create table t1 (a int, b varchar(32)); insert into t1 values (4,'aaaa' ), (7,'bb'), (1,'ccc'), (4,'dd'); insert into t1 values (3,'eee'), (7,'bb'), (1,'fff'), (4,'ggg'); --ERROR ER_UNACCEPTABLE_MUTUAL_RECURSION with recursive t as ( select * from t1 where t1.b >= 'c' union select * from r ), r as ( select * from t union select t1.* from t1,r where r.a+1 = t1.a ) select * from r; --ERROR ER_UNACCEPTABLE_MUTUAL_RECURSION with recursive a1(a,b) as (select * from t1 where t1.a>3 union select * from b1 where b1.a >3 union select * from c1 where c1.a>3), b1(a,b) as (select * from a1 where a1.b > 'ccc' union select * from c1 where c1.b > 'ddd'), c1(a,b) as (select * from a1 where a1.a<6 and a1.b< 'zz' union select * from b1 where b1.b > 'auu') select * from c1; drop table t1; --echo # WITH RECURSIVE vs just WITH create table t1 (a int); insert into t1 values (0), (1), (2), (3), (4); create table t2 (a int); insert into t2 values (1), (2), (3), (4), (5); --echo # just WITH : s refers to t defined after s --ERROR ER_NO_SUCH_TABLE with s(a) as (select t.a + 10 from t), t(a) as (select t1.a from t1) select * from s; --echo # WITH RECURSIVE: s refers to t defined after s with recursive s(a) as (select t.a + 10 from t), t(a) as (select t1.a from t1) select * from s; --echo # just WITH : defined t1 is non-recursive and uses base tables t1,t2 with t1 as ( select a from t2 where t2.a=3 union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; explain with t1 as ( select a from t2 where t2.a=3 union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; --echo #WITH RECURSIVE : defined t1 is recursive and uses only base table t2 with recursive t1 as ( select a from t2 where t2.a=3 union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; explain with recursive t1 as ( select a from t2 where t2.a=3 union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; --echo # just WITH : types of t1 columns are determined by all parts of union create view v1 as with t1 as ( select a from t2 where t2.a=3 union select t2.a+1 from t1,t2 where t1.a=t2.a ) select * from t1; show columns from v1; --echo # WITH RECURSIVE : types of t1 columns are determined by anchor parts create view v2 as with recursive t1 as ( select a from t2 where t2.a=3 union select t2.a+1 from t1,t2 where t1.a=t2.a ) select * from t1; show columns from v2; drop view v1,v2; drop table t1,t2; create table folks(id int, name char(32), dob date, father int, mother int); insert into folks values (100, 'Me', '2000-01-01', 20, 30), (20, 'Dad', '1970-02-02', 10, 9), (30, 'Mom', '1975-03-03', 8, 7), (10, 'Grandpa Bill', '1940-04-05', null, null), (9, 'Grandma Ann', '1941-10-15', null, null), (25, 'Uncle Jim', '1968-11-18', 8, 7), (98, 'Sister Amy', '2001-06-20', 20, 30), (7, 'Grandma Sally', '1943-08-23', null, 6), (8, 'Grandpa Ben', '1940-10-21', null, null), (6, 'Grandgrandma Martha', '1923-05-17', null, null), (67, 'Cousin Eddie', '1992-02-28', 25, 27), (27, 'Auntie Melinda', '1971-03-29', null, null); --echo # simple recursion with one anchor and one recursive select --echo # the anchor is the first select in the specification with recursive ancestors as ( select * from folks where name = 'Me' and dob = '2000-01-01' union select p.id, p.name, p.dob, p.father, p.mother from folks as p, ancestors AS a where p.id = a.father or p.id = a.mother ) select * from ancestors; --echo # simple recursion with one anchor and one recursive select --echo # the anchor is the last select in the specification with recursive ancestors as ( select p.* from folks as p, ancestors AS a where p.id = a.father or p.id = a.mother union select * from folks where name = 'Me' and dob = '2000-01-01' ) select * from ancestors; --echo # simple recursion with one anchor and one recursive select --echo # the anchor is the first select in the specification with recursive ancestors as ( select * from folks where name = 'Cousin Eddie' union select p.* from folks as p, ancestors as a where p.id = a.father or p.id = a.mother ) select * from ancestors; --echo # simple recursion with or in anchor and or in recursive part with recursive ancestors as ( select * from folks where name = 'Me' or name='Sister Amy' union select p.* from folks as p, ancestors as a where p.id = a.father or p.id = a.mother ) select * from ancestors; --echo # two recursive definition, one uses another with recursive prev_gen as ( select folks.* from folks, prev_gen where folks.id=prev_gen.father or folks.id=prev_gen.mother union select * from folks where name='Me' ), ancestors as ( select * from folks where name='Me' union select * from ancestors union select * from prev_gen ) select ancestors.name, ancestors.dob from ancestors; --echo # recursive definition with two attached non-recursive with recursive ancestors(id,name,dob) as ( with father(child_id,id,name,dob) as ( select folks.id, f.id, f.name, f.dob from folks, folks f where folks.father=f.id ), mother(child_id,id,name,dob) as ( select folks.id, m.id, m.name, m.dob from folks, folks m where folks.mother=m.id ) select folks.id, folks.name, folks.dob from folks where name='Me' union select f.id, f.name, f.dob from ancestors a, father f where f.child_id=a.id union select m.id, m.name, m.dob from ancestors a, mother m where m.child_id=a.id ) select ancestors.name, ancestors.dob from ancestors; --echo # simple recursion with one anchor and one recursive select --echo # the anchor is the first select in the specification with recursive descendants as ( select * from folks where name = 'Grandpa Bill' union select folks.* from folks, descendants as d where d.id=folks.father or d.id=folks.mother ) select * from descendants; --echo # simple recursion with one anchor and one recursive select --echo # the anchor is the first select in the specification with recursive descendants as ( select * from folks where name = 'Grandma Sally' union select folks.* from folks, descendants as d where d.id=folks.father or d.id=folks.mother ) select * from descendants; --echo # simple recursive table used three times in the main query with recursive ancestors as ( select * from folks where name = 'Me' and dob = '2000-01-01' union select p.