/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Write a row to a MyISAM table */ #include "fulltext.h" #include "rt_index.h" #define MAX_POINTER_LENGTH 8 /* Functions declared in this file */ static int w_search(MI_INFO *info,MI_KEYDEF *keyinfo, uint comp_flag, uchar *key, uint key_length, my_off_t pos, uchar *father_buff, uchar *father_keypos, my_off_t father_page, my_bool insert_last); static int _mi_balance_page(MI_INFO *info,MI_KEYDEF *keyinfo,uchar *key, uchar *curr_buff,uchar *father_buff, uchar *father_keypos,my_off_t father_page); static uchar *_mi_find_last_pos(MI_KEYDEF *keyinfo, uchar *page, uchar *key, uint *return_key_length, uchar **after_key); int _mi_ck_write_tree(register MI_INFO *info, uint keynr,uchar *key, uint key_length); int _mi_ck_write_btree(register MI_INFO *info, uint keynr,uchar *key, uint key_length); /* Write new record to database */ int mi_write(MI_INFO *info, byte *record) { MYISAM_SHARE *share=info->s; uint i; int save_errno; my_off_t filepos; uchar *buff; my_bool lock_tree= share->concurrent_insert; DBUG_ENTER("mi_write"); DBUG_PRINT("enter",("isam: %d data: %d",info->s->kfile,info->dfile)); DBUG_EXECUTE_IF("myisam_pretend_crashed_table_on_usage", mi_print_error(info->s, HA_ERR_CRASHED); DBUG_RETURN(my_errno= HA_ERR_CRASHED);); if (share->options & HA_OPTION_READ_ONLY_DATA) { DBUG_RETURN(my_errno=EACCES); } if (_mi_readinfo(info,F_WRLCK,1)) DBUG_RETURN(my_errno); dont_break(); /* Dont allow SIGHUP or SIGINT */ #if !defined(NO_LOCKING) && defined(USE_RECORD_LOCK) if (!info->locked && my_lock(info->dfile,F_WRLCK,0L,F_TO_EOF, MYF(MY_SEEK_NOT_DONE) | info->lock_wait)) goto err; #endif filepos= ((share->state.dellink != HA_OFFSET_ERROR && !info->append_insert_at_end) ? share->state.dellink : info->state->data_file_length); if (share->base.reloc == (ha_rows) 1 && share->base.records == (ha_rows) 1 && info->state->records == (ha_rows) 1) { /* System file */ my_errno=HA_ERR_RECORD_FILE_FULL; goto err2; } if (info->state->key_file_length >= share->base.margin_key_file_length) { my_errno=HA_ERR_INDEX_FILE_FULL; goto err2; } if (_mi_mark_file_changed(info)) goto err2; /* Calculate and check all unique constraints */ for (i=0 ; i < share->state.header.uniques ; i++) { if (mi_check_unique(info,share->uniqueinfo+i,record, mi_unique_hash(share->uniqueinfo+i,record), HA_OFFSET_ERROR)) goto err2; } /* Write all keys to indextree */ buff=info->lastkey2; for (i=0 ; i < share->base.keys ; i++) { if (mi_is_key_active(share->state.key_map, i)) { bool local_lock_tree= (lock_tree && !(info->bulk_insert && is_tree_inited(&info->bulk_insert[i]))); if (local_lock_tree) { rw_wrlock(&share->key_root_lock[i]); share->keyinfo[i].version++; } if (share->keyinfo[i].flag & HA_FULLTEXT ) { if (_mi_ft_add(info,i,(char*) buff,record,filepos)) { if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); DBUG_PRINT("error",("Got error: %d on write",my_errno)); goto err; } } else { if (share->keyinfo[i].ck_insert(info,i,buff, _mi_make_key(info,i,buff,record,filepos))) { if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); DBUG_PRINT("error",("Got error: %d on write",my_errno)); goto err; } } if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); } } if (share->calc_checksum) info->checksum=(*share->calc_checksum)(info,record); if (!