$ ** ** ONELINER: A replacement for formatted printing programs. ** ** COPYRIGHT: ** Copyright (c) 1990 by D. Richard Hipp. This code is an original ** work and has been prepared without reference to any prior ** implementations of similar functions. No part of this code is ** subject to licensing restrictions of any telephone company or ** university. ** ** This copyright was released and the code placed in the public domain ** by the author, D. Richard Hipp, on October 3, 1996. ** ** DESCRIPTION: ** This program is an enhanced replacement for the "printf" programs ** found in the standard library. The following enhancements are ** supported: ** ** + Additional functions. The standard set of "printf" functions ** includes printf, fprintf, sprintf, vprintf, vfprintf, and ** vsprintf. This module adds the following: ** ** * snprintf -- Works like sprintf, but has an extra argument ** which is the size of the buffer written to. ** ** * mprintf -- Similar to sprintf. Writes output to memory ** obtained from mem_alloc. ** ** * xprintf -- Calls a function to dispose of output. ** ** * nprintf -- No output, but returns the number of characters ** that would have been output by printf. ** ** * A v- version (ex: vsnprintf) of every function is also ** supplied. ** ** + A few extensions to the formatting notation are supported: ** ** * The "=" flag (similar to "-") causes the output to be ** be centered in the appropriately sized field. ** ** * The %b field outputs an integer in binary notation. ** ** * The %c field now accepts a precision. The character output ** is repeated by the number of times the precision specifies. ** ** * The %' field works like %c, but takes as its character the ** next character of the format string, instead of the next ** argument. For example, printf("%.78'-") prints 78 minus ** signs, the same as printf("%.78c",'-'). ** ** + When compiled using GCC on a SPARC, this version of printf is ** faster than the library printf for SUN OS 4.1. ** ** + All functions are fully reentrant. ** */ /* ** Undefine COMPATIBILITY to make some slight changes in the way things ** work. I think the changes are an improvement, but they are not ** backwards compatible. */ /* #define COMPATIBILITY / * Compatible with SUN OS 4.1 */ #include #include #include #include #include #include /* ** The maximum number of digits of accuracy in a floating-point conversion. */ #define MAXDIG 20 /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ enum e_type { /* The type of the format field */ RADIX, /* Integer types. %d, %x, %o, and so forth */ FLOAT, /* Floating point. %f */ EXP, /* Exponentional notation. %e and %E */ GENERIC, /* Floating or exponential, depending on exponent. %g */ SIZE, /* Return number of characters processed so far. %n */ STRING, /* Strings. %s */ PERCENT, /* Percent symbol. %% */ CHAR, /* Characters. %c */ ERROR, /* Used to indicate no such conversion type */ /* The rest are extensions, not normally found in printf() */ CHARLIT, /* Literal characters. %' */ SEEIT, /* Strings with visible control characters. %S */ MEM_STRING, /* A string which should be deleted after use. %z */ ORDINAL, /* 1st, 2nd, 3rd and so forth */ }; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct s_info { /* Information about each format field */ int fmttype; /* The format field code letter */ int base; /* The base for radix conversion */ char *charset; /* The character set for conversion */ int flag_signed; /* Is the quantity signed? */ char *prefix; /* Prefix on non-zero values in alt format */ enum e_type type; /* Conversion paradigm */ } info; /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static info fmtinfo[] = { { 'd', 10, "0123456789", 1, 0, RADIX, }, { 's', 0, 0, 0, 0, STRING, }, { 'S', 0, 0, 0, 0, SEEIT, }, { 'z', 0, 0, 0, 0, MEM_STRING, }, { 'c', 0, 0, 0, 0, CHAR, }, { 'o', 8, "01234567", 0, "0", RADIX, }, { 'u', 10, "0123456789", 0, 0, RADIX, }, { 'x', 16, "0123456789abcdef", 0, "x0", RADIX, }, { 'X', 16, "0123456789ABCDEF", 0, "X0", RADIX, }, { 'r', 10, "0123456789", 0, 0, ORDINAL, }, { 'f', 0, 0, 1, 0, FLOAT, }, { 'e', 0, "e", 1, 0, EXP, }, { 