* from folks as p, ancestors AS a where p.id = a.father OR p.id = a.mother ) select * from ancestors t1, ancestors t2 where exists (select * from ancestors a where a.father=t1.id AND a.mother=t2.id); --echo # simple recursive table used three times in the main query with ancestor_couples(husband, h_dob, wife, w_dob) as ( with recursive ancestors as ( select * from folks where name = 'Me' union select p.* from folks as p, ancestors AS a where p.id = a.father OR p.id = a.mother ) select t1.name, t1.dob, t2.name, t2.dob from ancestors t1, ancestors t2 where exists (select * from ancestors a where a.father=t1.id AND a.mother=t2.id) ) select * from ancestor_couples; --echo # simple recursion with two selects in recursive part with recursive ancestors as ( select * from folks where name = 'Me' union select p.* from folks as p, ancestors as fa where p.id = fa.father union select p.* from folks as p, ancestors as ma where p.id = ma.mother ) select * from ancestors; --echo # mutual recursion with renaming with recursive ancestor_couples(h_id, h_name, h_dob, h_father, h_mother, w_id, w_name, w_dob, w_father, w_mother) as ( select h.*, w.* from folks h, folks w, coupled_ancestors a where a.father = h.id AND a.mother = w.id union select h.*, w.* from folks v, folks h, folks w where v.name = 'Me' and (v.father = h.id AND v.mother= w.id) ), coupled_ancestors (id, name, dob, father, mother) as ( select h_id, h_name, h_dob, h_father, h_mother from ancestor_couples union select w_id, w_name, w_dob, w_father, w_mother from ancestor_couples ) select h_name, h_dob, w_name, w_dob from ancestor_couples; --echo # mutual recursion with union all with recursive ancestor_couples(h_id, h_name, h_dob, h_father, h_mother, w_id, w_name, w_dob, w_father, w_mother) as ( select h.*, w.* from folks h, folks w, coupled_ancestors a where a.father = h.id AND a.mother = w.id union select h.*, w.* from folks v, folks h, folks w where v.name = 'Me' and (v.father = h.id AND v.mother= w.id) ), coupled_ancestors (id, name, dob, father, mother) as ( select h_id, h_name, h_dob, h_father, h_mother from ancestor_couples union all select w_id, w_name, w_dob, w_father, w_mother from ancestor_couples ) select h_name, h_dob, w_name, w_dob from ancestor_couples; --echo # mutual recursion with renaming with recursive ancestor_couples(h_id, h_name, h_dob, h_father, h_mother, w_id, w_name, w_dob, w_father, w_mother) as ( select h.*, w.* from folks h, folks w, coupled_ancestors a where a.father = h.id AND a.mother = w.id union select h.*, w.* from folks v, folks h, folks w where v.name = 'Me' and (v.father = h.id AND v.mother= w.id) ), coupled_ancestors (id, name, dob, father, mother) as ( select h_id, h_name, h_dob, h_father, h_mother from ancestor_couples union select w_id, w_name, w_dob, w_father, w_mother from ancestor_couples ) select h_name, h_dob, w_name, w_dob from ancestor_couples; --echo # mutual recursion with union all with recursive ancestor_couples(h_id, h_name, h_dob, h_father, h_mother, w_id, w_name, w_dob, w_father, w_mother) as ( select h.*, w.* from folks h, folks w, coupled_ancestors a where a.father = h.id AND a.mother = w.id ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select h_id, h_name, h_dob, h_father, h_mother from ancestor_couples union all select w_id, w_name, w_dob, w_father, w_mother from ancestor_couples ) select h_name, h_dob, w_name, w_dob from ancestor_couples; --echo # mutual recursion with one select in the first definition with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a where a.father is not null and a.mother is not null ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select * from ancestor_couple_ids; --echo # join of a mutually recursive table with base tables with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a where a.father is not null and a.mother is not null ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select h.name, h.dob, w.name, w.dob from ancestor_couple_ids c, folks h, folks w where c.h_id = h.id and c.w_id= w.id; --echo # join of two mutually recursive tables with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a where a.father is not null and a.mother is not null ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select h.name, h.dob, w.name, w.dob from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w where c.h_id = h.id and c.w_id= w.id; explain extended with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a where a.father is not null and a.mother is not null ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select h.name, h.dob, w.name, w.dob from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w where c.h_id = h.id and c.w_id= w.id; --echo # simple mutual recursion with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select * from ancestor_couple_ids; --echo # join of two mutually recursive tables with recursive ancestor_couple_ids(h_id, w_id) as ( select a.father, a.mother from coupled_ancestors a ), coupled_ancestors (id, name, dob, father, mother) as ( select * from folks where name = 'Me' union all select p.* from folks p, ancestor_couple_ids fa where p.id = fa.h_id union all select p.* from folks p, ancestor_couple_ids ma where p.id = ma.w_id ) select h.name, h.dob, w.name, w.dob from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w where c.h_id = h.id and c.w_id= w.id; --echo # execution of prepared query using a recursive table prepare stmt1 from " with recursive ancestors as ( select * from folks where name = 'Me' and dob = '2000-01-01' union select p.id, p.name, p.dob, p.father, p.mother from folks as p, ancestors AS a where p.id = a.father or p.id = a.mother ) select * from ancestors; "; execute stmt1; execute stmt1; deallocate prepare stmt1; --echo # view using a recursive table create view v1 as with recursive ancestors as ( select * from folks where name = 'Me' and dob = '2000-01-01' union select p.id, p.name, p.dob, p.father, p.mother from folks as p, ancestors AS a where p.id = a.father or p.id = a.mother ) select * from ancestors; show create view v1; select * from v1; create view v2 as with recursive ancestors as ( select * from folks where name = 'Me' union select p.