/* Copyright (c) 2000, 2013, Oracle and/or its affiliates. Copyright (c) 2008, 2013, Monty Program Ab. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** @file @brief This file implements classes defined in field.h */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include #include "sql_priv.h" #include "sql_select.h" #include "rpl_rli.h" // Pull in Relay_log_info #include "slave.h" // Pull in rpl_master_has_bug() #include "strfunc.h" // find_type2, find_set #include "sql_time.h" // str_to_datetime_with_warn, // str_to_time_with_warn, // TIME_to_timestamp, // make_time, make_date, // make_truncated_value_warning #include "tztime.h" // struct Time_zone #include "filesort.h" // change_double_for_sort #include "log_event.h" // class Table_map_log_event #include // Maximum allowed exponent value for converting string to decimal #define MAX_EXPONENT 1024 /***************************************************************************** Instansiate templates and static variables *****************************************************************************/ static const char *zero_timestamp="0000-00-00 00:00:00.000000"; /* number of bytes to store second_part part of the TIMESTAMP(N) */ static uint sec_part_bytes[MAX_DATETIME_PRECISION+1]= { 0, 1, 1, 2, 2, 3, 3 }; /* number of bytes to store DATETIME(N) */ static uint datetime_hires_bytes[MAX_DATETIME_PRECISION+1]= { 5, 6, 6, 7, 7, 7, 8 }; /* number of bytes to store TIME(N) */ static uint time_hires_bytes[MAX_DATETIME_PRECISION+1]= { 3, 4, 4, 5, 5, 5, 6 }; uchar Field_null::null[1]={1}; const char field_separator=','; #define DOUBLE_TO_STRING_CONVERSION_BUFFER_SIZE FLOATING_POINT_BUFFER #define LONGLONG_TO_STRING_CONVERSION_BUFFER_SIZE 128 #define DECIMAL_TO_STRING_CONVERSION_BUFFER_SIZE 128 #define BLOB_PACK_LENGTH_TO_MAX_LENGH(arg) \ ((ulong) ((1LL << MY_MIN(arg, 4) * 8) - 1)) #define ASSERT_COLUMN_MARKED_FOR_READ DBUG_ASSERT(!table || (!table->read_set || bitmap_is_set(table->read_set, field_index))) #define ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED DBUG_ASSERT(is_stat_field || !table || (!table->write_set || bitmap_is_set(table->write_set, field_index) || (table->vcol_set && bitmap_is_set(table->vcol_set, field_index)))) #define FLAGSTR(S,F) ((S) & (F) ? #F " " : "") /* Rules for merging different types of fields in UNION NOTE: to avoid 256*256 table, gap in table types numeration is skiped following #defines describe that gap and how to canculate number of fields and index of field in thia array. */ #define FIELDTYPE_TEAR_FROM (MYSQL_TYPE_BIT + 1) #define FIELDTYPE_TEAR_TO (MYSQL_TYPE_NEWDECIMAL - 1) #define FIELDTYPE_NUM (FIELDTYPE_TEAR_FROM + (255 - FIELDTYPE_TEAR_TO)) static inline int field_type2index (enum_field_types field_type) { field_type= real_type_to_type(field_type); return (field_type < FIELDTYPE_TEAR_FROM ? field_type : ((int)FIELDTYPE_TEAR_FROM) + (field_type - FIELDTYPE_TEAR_TO) - 1); } static enum_field_types field_types_merge_rules [FIELDTYPE_NUM][FIELDTYPE_NUM]= { /* MYSQL_TYPE_DECIMAL -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_DECIMAL, MYSQL_TYPE_DECIMAL, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_TINY -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_TINY, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_SHORT -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_SHORT, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_SHORT, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_SHORT, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_LONG -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_LONG, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_LONG, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_LONG, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_LONG, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_LONG, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_FLOAT -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_DOUBLE, MYSQL_TYPE_FLOAT, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_FLOAT, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_FLOAT, MYSQL_TYPE_FLOAT, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_FLOAT, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_DOUBLE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_DOUBLE -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_DOUBLE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_DOUBLE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_NULL -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_NULL, MYSQL_TYPE_TIMESTAMP, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_LONGLONG, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_NEWDATE, MYSQL_TYPE_TIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_YEAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_BIT, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_ENUM, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_SET, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_GEOMETRY }, /* MYSQL_TYPE_TIMESTAMP -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_TIMESTAMP, MYSQL_TYPE_TIMESTAMP, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_DATETIME, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_LONGLONG -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_LONGLONG, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_LONGLONG, MYSQL_TYPE_LONGLONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_LONGLONG, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_LONG, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_LONGLONG, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_INT24 -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_INT24, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_INT24, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_INT24, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_INT24, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_DATE -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_NEWDATE, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_NEWDATE, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_TIME -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_DATETIME -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_DATETIME, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_DATETIME, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_YEAR -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_DECIMAL, MYSQL_TYPE_TINY, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_YEAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_YEAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_NEWDATE -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_NEWDATE, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_NEWDATE, MYSQL_TYPE_DATETIME, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_DATETIME, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_NEWDATE, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_VARCHAR -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_BIT -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_BIT, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_BIT, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_NEWDECIMAL -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_DOUBLE, MYSQL_TYPE_DOUBLE, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_NEWDECIMAL, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_ENUM -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_ENUM, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_SET -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_SET, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_TINY_BLOB -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_TINY_BLOB }, /* MYSQL_TYPE_MEDIUM_BLOB -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_MEDIUM_BLOB }, /* MYSQL_TYPE_LONG_BLOB -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_LONG_BLOB }, /* MYSQL_TYPE_BLOB -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_BLOB, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_BLOB, MYSQL_TYPE_BLOB }, /* MYSQL_TYPE_VAR_STRING -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR }, /* MYSQL_TYPE_STRING -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_STRING, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_STRING, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_STRING, MYSQL_TYPE_STRING, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_STRING, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_STRING }, /* MYSQL_TYPE_GEOMETRY -> */ { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP MYSQL_TYPE_GEOMETRY, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_BIT <16>-<245> MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM MYSQL_TYPE_VARCHAR, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB MYSQL_TYPE_VARCHAR, MYSQL_TYPE_TINY_BLOB, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING MYSQL_TYPE_BLOB, MYSQL_TYPE_VARCHAR, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY MYSQL_TYPE_STRING, MYSQL_TYPE_GEOMETRY } }; /** Return type of which can carry value of both given types in UNION result. @param a type for merging @param b type for merging @return type of field */ enum_field_types Field::field_type_merge(enum_field_types a, enum_field_types b) { DBUG_ASSERT(real_type_to_type(a) < FIELDTYPE_TEAR_FROM || real_type_to_type(a) > FIELDTYPE_TEAR_TO); DBUG_ASSERT(real_type_to_type(b) < FIELDTYPE_TEAR_FROM || real_type_to_type(b) > FIELDTYPE_TEAR_TO); return field_types_merge_rules[field_type2index(a)] [field_type2index(b)]; } static Item_result field_types_result_type [FIELDTYPE_NUM]= { //MYSQL_TYPE_DECIMAL MYSQL_TYPE_TINY DECIMAL_RESULT, INT_RESULT, //MYSQL_TYPE_SHORT MYSQL_TYPE_LONG INT_RESULT, INT_RESULT, //MYSQL_TYPE_FLOAT MYSQL_TYPE_DOUBLE REAL_RESULT, REAL_RESULT, //MYSQL_TYPE_NULL MYSQL_TYPE_TIMESTAMP STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_LONGLONG MYSQL_TYPE_INT24 INT_RESULT, INT_RESULT, //MYSQL_TYPE_DATE MYSQL_TYPE_TIME STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_DATETIME MYSQL_TYPE_YEAR STRING_RESULT, INT_RESULT, //MYSQL_TYPE_NEWDATE MYSQL_TYPE_VARCHAR STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_BIT <16>-<245> STRING_RESULT, //MYSQL_TYPE_NEWDECIMAL MYSQL_TYPE_ENUM DECIMAL_RESULT, STRING_RESULT, //MYSQL_TYPE_SET MYSQL_TYPE_TINY_BLOB STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_MEDIUM_BLOB MYSQL_TYPE_LONG_BLOB STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_BLOB MYSQL_TYPE_VAR_STRING STRING_RESULT, STRING_RESULT, //MYSQL_TYPE_STRING MYSQL_TYPE_GEOMETRY STRING_RESULT, STRING_RESULT }; /* Test if the given string contains important data: not spaces for character string, or any data for binary string. SYNOPSIS test_if_important_data() cs Character set str String to test strend String end RETURN FALSE - If string does not have important data TRUE - If string has some important data */ static bool test_if_important_data(CHARSET_INFO *cs, const char *str, const char *strend) { if (cs != &my_charset_bin) str+= cs->cset->scan(cs, str, strend, MY_SEQ_SPACES); return (str < strend); } /** Function to compare two unsigned integers for their relative order. Used below. In an anonymous namespace to not clash with definitions in other files. */ CPP_UNNAMED_NS_START int compare(unsigned int a, unsigned int b) { if (a < b) return -1; if (b < a) return 1; return 0; } CPP_UNNAMED_NS_END /** Detect Item_result by given field type of UNION merge result. @param field_type given field type @return Item_result (type of internal MySQL expression result) */ Item_result Field::result_merge_type(enum_field_types field_type) { DBUG_ASSERT(real_type_to_type(field_type) < FIELDTYPE_TEAR_FROM || real_type_to_type(field_type) > FIELDTYPE_TEAR_TO); return field_types_result_type[field_type2index(field_type)]; } /***************************************************************************** Static help functions *****************************************************************************/ /** Check whether a field type can be partially indexed by a key. This is a static method, rather than a virtual function, because we need to check the type of a non-Field in mysql_alter_table(). @param type field type @retval TRUE Type can have a prefixed key @retval FALSE Type can not have a prefixed key */ bool Field::type_can_have_key_part(enum enum_field_types type) { switch (type) { case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_STRING: case MYSQL_TYPE_GEOMETRY: return TRUE; default: return FALSE; } } void Field::make_sort_key(uchar *buff,uint length) { if (maybe_null()) { if (is_null()) { bzero(buff, length + 1); return; } *buff++= 1; } sort_string(buff, length); } /** @brief Determine the relative position of the field value in a numeric interval @details The function returns a double number between 0.0 and 1.0 as the relative position of the value of the this field in the numeric interval of [min,max]. If the value is not in the interval the the function returns 0.0 when the value is less than min, and, 1.0 when the value is greater than max. @param min value of the left end of the interval @param max value of the right end of the interval @return relative position of the field value in the numeric interval [min,max] */ double Field::pos_in_interval_val_real(Field *min, Field *max) { double n, d; n= val_real() - min->val_real(); if (n < 0) return 0.0; d= max->val_real() - min->val_real(); if (d <= 0) return 1.0; return MY_MIN(n/d, 1.0); } static inline ulonglong char_prefix_to_ulonglong(uchar *src) { uint sz= sizeof(ulonglong); for (uint i= 0; i < sz/2; i++) { uchar tmp= src[i]; src[i]= src[sz-1-i]; src[sz-1-i]= tmp; } return uint8korr(src); } /* Compute res = a - b, without losing precision and taking care that these are unsigned numbers. */ static inline double safe_substract(ulonglong a, ulonglong b) { return (a > b)? double(a - b) : -double(b - a); } /** @brief Determine the relative position of the field value in a string interval @details The function returns a double number between 0.0 and 1.0 as the relative position of the value of the this field in the string interval of [min,max]. If the value is not in the interval the the function returns 0.0 when the value is less than min, and, 1.0 when the value is greater than max. @note To calculate the relative position of the string value v in the interval [min, max] the function first converts the beginning of these three strings v, min, max into the strings that are used for byte comparison. For