(info->opt_flag & OPT_NO_ROWS)) { if ((*share->write_record)(info,record)) goto err; share->state.checksum+=info->checksum; } if (share->base.auto_key) update_auto_increment(info,record); info->update= (HA_STATE_CHANGED | HA_STATE_AKTIV | HA_STATE_WRITTEN | HA_STATE_ROW_CHANGED); info->state->records++; info->lastpos=filepos; myisam_log_record(MI_LOG_WRITE,info,record,filepos,0); VOID(_mi_writeinfo(info, WRITEINFO_UPDATE_KEYFILE)); if (info->invalidator != 0) { DBUG_PRINT("info", ("invalidator... '%s' (update)", info->filename)); (*info->invalidator)(info->filename); info->invalidator=0; } allow_break(); /* Allow SIGHUP & SIGINT */ DBUG_RETURN(0); err: save_errno=my_errno; if (my_errno == HA_ERR_FOUND_DUPP_KEY || my_errno == HA_ERR_RECORD_FILE_FULL || my_errno == HA_ERR_NULL_IN_SPATIAL) { if (info->bulk_insert) { uint j; for (j=0 ; j < share->base.keys ; j++) mi_flush_bulk_insert(info, j); } info->errkey= (int) i; while ( i-- > 0) { if (mi_is_key_active(share->state.key_map, i)) { bool local_lock_tree= (lock_tree && !(info->bulk_insert && is_tree_inited(&info->bulk_insert[i]))); if (local_lock_tree) rw_wrlock(&share->key_root_lock[i]); if (share->keyinfo[i].flag & HA_FULLTEXT) { if (_mi_ft_del(info,i,(char*) buff,record,filepos)) { if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); break; } } else { uint key_length=_mi_make_key(info,i,buff,record,filepos); if (_mi_ck_delete(info,i,buff,key_length)) { if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); break; } } if (local_lock_tree) rw_unlock(&share->key_root_lock[i]); } } } else { mi_print_error(info->s, HA_ERR_CRASHED); mi_mark_crashed(info); } info->update= (HA_STATE_CHANGED | HA_STATE_WRITTEN | HA_STATE_ROW_CHANGED); my_errno=save_errno; err2: save_errno=my_errno; myisam_log_record(MI_LOG_WRITE,info,record,filepos,my_errno); VOID(_mi_writeinfo(info,WRITEINFO_UPDATE_KEYFILE)); allow_break(); /* Allow SIGHUP & SIGINT */ DBUG_RETURN(my_errno=save_errno); } /* mi_write */ /* Write one key to btree */ int _mi_ck_write(MI_INFO *info, uint keynr, uchar *key, uint key_length) { DBUG_ENTER("_mi_ck_write"); if (info->bulk_insert && is_tree_inited(&info->bulk_insert[keynr])) { DBUG_RETURN(_mi_ck_write_tree(info, keynr, key, key_length)); } else { DBUG_RETURN(_mi_ck_write_btree(info, keynr, key, key_length)); } } /* _mi_ck_write */ /********************************************************************** * Normal insert code * **********************************************************************/ int _mi_ck_write_btree(register MI_INFO *info, uint keynr, uchar *key, uint key_length) { int error; uint comp_flag; MI_KEYDEF *keyinfo=info->s->keyinfo+keynr; my_off_t *root=&info->s->state.key_root[keynr]; DBUG_ENTER("_mi_ck_write_btree"); if (keyinfo->flag & HA_SORT_ALLOWS_SAME) comp_flag=SEARCH_BIGGER; /* Put after same key */ else if (keyinfo->flag & (HA_NOSAME|HA_FULLTEXT)) { comp_flag=SEARCH_FIND | SEARCH_UPDATE; /* No duplicates */ if (keyinfo->flag & HA_NULL_ARE_EQUAL) comp_flag|= SEARCH_NULL_ARE_EQUAL; } else comp_flag=SEARCH_SAME; /* Keys in rec-pos order */ error=_mi_ck_real_write_btree(info, keyinfo, key, key_length, root, comp_flag); if (info->ft1_to_ft2) { if (!error) error= _mi_ft_convert_to_ft2(info, keynr, key); delete_dynamic(info->ft1_to_ft2); my_free((gptr)info->ft1_to_ft2, MYF(0)); info->ft1_to_ft2=0; } DBUG_RETURN(error); } /* _mi_ck_write_btree */ int _mi_ck_real_write_btree(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uint key_length, my_off_t *root, uint comp_flag) { int error; DBUG_ENTER("_mi_ck_real_write_btree"); /* key_length parameter is used only if comp_flag is SEARCH_FIND */ if (*root == HA_OFFSET_ERROR || (error=w_search(info, keyinfo, comp_flag, key, key_length, *root, (uchar *) 0, (uchar*) 0, (my_off_t) 0, 1)) > 0) error=_mi_enlarge_root(info,keyinfo,key,root); DBUG_RETURN(error); } /* _mi_ck_real_write_btree */ /* Make a new root with key as only pointer */ int _mi_enlarge_root(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, my_off_t *root) { uint t_length,nod_flag; MI_KEY_PARAM s_temp; MYISAM_SHARE *share=info->s; DBUG_ENTER("_mi_enlarge_root"); nod_flag= (*root != HA_OFFSET_ERROR) ? share->base.key_reflength : 0; _mi_kpointer(info,info->buff+2,*root); /* if nod */ t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(uchar*) 0, (uchar*) 0, (uchar*) 0, key,&s_temp); mi_putint(info->buff,t_length+2+nod_flag,nod_flag); (*keyinfo->store_key)(keyinfo,info->buff+2+nod_flag,&s_temp); info->buff_used=info->page_changed=1; /* info->buff is used */ if ((*root= _mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR || _mi_write_keypage(info,keyinfo,*root,DFLT_INIT_HITS,info->buff)) DBUG_RETURN(-1); DBUG_RETURN(0); } /* _mi_enlarge_root */ /* Search after a position for a key and store it there Returns -1 = error 0 = ok 1 = key should be stored in higher tree */ static int w_search(register MI_INFO *info, register MI_KEYDEF *keyinfo, uint comp_flag, uchar *key, uint key_length, my_off_t page, uchar *father_buff, uchar *father_keypos, my_off_t father_page, my_bool insert_last) { int error,flag; uint nod_flag, search_key_length; uchar *temp_buff,*keypos; uchar keybuff[MI_MAX_KEY_BUFF]; my_bool was_last_key; my_off_t next_page, dupp_key_pos; DBUG_ENTER("w_search"); DBUG_PRINT("enter",("page: %ld",page)); search_key_length= (comp_flag & SEARCH_FIND) ? key_length : USE_WHOLE_KEY; if (!(temp_buff= (uchar*) my_alloca((uint) keyinfo->block_length+ MI_MAX_KEY_BUFF*2))) DBUG_RETURN(-1); if (!_mi_fetch_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff,0)) goto err; flag=(*keyinfo->bin_search)(info,keyinfo,temp_buff,key,search_key_length, comp_flag, &keypos, keybuff, &was_last_key); nod_flag=mi_test_if_nod(temp_buff); if (flag == 0) { uint tmp_key_length; /* get position to record with duplicated key */ tmp_key_length=(*keyinfo->get_key)(keyinfo,nod_flag,&keypos,keybuff); if (tmp_key_length) dupp_key_pos=_mi_dpos(info,0,keybuff+tmp_key_length); else dupp_key_pos= HA_OFFSET_ERROR; if (keyinfo->flag & HA_FULLTEXT) { uint off; int subkeys; get_key_full_length_rdonly(off, keybuff); subkeys=ft_sintXkorr(keybuff+off); comp_flag=SEARCH_SAME; if (subkeys >= 0) { /* normal word, one-level tree structure */ flag=(*keyinfo->bin_search)(info, keyinfo, temp_buff, key, USE_WHOLE_KEY, comp_flag, &keypos, keybuff, &was_last_key); } else { /* popular word. two-level tree. going down */ my_off_t root=dupp_key_pos; keyinfo=&info->s->ft2_keyinfo; get_key_full_length_rdonly(off, key); key+=off; keypos-=keyinfo->keylength+nod_flag; /* we'll modify key entry 'in vivo' */ error=_mi_ck_real_write_btree(info, keyinfo, key, 0, &root, comp_flag); _mi_dpointer(info, keypos+HA_FT_WLEN, root); subkeys--; /* should there be underflow protection ? */ DBUG_ASSERT(subkeys < 0); ft_intXstore(keypos, subkeys); if (!error) error=_mi_write_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff); my_afree((byte*) temp_buff); DBUG_RETURN(error); } } else /* not HA_FULLTEXT, normal HA_NOSAME key */ { info->dupp_key_pos= dupp_key_pos; my_afree((byte*) temp_buff); my_errno=HA_ERR_FOUND_DUPP_KEY; DBUG_RETURN(-1); } } if (flag == MI_FOUND_WRONG_KEY) DBUG_RETURN(-1); if (!was_last_key) insert_last=0; next_page=_mi_kpos(nod_flag,keypos); if (next_page == HA_OFFSET_ERROR || (error=w_search(info, keyinfo, comp_flag, key, key_length, next_page, temp_buff, keypos, page, insert_last)) >0) { error=_mi_insert(info,keyinfo,key,temp_buff,keypos,keybuff,father_buff, father_keypos,father_page, insert_last); if (_mi_write_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff)) goto err; } my_afree((byte*) temp_buff); DBUG_RETURN(error); err: my_afree((byte*) temp_buff); DBUG_PRINT("exit",("Error: %d",my_errno)); DBUG_RETURN (-1); } /* w_search */ /* Insert new key. SYNOPSIS _mi_insert() info Open table information. keyinfo Key definition information. key New key. anc_buff Key page (beginning). key_pos Position in key page where to insert. key_buff Copy of previous key. father_buff parent key page for balancing. father_key_pos position in parent key page for balancing. father_page position of parent key page in file. insert_last If to append at end of page. DESCRIPTION Insert new key at right of key_pos. RETURN 2 if key contains key to upper level. 0 OK. < 0 Error. */ int _mi_insert(register MI_INFO *info, register MI_KEYDEF *keyinfo, uchar *key, uchar *anc_buff, uchar *key_pos, uchar *key_buff, uchar *father_buff, uchar *father_key_pos, my_off_t father_page, my_bool insert_last) { uint a_length,nod_flag; int t_length; uchar *endpos, *prev_key; MI_KEY_PARAM s_temp; DBUG_ENTER("_mi_insert"); DBUG_PRINT("enter",("key_pos: %lx",key_pos)); DBUG_EXECUTE("key",_mi_print_key(DBUG_FILE,keyinfo->seg,key,USE_WHOLE_KEY);); nod_flag=mi_test_if_nod(anc_buff); a_length=mi_getint(anc_buff); endpos= anc_buff+ a_length; prev_key=(key_pos == anc_buff+2+nod_flag ? (uchar*) 0 : key_buff); t_length=(*keyinfo->pack_key)(keyinfo,nod_flag, (key_pos == endpos ? (uchar*) 0 : key_pos), prev_key, prev_key, key,&s_temp); #ifndef DBUG_OFF if (key_pos != anc_buff+2+nod_flag && (keyinfo->flag & (HA_BINARY_PACK_KEY | HA_PACK_KEY))) { DBUG_DUMP("prev_key",(byte*) key_buff,_mi_keylength(keyinfo,key_buff)); } if (keyinfo->flag & HA_PACK_KEY) { DBUG_PRINT("test",("t_length: %d ref_len: %d", t_length,s_temp.ref_length)); DBUG_PRINT("test",("n_ref_len: %d n_length: %d key_pos: %lx", s_temp.n_ref_length,s_temp.n_length,s_temp.key)); } #endif if (t_length > 0) { if (t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH) { mi_print_error(info->s, HA_ERR_CRASHED); my_errno=HA_ERR_CRASHED; DBUG_RETURN(-1); } bmove_upp((byte*) endpos+t_length,(byte*) endpos,(uint) (endpos-key_pos)); } else { if (-t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH) { mi_print_error(info->s, HA_ERR_CRASHED); my_errno=HA_ERR_CRASHED; DBUG_RETURN(-1); } bmove(key_pos,key_pos-t_length,(uint) (endpos-key_pos)+t_length); } (*keyinfo->store_key)(keyinfo,key_pos,&s_temp); a_length+=t_length; mi_putint(anc_buff,a_length,nod_flag); if (a_length <= keyinfo->block_length) { if (keyinfo->block_length - a_length < 32 && keyinfo->flag & HA_FULLTEXT && key_pos == endpos && info->s->base.key_reflength <= info->s->base.rec_reflength && info->s->options & (HA_OPTION_PACK_RECORD | HA_OPTION_COMPRESS_RECORD)) { /* Normal word. One-level tree. Page is almost full. Let's consider converting. We'll compare 'key' and the first key at anc_buff */ uchar *a=key, *b=anc_buff+2+nod_flag; uint alen, blen, ft2len=info->s->ft2_keyinfo.keylength; /* the very first key on the page is always unpacked */ DBUG_ASSERT((*b & 128) == 0); #if HA_FT_MAXLEN >= 127 blen= mi_uint2korr(b); b+=2; #else blen= *b++; #endif get_key_length(alen,a); DBUG_ASSERT(info->ft1_to_ft2==0); if (alen == blen && mi_compare_text(keyinfo->seg->charset, a, alen, b, blen, 0, 0)==0) { /* yup. converting */ info->ft1_to_ft2=(DYNAMIC_ARRAY *) my_malloc(sizeof(DYNAMIC_ARRAY), MYF(MY_WME)); my_init_dynamic_array(info->ft1_to_ft2, ft2len, 300, 50); /* now, adding all keys from the page to dynarray if the page is a leaf (if not keys will be deleted later) */ if (!nod_flag) { /* let's leave the first key on the page, though, because we cannot easily dispatch an empty page here */ b+=blen+ft2len+2; for (a=anc_buff+a_length ; b < a ; b+=ft2len+2) insert_dynamic(info->ft1_to_ft2, (char*) b); /* fixing the page's length - it contains only one key now */ mi_putint(anc_buff,2+blen+ft2len+2,0); } /* the rest will be done when we're back from recursion */ } } DBUG_RETURN(0); /* There is room on page */ } /* Page is full */ if (nod_flag) insert_last=0; if (!(keyinfo->flag & (HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY)) && father_buff && !insert_last) DBUG_RETURN(_mi_balance_page(info,keyinfo,key,anc_buff,father_buff, father_key_pos,father_page)); DBUG_RETURN(_mi_split_page(info,keyinfo,key,anc_buff,key_buff, insert_last)); } /* _mi_insert */ /* split a full page in two and assign emerging item to key */ int _mi_split_page(register MI_INFO *info, register MI_KEYDEF *keyinfo, uchar *key, uchar *buff, uchar *key_buff, my_bool insert_last_key) { uint length,a_length,key_ref_length,t_length,nod_flag,key_length; uchar *key_pos,*pos, *after_key; my_off_t new_pos; MI_KEY_PARAM s_temp; DBUG_ENTER("mi_split_page"); DBUG_DUMP("buff",(byte*) buff,mi_getint(buff)); if (info->s->keyinfo+info->lastinx == keyinfo) info->page_changed=1; /* Info->buff is used */ info->buff_used=1; nod_flag=mi_test_if_nod(buff); key_ref_length=2+nod_flag; if (insert_last_key) key_pos=_mi_find_last_pos(keyinfo,buff,key_buff, &key_length, &after_key); else key_pos=_mi_find_half_pos(nod_flag,keyinfo,buff,key_buff, &key_length, &after_key); if (!key_pos) DBUG_RETURN(-1); length=(uint) (key_pos-buff); a_length=mi_getint(buff); mi_putint(buff,length,nod_flag); key_pos=after_key; if (nod_flag) { DBUG_PRINT("test",("Splitting nod")); pos=key_pos-nod_flag; memcpy((byte*) info->buff+2,(byte*) pos,(size_t) nod_flag); } /* Move middle item to key and pointer to new page */ if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR) DBUG_RETURN(-1); _mi_kpointer(info,_mi_move_key(keyinfo,key,key_buff),new_pos); /* Store new page */ if (!(*keyinfo->get_key)(keyinfo,nod_flag,&key_pos,key_buff)) DBUG_RETURN(-1); t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(uchar *) 0, (uchar*) 0, (uchar*) 0, key_buff, &s_temp); length=(uint) ((buff+a_length)-key_pos); memcpy((byte*) info->buff+key_ref_length+t_length,(byte*) key_pos, (size_t) length); (*keyinfo->store_key)(keyinfo,info->buff+key_ref_length,&s_temp); mi_putint(info->buff,length+t_length+key_ref_length,nod_flag); if (_mi_write_keypage(info,keyinfo,new_pos,DFLT_INIT_HITS,info->buff)) DBUG_RETURN(-1); DBUG_DUMP("key",(byte*) key,_mi_keylength(keyinfo,key)); DBUG_RETURN(2); /* Middle key up */ } /* _mi_split_page */ /* Calculate how to much to move to split a page in two Returns pointer to start of key. key will contain the key. return_key_length will contain the length of key after_key will contain the position to where the next key starts */ uchar *_mi_find_half_pos(uint nod_flag, MI_KEYDEF *keyinfo, uchar *page, uchar *key, uint *return_key_length, uchar **after_key) { uint keys,length,key_ref_length; uchar *end,*lastpos; DBUG_ENTER("_mi_find_half_pos"); key_ref_length=2+nod_flag; length=mi_getint(page)-key_ref_length; page+=key_ref_length; if (!