* from folks as p, ancestors as fa where p.id = fa.father union select p.* from folks as p, ancestors as ma where p.id = ma.mother ) select * from ancestors; show create view v2; select * from v2; drop view v1,v2; explain extended with recursive ancestors as ( select * from folks where name = 'Me' and dob = '2000-01-01' union select p.id, p.name, p.dob, p.father, p.mother from folks as p, ancestors AS a where p.id = a.father or p.id = a.mother ) select * from ancestors; --echo # recursive spec with two anchor selects and two recursive ones with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ), ancestors as ( select p.* from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; --echo # recursive spec using union all with recursive ancestors as ( select * from folks where name = 'Me' union all select p.* from folks as p, ancestors as fa where p.id = fa.father union all select p.* from folks as p, ancestors as ma where p.id = ma.mother ) select * from ancestors; --ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' and father is not null union all select mother, 1 from folks where name = 'Me' and mother is not null union all select father, fa.generation+1 from folks, ancestor_ids fa where folks.id = fa.id and (father not in (select id from ancestor_ids)) union all select mother, ma.generation+1 from folks, ancestor_ids ma where folks.id = ma.id and (mother not in (select id from ancestor_ids)) ) select generation, name from ancestor_ids a, folks where a.id = folks.id; set standard_compliant_cte=0; --ERROR ER_WITH_COL_WRONG_LIST with recursive ancestor_ids (id, generation) as ( select father from folks where name = 'Me' and father is not null union all select mother from folks where name = 'Me' and mother is not null union all select father, fa.generation+1 from folks, ancestor_ids fa where folks.id = fa.id and (father not in (select id from ancestor_ids)) union all select mother, ma.generation+1 from folks, ancestor_ids ma where folks.id = ma.id and (mother not in (select id from ancestor_ids)) ) select generation, name from ancestor_ids a, folks where a.id = folks.id; with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' and father is not null union all select mother, 1 from folks where name = 'Me' and mother is not null union all select father, fa.generation+1 from folks, ancestor_ids fa where folks.id = fa.id and father is not null and (father not in (select id from ancestor_ids)) union all select mother, ma.generation+1 from folks, ancestor_ids ma where folks.id = ma.id and mother is not null and (mother not in (select id from ancestor_ids)) ) select generation, name from ancestor_ids a, folks where a.id = folks.id; set standard_compliant_cte=1; --ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE with recursive coupled_ancestor_ids (id) as ( select father from folks where name = 'Me' and father is not null union select mother from folks where name = 'Me' and mother is not null union select n.father from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n where folks.father = fa.id and folks.mother = ma.id and (fa.id = n.id or ma.id = n.id) and n.father is not null and n.mother is not null union select n.mother from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n where folks.father = fa.id and folks.mother = ma.id and (fa.id = n.id or ma.id = n.id) and n.father is not null and n.mother is not null ) select p.* from coupled_ancestor_ids a, folks p where a.id = p.id; set statement standard_compliant_cte=0 for with recursive coupled_ancestor_ids (id) as ( select father from folks where name = 'Me' and father is not null union select mother from folks where name = 'Me' and mother is not null union select n.father from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n where folks.father = fa.id and folks.mother = ma.id and (fa.id = n.id or ma.id = n.id) and n.father is not null and n.mother is not null union select n.mother from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n where folks.father = fa.id and folks.mother = ma.id and (fa.id = n.id or ma.id = n.id) and n.father is not null and n.mother is not null ) select p.* from coupled_ancestor_ids a, folks p where a.id = p.id; --ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks left join ancestor_ids a on folks.id = a.id union select mother from folks left join ancestor_ids a on folks.id = a.id ), ancestors as ( select p.* from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; set statement standard_compliant_cte=0 for with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks left join ancestor_ids a on folks.id = a.id union select mother from folks left join ancestor_ids a on folks.id = a.id ), ancestors as ( select p.* from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' union select mother, 1 from folks where name = 'Me' union select father, a.generation+1 from folks, ancestor_ids a where folks.id = a.id union select mother, a.generation+1 from folks, ancestor_ids a where folks.id = a.id ), ancestors as ( select generation, name from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; --ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' union select mother, 1 from folks where name = 'Me' union select max(father), max(a.generation)+1 from folks, ancestor_ids a where folks.id = a.id group by a.generation union select max(mother), max(a.generation)+1 from folks, ancestor_ids a where folks.id = a.id group by a.generation ), ancestors as ( select generation, name from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; set statement standard_compliant_cte=0 for with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' union select mother, 1 from folks where name = 'Me' union select max(father), a.generation+1 from folks, ancestor_ids a where folks.id = a.id group by a.generation union select max(mother), a.generation+1 from folks, ancestor_ids a where folks.id = a.id group by a.generation ), ancestors as ( select generation, name from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; set statement max_recursive_iterations=1 for with recursive ancestor_ids (id, generation) as ( select father, 1 from folks where name = 'Me' union select mother, 1 from folks where name = 'Me' union select father, a.generation+1 from folks, ancestor_ids a where folks.id = a.id union select mother, a.generation+1 from folks, ancestor_ids a where folks.id = a.id ), ancestors as ( select generation, name from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; --echo # query with recursive tables using key access alter table folks add primary key (id); explain with recursive ancestors as ( select * from folks where name = 'Me' union select p.