each string not more sizeof(ulonglong) first bytes are taken from the result of conversion. Then these bytes are interpreted as the big-endian representation of an ulonglong integer. The values of these integer numbers obtained for the strings v, min, max are used to calculate the position of v in [min,max] in the same way is it's done for numeric fields (see Field::pos_in_interval_val_real). @todo Improve the procedure for the case when min and max have the same beginning @param min value of the left end of the interval @param max value of the right end of the interval @return relative position of the field value in the string interval [min,max] */ double Field::pos_in_interval_val_str(Field *min, Field *max, uint data_offset) { uchar mp_prefix[sizeof(ulonglong)]; uchar minp_prefix[sizeof(ulonglong)]; uchar maxp_prefix[sizeof(ulonglong)]; ulonglong mp, minp, maxp; my_strnxfrm(charset(), mp_prefix, sizeof(mp), ptr + data_offset, data_length()); my_strnxfrm(charset(), minp_prefix, sizeof(minp), min->ptr + data_offset, min->data_length()); my_strnxfrm(charset(), maxp_prefix, sizeof(maxp), max->ptr + data_offset, max->data_length()); mp= char_prefix_to_ulonglong(mp_prefix); minp= char_prefix_to_ulonglong(minp_prefix); maxp= char_prefix_to_ulonglong(maxp_prefix); double n, d; n= safe_substract(mp, minp); if (n < 0) return 0.0; d= safe_substract(maxp, minp); if (d <= 0) return 1.0; return MY_MIN(n/d, 1.0); } bool Field::test_if_equality_guarantees_uniqueness(const Item *item) const { DBUG_ASSERT(cmp_type() != STRING_RESULT); // For STRING_RESULT see Field_str /* We use result_type() rather than cmp_type() in the below condition, because it covers a special case that string literals guarantee uniqueness for temporal columns, so the query: WHERE temporal_column='string' cannot return multiple distinct temporal values. TODO: perhaps we could allow INT/DECIMAL/DOUBLE types for temporal items. */ return result_type() == item->result_type(); } /** Check whether a field item can be substituted for an equal item @details The function checks whether a substitution of a field item for an equal item is valid. @param arg *arg != NULL <-> the field is in the context where substitution for an equal item is valid @note The following statement is not always true: @n x=y => F(x)=F(x/y). @n This means substitution of an item for an equal item not always yields an equavalent condition. Here's an example: @code 'a'='a ' (LENGTH('a')=1) != (LENGTH('a ')=2) @endcode Such a substitution is surely valid if either the substituted field is not of a STRING type or if it is an argument of a comparison predicate. @retval TRUE substitution is valid @retval FALSE otherwise */ bool Field::can_be_substituted_to_equal_item(const Context &ctx, const Item_equal *item_equal) { DBUG_ASSERT(item_equal->compare_type() != STRING_RESULT); DBUG_ASSERT(cmp_type() != STRING_RESULT); switch (ctx.subst_constraint()) { case ANY_SUBST: /* Disable const propagation for items used in different comparison contexts. This must be done because, for example, Item_hex_string->val_int() is not the same as (Item_hex_string->val_str() in BINARY column)->val_int(). We cannot simply disable the replacement in a particular context ( e.g. = AND = ) since Items don't know the context they are in and there are functions like IF (, 'yes', 'no'). */ return ctx.compare_type() == item_equal->compare_type(); case IDENTITY_SUBST: return true; } return false; } /* This handles all numeric and BIT data types. */ bool Field::can_optimize_keypart_ref(const Item_bool_func *cond, const Item *item) const { DBUG_ASSERT(cmp_type() != STRING_RESULT); DBUG_ASSERT(cmp_type() != TIME_RESULT); return item->cmp_type() != TIME_RESULT; } /* This handles all numeric and BIT data types. */ bool Field::can_optimize_group_min_max(const Item_bool_func *cond, const Item *const_item) const { DBUG_ASSERT(cmp_type() != STRING_RESULT); DBUG_ASSERT(cmp_type() != TIME_RESULT); return const_item->cmp_type() != TIME_RESULT; } /* This covers all numeric types, ENUM, SET, BIT */ bool Field::can_optimize_range(const Item_bool_func *cond, const Item *item, bool is_eq_func) const { DBUG_ASSERT(cmp_type() != TIME_RESULT); // Handled in Field_temporal DBUG_ASSERT(cmp_type() != STRING_RESULT); // Handled in Field_longstr return item->cmp_type() != TIME_RESULT; } int Field::store_hex_hybrid(const char *str, uint length) { DBUG_ASSERT(result_type() != STRING_RESULT); ulonglong nr; if (length > 8) { nr= flags & UNSIGNED_FLAG ? ULONGLONG_MAX : LONGLONG_MAX; goto warn; } nr= (ulonglong) longlong_from_hex_hybrid(str, length); if ((length == 8) && !(flags & UNSIGNED_FLAG) && (nr > LONGLONG_MAX)) { nr= LONGLONG_MAX; goto warn; } return store((longlong) nr, true); // Assume hex numbers are unsigned warn: if (!store((longlong) nr, true)) set_warning(Sql_condition::WARN_LEVEL_WARN, ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } /** Numeric fields base class constructor. */ Field_num::Field_num(uchar *ptr_arg,uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, utype unireg_check_arg, const char *field_name_arg, uint8 dec_arg, bool zero_arg, bool unsigned_arg) :Field(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg), dec(dec_arg),zerofill(zero_arg),unsigned_flag(unsigned_arg) { if (zerofill) flags|=ZEROFILL_FLAG; if (unsigned_flag) flags|=UNSIGNED_FLAG; } void Field_num::prepend_zeros(String *value) const { int diff; if ((diff= (int) (field_length - value->length())) > 0) { bmove_upp((uchar*) value->ptr()+field_length, (uchar*) value->ptr()+value->length(), value->length()); bfill((uchar*) value->ptr(),diff,'0'); value->length(field_length); (void) value->c_ptr_quick(); // Avoid warnings in purify } } Item *Field_num::get_equal_zerofill_const_item(THD *thd, const Context &ctx, Item *const_item) { switch (ctx.subst_constraint()) { case IDENTITY_SUBST: return NULL; // Not safe to propagate if not in comparison. See MDEV-8369. case ANY_SUBST: break; } DBUG_ASSERT(const_item->const_item()); DBUG_ASSERT(ctx.compare_type() != STRING_RESULT); return const_item; } /** Contruct warning parameters using thd->no_errors to determine whether to generate or suppress warnings. We can get here in a query like this: SELECT COUNT(@@basedir); from Item_func_get_system_var::update_null_value(). */ Value_source::Warn_filter::Warn_filter(const THD *thd) :m_want_warning_edom(!thd->no_errors), m_want_note_truncated_spaces(!thd->no_errors) { } /** Check string-to-number conversion and produce a warning if - could not convert any digits (EDOM-alike error) - found garbage at the end of the string - found trailing spaces (a note) See also Field_num::check_edom_and_truncation() for a similar function. @param thd - the thread @param filter - which warnings/notes are allowed @param type - name of the data type (e.g. "INTEGER", "DECIMAL", "DOUBLE") @param cs - character set of the original string @param str - the original string @param end - the end of the string Unlike Field_num::check_edom_and_truncation(), this function does not distinguish between EDOM and truncation and reports the same warning for both cases. Perhaps we should eventually print different warnings, to make the explicit CAST work closer to the implicit cast in Field_xxx::store(). */ void Value_source::Converter_string_to_number::check_edom_and_truncation(THD *thd, Warn_filter filter, const char *type, CHARSET_INFO *cs, const char *str, size_t length) const { DBUG_ASSERT(str <= m_end_of_num); DBUG_ASSERT(m_end_of_num <= str + length); if (m_edom || (m_end_of_num < str + length && !check_if_only_end_space(cs, m_end_of_num, str + length))) { // EDOM or important trailing data truncation if (filter.want_warning_edom()) { /* We can use err.ptr() here as ErrConvString is guranteed to put an end \0 here. */ THD *wthd= thd ? thd : current_thd; push_warning_printf(wthd, Sql_condition::WARN_LEVEL_WARN, ER_TRUNCATED_WRONG_VALUE, ER_THD(wthd, ER_TRUNCATED_WRONG_VALUE), type, ErrConvString(str, length, cs).ptr()); } } else if (m_end_of_num < str + length) { // Unimportant trailing data (spaces) truncation if (filter.want_note_truncated_spaces()) { THD *wthd= thd ? thd : current_thd; push_warning_printf(wthd, Sql_condition::WARN_LEVEL_NOTE, ER_TRUNCATED_WRONG_VALUE, ER_THD(wthd, ER_TRUNCATED_WRONG_VALUE), type, ErrConvString(str, length, cs).ptr()); } } } /** Check a string-to-number conversion routine result and generate warnings in case when it: - could not convert any digits - found garbage at the end of the string. @param type Data type name (e.g. "decimal", "integer", "double") @param edom Indicates that the string-to-number routine retuned an error code equivalent to EDOM (value out of domain), i.e. the string fully consisted of garbage and the conversion routine could not get any digits from it. @param str The original string @param length Length of 'str' @param cs Character set @param end Pointer to char after last used digit @note This is called after one has called one of the following functions: - strntoull10rnd() - my_strntod() - str2my_decimal() @retval 0 OK @retval 1 error: could not scan any digits (EDOM), e.g. empty string, or garbage. @retval 2 error: scanned some digits, but then found garbage at the end of the string. */ int Field_num::check_edom_and_truncation(const char *type, bool edom, CHARSET_INFO *cs, const char *str, uint length, const char *end) { /* Test if we get an empty string or garbage */ if (edom) { ErrConvString err(str, length, cs); set_warning_truncated_wrong_value(type, err.ptr()); return 1; } /* Test if we have garbage at the end of the given string. */ if (test_if_important_data(cs, end, str + length)) { set_warning(WARN_DATA_TRUNCATED, 1); return 2; } if (end < str + length) set_note(WARN_DATA_TRUNCATED, 1); return 0; } /* Conver a string to an integer then check bounds. SYNOPSIS Field_num::get_int cs Character set from String to convert len Length of the string rnd OUT longlong value unsigned_max max unsigned value signed_min min signed value signed_max max signed value DESCRIPTION The function calls strntoull10rnd() to get an integer value then check bounds and errors returned. In case of any error a warning is raised. RETURN 0 ok 1 error */ bool Field_num::get_int(CHARSET_INFO *cs, const char *from, uint len, longlong *rnd, ulonglong unsigned_max, longlong signed_min, longlong signed_max) { char *end; int error; *rnd= (longlong) cs->cset->strntoull10rnd(cs, from, len, unsigned_flag, &end, &error); if (unsigned_flag) { if ((((ulonglong) *rnd > unsigned_max) && (*rnd= (longlong) unsigned_max)) || error == MY_ERRNO_ERANGE) { goto out_of_range; } } else { if (*rnd < signed_min) { *rnd= signed_min; goto out_of_range; } else if (*rnd > signed_max) { *rnd= signed_max; goto out_of_range; } } if (get_thd()->count_cuted_fields && check_int(cs, from, len, end, error)) return 1; return 0; out_of_range: set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } double Field_real::get_double(const char *str, uint length, CHARSET_INFO *cs, int *error) { char *end; double nr= my_strntod(cs,(char*) str, length, &end, error); if (*error) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); *error= 1; } else if (get_thd()->count_cuted_fields && check_edom_and_truncation("double", str == end, cs, str, length, end)) *error= 1; return nr; } /** Process decimal library return codes and issue warnings for overflow and truncation. @param op_result decimal library return code (E_DEC_* see include/decimal.h) @retval 1 there was overflow @retval 0 no error or some other errors except overflow */ int Field::warn_if_overflow(int op_result) { if (op_result == E_DEC_OVERFLOW) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } if (op_result == E_DEC_TRUNCATED) { set_note(WARN_DATA_TRUNCATED, 1); /* We return 0 here as this is not a critical issue */ } return 0; } /** Interpret field value as an integer but return the result as a string. This is used for printing bit_fields as numbers while debugging. */ String *Field::val_int_as_str(String *val_buffer, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_READ; CHARSET_INFO *cs= &my_charset_bin; uint length; longlong value= val_int(); if (val_buffer->alloc(MY_INT64_NUM_DECIMAL_DIGITS)) return 0; length= (uint) (*cs->cset->longlong10_to_str)(cs, (char*) val_buffer->ptr(), MY_INT64_NUM_DECIMAL_DIGITS, unsigned_val ? 10 : -10, value); val_buffer->length(length); return val_buffer; } /// This is used as a table name when the table structure is not set up Field::Field(uchar *ptr_arg,uint32 length_arg,uchar *null_ptr_arg, uchar null_bit_arg, utype unireg_check_arg, const char *field_name_arg) :ptr(ptr_arg), null_ptr(null_ptr_arg), table(0), orig_table(0), table_name(0), field_name(field_name_arg), option_list(0), option_struct(0), key_start(0), part_of_key(0), part_of_key_not_clustered(0), part_of_sortkey(0), unireg_check(unireg_check_arg), field_length(length_arg), null_bit(null_bit_arg), is_created_from_null_item(FALSE), read_stats(NULL), collected_stats(0), vcol_info(0), check_constraint(0), default_value(0) { flags=null_ptr ? 