'E', 0, "E", 1, 0, EXP, }, { 'g', 0, "e", 1, 0, GENERIC, }, { 'G', 0, "E", 1, 0, GENERIC, }, { 'i', 10, "0123456789", 1, 0, RADIX, }, { 'n', 0, 0, 0, 0, SIZE, }, { 'S', 0, 0, 0, 0, SEEIT, }, { '%', 0, 0, 0, 0, PERCENT, }, { 'b', 2, "01", 0, "b0", RADIX, }, /* Binary notation */ { 'p', 10, "0123456789", 0, 0, RADIX, }, /* Pointers */ { '\'', 0, 0, 0, 0, CHARLIT, }, /* Literal char */ }; #define NINFO (sizeof(fmtinfo)/sizeof(info)) /* Size of the fmtinfo table */ /* ** If NOFLOATINGPOINT is defined, then none of the floating point ** conversions will work. */ #ifndef NOFLOATINGPOINT /* ** "*val" is a double such that 0.1 <= *val < 10.0 ** Return the ascii code for the leading digit of *val, then ** multiply "*val" by 10.0 to renormalize. ** ** Example: ** input: *val = 3.14159 ** output: *val = 1.4159 function return = '3' ** ** The counter *cnt is incremented each time. After counter exceeds ** 16 (the number of significant digits in a 64-bit float) '0' is ** always returned. */ static int getdigit(long double *val, int *cnt){ int digit; long double d; if( (*cnt)++ >= MAXDIG ) return '0'; digit = (int)*val; d = digit; digit += '0'; *val = (*val - d)*10.0; return digit; } #endif /* ** Setting the size of the BUFFER involves trade-offs. No %d or %f ** conversion can have more than BUFSIZE characters. If the field ** width is larger than BUFSIZE, it is silently shortened. On the ** other hand, this routine consumes more stack space with larger ** BUFSIZEs. If you have some threads for which you want to minimize ** stack space, you should keep BUFSIZE small. */ #define BUFSIZE 100 /* Size of the output buffer */ /* ** The root program. All variations call this core. ** ** INPUTS: ** func This is a pointer to a function taking three arguments ** 1. A pointer to the list of characters to be output ** (Note, this list is NOT null terminated.) ** 2. An integer number of characters to be output. ** (Note: This number might be zero.) ** 3. A pointer to anything. Same as the "arg" parameter. ** ** arg This is the pointer to anything which will be passed as the ** third argument to "func". Use it for whatever you like. ** ** fmt This is the format string, as in the usual print. ** ** ap This is a pointer to a list of arguments. Same as in ** vfprint. ** ** OUTPUTS: ** The return value is the total number of characters sent to ** the function "func". Returns -1 on a error. ** ** Note that the order in which automatic variables are declared below ** seems to make a big difference in determining how fast this beast ** will run. */ static int vxprintf(func,arg,format,ap) void (*func)(char*,int,void*); void *arg; const char *format; va_list ap; { register const char *fmt; /* The format string. */ register int c; /* Next character in the format string */ register char *bufpt; /* Pointer to the conversion buffer */ register int precision; /* Precision of the current field */ register int length; /* Length of the field */ register int idx; /* A general purpose loop counter */ int count; /* Total number of characters output */ int width; /* Width of the current field */ int flag_leftjustify; /* True if "-" flag is present */ int flag_plussign; /* True if "+" flag is present */ int flag_blanksign; /* True if " " flag is present */ int flag_alternateform; /* True if "#" flag is present */ int flag_zeropad; /* True if field width constant starts with zero */ int flag_long; /* True if "l" flag is present */ int flag_center; /* True if "=" flag is present */ unsigned long longvalue; /* Value for integer types */ long double realvalue; /* Value for real types */ info *infop; /* Pointer to the appropriate info structure */ char buf[BUFSIZE]; /* Conversion buffer */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ int errorflag = 0; /* True if an error is encountered */ enum e_type xtype; /* Conversion paradigm */ char *zMem; /* String to be freed */ static char spaces[] = " "; #define SPACESIZE (sizeof(spaces)-1) #ifndef NOFLOATINGPOINT int exp; /* exponent of real numbers */ long double rounder; /* Used for rounding floating point values */ int flag_dp; /* True if decimal point should be shown */ int flag_rtz; /* True if trailing zeros should be removed */ int flag_exp; /* True to force display of the exponent */ int nsd; /* Number of significant digits returned */ #endif fmt = format; /* Put in a register for speed */ count = length = 0; bufpt = 0; for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ register int amt; bufpt = (char *)fmt; amt = 1; while( (c=(*++fmt))!