* from folks as p, ancestors as fa where p.id = fa.father union select p.* from folks as p, ancestors as ma where p.id = ma.mother ) select * from ancestors; with recursive ancestors as ( select * from folks where name = 'Me' union select p.* from folks as p, ancestors as fa where p.id = fa.father union select p.* from folks as p, ancestors as ma where p.id = ma.mother ) select * from ancestors; --echo # --echo # EXPLAIN FORMAT=JSON on a query where one recursive CTE uses another: --echo # explain with recursive prev_gen as ( select folks.* from folks, prev_gen where folks.id=prev_gen.father or folks.id=prev_gen.mother union select * from folks where name='Me' ), ancestors as ( select * from folks where name='Me' union select * from ancestors union select * from prev_gen ) select ancestors.name, ancestors.dob from ancestors; explain FORMAT=JSON with recursive prev_gen as ( select folks.* from folks, prev_gen where folks.id=prev_gen.father or folks.id=prev_gen.mother union select * from folks where name='Me' ), ancestors as ( select * from folks where name='Me2' union select * from ancestors where id < 234 union select * from prev_gen where id < 345 ) select ancestors.name, ancestors.dob from ancestors; --echo # explain format=json with recursive ancestor_couples(h_id, h_name, h_dob, h_father, h_mother, w_id, w_name, w_dob, w_father, w_mother) as ( select h.*, w.* from folks h, folks w, coupled_ancestors a where a.father = h.id AND a.mother = w.id union select h.*, w.* from folks v, folks h, folks w where v.name = 'Me' and (v.father = h.id AND v.mother= w.id) ), coupled_ancestors (id, name, dob, father, mother) as ( select h_id, h_name, h_dob, h_father, h_mother from ancestor_couples union all select w_id, w_name, w_dob, w_father, w_mother from ancestor_couples ) select h_name, h_dob, w_name, w_dob from ancestor_couples; create table my_ancestors with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id; select * from my_ancestors; delete from my_ancestors; insert into my_ancestors with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id; select * from my_ancestors; drop table my_ancestors; --echo # --echo # MDEV-10883: execution of prepared statement from SELECT --echo # with recursive CTE that renames columns --echo # prepare stmt from" with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id; "; execute stmt; deallocate prepare stmt; --echo # --echo # MDEV-10881: execution of prepared statement from --echo # CREATE ... SELECT, INSERT ... SELECT --echo # prepare stmt from" create table my_ancestors with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id; "; execute stmt; deallocate prepare stmt; select * from my_ancestors; delete from my_ancestors; prepare stmt from" insert into my_ancestors with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id; "; execute stmt; deallocate prepare stmt; select * from my_ancestors; drop table my_ancestors; --echo # --echo # MDEV-10933: WITH clause together with SELECT in parenthesis --echo # CREATE SELECT --echo # create table my_ancestors ( with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from folks, ancestor_ids a where folks.id = a.id union select mother from folks, ancestor_ids a where folks.id = a.id ) select p.* from folks as p, ancestor_ids as a where p.id = a.id ); select * from my_ancestors; drop table my_ancestors; drop table folks; --echo # --echo # MDEV-10372: [bb-10.2-mdev9864 tree] EXPLAIN with recursive CTE enters endless recursion --echo # create table t1(a int); insert into t1 values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9); explain format=json with recursive t as (select a from t1 union select a+10 from t where a < 1000) select * from t; drop table t1; --echo # --echo # MDEV-10737: recursive union with several anchors at the end --echo # WITH RECURSIVE cte(n) AS ( SELECT n+1 FROM cte WHERE n < 5 UNION SELECT 1 UNION SELECT 1 ) SELECT * FROM cte; --echo # --echo # MDEV-10736: recursive definition with anchor over a table with blob --echo # CREATE TABLE t1 (f VARCHAR(1024)); WITH RECURSIVE cte(f) AS (SELECT t1.f FROM t1 UNION ALL SELECT cte.f FROM cte) SELECT * FROM cte as t; DROP TABLE t1; --echo # --echo # MDEV-10899: mergeable derived in the spec of recursive CTE --echo # create table t1 (a int); insert into t1 values (0), (1), (2), (3), (4); create table t2 (a int); insert into t2 values (1), (2), (3), (4), (5); with recursive t1 as ( select x.a from (select a from t2 where t2.a=3) x union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; explain with recursive t1 as ( select x.a from (select a from t2 where t2.a=3) x union select t2.a from t1,t2 where t1.a+1=t2.a ) select * from t1; drop table t1,t2; --echo # --echo # MDEV-11278: non-mergeable view in the spec of recursive CTE --echo # create table t1 (a int); insert into t1 values (0), (1), (2), (3), (4); create table t2 (a int); insert into t2 values (1), (2), (3), (4), (5); create view v1 as select a from t2 where a < 3 union select a from t2 where a > 4; with recursive t1 as ( select a from v1 where a=1 union select v1.a from t1,v1 where t1.a+1=v1.a ) select * from t1; drop view v1; drop table t1,t2; --echo # --echo # MDEV-11259: recursive CTE with concatenation operation --echo # DROP TABLE IF EXISTS edges; CREATE TABLE edges( a int(10) unsigned NOT NULL, b int(10) unsigned NOT NULL, PRIMARY KEY (a,b), KEY b(b) ); INSERT INTO edges VALUES (1,3),(2,1),(2,4),(3,4),(3,5),(3,6),(4,7),(5,1),(5,6),(6,1); DROP TABLE IF EXISTS edges2; CREATE VIEW edges2 (a, b) AS SELECT a, b FROM edges UNION ALL SELECT b, a FROM edges; --sorted_result WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS ( SELECT a, b, 1 AS distance, concat(a, '.', b, '.') AS path_string FROM edges UNION ALL SELECT tc.a, e.b, tc.distance + 1, concat(tc.path_string, e.b, '.') AS path_string FROM edges AS e JOIN transitive_closure AS tc ON e.a = tc.b WHERE tc.path_string NOT LIKE concat('%', e.b, '.