0: NOT_NULL_FLAG; comment.str= (char*) ""; comment.length=0; field_index= 0; is_stat_field= FALSE; cond_selectivity= 1.0; next_equal_field= NULL; } void Field::hash(ulong *nr, ulong *nr2) { if (is_null()) { *nr^= (*nr << 1) | 1; } else { uint len= pack_length(); CHARSET_INFO *cs= sort_charset(); cs->coll->hash_sort(cs, ptr, len, nr, nr2); } } size_t Field::do_last_null_byte() const { DBUG_ASSERT(null_ptr == NULL || null_ptr >= table->record[0]); if (null_ptr) return (size_t) (null_ptr - table->record[0]) + 1; return LAST_NULL_BYTE_UNDEF; } void Field::copy_from_tmp(int row_offset) { memcpy(ptr,ptr+row_offset,pack_length()); if (null_ptr) { *null_ptr= (uchar) ((null_ptr[0] & (uchar) ~(uint) null_bit) | (null_ptr[row_offset] & (uchar) null_bit)); } } bool Field::send_binary(Protocol *protocol) { char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff),charset()); val_str(&tmp); return protocol->store(tmp.ptr(), tmp.length(), tmp.charset()); } /** Check to see if field size is compatible with destination. This method is used in row-based replication to verify that the slave's field size is less than or equal to the master's field size. The encoded field metadata (from the master or source) is decoded and compared to the size of this field (the slave or destination). @note The comparison is made so that if the source data (from the master) is less than the target data (on the slave), -1 is returned in @c *order_var. This implies that a conversion is necessary, but that it is lossy and can result in truncation of the value. If the source data is strictly greater than the target data, 1 is returned in *order_var. This implies that the source type can is contained in the target type and that a conversion is necessary but is non-lossy. If no conversion is required to fit the source type in the target type, 0 is returned in *order_var. @param field_metadata Encoded size in field metadata @param mflags Flags from the table map event for the table. @param order_var Pointer to variable where the order between the source field and this field will be returned. @return @c true if this field's size is compatible with the master's field size, @c false otherwise. */ bool Field::compatible_field_size(uint field_metadata, Relay_log_info *rli_arg __attribute__((unused)), uint16 mflags __attribute__((unused)), int *order_var) { uint const source_size= pack_length_from_metadata(field_metadata); uint const destination_size= row_pack_length(); DBUG_PRINT("debug", ("real_type: %d, source_size: %u, destination_size: %u", real_type(), source_size, destination_size)); *order_var = compare(source_size, destination_size); return true; } int Field::store(const char *to, uint length, CHARSET_INFO *cs, enum_check_fields check_level) { int res; THD *thd= get_thd(); enum_check_fields old_check_level= thd->count_cuted_fields; thd->count_cuted_fields= check_level; res= store(to, length, cs); thd->count_cuted_fields= old_check_level; return res; } /** Pack the field into a format suitable for storage and transfer. To implement packing functionality, only the virtual function should be overridden. The other functions are just convenience functions and hence should not be overridden. @note The default method for packing fields just copy the raw bytes of the record into the destination, but never more than max_length characters. @param to Pointer to memory area where representation of field should be put. @param from Pointer to memory area where record representation of field is stored. @param max_length Maximum length of the field, as given in the column definition. For example, for CHAR(1000), the max_length is 1000. This information is sometimes needed to decide how to pack the data. */ uchar * Field::pack(uchar *to, const uchar *from, uint max_length) { uint32 length= pack_length(); set_if_smaller(length, max_length); memcpy(to, from, length); return to+length; } /** Unpack a field from row data. This method is used to unpack a field from a master whose size of the field is less than that of the slave. The param_data parameter is a two-byte integer (stored in the least significant 16 bits of the unsigned integer) usually consisting of two parts: the real type in the most significant byte and a original pack length in the least significant byte. The exact layout of the param_data field is given by the Table_map_log_event::save_field_metadata(). This is the default method for unpacking a field. It just copies the memory block in byte order (of original pack length bytes or length of field, whichever is smaller). @param to Destination of the data @param from Source of the data @param param_data Real type and original pack length of the field data @return New pointer into memory based on from + length of the data @return 0 if wrong data */ const uchar * Field::unpack(uchar* to, const uchar *from, const uchar *from_end, uint param_data) { uint length=pack_length(), len; int from_type= 0; /* If from length is > 255, it has encoded data in the upper bits. Need to mask it out. */ if (param_data > 255) { from_type= (param_data & 0xff00) >> 8U; // real_type. param_data= param_data & 0x00ff; // length. } if ((param_data == 0) || (length == param_data) || (from_type != real_type())) { if (from + length > from_end) return 0; // Error in data memcpy(to, from, length); return from+length; } len= (param_data && (param_data < length)) ? param_data : length; if (from + len > from_end) return 0; // Error in data memcpy(to, from, len); return from+len; } my_decimal *Field::val_decimal(my_decimal *decimal) { /* This never have to be called */ DBUG_ASSERT(0); return 0; } void Field_num::add_zerofill_and_unsigned(String &res) const { if (unsigned_flag) res.append(STRING_WITH_LEN(" unsigned")); if (zerofill) res.append(STRING_WITH_LEN(" zerofill")); } void Field::make_field(Send_field *field) { if (orig_table && orig_table->s->db.str && *orig_table->s->db.str) { field->db_name= orig_table->s->db.str; if (orig_table->pos_in_table_list && orig_table->pos_in_table_list->schema_table) field->org_table_name= (orig_table->pos_in_table_list-> schema_table->table_name); else field->org_table_name= orig_table->s->table_name.str; } else field->org_table_name= field->db_name= ""; if (orig_table && orig_table->alias.ptr()) { field->table_name= orig_table->alias.ptr(); field->org_col_name= field_name; } else { field->table_name= ""; field->org_col_name= ""; } field->col_name= field_name; field->charsetnr= charset()->number; field->length=field_length; field->type=type(); field->flags=table->maybe_null ? (flags & ~NOT_NULL_FLAG) : flags; field->decimals= 0; } /** Conversion from decimal to longlong with checking overflow and setting correct value (min/max) in case of overflow. @param val value which have to be converted @param unsigned_flag type of integer in which we convert val @param err variable to pass error code @return value converted from val */ longlong Field::convert_decimal2longlong(const my_decimal *val, bool unsigned_flag, int *err) { longlong i; if (unsigned_flag) { if (val->sign()) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); i= 0; *err= 1; } else if (warn_if_overflow(my_decimal2int((E_DEC_ERROR & ~E_DEC_OVERFLOW & ~E_DEC_TRUNCATED), val, TRUE, &i))) { i= ~(longlong) 0; *err= 1; } } else if (warn_if_overflow(my_decimal2int((E_DEC_ERROR & ~E_DEC_OVERFLOW & ~E_DEC_TRUNCATED), val, FALSE, &i))) { i= (val->sign() ? LONGLONG_MIN : LONGLONG_MAX); *err= 1; } return i; } /** Storing decimal in integer fields. @param val value for storing @note This method is used by all integer fields, real/decimal redefine it @retval 0 OK @retval !=0 error */ int Field_num::store_decimal(const my_decimal *val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int err= 0; longlong i= convert_decimal2longlong(val, unsigned_flag, &err); return MY_TEST(err | store(i, unsigned_flag)); } /** Return decimal value of integer field. @param decimal_value buffer for storing decimal value @note This method is used by all integer fields, real/decimal redefine it. All longlong values fit in our decimal buffer which cal store 8*9=72 digits of integer number @return pointer to decimal buffer with value of field */ my_decimal* Field_num::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; DBUG_ASSERT(result_type() == INT_RESULT); longlong nr= val_int(); int2my_decimal(E_DEC_FATAL_ERROR, nr, unsigned_flag, decimal_value); return decimal_value; } bool Field_num::get_date(MYSQL_TIME *ltime,ulonglong fuzzydate) { ASSERT_COLUMN_MARKED_FOR_READ; longlong nr= val_int(); bool neg= !(flags & UNSIGNED_FLAG) && nr < 0; return int_to_datetime_with_warn(neg, neg ? -nr : nr, ltime, fuzzydate, field_name); } Field_str::Field_str(uchar *ptr_arg,uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, utype unireg_check_arg, const char *field_name_arg, CHARSET_INFO *charset_arg) :Field(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg) { field_charset= charset_arg; if (charset_arg->state & MY_CS_BINSORT) flags|=BINARY_FLAG; field_derivation= DERIVATION_IMPLICIT; } bool Field_str::test_if_equality_guarantees_uniqueness(const Item *item) const { /* Can't guarantee uniqueness when comparing a CHAR/VARCHAR/TEXT, BINARY/VARBINARY/BLOB, ENUM,SET columns to an item with cmp_type() of INT_RESULT, DOUBLE_RESULT, DECIMAL_RESULT or TIME_RESULT. Example: SELECT * FROM t1 WHERE varchar_column=DATE'2001-01-01' return non-unuque values, e.g. '2001-01-01' and '2001-01-01x'. */ if (!field_charset->coll->propagate(field_charset, 0, 0) || item->cmp_type() != STRING_RESULT) return false; /* Can't guarantee uniqueness when comparing to an item of a different collation. Example: SELECT * FROM t1 WHERE latin1_bin_column = _latin1'A' COLLATE latin1_swedish_ci return non-unique values 'a' and 'A'. */ DTCollation tmp(field_charset, field_derivation, repertoire()); return !tmp.aggregate(item->collation) && tmp.collation == field_charset; } bool Field_str::can_be_substituted_to_equal_item(const Context &ctx, const Item_equal *item_equal) { DBUG_ASSERT(item_equal->compare_type() == STRING_RESULT); switch (ctx.subst_constraint()) { case ANY_SUBST: return ctx.compare_type() == item_equal->compare_type() && (ctx.compare_type() != STRING_RESULT || ctx.compare_collation() == item_equal->compare_collation()); case IDENTITY_SUBST: return ((charset()->state & MY_CS_BINSORT) && (charset()->state & MY_CS_NOPAD)); } return false; } void Field_num::make_field(Send_field *field) { Field::make_field(field); field->decimals= dec; } /** Decimal representation of Field_str. @param d value for storing @note Field_str is the base class for fields like Field_enum, Field_date and some similar. Some dates use fraction and also string value should be converted to floating point value according our rules, so we use double to store value of decimal in string. @todo use decimal2string? @retval 0 OK @retval !=0 error */ int Field_str::store_decimal(const my_decimal *d) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; double val; /* TODO: use decimal2string? */ int err= warn_if_overflow(my_decimal2double(E_DEC_FATAL_ERROR & ~E_DEC_OVERFLOW, d, &val)); return err | store(val); } my_decimal *Field_str::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; longlong nr= val_int(); int2my_decimal(E_DEC_FATAL_ERROR, nr, 0, decimal_value); return decimal_value; } uint Field::fill_cache_field(CACHE_FIELD *copy) { uint store_length; copy->str= ptr; copy->length= pack_length(); copy->field= this; if (flags & BLOB_FLAG) { copy->type= CACHE_BLOB; copy->length-= portable_sizeof_char_ptr; return copy->length; } else if (!zero_pack() && (type() == MYSQL_TYPE_STRING && copy->length >= 4 && copy->length < 256)) { copy->type= CACHE_STRIPPED; /* Remove end space */ store_length= 2; } else if (type() == MYSQL_TYPE_VARCHAR) { copy->type= pack_length()-row_pack_length() == 1 ? CACHE_VARSTR1: CACHE_VARSTR2; store_length= 0; } else { copy->type= 0; store_length= 0; } return copy->length + store_length; } bool Field::get_date(MYSQL_TIME *ltime,ulonglong fuzzydate) { char buff[40]; String tmp(buff,sizeof(buff),&my_charset_bin),*res; if (!(res=val_str(&tmp)) || str_to_datetime_with_warn(res->charset(), res->ptr(), res->length(), ltime, fuzzydate)) return 1; return 0; } /** This is called when storing a date in a string. @note Needs to be changed if/when we want to support different time formats. */ int Field::store_time_dec(MYSQL_TIME *ltime, uint dec) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; char buff[MAX_DATE_STRING_REP_LENGTH]; uint length= (uint) my_TIME_to_str(ltime, buff, dec); /* Avoid conversion when field character set is ASCII compatible */ return store(buff, length, (charset()->state & MY_CS_NONASCII) ? &my_charset_latin1 : charset()); } bool Field::optimize_range(uint idx, uint part) { return MY_TEST(table->file->index_flags(idx, part, 1) & HA_READ_RANGE); } Field *Field::make_new_field(MEM_ROOT *root, TABLE *new_table, bool keep_type __attribute__((unused))) { Field *tmp; if (!(tmp= (Field*) memdup_root(root,(char*) this,size_of()))) return 0; if (tmp->table->maybe_null) tmp->flags&= ~NOT_NULL_FLAG; tmp->table= new_table; tmp->key_start.init(0); tmp->part_of_key.init(0); tmp->part_of_sortkey.init(0); /* TODO: it is not clear why this method needs to reset unireg_check. Try not to reset it, or explain why it needs to be reset. */ tmp->unireg_check= Field::NONE; tmp->flags&= (NOT_NULL_FLAG | BLOB_FLAG | UNSIGNED_FLAG | ZEROFILL_FLAG | BINARY_FLAG | ENUM_FLAG | SET_FLAG); tmp->reset_fields(); return tmp; } Field *Field::new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr, uint32 length, uchar *new_null_ptr, uint new_null_bit) { Field *tmp; if ((tmp= make_new_field(root, new_table, table == new_table))) { tmp->ptr= new_ptr; tmp->null_ptr= new_null_ptr; tmp->null_bit= new_null_bit; } return tmp; } /* This is used to generate a field in TABLE from TABLE_SHARE */ Field *Field::clone(MEM_ROOT *root, TABLE *new_table) { Field *tmp; if ((tmp= (Field*) memdup_root(root,(char*) this,size_of()))) { tmp->init(new_table); tmp->move_field_offset((my_ptrdiff_t) (new_table->record[0] - new_table->s->default_values)); } return tmp; } Field *Field::clone(MEM_ROOT *root, TABLE *new_table, my_ptrdiff_t diff, bool stat_flag) { Field *tmp; if ((tmp= (Field*) memdup_root(root,(char*) this,size_of()))) { tmp->init(new_table); tmp->move_field_offset(diff); } tmp->is_stat_field= stat_flag; return tmp; } Field *Field::clone(MEM_ROOT *root, my_ptrdiff_t diff) { Field *tmp; if ((tmp= (Field*) memdup_root(root,(char*) this,size_of()))) { tmp->move_field_offset(diff); } return tmp; } void Field::set_default() { if (default_value) { table->in_use->reset_arena_for_cached_items(table->expr_arena); (void) default_value->expr_item->save_in_field(this, 0); table->in_use->reset_arena_for_cached_items(0); return; } /* Copy constant value stored in s->default_values */ my_ptrdiff_t l_offset= (my_ptrdiff_t) (table->s->default_values - table->record[0]); memcpy(ptr, ptr + l_offset, pack_length()); if (maybe_null_in_table()) *null_ptr= ((*null_ptr & (uchar) ~null_bit) | (null_ptr[l_offset] & null_bit)); } /**************************************************************************** Field_null, a field that always return NULL ****************************************************************************/ void Field_null::sql_type(String &res) const { res.set_ascii(STRING_WITH_LEN("null")); } /**************************************************************************** Functions for the Field_decimal class This is an number stored as a pre-space (or pre-zero) string ****************************************************************************/ int Field_decimal::reset(void) { Field_decimal::store(STRING_WITH_LEN("0"),&my_charset_bin); return 0; } void Field_decimal::overflow(bool negative) { uint len=field_length; uchar *to=ptr, filler= '9'; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); if (negative) { if (!unsigned_flag) { /* Put - sign as a first digit so we'll have -999..999 or 999..999 */ *to++ = '-'; len--; } else { filler= '0'; // Fill up with 0 if (!zerofill) { /* Handle unsigned integer without zerofill, in which case the number should be of format ' 0' or ' 0.000' */ uint whole_part=field_length- (dec ? dec+2 : 1); // Fill with spaces up to the first digit bfill(to, whole_part, ' '); to+= whole_part; len-= whole_part; // The main code will also handle the 0 before the decimal point } } } bfill(to, len, filler); if (dec) ptr[field_length-dec-1]='.'; return; } int Field_decimal::store(const char *from_arg, uint len, CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; char buff[STRING_BUFFER_USUAL_SIZE]; String tmp(buff,sizeof(buff), &my_charset_bin); const uchar *from= (uchar*) from_arg; /* Convert character set if the old one is multi uchar */ if (cs->mbmaxlen > 1) { uint dummy_errors; tmp.copy((char*) from, len, cs, &my_charset_bin, &dummy_errors); from= (uchar*) tmp.ptr(); len= tmp.length(); } const uchar *end= from+len; /* The pointer where the field value starts (i.e., "where to write") */ uchar *to= ptr; uint tmp_dec, tmp_uint; /* The sign of the number : will be 0 (means positive but sign not specified), '+' or '-' */ uchar sign_char=0; /* The pointers where prezeros start and stop */ const uchar *pre_zeros_from, *pre_zeros_end; /* The pointers where digits at the left of '.' start and stop */ const uchar *int_digits_from, *int_digits_end; /* The pointers where digits at the right of '.' start and stop */ const uchar *frac_digits_from, *frac_digits_end; /* The sign of the exponent : will be 0 (means no exponent), '+' or '-' */ char expo_sign_char=0; uint exponent=0; // value of the exponent /* Pointers used when digits move from the left of the '.' to the right of the '.' (explained below) */ const uchar *UNINIT_VAR(int_digits_tail_from); /* Number of 0 that need to be added at the left of the '.' (1E3: 3 zeros) */ uint UNINIT_VAR(int_digits_added_zeros); /* Pointer used when digits move from the right of the '.' to the left of the '.' */ const uchar *UNINIT_VAR(frac_digits_head_end); /* Number of 0 that need to be added at the right of the '.' (for 1E-3) */ uint UNINIT_VAR(frac_digits_added_zeros); uchar *pos,*tmp_left_pos,*tmp_right_pos; /* Pointers that are used as limits (begin and end of the field buffer) */ uchar *left_wall,*right_wall; uchar tmp_char; /* To remember if get_thd()->cuted_fields has already been incremented, to do that only once */ bool is_cuted_fields_incr=0; /* There are three steps in this function : - parse the input string - modify the position of digits around the decimal dot '.' according to the exponent value (if specified) - write the formatted number */ if ((tmp_dec=dec)) tmp_dec++; /* skip pre-space */ while (from != end && my_isspace(&my_charset_bin,*from)) from++; if (from == end) { set_warning(WARN_DATA_TRUNCATED, 1); is_cuted_fields_incr=1; } else if (*from == '+' || *from == '-') // Found some sign ? { sign_char= *from++; /* We allow "+" for unsigned decimal unless defined different Both options allowed as one may wish not to have "+" for unsigned numbers because of data processing issues */ if (unsigned_flag) { if (sign_char=='-') { Field_decimal::overflow(1); return 1; } /* Defining this will not store "+" for unsigned decimal type even if it is passed in numeric string. This will make some tests to fail */ #ifdef DONT_ALLOW_UNSIGNED_PLUS else sign_char=0; #endif } } pre_zeros_from= from; for (; from!=end && *from == '0'; from++) ; // Read prezeros pre_zeros_end=int_digits_from=from; /* Read non zero digits at the left of '.'*/ for (; from != end && my_isdigit(&my_charset_bin, *from) ; from++) ; int_digits_end=from; if (from!=end && *from == '.') // Some '.' ? from++; frac_digits_from= from; /* Read digits at the right of '.' */ for (;from!=end && my_isdigit(&my_charset_bin, *from); from++) ; frac_digits_end=from; // Some exponentiation symbol ? if (from != end && (*from == 'e' || *from == 'E')) { from++; if (from != end && (*from == '+' || *from == '-')) // Some exponent sign ? expo_sign_char= *from++; else expo_sign_char= '+'; /* Read digits of the exponent and compute its value. We must care about 'exponent' overflow, because as unsigned arithmetic is "modulo", big exponents will become small (e.g. 1e4294967296 will become 1e0, and the field will finally contain 1 instead of its max possible value). */ for (;from!=end && my_isdigit(&my_charset_bin, *from); from++) { exponent=10*exponent+(*from-'0'); if (exponent>MAX_EXPONENT) break; } } /* We only have to generate warnings if count_cuted_fields is set. This is to avoid extra checks of the number when they are not needed. Even if this flag is not set, it's OK to increment warnings, if it makes the code easer to read. */ if (get_thd()->count_cuted_fields) { // Skip end spaces for (;from != end && my_isspace(&my_charset_bin, *from); from++) ; if (from != end) // If still something left, warn { set_warning(WARN_DATA_TRUNCATED, 1); is_cuted_fields_incr=1; } } /* Now "move" digits around the decimal dot according to the exponent value, and add necessary zeros. Examples : - 1E+3 : needs 3 more zeros at the left of '.' (int_digits_added_zeros=3) - 1E-3 : '1' moves at the right of '.', and 2 more zeros are needed between '.' and '1' - 1234.5E-3 : '234' moves at the right of '.' These moves are implemented with pointers which point at the begin and end of each moved segment. Examples : - 1234.5E-3 : before the code below is executed, the int_digits part is from '1' to '4' and the frac_digits part from '5' to '5'. After the code below, the int_digits part is from '1' to '1', the frac_digits_head part is from '2' to '4', and the frac_digits part from '5' to '5'. - 1234.5E3 : before the code below is executed, the int_digits part is from '1' to '4' and the frac_digits part from '5' to '5'. After the code below, the int_digits part is from '1' to '4', the int_digits_tail part is from '5' to '5', the frac_digits part is empty, and int_digits_added_zeros=2 (to make 1234500). */ /* Below tmp_uint cannot overflow with small enough MAX_EXPONENT setting, as int_digits_added_zeros<=exponent<4G and (int_digits_end-int_digits_from)<=max_allowed_packet<=2G and (frac_digits_from-int_digits_tail_from)<=max_allowed_packet<=2G */ if (!expo_sign_char) tmp_uint=tmp_dec+(uint)(int_digits_end-int_digits_from); else if (expo_sign_char == '-') { tmp_uint=MY_MIN(exponent,(uint)(int_digits_end-int_digits_from)); frac_digits_added_zeros=exponent-tmp_uint; int_digits_end -= tmp_uint; frac_digits_head_end=int_digits_end+tmp_uint; tmp_uint=tmp_dec+(uint)(int_digits_end-int_digits_from); } else // (expo_sign_char=='+') { tmp_uint=MY_MIN(exponent,(uint)(frac_digits_end-frac_digits_from)); int_digits_added_zeros=exponent-tmp_uint; int_digits_tail_from=frac_digits_from; frac_digits_from=frac_digits_from+tmp_uint; /* We "eat" the heading zeros of the int_digits.int_digits_tail.int_digits_added_zeros concatenation (for example 0.003e3 must become 3 and not 0003) */ if (int_digits_from == int_digits_end) { /* There was nothing in the int_digits part, so continue eating int_digits_tail zeros */ for (; int_digits_tail_from != frac_digits_from && *int_digits_tail_from == '0'; int_digits_tail_from++) ; if (int_digits_tail_from == frac_digits_from) { // there were only zeros in int_digits_tail too int_digits_added_zeros=0; } } tmp_uint= (uint) (tmp_dec+(int_digits_end-int_digits_from)+ (uint)(frac_digits_from-int_digits_tail_from)+ int_digits_added_zeros); } /* Now write the formated number First the digits of the int_% parts. Do we have enough room to write these digits ? If the sign is defined and '-', we need one position for it */ if (field_length < tmp_uint + (int) (sign_char == '-')) { // too big number, change to max or min number Field_decimal::overflow(sign_char == '-'); return 1; } /* Tmp_left_pos is the position where the leftmost digit of the int_% parts will be written */ tmp_left_pos=pos=to+(uint)(field_length-tmp_uint); // Write all digits of the int_% parts while (int_digits_from != int_digits_end) *pos++ = *int_digits_from++ ; if (expo_sign_char == '+') { while (int_digits_tail_from != frac_digits_from) *pos++= *int_digits_tail_from++; while (int_digits_added_zeros-- >0) *pos++= '0'; } /* Note the position where the rightmost digit of the int_% parts has been written (this is to later check if the int_% parts contained nothing, meaning an extra 0 is needed). */ tmp_right_pos=pos; /* Step back to the position of the leftmost digit of the int_% parts, to write sign and fill with zeros or blanks or prezeros. */ pos=tmp_left_pos-1; if (zerofill) { left_wall=to-1; while (pos > left_wall) // Fill with zeros *pos--='0'; } else { left_wall=to+(sign_char != 0)-1; if (!expo_sign_char) // If exponent was specified, ignore prezeros { for (;pos > left_wall && pre_zeros_from !=pre_zeros_end; pre_zeros_from++) *pos--= '0'; } if (pos == tmp_right_pos-1) *pos--= '0'; // no 0 has ever been written, so write one left_wall= to-1; if (sign_char && pos != left_wall) { /* Write sign if possible (it is if sign is '-') */ *pos--= sign_char; } while (pos != left_wall) *pos--=' '; //fill with blanks } /* Write digits of the frac_% parts ; Depending on get_thd()->count_cutted_fields, we may also want to know if some non-zero tail of these parts will be truncated (for example, 0.002->0.00 will generate a warning, while 0.000->0.00 will not) (and 0E1000000000 will not, while 1E-1000000000 will) */ pos=to+(uint)(field_length-tmp_dec); // Calculate post to '.' right_wall=to+field_length; if (pos != right_wall) *pos++='.'; if (expo_sign_char == '-') { while (frac_digits_added_zeros-- > 0) { if (pos == right_wall) { if (get_thd()->count_cuted_fields && !is_cuted_fields_incr) break; // Go on below to see if we lose non zero digits return 0; } *pos++='0'; } while (int_digits_end != frac_digits_head_end) { tmp_char= *int_digits_end++; if (pos == right_wall) { if (tmp_char != '0') // Losing a non zero digit ? { if (!is_cuted_fields_incr) set_warning(WARN_DATA_TRUNCATED, 1); return 0; } continue; } *pos++= tmp_char; } } for (;frac_digits_from!=frac_digits_end;) { tmp_char= *frac_digits_from++; if (pos == right_wall) { if (tmp_char != '0') // Losing a non zero digit ? { if (!is_cuted_fields_incr) { /* This is a note, not a warning, as we don't want to abort when we cut decimals in strict mode */ set_note(WARN_DATA_TRUNCATED, 1); } return 0; } continue; } *pos++= tmp_char; } while (pos != right_wall) *pos++='0'; // Fill with zeros at right of '.' return 0; } int Field_decimal::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; if (unsigned_flag && nr < 0) { overflow(1); return 1; } if (!isfinite(nr)) // Handle infinity as special case { overflow(nr < 0.0); return 1; } reg4 uint i; size_t length; uchar fyllchar,*to; char buff[DOUBLE_TO_STRING_CONVERSION_BUFFER_SIZE]; fyllchar = zerofill ? (char) '0' : (char) ' '; length= my_fcvt(nr, dec, buff, NULL); if (length > field_length) { overflow(nr < 0.0); return 1; } else { to=ptr; for (i=field_length-length ; i-- > 0 ;) *to++ = fyllchar; memcpy(to,buff,length); return 0; } } int Field_decimal::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; char buff[22]; uint length, int_part; char fyllchar; uchar *to; if (nr < 0 && unsigned_flag && !unsigned_val) { overflow(1); return 1; } length= (uint) (longlong10_to_str(nr,buff,unsigned_val ? 10 : -10) - buff); int_part= field_length- (dec ? dec+1 : 0); if (length > int_part) { overflow(!unsigned_val && nr < 0L); /* purecov: inspected */ return 1; } fyllchar = zerofill ? (char) '0' : (char) ' '; to= ptr; for (uint i=int_part-length ; i-- > 0 ;) *to++ = fyllchar; memcpy(to,buff,length); if (dec) { to[length]='.'; bfill(to+length+1,dec,'0'); } return 0; } double Field_decimal::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; int not_used; char *end_not_used; return my_strntod(&my_charset_bin, (char*) ptr, field_length, &end_not_used, ¬_used); } longlong Field_decimal::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; int not_used; if (unsigned_flag) return my_strntoull(&my_charset_bin, (char*) ptr, field_length, 10, NULL, ¬_used); return my_strntoll(&my_charset_bin, (char*) ptr, field_length, 10, NULL, ¬_used); } String *Field_decimal::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) { ASSERT_COLUMN_MARKED_FOR_READ; uchar *str; size_t tmp_length; for (str=ptr ; *str == ' ' ; str++) ; val_ptr->set_charset(&my_charset_numeric); tmp_length= (size_t) (str-ptr); if (field_length < tmp_length) // Error in data val_ptr->length(0); else val_ptr->set_ascii((const char*) str, field_length-tmp_length); return val_ptr; } /** Should be able to handle at least the following fixed decimal formats: 5.00 , -1.0, 05, -05, +5 with optional pre/end space */ int Field_decimal::cmp(const uchar *a_ptr,const uchar *b_ptr) { const uchar *end; int swap=0; /* First remove prefixes '0', ' ', and '-' */ for (end=a_ptr+field_length; a_ptr != end && (*a_ptr == *b_ptr || ((my_isspace(&my_charset_bin,*a_ptr) || *a_ptr == '+' || *a_ptr == '0') && (my_isspace(&my_charset_bin,*b_ptr) || *b_ptr == '+' || *b_ptr == '0'))); a_ptr++,b_ptr++) { if (*a_ptr == '-') // If both numbers are negative swap= -1 ^ 1; // Swap result } if (a_ptr == end) return 0; if (*a_ptr == '-') return -1; if (*b_ptr == '-') return 1; while (a_ptr != end) { if (*a_ptr++ != *b_ptr++) return swap ^ (a_ptr[-1] < b_ptr[-1] ? -1 : 1); // compare digits } return 0; } void Field_decimal::sort_string(uchar *to,uint length) { uchar *str,*end; for (str=ptr,end=ptr+length; str != end && ((my_isspace(&my_charset_bin,*str) || *str == '+' || *str == '0')) ; str++) *to++=' '; if (str == end) return; /* purecov: inspected */ if (*str == '-') { *to++=1; // Smaller than any number str++; while (str != end) if (my_isdigit(&my_charset_bin,*str)) *to++= (char) ('9' - *str++); else *to++= *str++; } else memcpy(to,str,(uint) (end-str)); } void Field_decimal::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); uint tmp=field_length; if (!unsigned_flag) tmp--; if (dec) tmp--; res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "decimal(%d,%d)/*old*/",tmp,dec)); add_zerofill_and_unsigned(res); } /**************************************************************************** ** Field_new_decimal ****************************************************************************/ Field_new_decimal::Field_new_decimal(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, enum utype unireg_check_arg, const char *field_name_arg, uint8 dec_arg,bool zero_arg, bool unsigned_arg) :Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg, dec_arg, zero_arg, unsigned_arg) { precision= my_decimal_length_to_precision(len_arg, dec_arg, unsigned_arg); set_if_smaller(precision, DECIMAL_MAX_PRECISION); DBUG_ASSERT((precision <= DECIMAL_MAX_PRECISION) && (dec <= DECIMAL_MAX_SCALE)); bin_size= my_decimal_get_binary_size(precision, dec); } Field_new_decimal::Field_new_decimal(uint32 len_arg, bool maybe_null_arg, const char *name, uint8 dec_arg, bool unsigned_arg) :Field_num((uchar*) 0, len_arg, maybe_null_arg ? (uchar*) "": 0, 0, NONE, name, dec_arg, 0, unsigned_arg) { precision= my_decimal_length_to_precision(len_arg, dec_arg, unsigned_arg); set_if_smaller(precision, DECIMAL_MAX_PRECISION); DBUG_ASSERT((precision <= DECIMAL_MAX_PRECISION) && (dec <= DECIMAL_MAX_SCALE)); bin_size= my_decimal_get_binary_size(precision, dec); } Field *Field_new_decimal::create_from_item(MEM_ROOT *mem_root, Item *item) { uint8 dec= item->decimals; uint8 intg= item->decimal_precision() - dec; uint32 len= item->max_char_length(); DBUG_ASSERT (item->result_type() == DECIMAL_RESULT); /* Trying to put too many digits overall in a DECIMAL(prec,dec) will always throw a warning. We must limit dec to DECIMAL_MAX_SCALE however to prevent an assert() later. */ if (dec > 0) { signed int overflow; dec= MY_MIN(dec, DECIMAL_MAX_SCALE); /* If the value still overflows the field with the corrected dec, we'll throw out decimals rather than integers. This is still bad and of course throws a truncation warning. +1: for decimal point */ const int required_length= my_decimal_precision_to_length(intg + dec, dec, item->unsigned_flag); overflow= required_length - len; if (overflow > 0) dec= MY_MAX(0, dec - overflow); // too long, discard fract else /* Corrected value fits. */ len= required_length; } return new (mem_root) Field_new_decimal(len, item->maybe_null, item->name, dec, item->unsigned_flag); } int Field_new_decimal::reset(void) { store_value(&decimal_zero); return 0; } /** Generate max/min decimal value in case of overflow. @param decimal_value buffer for value @param sign sign of value which caused overflow */ void Field_new_decimal::set_value_on_overflow(my_decimal *decimal_value, bool sign) { DBUG_ENTER("Field_new_decimal::set_value_on_overflow"); max_my_decimal(decimal_value, precision, decimals()); if (sign) { if (unsigned_flag) my_decimal_set_zero(decimal_value); else decimal_value->sign(TRUE); } DBUG_VOID_RETURN; } /** Store decimal value in the binary buffer. Checks if decimal_value fits into field size. If it does, stores the decimal in the buffer using binary format. Otherwise sets maximal number that can be stored in the field. @param decimal_value my_decimal @retval 0 ok @retval 1 error */ bool Field_new_decimal::store_value(const my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; DBUG_ENTER("Field_new_decimal::store_value"); #ifndef DBUG_OFF { char dbug_buff[DECIMAL_MAX_STR_LENGTH+2]; DBUG_PRINT("enter", ("value: %s", dbug_decimal_as_string(dbug_buff, decimal_value))); } #endif /* check that we do not try to write negative value in unsigned field */ if (unsigned_flag && decimal_value->sign()) { DBUG_PRINT("info", ("unsigned overflow")); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; decimal_value= &decimal_zero; } #ifndef DBUG_OFF { char dbug_buff[DECIMAL_MAX_STR_LENGTH+2]; DBUG_PRINT("info", ("saving with precision %d scale: %d value %s", (int)precision, (int)dec, dbug_decimal_as_string(dbug_buff, decimal_value))); } #endif if (warn_if_overflow(my_decimal2binary(E_DEC_FATAL_ERROR & ~E_DEC_OVERFLOW, decimal_value, ptr, precision, dec))) { my_decimal buff; DBUG_PRINT("info", ("overflow")); set_value_on_overflow(&buff, decimal_value->sign()); my_decimal2binary(E_DEC_FATAL_ERROR, &buff, ptr, precision, dec); error= 1; } DBUG_EXECUTE("info", print_decimal_buff(decimal_value, (uchar *) ptr, bin_size);); DBUG_RETURN(error); } int Field_new_decimal::store(const char *from, uint length, CHARSET_INFO *charset_arg) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; my_decimal decimal_value; THD *thd= get_thd(); DBUG_ENTER("Field_new_decimal::store(char*)"); const char *end; int err= str2my_decimal(E_DEC_FATAL_ERROR & ~(E_DEC_OVERFLOW | E_DEC_BAD_NUM), from, length, charset_arg, &decimal_value, &end); if (err == E_DEC_OVERFLOW) // Too many digits (>81) in the integer part { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); if (!thd->abort_on_warning) { set_value_on_overflow(&decimal_value, decimal_value.sign()); store_decimal(&decimal_value); } DBUG_RETURN(1); } if (thd->count_cuted_fields) { if (check_edom_and_truncation("decimal", err && err != E_DEC_TRUNCATED, charset_arg, from, length, end)) { if (!thd->abort_on_warning) { if (err && err != E_DEC_TRUNCATED) { /* If check_decimal() failed because of EDOM-alike error, (e.g. E_DEC_BAD_NUM), we have to initialize decimal_value to zero. Note: if check_decimal() failed because of truncation, decimal_value is alreay properly initialized. */ my_decimal_set_zero(&decimal_value); /* TODO: check str2my_decimal() with HF. It seems to do decimal_make_zero() on fatal errors, so my_decimal_set_zero() is probably not needed here. */ } store_decimal(&decimal_value); } DBUG_RETURN(1); } /* E_DEC_TRUNCATED means minor truncation '1e-1000000000000' -> 0.0 A note should be enough. */ if (err == E_DEC_TRUNCATED) set_note(WARN_DATA_TRUNCATED, 1); } #ifndef DBUG_OFF char dbug_buff[DECIMAL_MAX_STR_LENGTH+2]; DBUG_PRINT("enter", ("value: %s", dbug_decimal_as_string(dbug_buff, &decimal_value))); #endif store_value(&decimal_value); DBUG_RETURN(0); } /** @todo Fix following when double2my_decimal when double2decimal will return E_DEC_TRUNCATED always correctly */ int Field_new_decimal::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; my_decimal decimal_value; int err; THD *thd= get_thd(); DBUG_ENTER("Field_new_decimal::store(double)"); err= double2my_decimal(E_DEC_FATAL_ERROR & ~E_DEC_OVERFLOW, nr, &decimal_value); if (err) { if (check_overflow(err)) set_value_on_overflow(&decimal_value, decimal_value.sign()); /* Only issue a warning if store_value doesn't issue an warning */ thd->got_warning= 0; } if (store_value(&decimal_value)) err= 1; else if (err && !thd->got_warning) err= warn_if_overflow(err); DBUG_RETURN(err); } int Field_new_decimal::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; my_decimal decimal_value; int err; if ((err= int2my_decimal(E_DEC_FATAL_ERROR & ~E_DEC_OVERFLOW, nr, unsigned_val, &decimal_value))) { if (check_overflow(err)) set_value_on_overflow(&decimal_value, decimal_value.sign()); /* Only issue a warning if store_value doesn't issue an warning */ get_thd()->got_warning= 0; } if (store_value(&decimal_value)) err= 1; else if (err && !get_thd()->got_warning) err= warn_if_overflow(err); return err; } int Field_new_decimal::store_decimal(const my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; return store_value(decimal_value); } int Field_new_decimal::store_time_dec(MYSQL_TIME *ltime, uint dec_arg) { my_decimal decimal_value; return store_value(date2my_decimal(ltime, &decimal_value)); } double Field_new_decimal::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; double dbl; my_decimal decimal_value; my_decimal2double(E_DEC_FATAL_ERROR, val_decimal(&decimal_value), &dbl); return dbl; } longlong Field_new_decimal::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; longlong i; my_decimal decimal_value; my_decimal2int(E_DEC_FATAL_ERROR, val_decimal(&decimal_value), unsigned_flag, &i); return i; } my_decimal* Field_new_decimal::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; DBUG_ENTER("Field_new_decimal::val_decimal"); binary2my_decimal(E_DEC_FATAL_ERROR, ptr, decimal_value, precision, dec); DBUG_EXECUTE("info", print_decimal_buff(decimal_value, (uchar *) ptr, bin_size);); DBUG_RETURN(decimal_value); } String *Field_new_decimal::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; my_decimal decimal_value; uint fixed_precision= zerofill ? precision : 0; my_decimal2string(E_DEC_FATAL_ERROR, val_decimal(&decimal_value), fixed_precision, dec, '0', val_buffer); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } bool Field_new_decimal::get_date(MYSQL_TIME *ltime, ulonglong fuzzydate) { my_decimal value; return decimal_to_datetime_with_warn(val_decimal(&value), ltime, fuzzydate, field_name); } int Field_new_decimal::cmp(const uchar *a,const uchar*b) { return memcmp(a, b, bin_size); } void Field_new_decimal::sort_string(uchar *buff, uint length __attribute__((unused))) { memcpy(buff, ptr, bin_size); } void Field_new_decimal::sql_type(String &str) const { CHARSET_INFO *cs= str.charset(); str.length(cs->cset->snprintf(cs, (char*) str.ptr(), str.alloced_length(), "decimal(%d,%d)", precision, (int)dec)); add_zerofill_and_unsigned(str); } /** Save the field metadata for new decimal fields. Saves the precision in the first byte and decimals() in the second byte of the field metadata array at index of *metadata_ptr and *(metadata_ptr + 1). @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_new_decimal::do_save_field_metadata(uchar *metadata_ptr) { *metadata_ptr= precision; *(metadata_ptr + 1)= decimals(); return 2; } /** Returns the number of bytes field uses in row-based replication row packed size. This method is used in row-based replication to determine the number of bytes that the field consumes in the row record format. This is used to skip fields in the master that do not exist on the slave. @param field_metadata Encoded size in field metadata @returns The size of the field based on the field metadata. */ uint Field_new_decimal::pack_length_from_metadata(uint field_metadata) { uint const source_precision= (field_metadata >> 8U) & 0x00ff; uint const source_decimal= field_metadata & 0x00ff; uint const source_size= my_decimal_get_binary_size(source_precision, source_decimal); return (source_size); } bool Field_new_decimal::compatible_field_size(uint field_metadata, Relay_log_info * __attribute__((unused)), uint16 mflags __attribute__((unused)), int *order_var) { uint const source_precision= (field_metadata >> 8U) & 0x00ff; uint const source_decimal= field_metadata & 0x00ff; int order= compare(source_precision, precision); *order_var= order != 0 ? order : compare(source_decimal, dec); return true; } uint Field_new_decimal::is_equal(Create_field *new_field) { return ((new_field->sql_type == real_type()) && ((new_field->flags & UNSIGNED_FLAG) == (uint) (flags & UNSIGNED_FLAG)) && ((new_field->flags & AUTO_INCREMENT_FLAG) == (uint) (flags & AUTO_INCREMENT_FLAG)) && (new_field->length == max_display_length()) && (new_field->decimals == dec)); } /** Unpack a decimal field from row data. This method is used to unpack a decimal or numeric field from a master whose size of the field is less than that of the slave. @param to Destination of the data @param from Source of the data @param param_data Precision (upper) and decimal (lower) values @return New pointer into memory based on from + length of the data */ const uchar * Field_new_decimal::unpack(uchar* to, const uchar *from, const uchar *from_end, uint param_data) { if (param_data == 0) return Field::unpack(to, from, from_end, param_data); uint from_precision= (param_data & 0xff00) >> 8U; uint from_decimal= param_data & 0x00ff; uint length=pack_length(); uint from_pack_len= my_decimal_get_binary_size(from_precision, from_decimal); uint len= (param_data && (from_pack_len < length)) ? from_pack_len : length; if ((from_pack_len && (from_pack_len < length)) || (from_precision < precision) || (from_decimal < decimals())) { /* If the master's data is smaller than the slave, we need to convert the binary to decimal then resize the decimal converting it back to a decimal and write that to the raw data buffer. */ decimal_digit_t dec_buf[DECIMAL_MAX_PRECISION]; decimal_t dec_val; dec_val.len= from_precision; dec_val.buf= dec_buf; /* Note: bin2decimal does not change the length of the field. So it is just the first step the resizing operation. The second step does the resizing using the precision and decimals from the slave. */ bin2decimal((uchar *)from, &dec_val, from_precision, from_decimal); decimal2bin(&dec_val, to, precision, decimals()); } else { if (from + len > from_end) return 0; // Wrong data memcpy(to, from, len); // Sizes are the same, just copy the data. } return from+len; } Item *Field_new_decimal::get_equal_const_item(THD *thd, const Context &ctx, Item *const_item) { if (flags & ZEROFILL_FLAG) return Field_num::get_equal_zerofill_const_item(thd, ctx, const_item); switch (ctx.subst_constraint()) { case IDENTITY_SUBST: if (const_item->field_type() != MYSQL_TYPE_NEWDECIMAL || const_item->decimal_scale() != decimals()) { my_decimal *val, val_buffer, val_buffer2; if (!