(keyinfo->flag & (HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY))) { key_ref_length=keyinfo->keylength+nod_flag; keys=length/(key_ref_length*2); *return_key_length=keyinfo->keylength; end=page+keys*key_ref_length; *after_key=end+key_ref_length; memcpy(key,end,key_ref_length); DBUG_RETURN(end); } end=page+length/2-key_ref_length; /* This is aprox. half */ *key='\0'; do { lastpos=page; if (!(length=(*keyinfo->get_key)(keyinfo,nod_flag,&page,key))) DBUG_RETURN(0); } while (page < end); *return_key_length=length; *after_key=page; DBUG_PRINT("exit",("returns: %lx page: %lx half: %lx",lastpos,page,end)); DBUG_RETURN(lastpos); } /* _mi_find_half_pos */ /* Split buffer at last key Returns pointer to the start of the key before the last key key will contain the last key */ static uchar *_mi_find_last_pos(MI_KEYDEF *keyinfo, uchar *page, uchar *key, uint *return_key_length, uchar **after_key) { uint keys,length,last_length,key_ref_length; uchar *end,*lastpos,*prevpos; uchar key_buff[MI_MAX_KEY_BUFF]; DBUG_ENTER("_mi_find_last_pos"); key_ref_length=2; length=mi_getint(page)-key_ref_length; page+=key_ref_length; if (!(keyinfo->flag & (HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY))) { keys=length/keyinfo->keylength-2; *return_key_length=length=keyinfo->keylength; end=page+keys*length; *after_key=end+length; memcpy(key,end,length); DBUG_RETURN(end); } LINT_INIT(prevpos); LINT_INIT(last_length); end=page+length-key_ref_length; *key='\0'; length=0; lastpos=page; while (page < end) { prevpos=lastpos; lastpos=page; last_length=length; memcpy(key, key_buff, length); /* previous key */ if (!(length=(*keyinfo->get_key)(keyinfo,0,&page,key_buff))) { mi_print_error(keyinfo->share, HA_ERR_CRASHED); my_errno=HA_ERR_CRASHED; DBUG_RETURN(0); } } *return_key_length=last_length; *after_key=lastpos; DBUG_PRINT("exit",("returns: %lx page: %lx end: %lx",prevpos,page,end)); DBUG_RETURN(prevpos); } /* _mi_find_last_pos */ /* Balance page with not packed keys with page on right/left */ /* returns 0 if balance was done */ static int _mi_balance_page(register MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uchar *curr_buff, uchar *father_buff, uchar *father_key_pos, my_off_t father_page) { my_bool right; uint k_length,father_length,father_keylength,nod_flag,curr_keylength, right_length,left_length,new_right_length,new_left_length,extra_length, length,keys; uchar *pos,*buff,*extra_buff; my_off_t next_page,new_pos; byte tmp_part_key[MI_MAX_KEY_BUFF]; DBUG_ENTER("_mi_balance_page"); k_length=keyinfo->keylength; father_length=mi_getint(father_buff); father_keylength=k_length+info->s->base.key_reflength; nod_flag=mi_test_if_nod(curr_buff); curr_keylength=k_length+nod_flag; info->page_changed=1; if ((father_key_pos != father_buff+father_length && (info->state->records & 1)) || father_key_pos == father_buff+2+info->s->base.key_reflength) { right=1; next_page= _mi_kpos(info->s->base.key_reflength, father_key_pos+father_keylength); buff=info->buff; DBUG_PRINT("test",("use right page: %lu",next_page)); } else { right=0; father_key_pos-=father_keylength; next_page= _mi_kpos(info->s->base.key_reflength,father_key_pos); /* Fix that curr_buff is to left */ buff=curr_buff; curr_buff=info->buff; DBUG_PRINT("test",("use left page: %lu",next_page)); } /* father_key_pos ptr to parting key */ if (!