%') ) SELECT * FROM transitive_closure ORDER BY a, b, distance; --sorted_result WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS ( SELECT a, b, 1 AS distance, concat(a, '.', b, '.') AS path_string FROM edges WHERE a = 1 -- source UNION ALL SELECT tc.a, e.b, tc.distance + 1, concat(tc.path_string, e.b, '.') AS path_string FROM edges AS e JOIN transitive_closure AS tc ON e.a = tc.b WHERE tc.path_string NOT LIKE concat('%', e.b, '.%') ) SELECT * FROM transitive_closure WHERE b = 6 -- destination ORDER BY a, b, distance; --sorted_result WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS ( SELECT a, b, 1 AS distance, concat(a, '.', b, '.') AS path_string FROM edges2 UNION ALL SELECT tc.a, e.b, tc.distance + 1, concat(tc.path_string, e.b, '.') AS path_string FROM edges2 AS e JOIN transitive_closure AS tc ON e.a = tc.b WHERE tc.path_string NOT LIKE concat('%', e.b, '.%') ) SELECT * FROM transitive_closure ORDER BY a, b, distance; --sorted_result WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS ( SELECT a, b, 1 AS distance, concat(a, '.', b, '.') AS path_string FROM edges2 UNION ALL SELECT tc.a, e.b, tc.distance + 1, concat(tc.path_string, e.b, '.') AS path_string FROM edges2 AS e JOIN transitive_closure AS tc ON e.a = tc.b WHERE tc.path_string NOT LIKE concat('%', e.b, '.%') ) SELECT a, b, min(distance) AS dist FROM transitive_closure GROUP BY a, b ORDER BY a, dist, b; DROP VIEW edges2; DROP TABLE edges; --echo # --echo # MDEV-11674: recursive CTE table that cannot be stored --echo # in a heap table --echo # create table t1 (id int, test_data varchar(36)); insert into t1(id, test_data) select id, test_data from ( with recursive data_generator(id, test_data) as ( select 1 as id, uuid() as test_data union all select id + 1, uuid() from data_generator where id < 150000 ) select * from data_generator ) as a; drop table t1; --echo # --echo # MDEV-10773: ANALYZE for query with recursive CTE --echo # --source include/analyze-format.inc analyze format=json with recursive src(counter) as (select 1 union select counter+1 from src where counter<10 ) select * from src; --echo # --echo # mdev-12360: recursive reference in left operand of LEFT JOIN --echo # create table folks(id int, name char(32), dob date, father int, mother int); insert into folks values (100, 'Me', '2000-01-01', 20, 30), (20, 'Dad', '1970-02-02', 10, 9), (30, 'Mom', '1975-03-03', 8, 7), (10, 'Grandpa Bill', '1940-04-05', null, null), (9, 'Grandma Ann', '1941-10-15', null, null), (25, 'Uncle Jim', '1968-11-18', 8, 7), (98, 'Sister Amy', '2001-06-20', 20, 30), (7, 'Grandma Sally', '1943-08-23', null, 6), (8, 'Grandpa Ben', '1940-10-21', null, null), (6, 'Grandgrandma Martha', '1923-05-17', null, null), (67, 'Cousin Eddie', '1992-02-28', 25, 27), (27, 'Auntie Melinda', '1971-03-29', null, null); with recursive ancestor_ids (id) as ( select father from folks where name = 'Me' union select mother from folks where name = 'Me' union select father from ancestor_ids as a left join folks on folks.id = a.id union select mother from ancestor_ids as a left join folks on folks.id = a.id ), ancestors as ( select p.* from folks as p, ancestor_ids as a where p.id = a.id ) select * from ancestors; drop table folks; --echo # --echo # mdev-12368: crash with mutually recursive CTE --echo # that arenot Standard compliant --echo # create table value_nodes (v char(4)); create table module_nodes(m char(4)); create table module_arguments(m char(4), v char(4)); create table module_results(m char(4), v char(4)); --ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE with recursive reached_values as ( select v from value_nodes where v in ('v3','v7','v9') union select module_results.v from module_results, applied_modules where module_results.m = applied_modules.m ), applied_modules as ( select module_nodes.m from module_nodes left join ( module_arguments left join reached_values on module_arguments.v = reached_values.v ) on reached_values.v is null and module_nodes.m = module_arguments.m where module_arguments.m is null ) select * from reached_values; drop table value_nodes, module_nodes, module_arguments, module_results; --echo # --echo # mdev-12375: query using one of two mutually recursive CTEs --echo # whose non-recursive part returns an empty set --echo # create table value_nodes (v char(4)); insert into value_nodes values ('v1'), ('v2'), ('v3'), ('v4'), ('v5'), ('v6'), ('v7'), ('v8'), ('v9'), ('v10'), ('v11'), ('v12'), ('v13'), ('v14'), ('v15'), ('v16'); create table module_nodes(m char(4)); insert into module_nodes values ('m1'), ('m2'), ('m3'), ('m4'), ('m5'), ('m6'), ('m7'); create table module_arguments(m char(4), v char(4)); insert into module_arguments values ('m1','v3'), ('m1','v9'), ('m2','v4'), ('m2','v3'), ('m2','v7'), ('m3','v6'), ('m4','v4'), ('m4','v1'), ('m5','v10'), ('m5','v8'), ('m5','v3'), ('m6','v8'), ('m6','v1'), ('m7','v11'), ('m7','v12'); create table module_results(m char(4), v char(4)); insert into module_results values ('m1','v4'), ('m2','v1'), ('m2','v6'), ('m3','v10'), ('m4','v8'), ('m5','v11'), ('m5','v9'), ('m6','v12'), ('m6','v4'), ('m7','v2'); set statement max_recursive_iterations=2, standard_compliant_cte=0 for with recursive reached_values as ( select v from value_nodes where v in ('v3','v7','v9') union select module_results.v from module_results, applied_modules where module_results.m = applied_modules.m ), applied_modules as ( select * from module_nodes where 1=0 union select module_nodes.m from module_nodes left join ( module_arguments left join reached_values on module_arguments.v = reached_values.v ) on reached_values.v is null and