(val= const_item->val_decimal(&val_buffer))) { DBUG_ASSERT(0); return const_item; } /* Truncate or extend the decimal value to the scale of the field. See comments about truncation in the same place in Field_time::get_equal_const_item(). */ my_decimal_round(E_DEC_FATAL_ERROR, val, decimals(), true, &val_buffer2); return new (thd->mem_root) Item_decimal(thd, field_name, &val_buffer2, decimals(), field_length); } break; case ANY_SUBST: break; } return const_item; } int Field_num::store_time_dec(MYSQL_TIME *ltime, uint dec_arg) { longlong v= TIME_to_ulonglong(ltime); if (ltime->neg == 0) return store(v, true); return store(-v, false); } /**************************************************************************** ** tiny int ****************************************************************************/ int Field_tiny::store(const char *from,uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error; longlong rnd; error= get_int(cs, from, len, &rnd, 255, -128, 127); ptr[0]= unsigned_flag ? (char) (ulonglong) rnd : (char) rnd; return error; } int Field_tiny::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; nr=rint(nr); if (unsigned_flag) { if (nr < 0.0) { *ptr=0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > 255.0) { *ptr= (uchar) 255; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else *ptr= (uchar) nr; } else { if (nr < -128.0) { *ptr= (uchar) -128; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > 127.0) { *ptr=127; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else *ptr=(uchar) (int) nr; } return error; } int Field_tiny::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; if (unsigned_flag) { if (nr < 0 && !unsigned_val) { *ptr= 0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if ((ulonglong) nr > (ulonglong) 255) { *ptr= (char) 255; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else *ptr=(char) nr; } else { if (nr < 0 && unsigned_val) nr= 256; // Generate overflow if (nr < -128) { *ptr= (char) -128; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > 127) { *ptr=127; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else *ptr=(char) nr; } return error; } double Field_tiny::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; int tmp= unsigned_flag ? (int) ptr[0] : (int) ((signed char*) ptr)[0]; return (double) tmp; } longlong Field_tiny::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; int tmp= unsigned_flag ? (int) ptr[0] : (int) ((signed char*) ptr)[0]; return (longlong) tmp; } String *Field_tiny::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; CHARSET_INFO *cs= &my_charset_numeric; uint length; uint mlength=MY_MAX(field_length+1,5*cs->mbmaxlen); val_buffer->alloc(mlength); char *to=(char*) val_buffer->ptr(); if (unsigned_flag) length= (uint) cs->cset->long10_to_str(cs,to,mlength, 10, (long) *ptr); else length= (uint) cs->cset->long10_to_str(cs,to,mlength,-10, (long) *((signed char*) ptr)); val_buffer->length(length); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(cs); return val_buffer; } bool Field_tiny::send_binary(Protocol *protocol) { return protocol->store_tiny((longlong) (int8) ptr[0]); } int Field_tiny::cmp(const uchar *a_ptr, const uchar *b_ptr) { signed char a,b; a=(signed char) a_ptr[0]; b= (signed char) b_ptr[0]; if (unsigned_flag) return ((uchar) a < (uchar) b) ? -1 : ((uchar) a > (uchar) b) ? 1 : 0; return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_tiny::sort_string(uchar *to,uint length __attribute__((unused))) { if (unsigned_flag) *to= *ptr; else to[0] = (char) (ptr[0] ^ (uchar) 128); /* Revers signbit */ } void Field_tiny::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "tinyint(%d)",(int) field_length)); add_zerofill_and_unsigned(res); } /**************************************************************************** Field type short int (2 byte) ****************************************************************************/ int Field_short::store(const char *from,uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int store_tmp; int error; longlong rnd; error= get_int(cs, from, len, &rnd, UINT_MAX16, INT_MIN16, INT_MAX16); store_tmp= unsigned_flag ? (int) (ulonglong) rnd : (int) rnd; int2store(ptr, store_tmp); return error; } int Field_short::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; int16 res; nr=rint(nr); if (unsigned_flag) { if (nr < 0) { res=0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > (double) UINT_MAX16) { res=(int16) UINT_MAX16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else res=(int16) (uint16) nr; } else { if (nr < (double) INT_MIN16) { res=INT_MIN16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > (double) INT_MAX16) { res=INT_MAX16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else res=(int16) (int) nr; } int2store(ptr,res); return error; } int Field_short::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; int16 res; if (unsigned_flag) { if (nr < 0L && !unsigned_val) { res=0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if ((ulonglong) nr > (ulonglong) UINT_MAX16) { res=(int16) UINT_MAX16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else res=(int16) (uint16) nr; } else { if (nr < 0 && unsigned_val) nr= UINT_MAX16+1; // Generate overflow if (nr < INT_MIN16) { res=INT_MIN16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > (longlong) INT_MAX16) { res=INT_MAX16; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else res=(int16) nr; } int2store(ptr,res); return error; } double Field_short::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; short j; j=sint2korr(ptr); return unsigned_flag ? (double) (unsigned short) j : (double) j; } longlong Field_short::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; short j; j=sint2korr(ptr); return unsigned_flag ? (longlong) (unsigned short) j : (longlong) j; } String *Field_short::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; CHARSET_INFO *cs= &my_charset_numeric; uint length; uint mlength=MY_MAX(field_length+1,7*cs->mbmaxlen); val_buffer->alloc(mlength); char *to=(char*) val_buffer->ptr(); short j; j=sint2korr(ptr); if (unsigned_flag) length=(uint) cs->cset->long10_to_str(cs, to, mlength, 10, (long) (uint16) j); else length=(uint) cs->cset->long10_to_str(cs, to, mlength,-10, (long) j); val_buffer->length(length); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(cs); return val_buffer; } bool Field_short::send_binary(Protocol *protocol) { return protocol->store_short(Field_short::val_int()); } int Field_short::cmp(const uchar *a_ptr, const uchar *b_ptr) { short a,b; a=sint2korr(a_ptr); b=sint2korr(b_ptr); if (unsigned_flag) return ((unsigned short) a < (unsigned short) b) ? -1 : ((unsigned short) a > (unsigned short) b) ? 1 : 0; return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_short::sort_string(uchar *to,uint length __attribute__((unused))) { if (unsigned_flag) to[0] = ptr[1]; else to[0] = (char) (ptr[1] ^ 128); /* Revers signbit */ to[1] = ptr[0]; } void Field_short::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "smallint(%d)",(int) field_length)); add_zerofill_and_unsigned(res); } /**************************************************************************** Field type medium int (3 byte) ****************************************************************************/ int Field_medium::store(const char *from,uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int store_tmp; int error; longlong rnd; error= get_int(cs, from, len, &rnd, UINT_MAX24, INT_MIN24, INT_MAX24); store_tmp= unsigned_flag ? (int) (ulonglong) rnd : (int) rnd; int3store(ptr, store_tmp); return error; } int Field_medium::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; nr=rint(nr); if (unsigned_flag) { if (nr < 0) { int3store(ptr,0); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr >= (double) (long) (1L << 24)) { uint32 tmp=(uint32) (1L << 24)-1L; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else int3store(ptr,(uint32) nr); } else { if (nr < (double) INT_MIN24) { long tmp=(long) INT_MIN24; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > (double) INT_MAX24) { long tmp=(long) INT_MAX24; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else int3store(ptr,(long) nr); } return error; } int Field_medium::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; if (unsigned_flag) { if (nr < 0 && !unsigned_val) { int3store(ptr,0); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if ((ulonglong) nr >= (ulonglong) (long) (1L << 24)) { long tmp= (long) (1L << 24)-1L; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else int3store(ptr,(uint32) nr); } else { if (nr < 0 && unsigned_val) nr= (ulonglong) (long) (1L << 24); // Generate overflow if (nr < (longlong) INT_MIN24) { long tmp= (long) INT_MIN24; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (nr > (longlong) INT_MAX24) { long tmp=(long) INT_MAX24; int3store(ptr,tmp); set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else int3store(ptr,(long) nr); } return error; } double Field_medium::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; long j= unsigned_flag ? (long) uint3korr(ptr) : sint3korr(ptr); return (double) j; } longlong Field_medium::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; long j= unsigned_flag ? (long) uint3korr(ptr) : sint3korr(ptr); return (longlong) j; } String *Field_medium::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; CHARSET_INFO *cs= &my_charset_numeric; uint length; uint mlength=MY_MAX(field_length+1,10*cs->mbmaxlen); val_buffer->alloc(mlength); char *to=(char*) val_buffer->ptr(); long j= unsigned_flag ? (long) uint3korr(ptr) : sint3korr(ptr); length=(uint) cs->cset->long10_to_str(cs,to,mlength,-10,j); val_buffer->length(length); if (zerofill) prepend_zeros(val_buffer); /* purecov: inspected */ val_buffer->set_charset(cs); return val_buffer; } bool Field_medium::send_binary(Protocol *protocol) { ASSERT_COLUMN_MARKED_FOR_READ; return protocol->store_long(Field_medium::val_int()); } int Field_medium::cmp(const uchar *a_ptr, const uchar *b_ptr) { long a,b; if (unsigned_flag) { a=uint3korr(a_ptr); b=uint3korr(b_ptr); } else { a=sint3korr(a_ptr); b=sint3korr(b_ptr); } return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_medium::sort_string(uchar *to,uint length __attribute__((unused))) { if (unsigned_flag) to[0] = ptr[2]; else to[0] = (uchar) (ptr[2] ^ 128); /* Revers signbit */ to[1] = ptr[1]; to[2] = ptr[0]; } void Field_medium::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "mediumint(%d)",(int) field_length)); add_zerofill_and_unsigned(res); } /**************************************************************************** ** long int ****************************************************************************/ int Field_long::store(const char *from,uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; long store_tmp; int error; longlong rnd; error= get_int(cs, from, len, &rnd, UINT_MAX32, INT_MIN32, INT_MAX32); store_tmp= unsigned_flag ? (long) (ulonglong) rnd : (long) rnd; int4store(ptr, store_tmp); return error; } int Field_long::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; int32 res; nr=rint(nr); if (unsigned_flag) { if (nr < 0) { res=0; error= 1; } else if (nr > (double) UINT_MAX32) { res= UINT_MAX32; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else res=(int32) (ulong) nr; } else { if (nr < (double) INT_MIN32) { res=(int32) INT_MIN32; error= 1; } else if (nr > (double) INT_MAX32) { res=(int32) INT_MAX32; error= 1; } else res=(int32) (longlong) nr; } if (error) set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); int4store(ptr,res); return error; } int Field_long::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; int32 res; if (unsigned_flag) { if (nr < 0 && !unsigned_val) { res=0; error= 1; } else if ((ulonglong) nr >= (1LL << 32)) { res=(int32) (uint32) ~0L; error= 1; } else res=(int32) (uint32) nr; } else { if (nr < 0 && unsigned_val) nr= ((longlong) INT_MAX32) + 1; // Generate overflow if (nr < (longlong) INT_MIN32) { res=(int32) INT_MIN32; error= 1; } else if (nr > (longlong) INT_MAX32) { res=(int32) INT_MAX32; error= 1; } else res=(int32) nr; } if (error) set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); int4store(ptr,res); return error; } double Field_long::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; int32 j; j=sint4korr(ptr); return unsigned_flag ? (double) (uint32) j : (double) j; } longlong Field_long::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; int32 j; /* See the comment in Field_long::store(long long) */ DBUG_ASSERT(!table || table->in_use == current_thd); j=sint4korr(ptr); return unsigned_flag ? (longlong) (uint32) j : (longlong) j; } String *Field_long::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; CHARSET_INFO *cs= &my_charset_numeric; uint length; uint mlength=MY_MAX(field_length+1,12*cs->mbmaxlen); val_buffer->alloc(mlength); char *to=(char*) val_buffer->ptr(); int32 j; j=sint4korr(ptr); if (unsigned_flag) length=cs->cset->long10_to_str(cs,to,mlength, 10,(long) (uint32)j); else length=cs->cset->long10_to_str(cs,to,mlength,-10,(long) j); val_buffer->length(length); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(cs); return val_buffer; } bool Field_long::send_binary(Protocol *protocol) { ASSERT_COLUMN_MARKED_FOR_READ; return protocol->store_long(Field_long::val_int()); } int Field_long::cmp(const uchar *a_ptr, const uchar *b_ptr) { int32 a,b; a=sint4korr(a_ptr); b=sint4korr(b_ptr); if (unsigned_flag) return ((uint32) a < (uint32) b) ? -1 : ((uint32) a > (uint32) b) ? 1 : 0; return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_long::sort_string(uchar *to,uint length __attribute__((unused))) { if (unsigned_flag) to[0] = ptr[3]; else to[0] = (char) (ptr[3] ^ 128); /* Revers signbit */ to[1] = ptr[2]; to[2] = ptr[1]; to[3] = ptr[0]; } void Field_long::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "int(%d)",(int) field_length)); add_zerofill_and_unsigned(res); } /**************************************************************************** Field type longlong int (8 bytes) ****************************************************************************/ int Field_longlong::store(const char *from,uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; char *end; ulonglong tmp; tmp= cs->cset->strntoull10rnd(cs,from,len,unsigned_flag,&end,&error); if (error == MY_ERRNO_ERANGE) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } else if (get_thd()->count_cuted_fields && check_int(cs, from, len, end, error)) error= 1; else error= 0; int8store(ptr,tmp); return error; } int Field_longlong::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; bool error; longlong res; res= double_to_longlong(nr, unsigned_flag, &error); if (error) set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); int8store(ptr,res); return error; } int Field_longlong::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; if (nr < 0) // Only possible error { /* if field is unsigned and value is signed (< 0) or if field is signed and value is unsigned we have an overflow */ if (unsigned_flag != unsigned_val) { nr= unsigned_flag ? (ulonglong) 0 : (ulonglong) LONGLONG_MAX; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); error= 1; } } int8store(ptr,nr); return error; } double Field_longlong::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; longlong j; j=sint8korr(ptr); /* The following is open coded to avoid a bug in gcc 3.3 */ if (unsigned_flag) { ulonglong tmp= (ulonglong) j; return ulonglong2double(tmp); } return (double) j; } longlong Field_longlong::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; longlong j; j=sint8korr(ptr); return j; } String *Field_longlong::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { CHARSET_INFO *cs= &my_charset_numeric; uint length; uint mlength=MY_MAX(field_length+1,22*cs->mbmaxlen); val_buffer->alloc(mlength); char *to=(char*) val_buffer->ptr(); longlong j; j=sint8korr(ptr); length=(uint) (cs->cset->longlong10_to_str)(cs,to,mlength, unsigned_flag ? 