='%' && c!=0 ) amt++; (*func)(bufpt,amt,arg); count += amt; if( c==0 ) break; } if( (c=(*++fmt))==0 ){ errorflag = 1; (*func)("%",1,arg); count++; break; } /* Find out what flags are present */ flag_leftjustify = flag_plussign = flag_blanksign = flag_alternateform = flag_zeropad = flag_center = 0; do{ switch( c ){ case '-': flag_leftjustify = 1; c = 0; break; case '+': flag_plussign = 1; c = 0; break; case ' ': flag_blanksign = 1; c = 0; break; case '#': flag_alternateform = 1; c = 0; break; case '0': flag_zeropad = 1; c = 0; break; case '=': flag_center = 1; c = 0; break; default: break; } }while( c==0 && (c=(*++fmt))!=0 ); if( flag_center ) flag_leftjustify = 0; /* Get the field width */ width = 0; if( c=='*' ){ width = va_arg(ap,int); if( width<0 ){ flag_leftjustify = 1; width = -width; } c = *++fmt; }else{ while( isdigit(c) ){ width = width*10 + c - '0'; c = *++fmt; } } if( width > BUFSIZE-10 ){ width = BUFSIZE-10; } /* Get the precision */ if( c=='.' ){ precision = 0; c = *++fmt; if( c=='*' ){ precision = va_arg(ap,int); #ifndef COMPATIBILITY /* This is sensible, but SUN OS 4.1 doesn't do it. */ if( precision<0 ) precision = -precision; #endif c = *++fmt; }else{ while( isdigit(c) ){ precision = precision*10 + c - '0'; c = *++fmt; } } /* Limit the precision to prevent overflowing buf[] during conversion */ if( precision>BUFSIZE-40 ) precision = BUFSIZE-40; }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; }else{ flag_long = 0; } /* Fetch the info entry for the field */ infop = 0; for(idx=0; idxtype; } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_plussign TRUE if a '+' is present. ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long TRUE if the letter 'l' (ell) prefixed ** the conversion character. ** flag_blanksign TRUE if a ' ' is present. ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case ORDINAL: case RADIX: if( flag_long ) longvalue = va_arg(ap,long); else longvalue = va_arg(ap,int); #ifdef COMPATIBILITY /* For the format %#x, the value zero is printed "0" not "0x0". ** I think this is stupid. */ if( longvalue==0 ) flag_alternateform = 0; #else /* More sensible: turn off the prefix for octal (to prevent "00"), ** but leave the prefix for hex. */ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0; #endif if( infop->flag_signed ){ if( *(long*)&longvalue<0 ){ longvalue = -*(long*)&longvalue; prefix = '-'; }else if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; }else prefix = 0; if( flag_zeropad && precision3 || (b>10 && b<14) ){ bufpt[0] = 't'; bufpt[1] = 'h'; }else if( a==1 ){ bufpt[0] = 's'; bufpt[1] = 't'; }else if( a==2 ){ bufpt[0] = 'n'; bufpt[1] = 'd'; }else if( a==3 ){ bufpt[0] = 'r'; bufpt[1] = 'd'; } } { register char *cset; /* Use registers for speed */ register int base; cset = infop->charset; base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = (int)(&buf[BUFSIZE]-bufpt); for(idx=precision-length; idx>0; idx--){ *(--bufpt) = '0'; /* Zero pad */ } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ char *pre, x; pre = infop->prefix; if( *bufpt!=pre[0] ){ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x; } } length = (int)(&buf[BUFSIZE]-bufpt); break; case FLOAT: case EXP: case GENERIC: realvalue = va_arg(ap,double); #ifndef NOFLOATINGPOINT if( precision<0 ) precision = 6; /* Set default precision */ if( precision>BUFSIZE-10 ) precision = BUFSIZE-10; if( realvalue<0.0 ){ realvalue = -realvalue; prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( infop->type==GENERIC && precision>0 ) precision--; rounder = 0.0; #ifdef COMPATIBILITY /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); #else /* It makes more sense to use 0.5 */ if( precision>MAXDIG-1 ) idx = MAXDIG-1; else idx = precision; for(rounder=0.5; idx>0; idx--, rounder*=0.1); #endif if( infop->type==FLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( realvalue>0.0 ){ int k = 0; while( realvalue>=1e8 && k++<100 ){ realvalue *= 1e-8; exp+=8; } while( realvalue>=10.0 && k++<100 ){ realvalue *= 0.1; exp++; } while( realvalue<1e-8 && k++<100 ){ realvalue *= 1e8; exp-=8; } while( realvalue<1.0 && k++<100 ){ realvalue *= 10.0; exp--; } if( k>=100 ){ bufpt = "NaN"; length = 3; break; } } bufpt = buf; /* ** If the field type is GENERIC, then convert to either EXP ** or FLOAT, as appropriate. */ flag_exp = xtype==EXP; if( xtype!