module_nodes.m = module_arguments.m where module_arguments.m is null ) select * from applied_modules; drop table value_nodes, module_nodes, module_arguments, module_results; --echo # --echo # mdev-12519: recursive references in subqueries --echo # create table t1 (lp char(4) not null, rp char(4) not null); insert into t1 values ('p1','p2'), ('p2','p3'), ('p3','p4'), ('p4','p5'), ('p2','p7'), ('p7','p8'), ('p8','p3'), ('p8','p4'); set standard_compliant_cte=0; with recursive reachables(p) as ( select lp from t1 where lp = 'p1' union select t1.rp from reachables, t1 where t1.lp = reachables.p ) select * from reachables; with recursive reachables(p) as ( select lp from t1 where lp = 'p1' union select t1.rp from reachables, t1 where 'p3' not in (select * from reachables) and t1.lp = reachables.p ) select * from reachables; with recursive reachables(p) as ( select lp from t1 where lp = 'p1' union select t1.rp from reachables, t1 where 'p3' not in (select p from reachables where p <= 'p5' union select p from reachables where p > 'p5') and t1.lp = reachables.p ) select * from reachables; prepare stmt from " with recursive reachables(p) as ( select lp from t1 where lp = 'p1' union select t1.rp from reachables, t1 where 'p3' not in (select p from reachables where p <= 'p5' union select p from reachables where p > 'p5') and t1.lp = reachables.p ) select * from reachables; "; execute stmt; execute stmt; deallocate prepare stmt; drop table t1; create table objects(v char(4) not null); insert into objects values ('v1'), ('v2'), ('v3'), ('v4'), ('v5'), ('v6'), ('v7'), ('v8'), ('v9'), ('v10'); create table modules(m char(4) not null); insert into modules values ('m1'), ('m2'), ('m3'), ('m4'); create table module_arguments(m char(4) not null, v char(4) not null); insert into module_arguments values ('m1','v3'), ('m1','v9'), ('m2','v4'), ('m2','v7'), ('m3','v6'), ('m4','v2'); create table module_results(m char(4) not null, v char(4) not null); insert into module_results values ('m1','v4'), ('m2','v1'), ('m2','v6'), ('m3','v10'), ('m4','v7'); set standard_compliant_cte=0; with recursive reached_objects as ( select v, 'init' as m from objects where v in ('v3','v7','v9') union select module_results.v, module_results.m from module_results, applied_modules where module_results.m = applied_modules.m ), applied_modules as ( select * from modules where 1=0 union select modules.m from modules where not exists (select * from module_arguments where module_arguments.m = modules.m and module_arguments.v not in (select v from reached_objects)) ) select * from reached_objects; with recursive reached_objects as ( select v, 'init' as m from objects where v in ('v3','v7','v9') union select module_results.v, module_results.m from module_results, applied_modules where module_results.m = applied_modules.m ), applied_modules as ( select * from modules where 1=0 union select modules.m from modules where 'v6' not in (select v from reached_objects) and not exists (select * from module_arguments where module_arguments.m = modules.m and module_arguments.v not in (select v from reached_objects)) ) select * from reached_objects; prepare stmt from " with recursive reached_objects as ( select v, 'init' as m from objects where v in ('v3','v7','v9') union select module_results.v, module_results.m from module_results, applied_modules where module_results.m = applied_modules.m ), applied_modules as ( select * from modules where 1=0 union select modules.m from modules where 'v6' not in (select v from reached_objects) and not exists (select * from module_arguments where module_arguments.m = modules.m and module_arguments.v not in (select v from reached_objects)) ) select * from reached_objects; "; execute stmt; execute stmt; deallocate prepare stmt; drop table objects, modules, module_arguments, module_results; set standard_compliant_cte=default; select @@standard_compliant_cte; --echo # --echo # mdev-12554: impossible where in recursive select --echo # CREATE TABLE t1 (i int); INSERT INTO t1 VALUES (1),(2); WITH RECURSIVE cte(f) AS ( SELECT i FROM t1 UNION SELECT f FROM t1, cte WHERE 1=0 ) SELECT * FROM cte; DROP TABLE t1; --echo # --echo # mdev-12556: recursive execution uses Aria temporary tables --echo # CREATE TABLE t (c1 varchar(255), c2 tinytext); INSERT INTO t VALUES ('a','a'),('b','b'),('c','c'),('d','d'); let $q1= WITH RECURSIVE cte(f) AS ( SELECT c1 FROM t UNION SELECT c1 FROM t, cte ) SELECT COUNT(*) FROM cte; let $q2= WITH RECURSIVE cte(f) AS ( SELECT c2 FROM t UNION SELECT c2 FROM t, cte ) SELECT COUNT(*) FROM cte; eval ANALYZE $q1; eval $q1; eval ANALYZE $q2; eval $q2; DROP TABLE t; --echo # --echo # mdev-12563: no recursive references on the top level of the CTE spec --echo # CREATE TABLE t (i int); INSERT INTO t VALUES (3), (1),(2); SET standard_compliant_cte=0; WITH RECURSIVE cte(f) AS ( SELECT i FROM t UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte ) ) SELECT * FROM cte; WITH RECURSIVE cte(f) AS ( SELECT i FROM t UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte WHERE i < 2 ) UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte WHERE i > 2 ) ) SELECT * FROM cte; WITH RECURSIVE cte(f) AS ( SELECT i FROM t UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte WHERE i < 2 UNION SELECT * FROM cte WHERE i > 2) ) SELECT * FROM cte; WITH RECURSIVE cte(f) AS ( SELECT i FROM t UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM t WHERE i IN ( SELECT * FROM cte ) GROUP BY i ) ) SELECT * FROM cte; WITH RECURSIVE cte(f) AS ( SELECT i FROM t UNION SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte ) UNION SELECT * FROM cte WHERE f > 2 ) SELECT * FROM cte; set standard_compliant_cte=default; DROP TABLE t; --echo # --echo # mdev-14184: recursive CTE embedded into CTE with multiple references --echo # WITH cte1 AS ( SELECT n FROM ( WITH RECURSIVE rec_cte(n) AS ( SELECT 1 as n1 UNION ALL SELECT n+1 as n2 FROM rec_cte WHERE n < 3 ) SELECT n FROM rec_cte ) AS X ), cte2 as ( SELECT 2 FROM cte1 ) SELECT * FROM cte1; --echo # --echo # mdev-14629: a user-defined variable is defined by the recursive CTE --echo # set @var= ( with recursive cte_tab(a) as ( select 1 union select a+1 from cte_tab where a<3) select count(*) from cte_tab ); select @var; create table t1(a int, b int); insert into t1 values (3,8),(1,5),(5,7),(7,4),(4,3); set @var= ( with recursive summ(a,s) as ( select 1, 0 union select t1.b, t1.b+summ.s from summ, t1 where summ.a=t1.a) select s from summ order by a desc limit 1 ); select @var; --ERROR ER_UNACCEPTABLE_MUTUAL_RECURSION set @var= ( with recursive cte_1 as ( select 1 union select * from cte_2), cte_2 as ( select * from cte_1 union select a from t1, cte_2 where t1.a=cte_2.a) select * from cte_2 limit 1 ); drop table t1; --echo # --echo # mdev-14777: crash caused by the same as in mdev-14755 --echo # --source include/have_sequence.inc CREATE TABLE t1 (i1 int NOT NULL, i2 int); CREATE TABLE t2 (d1 int NOT NULL PRIMARY KEY); CREATE TABLE t3 (i int ); insert into t1 select seq,seq from seq_1_to_100000; insert into t2 select seq from seq_1000_to_100000; insert into t3 select seq from seq_1_to_1000; SELECT * FROM ( SELECT * FROM ( WITH RECURSIVE rt AS ( SELECT i2 P, i1 C FROM t1 WHERE i1 IN (SELECT d1 FROM t2) UNION SELECT t1.i2 P, rt.C C FROM t1, rt ) SELECT C,P FROM ( SELECT P,C FROM rt WHERE NOT EXISTS (SELECT 1 FROM t1) ) Y ) X WHERE 1 = 1 ) K, t3; drop table t1,t2,t3; --echo # --echo # mdev-14879: subquery with recursive reference in WHERE of CTE --echo # create table flights (departure varchar(32), arrival varchar(32), carrier varchar(20), flight_number char(7)); insert into flights values ('Seattle', 'Frankfurt', 'Lufthansa', 'LH 491'), ('Seattle', 'Chicago', 'American', 'AA 2573'), ('Seattle', 'Los Angeles', 'Alaska Air', 'AS 410'), ('Chicago', 'New York', 'American', 'AA 375'), ('Chicago', 'Montreal', 'Air Canada', 'AC 3053'), ('Los Angeles', 'New York', 'Delta', 'DL 1197'), ('Moscow', 'Tokyo', 'Aeroflot', 'SU 264'), ('New York', 'Paris', 'Air France', 'AF 23'), ('Frankfurt', 'Moscow', 'Lufthansa', 'LH 1444'), ('Tokyo', 'Seattle', 'ANA', 'NH 178'), ('Los Angeles', 'Tokyo', 'ANA', 'NH 175'), ('Moscow', 'Los Angeles', 'Aeroflot', 'SU 106'), ('Montreal', 'Paris', 'Air Canada', 'AC 870'), ('Cairo', 'Paris', 'Air France', 'AF 503'), ('New York', 'Seattle', 'American', 'AA 45'), ('Paris', 'Chicago', 'Air France', 'AF 6734'); with recursive destinations (city) as ( select a.arrival from flights a where a.departure='Cairo' union select b.arrival from destinations r, flights b where r.city=b.departure) select * from destinations; set standard_compliant_cte=0; let $q= with recursive destinations (city, legs) as ( select a.arrival, 1 from flights a where a.departure='Cairo' union select b.arrival, r.legs + 1 from destinations r, flights b where r.city=b.departure and b.arrival not in (select city from destinations) ) select * from destinations; eval $q; eval explain extended $q; set standard_compliant_cte=default; drop table flights; --echo # --echo # MDEV-15162: Setting user variable in recursive CTE --echo # SET @c=1; WITH RECURSIVE cte AS (SELECT 5 UNION SELECT @c:=@c+1 FROM cte WHERE @c<3) SELECT * FROM cte; --echo # --echo # MDEV-15575: using recursive cte with big_tables enabled --echo # set big_tables=1; with recursive qn as (select 123 as a union all select 1+a from qn where a<130) select * from qn; set big_tables=default; --echo # --echo # MDEV-15571: using recursive cte with big_tables enabled --echo # create table t1 (a bigint); insert into t1 values(1); set big_tables=1; --error ER_DATA_OUT_OF_RANGE with recursive qn as ( select a from t1 union all select a*2000 from qn where a<10000000000000000000 ) select * from qn; set big_tables=default; drop table t1; --echo # --echo # MDEV-15556: using recursive cte with big_tables enabled --echo # when recursive tables are accessed by key --echo # SET big_tables=1; CREATE TABLE t1 (id int, name char(10), leftpar int, rightpar int); INSERT INTO t1 VALUES (1, "A", 2, 3), (2, "LA", 4, 5), (4, "LLA", 6, 7), (6, "LLLA", NULL, NULL), (7, "RLLA", NULL, NULL), (5, "RLA", 8, 9), (8, "LRLA", NULL, NULL), (9, "RRLA", NULL, NULL), (3, "RA", 10, 11), (10, "LRA", 12, 13), (11, "RRA", 14, 15), (15, "RRRA", NULL, NULL), (16, "B", 17, 18), (17, "LB", NULL, NULL), (18, "RB", NULL, NULL); CREATE TABLE t2 SELECT * FROM t1 ORDER BY rand(); let $q= WITH RECURSIVE tree_of_a AS (SELECT *, cast(id AS char(200)) AS path FROM t2 WHERE name="A" UNION ALL SELECT t2.*, concat(tree_of_a.path,",",t2.id) FROM t2 JOIN tree_of_a ON t2.id=tree_of_a.leftpar UNION ALL SELECT t2.*, concat(tree_of_a.path,",",t2.id) FROM t2 JOIN tree_of_a ON t2.id=tree_of_a.rightpar) SELECT * FROM tree_of_a ORDER BY path; eval $q; eval EXPLAIN $q; DROP TABLE t1,t2; SET big_tables=0; --echo # --echo # MDEV-15840: recursive tables are accessed by key --echo # (the same problem as for MDEV-15556) --echo # --source include/have_sequence.inc CREATE TABLE t1 (p1 text,k2 int, p2 text, k1 int); INSERT INTO t1 select seq, seq, seq, seq from seq_1_to_1000; DELIMITER |; CREATE PROCEDURE getNums() BEGIN WITH RECURSIVE cte as ( SELECT * FROM t1 UNION SELECT c.* FROM t1 c JOIN cte p ON c.p1 = p.p2 AND c.k2 = p.k1 ) SELECT * FROM cte LIMIT 10; END | DELIMITER ;| call getNums(); DROP PROCEDURE getNums; DROP TABLE t1; --echo # --echo # MDEV-15894: aggregate/winfow functions in non-recorsive part --echo # create table t1(b int); insert into t1 values(10),(20),(10); with recursive qn as (select max(b) as a from t1 union select a from qn) select * from qn; with recursive qn as (select rank() over (order by b) as a from t1 union select a from qn) select * from qn; drop table t1; --echo # --echo # MDEV-16086: tmp table for CTE is created as ARIA tables --echo # CREATE TABLE t1 ( Id int(11) not null AUTO_INCREMENT, Parent varchar(15) not null, Child varchar(15) not null, PRIMARY KEY (Id) ) ENGINE = MyISAM; INSERT INTO t1 (Parent, Child) VALUES ('123', '456'),('456', '789'),('321', '654'),('654', '987'); WITH RECURSIVE cte AS ( SELECT b.Parent, b.Child, CAST(CONCAT(b.Child,',') AS CHAR(513)) Path FROM t1 b LEFT OUTER JOIN t1 bc ON b.Child = bc.Parent WHERE bc.Id IS NULL UNION ALL SELECT c.Parent, c.Child, CONCAT(p.Path,c.Child,',') Path