_mi_fetch_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff,0)) goto err; DBUG_DUMP("next",(byte*) info->buff,mi_getint(info->buff)); /* Test if there is room to share keys */ left_length=mi_getint(curr_buff); right_length=mi_getint(buff); keys=(left_length+right_length-4-nod_flag*2)/curr_keylength; if ((right ? right_length : left_length) + curr_keylength <= keyinfo->block_length) { /* Merge buffs */ new_left_length=2+nod_flag+(keys/2)*curr_keylength; new_right_length=2+nod_flag+((keys+1)/2)*curr_keylength; mi_putint(curr_buff,new_left_length,nod_flag); mi_putint(buff,new_right_length,nod_flag); if (left_length < new_left_length) { /* Move keys buff -> leaf */ pos=curr_buff+left_length; memcpy((byte*) pos,(byte*) father_key_pos, (size_t) k_length); memcpy((byte*) pos+k_length, (byte*) buff+2, (size_t) (length=new_left_length - left_length - k_length)); pos=buff+2+length; memcpy((byte*) father_key_pos,(byte*) pos,(size_t) k_length); bmove((byte*) buff+2,(byte*) pos+k_length,new_right_length); } else { /* Move keys -> buff */ bmove_upp((byte*) buff+new_right_length,(byte*) buff+right_length, right_length-2); length=new_right_length-right_length-k_length; memcpy((byte*) buff+2+length,father_key_pos,(size_t) k_length); pos=curr_buff+new_left_length; memcpy((byte*) father_key_pos,(byte*) pos,(size_t) k_length); memcpy((byte*) buff+2,(byte*) pos+k_length,(size_t) length); } if (_mi_write_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff) || _mi_write_keypage(info,keyinfo,father_page,DFLT_INIT_HITS,father_buff)) goto err; DBUG_RETURN(0); } /* curr_buff[] and buff[] are full, lets split and make new nod */ extra_buff=info->buff+info->s->base.max_key_block_length; new_left_length=new_right_length=2+nod_flag+(keys+1)/3*curr_keylength; if (keys == 5) /* Too few keys to balance */ new_left_length-=curr_keylength; extra_length=nod_flag+left_length+right_length- new_left_length-new_right_length-curr_keylength; DBUG_PRINT("info",("left_length: %d right_length: %d new_left_length: %d new_right_length: %d extra_length: %d", left_length, right_length, new_left_length, new_right_length, extra_length)); mi_putint(curr_buff,new_left_length,nod_flag); mi_putint(buff,new_right_length,nod_flag); mi_putint(extra_buff,extra_length+2,nod_flag); /* move first largest keys to new page */ pos=buff+right_length-extra_length; memcpy((byte*) extra_buff+2,pos,(size_t) extra_length); /* Save new parting key */ memcpy(tmp_part_key, pos-k_length,k_length); /* Make place for new keys */ bmove_upp((byte*) buff+new_right_length,(byte*) pos-k_length, right_length-extra_length-k_length-2); /* Copy keys from left page */ pos= curr_buff+new_left_length; memcpy((byte*) buff+2,(byte*) pos+k_length, (size_t) (length=left_length-new_left_length-k_length)); /* Copy old parting key */ memcpy((byte*) buff+2+length,father_key_pos,(size_t) k_length); /* Move new parting keys up to caller */ memcpy((byte*) (right ? key : father_key_pos),pos,(size_t) k_length); memcpy((byte*) (right ? father_key_pos : key),tmp_part_key, k_length); if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR) goto err; _mi_kpointer(info,key+k_length,new_pos); if (_mi_write_keypage(info,keyinfo,(right ? new_pos : next_page), DFLT_INIT_HITS,info->buff) || _mi_write_keypage(info,keyinfo,(right ? next_page : new_pos), DFLT_INIT_HITS,extra_buff)) goto err; DBUG_RETURN(1); /* Middle key up */ err: DBUG_RETURN(-1); } /* _mi_balance_page */ /********************************************************************** * Bulk insert code * **********************************************************************/ typedef struct { MI_INFO *info; uint keynr; } bulk_insert_param; int _mi_ck_write_tree(register MI_INFO *info, uint keynr, uchar *key, uint key_length) { int error; DBUG_ENTER("_mi_ck_write_tree"); error= tree_insert(&info->bulk_insert[keynr], key, key_length + info->s->rec_reflength, info->bulk_insert[keynr].custom_arg) ? 