10 : -10, j); val_buffer->length(length); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(cs); return val_buffer; } bool Field_longlong::send_binary(Protocol *protocol) { ASSERT_COLUMN_MARKED_FOR_READ; return protocol->store_longlong(Field_longlong::val_int(), unsigned_flag); } int Field_longlong::cmp(const uchar *a_ptr, const uchar *b_ptr) { longlong a,b; a=sint8korr(a_ptr); b=sint8korr(b_ptr); if (unsigned_flag) return ((ulonglong) a < (ulonglong) b) ? -1 : ((ulonglong) a > (ulonglong) b) ? 1 : 0; return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_longlong::sort_string(uchar *to,uint length __attribute__((unused))) { if (unsigned_flag) to[0] = ptr[7]; else to[0] = (char) (ptr[7] ^ 128); /* Revers signbit */ to[1] = ptr[6]; to[2] = ptr[5]; to[3] = ptr[4]; to[4] = ptr[3]; to[5] = ptr[2]; to[6] = ptr[1]; to[7] = ptr[0]; } void Field_longlong::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "bigint(%d)",(int) field_length)); add_zerofill_and_unsigned(res); } /* Floating-point numbers */ /**************************************************************************** single precision float ****************************************************************************/ int Field_float::store(const char *from,uint len,CHARSET_INFO *cs) { int error; Field_float::store(get_double(from, len, cs, &error)); return error; } int Field_float::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= truncate_double(&nr, field_length, not_fixed ? NOT_FIXED_DEC : dec, unsigned_flag, FLT_MAX); if (error) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); if (error < 0) // Wrong double value { error= 1; set_null(); } } float j= (float)nr; float4store(ptr,j); return error; } int Field_float::store(longlong nr, bool unsigned_val) { return Field_float::store(unsigned_val ? ulonglong2double((ulonglong) nr) : (double) nr); } double Field_float::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; float j; float4get(j,ptr); return ((double) j); } longlong Field_float::val_int(void) { float j; float4get(j,ptr); return (longlong) rint(j); } String *Field_float::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; DBUG_ASSERT(!zerofill || field_length <= MAX_FIELD_CHARLENGTH); float nr; float4get(nr,ptr); uint to_length= 70; if (val_buffer->alloc(to_length)) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); return val_buffer; } char *to=(char*) val_buffer->ptr(); size_t len; if (dec >= FLOATING_POINT_DECIMALS) len= my_gcvt(nr, MY_GCVT_ARG_FLOAT, to_length - 1, to, NULL); else { /* We are safe here because the buffer length is 70, and fabs(float) < 10^39, dec < FLOATING_POINT_DECIMALS. So the resulting string will be not longer than 69 chars + terminating '\0'. */ len= my_fcvt(nr, dec, to, NULL); } val_buffer->length((uint) len); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } int Field_float::cmp(const uchar *a_ptr, const uchar *b_ptr) { float a,b; float4get(a,a_ptr); float4get(b,b_ptr); return (a < b) ? -1 : (a > b) ? 1 : 0; } #define FLT_EXP_DIG (sizeof(float)*8-FLT_MANT_DIG) void Field_float::sort_string(uchar *to,uint length __attribute__((unused))) { float nr; float4get(nr,ptr); uchar *tmp= to; if (nr == (float) 0.0) { /* Change to zero string */ tmp[0]=(uchar) 128; bzero((char*) tmp+1,sizeof(nr)-1); } else { #ifdef WORDS_BIGENDIAN memcpy(tmp, &nr, sizeof(nr)); #else tmp[0]= ptr[3]; tmp[1]=ptr[2]; tmp[2]= ptr[1]; tmp[3]=ptr[0]; #endif if (tmp[0] & 128) /* Negative */ { /* make complement */ uint i; for (i=0 ; i < sizeof(nr); i++) tmp[i]= (uchar) (tmp[i] ^ (uchar) 255); } else { ushort exp_part=(((ushort) tmp[0] << 8) | (ushort) tmp[1] | (ushort) 32768); exp_part+= (ushort) 1 << (16-1-FLT_EXP_DIG); tmp[0]= (uchar) (exp_part >> 8); tmp[1]= (uchar) exp_part; } } } bool Field_float::send_binary(Protocol *protocol) { ASSERT_COLUMN_MARKED_FOR_READ; return protocol->store((float) Field_float::val_real(), dec, (String*) 0); } /** Save the field metadata for float fields. Saves the pack length in the first byte. @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_float::do_save_field_metadata(uchar *metadata_ptr) { *metadata_ptr= pack_length(); return 1; } void Field_float::sql_type(String &res) const { if (dec >= FLOATING_POINT_DECIMALS) { res.set_ascii(STRING_WITH_LEN("float")); } else { CHARSET_INFO *cs= res.charset(); res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "float(%d,%d)",(int) field_length,dec)); } add_zerofill_and_unsigned(res); } /**************************************************************************** double precision floating point numbers ****************************************************************************/ int Field_double::store(const char *from,uint len,CHARSET_INFO *cs) { int error; Field_double::store(get_double(from, len, cs, &error)); return error; } int Field_double::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= truncate_double(&nr, field_length, not_fixed ? NOT_FIXED_DEC : dec, unsigned_flag, DBL_MAX); if (error) { set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); if (error < 0) // Wrong double value { error= 1; set_null(); } } float8store(ptr,nr); return error; } int Field_double::store(longlong nr, bool unsigned_val) { return Field_double::store(unsigned_val ? ulonglong2double((ulonglong) nr) : (double) nr); } /* If a field has fixed length, truncate the double argument pointed to by 'nr' appropriately. Also ensure that the argument is within [-max_value; max_value] range. return 0 ok -1 Illegal double value 1 Value was truncated */ int truncate_double(double *nr, uint field_length, uint dec, bool unsigned_flag, double max_value) { int error= 0; double res= *nr; if (isnan(res)) { *nr= 0; return -1; } else if (unsigned_flag && res < 0) { *nr= 0; return 1; } if (dec < FLOATING_POINT_DECIMALS) { uint order= field_length - dec; uint step= array_elements(log_10) - 1; max_value= 1.0; for (; order > step; order-= step) max_value*= log_10[step]; max_value*= log_10[order]; max_value-= 1.0 / log_10[dec]; /* Check for infinity so we don't get NaN in calculations */ if (!my_isinf(res)) { double tmp= rint((res - floor(res)) * log_10[dec]) / log_10[dec]; res= floor(res) + tmp; } } if (res < -max_value) { res= -max_value; error= 1; } else if (res > max_value) { res= max_value; error= 1; } *nr= res; return error; } /* Convert double to longlong / ulonglong. If double is outside of range, adjust return value and set error. SYNOPSIS double_to_longlong() nr Number to convert unsigned_flag 1 if result is unsigned error Will be set to 1 in case of overflow. */ longlong double_to_longlong(double nr, bool unsigned_flag, bool *error) { longlong res; *error= 0; nr= rint(nr); if (unsigned_flag) { if (nr < 0) { res= 0; *error= 1; } else if (nr >= (double) ULONGLONG_MAX) { res= ~(longlong) 0; *error= 1; } else res= (longlong) double2ulonglong(nr); } else { if (nr <= (double) LONGLONG_MIN) { res= LONGLONG_MIN; *error= (nr < (double) LONGLONG_MIN); } else if (nr >= (double) (ulonglong) LONGLONG_MAX) { res= LONGLONG_MAX; *error= (nr > (double) LONGLONG_MAX); } else res= (longlong) nr; } return res; } int Field_real::store_decimal(const my_decimal *dm) { double dbl; my_decimal2double(E_DEC_FATAL_ERROR, dm, &dbl); return store(dbl); } int Field_real::store_time_dec(MYSQL_TIME *ltime, uint dec_arg) { return store(TIME_to_double(ltime)); } double Field_double::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; double j; float8get(j,ptr); return j; } longlong Field_double::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; double j; longlong res; bool error; float8get(j,ptr); res= double_to_longlong(j, 0, &error); if (error) { THD *thd= get_thd(); ErrConvDouble err(j); push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_TRUNCATED_WRONG_VALUE, ER_THD(thd, ER_TRUNCATED_WRONG_VALUE), "INTEGER", err.ptr()); } return res; } my_decimal *Field_real::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; double2my_decimal(E_DEC_FATAL_ERROR, val_real(), decimal_value); return decimal_value; } bool Field_real::get_date(MYSQL_TIME *ltime,ulonglong fuzzydate) { ASSERT_COLUMN_MARKED_FOR_READ; double nr= val_real(); return double_to_datetime_with_warn(nr, ltime, fuzzydate, field_name); } Item *Field_real::get_equal_const_item(THD *thd, const Context &ctx, Item *const_item) { if (flags & ZEROFILL_FLAG) return Field_num::get_equal_zerofill_const_item(thd, ctx, const_item); switch (ctx.subst_constraint()) { case IDENTITY_SUBST: if (const_item->decimal_scale() != Field_real::decimals()) { double val= const_item->val_real(); return new (thd->mem_root) Item_float(thd, val, Field_real::decimals()); } break; case ANY_SUBST: break; } return const_item; } String *Field_double::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; DBUG_ASSERT(!zerofill || field_length <= MAX_FIELD_CHARLENGTH); double nr; float8get(nr,ptr); uint to_length= DOUBLE_TO_STRING_CONVERSION_BUFFER_SIZE; if (val_buffer->alloc(to_length)) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); return val_buffer; } char *to=(char*) val_buffer->ptr(); size_t len; if (dec >= FLOATING_POINT_DECIMALS) len= my_gcvt(nr, MY_GCVT_ARG_DOUBLE, to_length - 1, to, NULL); else len= my_fcvt(nr, dec, to, NULL); val_buffer->length((uint) len); if (zerofill) prepend_zeros(val_buffer); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } bool Field_double::send_binary(Protocol *protocol) { return protocol->store((double) Field_double::val_real(), dec, (String*) 0); } int Field_double::cmp(const uchar *a_ptr, const uchar *b_ptr) { double a,b; float8get(a,a_ptr); float8get(b,b_ptr); return (a < b) ? -1 : (a > b) ? 1 : 0; } #define DBL_EXP_DIG (sizeof(double)*8-DBL_MANT_DIG) /* The following should work for IEEE */ void Field_double::sort_string(uchar *to,uint length __attribute__((unused))) { double nr; float8get(nr,ptr); change_double_for_sort(nr, to); } /** Save the field metadata for double fields. Saves the pack length in the first byte of the field metadata array at index of *metadata_ptr. @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_double::do_save_field_metadata(uchar *metadata_ptr) { *metadata_ptr= pack_length(); return 1; } void Field_double::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); if (dec >= FLOATING_POINT_DECIMALS) { res.set_ascii(STRING_WITH_LEN("double")); } else { res.length(cs->cset->snprintf(cs,(char*) res.ptr(),res.alloced_length(), "double(%d,%d)",(int) field_length,dec)); } add_zerofill_and_unsigned(res); } /** TIMESTAMP type holds datetime values in range from 1970-01-01 00:00:01 UTC to 2038-01-01 00:00:00 UTC stored as number of seconds since Unix Epoch in UTC. Actually SQL-99 says that we should allow niladic functions (like NOW()) as defaults for any field. The current limitation (only NOW() and only for TIMESTAMP and DATETIME fields) are because of restricted binary .frm format and should go away in the future. Also because of this limitation of binary .frm format we use 5 different unireg_check values with TIMESTAMP field to distinguish various cases of DEFAULT or ON UPDATE values. These values are: TIMESTAMP_OLD_FIELD - old timestamp, if there was not any fields with auto-set-on-update (or now() as default) in this table before, then this field has NOW() as default and is updated when row changes, else it is field which has 0 as default value and is not automatically updated. TIMESTAMP_DN_FIELD - field with NOW() as default but not set on update automatically (TIMESTAMP DEFAULT NOW()) TIMESTAMP_UN_FIELD - field which is set on update automatically but has not NOW() as default (but it may has 0 or some other const timestamp as default) (TIMESTAMP ON UPDATE NOW()). TIMESTAMP_DNUN_FIELD - field which has now() as default and is auto-set on update. (TIMESTAMP DEFAULT NOW() ON UPDATE NOW()) NONE - field which is not auto-set on update with some other than NOW() default value (TIMESTAMP DEFAULT 0). Note that TIMESTAMP_OLD_FIELDs are never created explicitly now, they are left only for preserving ability to read old tables. Such fields replaced with their newer analogs in CREATE TABLE and in SHOW CREATE TABLE. This is because we want to prefer NONE unireg_check before TIMESTAMP_OLD_FIELD for "TIMESTAMP DEFAULT 'Const'" field. (Old timestamps allowed such specification too but ignored default value for first timestamp, which of course is non-standard.) In most cases user won't notice any change, only exception is different behavior of old/new timestamps during ALTER TABLE. */ Field_timestamp::Field_timestamp(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, enum utype unireg_check_arg, const char *field_name_arg, TABLE_SHARE *share) :Field_temporal(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg) { /* For 4.0 MYD and 4.0 InnoDB compatibility */ flags|= UNSIGNED_FLAG; if (unireg_check != NONE) { /* We mark the flag with TIMESTAMP_FLAG to indicate to the client that this field will be automaticly updated on insert. */ flags|= TIMESTAMP_FLAG; if (unireg_check != TIMESTAMP_DN_FIELD) flags|= ON_UPDATE_NOW_FLAG; } } my_time_t Field_timestamp::get_timestamp(const uchar *pos, ulong *sec_part) const { ASSERT_COLUMN_MARKED_FOR_READ; *sec_part= 0; return sint4korr(pos); } int Field_timestamp::store_TIME_with_warning(THD *thd, MYSQL_TIME *l_time, const ErrConv *str, int was_cut, bool have_smth_to_conv) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; uint error = 0; my_time_t timestamp; if (MYSQL_TIME_WARN_HAVE_WARNINGS(was_cut) || !have_smth_to_conv) { error= 1; set_datetime_warning(WARN_DATA_TRUNCATED, str, MYSQL_TIMESTAMP_DATETIME, 1); } else if (MYSQL_TIME_WARN_HAVE_NOTES(was_cut)) { error= 3; set_datetime_warning(Sql_condition::WARN_LEVEL_NOTE, WARN_DATA_TRUNCATED, str, MYSQL_TIMESTAMP_DATETIME, 1); } /* Only convert a correct date (not a zero date) */ if (have_smth_to_conv && l_time->month) { uint conversion_error; timestamp= TIME_to_timestamp(thd, l_time, &conversion_error); if (timestamp == 0 && l_time->second_part == 0) conversion_error= ER_WARN_DATA_OUT_OF_RANGE; if (conversion_error) { set_datetime_warning(conversion_error, str, MYSQL_TIMESTAMP_DATETIME, !error); error= 1; } } else { timestamp= 0; l_time->second_part= 0; } store_TIME(timestamp, l_time->second_part); return error; } static bool copy_or_convert_to_datetime(THD *thd, const MYSQL_TIME *from, MYSQL_TIME *to) { if (from->time_type == MYSQL_TIMESTAMP_TIME) return time_to_datetime(thd, from, to); *to= *from; return false; } int Field_timestamp::store_time_dec(MYSQL_TIME *ltime, uint dec) { int unused; ErrConvTime str(ltime); THD *thd= get_thd(); MYSQL_TIME l_time; bool valid= !copy_or_convert_to_datetime(thd, ltime, &l_time) && !check_date(&l_time, pack_time(&l_time) != 