FROM t1 c INNER JOIN cte p ON c.Child = p.Parent) SELECT * FROM cte ORDER BY Path; DROP TABLE t1; --echo # --echo # MDEV-16212: recursive CTE with global ORDER BY --echo # --error ER_NOT_SUPPORTED_YET set statement max_recursive_iterations = 2 for WITH RECURSIVE qn AS ( SELECT 1 FROM dual UNION ALL SELECT 1 FROM qn ORDER BY (SELECT * FROM qn)) SELECT count(*) FROM qn; --echo # --echo # MDEV-15581: mix of ALL and DISTINCT UNION in recursive CTE --echo # create table t1(a int); insert into t1 values(1),(2); insert into t1 values(1),(2); set @c=0, @d=0; --error ER_NOT_SUPPORTED_YET WITH RECURSIVE qn AS ( select 1,0 as col from t1 union distinct select 1,0 from t1 union all select 3, 0*(@c:=@c+1) from qn where @c<1 union all select 3, 0*(@d:=@d+1) from qn where @d<1 ) select * from qn; drop table t1; --echo # --echo # MDEV-16629: function with recursive CTE using a base table --echo # CREATE TABLE t1 (id int); INSERT INTO t1 VALUES (0), (1),(2); WITH recursive cte AS (SELECT id FROM t1 UNION SELECT 3 FROM cte) SELECT count(id) FROM cte; CREATE OR REPLACE FUNCTION func() RETURNS int RETURN ( WITH recursive cte AS (SELECT id FROM t1 UNION SELECT 3 FROM cte) SELECT count(id) FROM cte ); SELECT func(); DROP FUNCTION func; DROP TABLE t1; --echo # --echo # MDEV-16661: function with recursive CTE using no base tables --echo # (fixed by the patch for MDEV-16629) --echo # CREATE OR REPLACE FUNCTION func() RETURNS int RETURN ( WITH RECURSIVE cte AS (SELECT 1 as id UNION SELECT * FROM cte) SELECT count(id) FROM cte ); SELECT func(); DROP FUNCTION func; --echo # --echo # MDEV-17024: two materialized CTEs using the same recursive CTE --echo # create table t1 (id int); insert into t1 values (1), (2), (3); let $q= with recursive rcte(a) as (select 1 union select cast(a+1 as unsigned) from rcte where a < 10), cte1 as (select count(*) as c1 from rcte,t1 where a between 3 and 5 and id=a-3), cte2 as (select count(*) as c2 from rcte,t1 where a between 7 and 8 and id=a-7) select * from cte1, cte2; eval $q; eval explain extended $q; eval prepare stmt from "$q"; execute stmt; execute stmt; create table t2 (c1 int, c2 int); eval create procedure p() insert into t2 $q; call p(); select * from t2; let $q1= with recursive rcte(a) as (select 1 union select cast(a+1 as unsigned) from rcte where a < 10), cte1 as (select count(*) as c1 from rcte,t1 where a between 3 and 5 and id=a-3), cte2 as (select count(*) as c2 from rcte,t1 where a between 7 and 8 and id=a-7) select * from cte1; eval $q1; let $q2= with recursive rcte(a) as (select 1 union select cast(a+1 as unsigned) from rcte where a < 10), cte1 as (select count(*) as c1 from t1), cte2 as (select count(*) as c2 from t2) select * from cte1,cte2; eval $q2; let $q3= with recursive rcte(a) as (select 1 union select cast(a+1 as unsigned) from rcte where a < 10), cte1 as (select count(*) as c1 from rcte,t1 where a between 3 and 5 and id=a-3), cte2 as (select count(*) as c2 from rcte,t1 where a between 7 and 8 and id=a-7) select * from cte1, cte2 where cte1.c1 = 3; eval $q3; drop procedure p; drop table t1,t2; --echo # --echo # MDEV-17201: recursive part with LIMIT --echo # CREATE TABLE purchases ( id int unsigned NOT NULL AUTO_INCREMENT, pdate date NOT NULL, quantity int unsigned NOT NULL, p_id int unsigned NOT NULL, PRIMARY KEY (id) ); INSERT INTO purchases(pdate, quantity, p_id) VALUES ('2014-11-01',5 ,1),('2014-11-03', 3 ,1), ('2014-11-01',2 ,2),('2014-11-03', 4 ,2); CREATE TABLE expired ( edate date NOT NULL, quantity int unsigned NOT NULL, p_id int unsigned NOT NULL, PRIMARY KEY (edate,p_id) ); INSERT INTO expired VALUES ('2014-11-12', 5 ,1),('2014-11-08', 1 ,2); WITH RECURSIVE expired_map AS ( SELECT edate AS expired_date, CAST(NULL AS date) AS purchase_date, 0 AS quantity, e.p_id, (SELECT MAX(id)+1 FROM purchases p WHERE pdate <= edate AND p.p_id =p_id) AS purchase_processed, quantity AS unresolved FROM expired e UNION ( SELECT expired_date, pdate, IF(p.quantity < m.unresolved, p.quantity, m.unresolved), p.p_id, p.id, IF(p.quantity < m.unresolved, m.unresolved - p.quantity, 0) FROM purchases p JOIN expired_map m ON p.p_id = m.p_id WHERE p.id < m.purchase_processed AND m.unresolved > 0 ORDER BY p.id DESC LIMIT 1 ) ) SELECT * FROM expired_map; DROP TABLE purchases, expired; --echo # --echo # MDEV-17635: Two recursive CTEs, the second using the first --echo # WITH RECURSIVE x AS (SELECT 0 as k UNION ALL SELECT k + 1 FROM x WHERE k < 1), z AS ( SELECT k1 AS cx, k2 AS cy, k1, k2 FROM (SELECT k AS k1 FROM x) x1 JOIN (SELECT k AS k2 FROM x) y1 UNION SELECT 1,1,1,1 FROM z) SELECT * FROM z; --echo # https://wiki.postgresql.org/wiki/Mandelbrot_set: WITH RECURSIVE x(i) AS ( SELECT CAST(0 AS DECIMAL(13, 10)) UNION ALL SELECT i + 1 FROM x WHERE i < 101 ), Z(Ix, Iy, Cx, Cy, X, Y, I) AS ( SELECT Ix, Iy, X, Y, X, Y, 0 FROM (SELECT CAST(-2.2 + 0.031 * i AS DECIMAL(13, 10)) AS X, i AS Ix FROM x) AS xgen CROSS JOIN ( SELECT CAST(-1.5 + 0.031 * i AS DECIMAL(13, 10)) AS Y, i AS iY FROM x ) AS ygen UNION ALL SELECT Ix, Iy, Cx, Cy, CAST(X * X - Y * Y + Cx AS DECIMAL(13, 10)) AS X, CAST(Y * X * 2 + Cy AS DECIMAL(13, 10)), I + 1 FROM Z WHERE X * X + Y * Y < 16.0 AND I < 27 ), Zt (Ix, Iy, I) AS ( SELECT Ix, Iy, MAX(I) AS I FROM Z GROUP BY Iy, Ix ORDER BY Iy, Ix ) SELECT GROUP_CONCAT( SUBSTRING( ' .,,,-----++++%%%%@@@@#### ', GREATEST(I, 1), 1 ) ORDER BY Ix SEPARATOR '' ) AS 'Mandelbrot Set' FROM Zt GROUP BY Iy ORDER BY Iy; --echo # --echo # MDEV-17871: EXPLAIN for query with not used recursive cte --echo # create table t1 (a int); insert into t1 values (2), (1), (4), (3); let $rec_cte = with recursive cte as (select * from t1 where a=1 union select a+1 from cte where a<3); eval explain extended $rec_cte select * from cte as t; eval $rec_cte select * from cte as t; eval explain extended $rec_cte select * from t1 as t; eval $rec_cte select * from t1 as t; create table t2 ( i1 int, i2 int); insert into t2 values (1,1),(2,2); explain with recursive cte as ( select * from t1 union select s1.* from t1 as s1, cte where s1.i1 = cte.i2 ) select * from t1 as t; drop table t1,t2;