0 : HA_ERR_OUT_OF_MEM ; DBUG_RETURN(error); } /* _mi_ck_write_tree */ /* typeof(_mi_keys_compare)=qsort_cmp2 */ static int keys_compare(bulk_insert_param *param, uchar *key1, uchar *key2) { uint not_used; return ha_key_cmp(param->info->s->keyinfo[param->keynr].seg, key1, key2, USE_WHOLE_KEY, SEARCH_SAME, ¬_used); } static int keys_free(uchar *key, TREE_FREE mode, bulk_insert_param *param) { /* Probably I can use info->lastkey here, but I'm not sure, and to be safe I'd better use local lastkey. */ uchar lastkey[MI_MAX_KEY_BUFF]; uint keylen; MI_KEYDEF *keyinfo; switch (mode) { case free_init: if (param->info->s->concurrent_insert) { rw_wrlock(¶m->info->s->key_root_lock[param->keynr]); param->info->s->keyinfo[param->keynr].version++; } return 0; case free_free: keyinfo=param->info->s->keyinfo+param->keynr; keylen=_mi_keylength(keyinfo, key); memcpy(lastkey, key, keylen); return _mi_ck_write_btree(param->info,param->keynr,lastkey, keylen - param->info->s->rec_reflength); case free_end: if (param->info->s->concurrent_insert) rw_unlock(¶m->info->s->key_root_lock[param->keynr]); return 0; } return -1; } int mi_init_bulk_insert(MI_INFO *info, ulong cache_size, ha_rows rows) { MYISAM_SHARE *share=info->s; MI_KEYDEF *key=share->keyinfo; bulk_insert_param *params; uint i, num_keys, total_keylength; ulonglong key_map; DBUG_ENTER("_mi_init_bulk_insert"); DBUG_PRINT("enter",("cache_size: %lu", cache_size)); DBUG_ASSERT(!info->bulk_insert && (!rows || rows >= MI_MIN_ROWS_TO_USE_BULK_INSERT)); mi_clear_all_keys_active(key_map); for (i=total_keylength=num_keys=0 ; i < share->base.keys ; i++) { if (! (key[i].flag & HA_NOSAME) && (share->base.auto_key != i + 1) && mi_is_key_active(share->state.key_map, i)) { num_keys++; mi_set_key_active(key_map, i); total_keylength+=key[i].maxlength+TREE_ELEMENT_EXTRA_SIZE; } } if (num_keys==0 || num_keys * MI_MIN_SIZE_BULK_INSERT_TREE > cache_size) DBUG_RETURN(0); if (rows && rows*total_keylength < cache_size) cache_size=rows; else cache_size/=total_keylength*16; info->bulk_insert=(TREE *) my_malloc((sizeof(TREE)*share->base.keys+ sizeof(bulk_insert_param)*num_keys),MYF(0)); if (!info->bulk_insert) DBUG_RETURN(HA_ERR_OUT_OF_MEM); params=(bulk_insert_param *)(info->bulk_insert+share->base.keys); for (i=0 ; i < share->base.keys ; i++) { if (mi_is_key_active(key_map, i)) { params->info=info; params->keynr=i; /* Only allocate a 16'th of the buffer at a time */ init_tree(&info->bulk_insert[i], cache_size * key[i].maxlength, cache_size * key[i].maxlength, 0, (qsort_cmp2)keys_compare, 0, (tree_element_free) keys_free, (void *)params++); } else info->bulk_insert[i].root=0; } DBUG_RETURN(0); } void mi_flush_bulk_insert(MI_INFO *info, uint inx) { if (info->bulk_insert) { if (is_tree_inited(&info->bulk_insert[inx])) reset_tree(&info->bulk_insert[inx]); } } void mi_end_bulk_insert(MI_INFO *info) { if (info->bulk_insert) { uint i; for (i=0 ; i < info->s->base.keys ; i++) { if (is_tree_inited(& info->bulk_insert[i])) { delete_tree(& info->bulk_insert[i]); } } my_free((void *)info->bulk_insert, MYF(0)); info->bulk_insert=0; } }