=FLOAT ){ realvalue += rounder; if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } } if( xtype==GENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = EXP; }else{ precision = precision - exp; xtype = FLOAT; } }else{ flag_rtz = 0; } /* ** The "exp+precision" test causes output to be of type EXP if ** the precision is too large to fit in buf[]. */ nsd = 0; if( xtype==FLOAT && exp+precision0 || flag_alternateform); if( prefix ) *(bufpt++) = prefix; /* Sign */ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */ else for(; exp>=0; exp--) *(bufpt++) = getdigit(&realvalue,&nsd); if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */ for(exp++; exp<0 && precision>0; precision--, exp++){ *(bufpt++) = '0'; } while( (precision--)>0 ) *(bufpt++) = getdigit(&realvalue,&nsd); *(bufpt--) = 0; /* Null terminate */ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; } bufpt++; /* point to next free slot */ }else{ /* EXP or GENERIC */ flag_dp = (precision>0 || flag_alternateform); if( prefix ) *(bufpt++) = prefix; /* Sign */ *(bufpt++) = getdigit(&realvalue,&nsd); /* First digit */ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */ while( (precision--)>0 ) *(bufpt++) = getdigit(&realvalue,&nsd); bufpt--; /* point to last digit */ if( flag_rtz && flag_dp ){ /* Remove tail zeros */ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; } bufpt++; /* point to next free slot */ if( exp || flag_exp ){ *(bufpt++) = infop->charset[0]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */ else { *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (exp/100)+'0'; /* 100's digit */ exp %= 100; } *(bufpt++) = exp/10+'0'; /* 10's digit */ *(bufpt++) = exp%10+'0'; /* 1's digit */ } } /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = (int)(bufpt-buf); bufpt = buf; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } #endif break; case SIZE: *(va_arg(ap,int*)) = count; length = width = 0; break; case PERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case CHARLIT: case CHAR: c = buf[0] = (xtype==CHAR ? va_arg(ap,int) : *++fmt); if( precision>=0 ){ for(idx=1; idx=0 && precision=0x7f ){ buf[i++] = '^'; buf[i] = (c&0x1f)+0x40; }else{ buf[i] = c; } } bufpt = buf; length = i; if( precision>=0 && precision0 ){ if( flag_center ){ nspace = nspace/2; width -= nspace; flag_leftjustify = 1; } count += nspace; while( nspace>=SPACESIZE ){ (*func)(spaces,SPACESIZE,arg); nspace -= SPACESIZE; } if( nspace>0 ) (*func)(spaces,nspace,arg); } } if( length>0 ){ (*func)(bufpt,length,arg); count += length; } if( xtype==MEM_STRING && zMem ){ free(zMem); } if( flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ count += nspace; while( nspace>=SPACESIZE ){ (*func)(spaces,SPACESIZE,arg); nspace -= SPACESIZE; } if( nspace>0 ) (*func)(spaces,nspace,arg); } } }/* End for loop over the format string */ return errorflag ? -1 : count; } /* End of function */ /* ** This non-standard function is still occasionally useful.... */ int xprintf( void (*func)(char*,int,void*), void *arg, const char *format, ... ){ va_list ap; va_start(ap,format); return vxprintf(func,arg,format,ap); } /* ** Now for string-print, also as found in any standard library. ** Add to this the snprint function which stops added characters ** to the string at a given length. ** ** Note that snprint returns the length of the string as it would ** be if there were no limit on the output. */ struct s_strargument { /* Describes the string being written to */ char *next; /* Next free slot in the string */ char *last; /* Last available slot in the string */ }; static void sout(txt,amt,arg) char *txt; int amt; void *arg; { register char *head; register const char *t; register int a; register char *tail; a = amt; t = txt; head = ((struct s_strargument*)arg)->next; tail = ((struct s_strargument*)arg)->last; if( tail ){ while( a-- >0 && head0 ) *(head++) = *(t++); } *head = 0; ((struct s_strargument*)arg)->next = head; } int sprintf(char *buf, const char *fmt, ...){ int rc; va_list ap; struct s_strargument arg; va_start(ap,fmt); arg.next = buf; arg.last = 0; *arg.next = 0; rc = vxprintf(sout,&arg,fmt,ap); va_end(ap); } int vsprintf(char *buf,const char *fmt,va_list ap){ struct s_strargument arg; arg.next = buf; arg.last = 0; *buf = 0; return vxprintf(sout,&arg,fmt,ap); } int snprintf(char *buf, size_t n, const char *fmt, ...){ int rc; va_list ap; struct s_strargument arg; va_start(ap,fmt); arg.next = buf; arg.last = &arg.next[n-1]; *arg.next = 0; rc = vxprintf(sout,&arg,fmt,ap); va_end(ap); } int vsnprintf(char *buf, size_t n, const char *fmt, va_list ap){ struct s_strargument arg; arg.next = buf; arg.last = &buf[n-1]; *buf = 0; return vxprintf(sout,&arg,fmt,ap); } /* ** The following section of code handles the mprintf routine, that ** writes to memory obtained from malloc(). */ /* This structure is used to store state information about the ** write in progress */ struct sgMprintf { char *zBase; /* A base allocation */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ }; /* The xprintf callback function. */ static void mout(zNewText,nNewChar,arg) char *zNewText; int nNewChar; void *arg; { struct sgMprintf *pM = (struct sgMprintf*)arg; if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ pM->nAlloc = pM->nChar + nNewChar*2 + 1; if( pM->zText==pM->zBase ){ pM->zText = malloc(pM->nAlloc); if( pM->zText && pM->nChar ) memcpy(pM->zText,pM->zBase,pM->nChar); }else{ pM->zText = realloc(pM->zText, pM->nAlloc); } } if( pM->zText ){ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); pM->nChar += nNewChar; pM->zText[pM->nChar] = 0; } } /* ** mprintf() works like printf(), but allocations memory to hold the ** resulting string and returns a pointer to the allocated memory. ** ** We changed the name to TclMPrint() to conform with the Tcl private ** routine naming conventions. */ char *mprintf(const char *zFormat, ...){ va_list ap; struct sgMprintf sMprintf; char *zNew; char zBuf[200]; va_start(ap,zFormat); sMprintf.nChar = 0; sMprintf.nAlloc = sizeof(zBuf); sMprintf.zText = zBuf; sMprintf.zBase = zBuf; vxprintf(mout,&sMprintf,zFormat,ap); va_end(ap); if( sMprintf.zText==sMprintf.zBase ){ zNew = malloc( sMprintf.nChar+1 ); if( zNew ) strcpy(zNew,zBuf); }else{ zNew = realloc(sMprintf.zText,sMprintf.nChar+1); } return zNew; } /* This is the varargs version of mprintf. ** ** The name is changed to TclVMPrintf() to conform with Tcl naming ** conventions. */ char *vmprintf(const char *zFormat,va_list ap){ struct sgMprintf sMprintf; char zBuf[200]; sMprintf.nChar = 0; sMprintf.zText = zBuf; sMprintf.nAlloc = sizeof(zBuf); sMprintf.zBase = zBuf; vxprintf(mout,&sMprintf,zFormat,ap); if( sMprintf.zText==sMprintf.zBase ){ sMprintf.zText = malloc( strlen(zBuf)+1 ); if( sMprintf.zText ) strcpy(sMprintf.zText,zBuf); }else{ sMprintf.zText = realloc(sMprintf.zText,sMprintf.nChar+1); } return sMprintf.zText; } /* ** The following section of code handles the standard fprintf routines ** for pthreads. */ /* The xprintf callback function. */ static void fout(zNewText,nNewChar,arg) char *zNewText; int nNewChar; void *arg; { fwrite(zNewText,1,nNewChar,(FILE*)arg); } /* The public interface routines */ int fprintf(FILE *pOut, const char *zFormat, ...){ va_list ap; int retc; va_start(ap,zFormat); retc = vxprintf(fout,pOut,zFormat,ap); va_end(ap); return retc; } int vfprintf(FILE *pOut, const char *zFormat, va_list ap){ return vxprintf(fout,pOut,zFormat,ap); } int printf(const char *zFormat, ...){ va_list ap; int retc; va_start(ap,zFormat); retc = vxprintf(fout,stdout,zFormat,ap); va_end(ap); return retc; } int vprintf(const char *zFormat, va_list ap){ return vxprintf(fout,stdout,zFormat,ap); }