0, (thd->variables.sql_mode & MODE_NO_ZERO_DATE) | MODE_NO_ZERO_IN_DATE, &unused); return store_TIME_with_warning(thd, &l_time, &str, false, valid); } int Field_timestamp::store(const char *from,uint len,CHARSET_INFO *cs) { MYSQL_TIME l_time; MYSQL_TIME_STATUS status; bool have_smth_to_conv; ErrConvString str(from, len, cs); THD *thd= get_thd(); /* We don't want to store invalid or fuzzy datetime values in TIMESTAMP */ have_smth_to_conv= !str_to_datetime(cs, from, len, &l_time, (thd->variables.sql_mode & MODE_NO_ZERO_DATE) | MODE_NO_ZERO_IN_DATE, &status); return store_TIME_with_warning(thd, &l_time, &str, status.warnings, have_smth_to_conv); } int Field_timestamp::store(double nr) { MYSQL_TIME l_time; int error; ErrConvDouble str(nr); THD *thd= get_thd(); longlong tmp= double_to_datetime(nr, &l_time, (thd->variables.sql_mode & MODE_NO_ZERO_DATE) | MODE_NO_ZERO_IN_DATE, &error); return store_TIME_with_warning(thd, &l_time, &str, error, tmp != -1); } int Field_timestamp::store(longlong nr, bool unsigned_val) { MYSQL_TIME l_time; int error; ErrConvInteger str(nr, unsigned_val); THD *thd= get_thd(); /* We don't want to store invalid or fuzzy datetime values in TIMESTAMP */ longlong tmp= number_to_datetime(nr, 0, &l_time, (thd->variables.sql_mode & MODE_NO_ZERO_DATE) | MODE_NO_ZERO_IN_DATE, &error); return store_TIME_with_warning(thd, &l_time, &str, error, tmp != -1); } double Field_timestamp::val_real(void) { return (double) Field_timestamp::val_int(); } longlong Field_timestamp::val_int(void) { MYSQL_TIME ltime; if (get_date(<ime, TIME_NO_ZERO_DATE)) return 0; return ltime.year * 10000000000LL + ltime.month * 100000000LL + ltime.day * 1000000L + ltime.hour * 10000L + ltime.minute * 100 + ltime.second; } String *Field_timestamp::val_str(String *val_buffer, String *val_ptr) { MYSQL_TIME ltime; uint32 temp, temp2; uint dec; char *to; val_buffer->alloc(field_length+1); to= (char*) val_buffer->ptr(); val_buffer->length(field_length); if (get_date(<ime, TIME_NO_ZERO_DATE)) { /* Zero time is "000000" */ val_ptr->set(zero_timestamp, field_length, &my_charset_numeric); return val_ptr; } val_buffer->set_charset(&my_charset_numeric); // Safety temp= ltime.year % 100; if (temp < YY_PART_YEAR - 1) { *to++= '2'; *to++= '0'; } else { *to++= '1'; *to++= '9'; } temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to++= '-'; temp=ltime.month; temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to++= '-'; temp=ltime.day; temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to++= ' '; temp=ltime.hour; temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to++= ':'; temp=ltime.minute; temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to++= ':'; temp=ltime.second; temp2=temp/10; temp=temp-temp2*10; *to++= (char) ('0'+(char) (temp2)); *to++= (char) ('0'+(char) (temp)); *to= 0; val_buffer->set_charset(&my_charset_numeric); if ((dec= decimals())) { ulong sec_part= (ulong) sec_part_shift(ltime.second_part, dec); char *buf= const_cast(val_buffer->ptr() + MAX_DATETIME_WIDTH); for (int i= dec; i > 0; i--, sec_part/= 10) buf[i]= (char)(sec_part % 10) + '0'; buf[0]= '.'; buf[dec + 1]= 0; } return val_buffer; } bool Field_timestamp::validate_value_in_record(THD *thd, const uchar *record) const { DBUG_ASSERT(!is_null_in_record(record)); ulong sec_part; return !get_timestamp(ptr_in_record(record), &sec_part) && !sec_part && (sql_mode_for_dates(thd) & TIME_NO_ZERO_DATE) != 0; } bool Field_timestamp::get_date(MYSQL_TIME *ltime, ulonglong fuzzydate) { THD *thd= get_thd(); thd->time_zone_used= 1; ulong sec_part; my_time_t temp= get_timestamp(&sec_part); if (temp == 0 && sec_part == 0) { /* Zero time is "000000" */ if (fuzzydate & TIME_NO_ZERO_DATE) return 1; set_zero_time(ltime, MYSQL_TIMESTAMP_DATETIME); } else { thd->variables.time_zone->gmt_sec_to_TIME(ltime, (my_time_t)temp); ltime->second_part= sec_part; } return 0; } bool Field_timestamp::send_binary(Protocol *protocol) { MYSQL_TIME ltime; Field_timestamp::get_date(<ime, 0); return protocol->store(<ime, 0); } int Field_timestamp::cmp(const uchar *a_ptr, const uchar *b_ptr) { int32 a,b; a=sint4korr(a_ptr); b=sint4korr(b_ptr); return ((uint32) a < (uint32) b) ? -1 : ((uint32) a > (uint32) b) ? 1 : 0; } void Field_timestamp::sort_string(uchar *to,uint length __attribute__((unused))) { to[0] = ptr[3]; to[1] = ptr[2]; to[2] = ptr[1]; to[3] = ptr[0]; } void Field_timestamp::sql_type(String &res) const { if (!decimals()) { res.set_ascii(STRING_WITH_LEN("timestamp")); return; } CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs, (char*) res.ptr(), res.alloced_length(), "timestamp(%u)", decimals())); } int Field_timestamp::set_time() { set_notnull(); store_TIME(get_thd()->query_start(), 0); return 0; } /** Mark the field as having an explicit default value. @param value if available, the value that the field is being set to @note Fields that have an explicit default value should not be updated automatically via the DEFAULT or ON UPDATE functions. The functions that deal with data change functionality (INSERT/UPDATE/LOAD), determine if there is an explicit value for each field before performing the data change, and call this method to mark the field. For timestamp columns, the only case where a column is not marked as been given a value are: - It's explicitly assigned with DEFAULT - We assign NULL to a timestamp field that is defined as NOT NULL. This is how MySQL has worked since it's start. */ void Field_timestamp::set_explicit_default(Item *value) { if (((value->type() == Item::DEFAULT_VALUE_ITEM && !((Item_default_value*)value)->arg) || (!maybe_null() && value->null_value))) return; set_has_explicit_value(); } #ifdef NOT_USED static void store_native(ulonglong num, uchar *to, uint bytes) { switch(bytes) { case 1: *to= (uchar)num; break; case 2: shortstore(to, (ushort)num); break; case 3: int3store(to, num); /* Sic!*/ break; case 4: longstore(to, (ulong)num); break; case 8: longlongstore(to, num); break; default: DBUG_ASSERT(0); } } static longlong read_native(const uchar *from, uint bytes) { switch(bytes) { case 1: return from[0]; case 2: { uint16 tmp; shortget(tmp, from); return tmp; } case 3: return uint3korr(from); case 4: { uint32 tmp; longget(tmp, from); return tmp; } case 8: { longlong tmp; longlongget(tmp, from); return tmp; } default: DBUG_ASSERT(0); return 0; } } #endif static void store_lowendian(ulonglong num, uchar *to, uint bytes) { switch(bytes) { case 1: *to= (uchar)num; break; case 2: int2store(to, num); break; case 3: int3store(to, num); break; case 4: int4store(to, num); break; case 8: int8store(to, num); break; default: DBUG_ASSERT(0); } } static longlong read_lowendian(const uchar *from, uint bytes) { switch(bytes) { case 1: return from[0]; case 2: return uint2korr(from); case 3: return uint3korr(from); case 4: return uint4korr(from); case 8: return sint8korr(from); default: DBUG_ASSERT(0); return 0; } } static void store_bigendian(ulonglong num, uchar *to, uint bytes) { switch(bytes) { case 1: mi_int1store(to, num); break; case 2: mi_int2store(to, num); break; case 3: mi_int3store(to, num); break; case 4: mi_int4store(to, num); break; case 5: mi_int5store(to, num); break; case 6: mi_int6store(to, num); break; case 7: mi_int7store(to, num); break; case 8: mi_int8store(to, num); break; default: DBUG_ASSERT(0); } } static longlong read_bigendian(const uchar *from, uint bytes) { switch(bytes) { case 1: return mi_uint1korr(from); case 2: return mi_uint2korr(from); case 3: return mi_uint3korr(from); case 4: return mi_uint4korr(from); case 5: return mi_uint5korr(from); case 6: return mi_uint6korr(from); case 7: return mi_uint7korr(from); case 8: return mi_sint8korr(from); default: DBUG_ASSERT(0); return 0; } } void Field_timestamp_hires::store_TIME(my_time_t timestamp, ulong sec_part) { mi_int4store(ptr, timestamp); store_bigendian(sec_part_shift(sec_part, dec), ptr+4, sec_part_bytes[dec]); } my_time_t Field_timestamp_hires::get_timestamp(const uchar *pos, ulong *sec_part) const { ASSERT_COLUMN_MARKED_FOR_READ; *sec_part= (long)sec_part_unshift(read_bigendian(pos+4, sec_part_bytes[dec]), dec); return mi_uint4korr(pos); } double Field_timestamp_with_dec::val_real(void) { MYSQL_TIME ltime; if (get_date(<ime, TIME_NO_ZERO_DATE)) return 0; return ltime.year * 1e10 + ltime.month * 1e8 + ltime.day * 1e6 + ltime.hour * 1e4 + ltime.minute * 1e2 + ltime.second + ltime.second_part*1e-6; } my_decimal *Field_timestamp_with_dec::val_decimal(my_decimal *d) { MYSQL_TIME ltime; get_date(<ime, 0); return TIME_to_my_decimal(<ime, d); } int Field_timestamp::store_decimal(const my_decimal *d) { ulonglong nr; ulong sec_part; int error; MYSQL_TIME ltime; longlong tmp; THD *thd= get_thd(); ErrConvDecimal str(d); if (my_decimal2seconds(d, &nr, &sec_part)) { tmp= -1; error= 2; } else tmp= number_to_datetime(nr, sec_part, <ime, TIME_NO_ZERO_IN_DATE | (thd->variables.sql_mode & MODE_NO_ZERO_DATE), &error); return store_TIME_with_warning(thd, <ime, &str, error, tmp != -1); } int Field_timestamp_with_dec::set_time() { THD *thd= get_thd(); set_notnull(); // Avoid writing microseconds into binlog for FSP=0 store_TIME(thd->query_start(), decimals() ? thd->query_start_sec_part() : 0); return 0; } bool Field_timestamp_with_dec::send_binary(Protocol *protocol) { MYSQL_TIME ltime; Field_timestamp::get_date(<ime, 0); return protocol->store(<ime, dec); } int Field_timestamp_hires::cmp(const uchar *a_ptr, const uchar *b_ptr) { int32 a,b; ulong a_sec_part, b_sec_part; a= mi_uint4korr(a_ptr); a_sec_part= (ulong)read_bigendian(a_ptr+4, sec_part_bytes[dec]); b= mi_uint4korr(b_ptr); b_sec_part= (ulong)read_bigendian(b_ptr+4, sec_part_bytes[dec]); return ((uint32) a < (uint32) b) ? -1 : ((uint32) a > (uint32) b) ? 1 : a_sec_part < b_sec_part ? -1 : a_sec_part > b_sec_part ? 1 : 0; } uint32 Field_timestamp_hires::pack_length() const { return 4 + sec_part_bytes[dec]; } void Field_timestamp_with_dec::make_field(Send_field *field) { Field::make_field(field); field->decimals= dec; } /************************************************************* ** MySQL-5.6 compatible TIMESTAMP(N) **************************************************************/ void Field_timestampf::store_TIME(my_time_t timestamp, ulong sec_part) { struct timeval tm; tm.tv_sec= timestamp; tm.tv_usec= sec_part; my_timeval_trunc(&tm, dec); my_timestamp_to_binary(&tm, ptr, dec); } my_time_t Field_timestampf::get_timestamp(const uchar *pos, ulong *sec_part) const { struct timeval tm; my_timestamp_from_binary(&tm, pos, dec); *sec_part= tm.tv_usec; return tm.tv_sec; } /*************************************************************/ uint Field_temporal::is_equal(Create_field *new_field) { return new_field->sql_type == real_type() && new_field->length == max_display_length(); } void Field_temporal::set_warnings(Sql_condition::enum_warning_level trunc_level, const ErrConv *str, int was_cut, timestamp_type ts_type) { /* error code logic: MYSQL_TIME_WARN_TRUNCATED means that the value was not a date/time at all. it will be stored as zero date/time. MYSQL_TIME_WARN_OUT_OF_RANGE means that the value was a date/time, that is, it was parsed as such, but the value was invalid. Also, MYSQL_TIME_WARN_TRUNCATED is used when storing a DATETIME in a DATE field and non-zero time part is thrown away. */ if (was_cut & MYSQL_TIME_WARN_TRUNCATED) set_datetime_warning(trunc_level, WARN_DATA_TRUNCATED, str, mysql_type_to_time_type(type()), 1); if (was_cut & MYSQL_TIME_WARN_OUT_OF_RANGE) set_datetime_warning(ER_WARN_DATA_OUT_OF_RANGE, str, mysql_type_to_time_type(type()), 1); } /* Store string into a date/time field RETURN 0 ok 1 Value was cut during conversion 2 value was out of range 3 Datetime value that was cut (warning level NOTE) This is used by opt_range.cc:get_mm_leaf(). */ int Field_temporal_with_date::store_TIME_with_warning(MYSQL_TIME *ltime, const ErrConv *str, int was_cut, int have_smth_to_conv) { Sql_condition::enum_warning_level trunc_level= Sql_condition::WARN_LEVEL_WARN; int ret= 2; ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; if (was_cut == 0 && have_smth_to_conv == 0) // special case: zero date { was_cut= MYSQL_TIME_WARN_OUT_OF_RANGE; } else if (!have_smth_to_conv) { bzero(ltime, sizeof(*ltime)); was_cut= MYSQL_TIME_WARN_TRUNCATED; ret= 1; } else if (!MYSQL_TIME_WARN_HAVE_WARNINGS(was_cut) && (MYSQL_TIME_WARN_HAVE_NOTES(was_cut) || (mysql_type_to_time_type(type()) == MYSQL_TIMESTAMP_DATE && (ltime->hour || ltime->minute || ltime->second || ltime->second_part)))) { trunc_level= Sql_condition::WARN_LEVEL_NOTE; was_cut|= MYSQL_TIME_WARN_TRUNCATED; ret= 3; } set_warnings(trunc_level, str, was_cut, mysql_type_to_time_type(type())); store_TIME(ltime); return was_cut ? ret : 0; } int Field_temporal_with_date::store(const char *from, uint len, CHARSET_INFO *cs) { MYSQL_TIME ltime; MYSQL_TIME_STATUS status; THD *thd= get_thd(); ErrConvString str(from, len, cs); bool func_res= !str_to_datetime(cs, from, len, <ime, sql_mode_for_dates(thd), &status); return store_TIME_with_warning(<ime, &str, status.warnings, func_res); } int Field_temporal_with_date::store(double nr) { int error= 0; MYSQL_TIME ltime; THD *thd= get_thd(); ErrConvDouble str(nr); longlong tmp= double_to_datetime(nr, <ime, sql_mode_for_dates(thd), &error); return store_TIME_with_warning(<ime, &str, error, tmp != -1); } int Field_temporal_with_date::store(longlong nr, bool unsigned_val) { int error; MYSQL_TIME ltime; longlong tmp; THD *thd= get_thd(); ErrConvInteger str(nr, unsigned_val); tmp= number_to_datetime(nr, 0, <ime, sql_mode_for_dates(thd), &error); return store_TIME_with_warning(<ime, &str, error, tmp != -1); } int Field_temporal_with_date::store_time_dec(MYSQL_TIME *ltime, uint dec) { int error= 0, have_smth_to_conv= 1; ErrConvTime str(ltime); MYSQL_TIME l_time; if (copy_or_convert_to_datetime(get_thd(), ltime, &l_time)) { /* Set have_smth_to_conv and error in a way to have store_TIME_with_warning do bzero(). */ have_smth_to_conv= false; error= MYSQL_TIME_WARN_OUT_OF_RANGE; } else { /* We don't perform range checking here since values stored in TIME structure always fit into DATETIME range. */ have_smth_to_conv= !check_date(&l_time, pack_time(&l_time) != 0, sql_mode_for_dates(get_thd()), &error); } return store_TIME_with_warning(&l_time, &str, error, have_smth_to_conv); } bool Field_temporal_with_date::validate_value_in_record(THD *thd, const uchar *record) const { DBUG_ASSERT(!is_null_in_record(record)); MYSQL_TIME ltime; return get_TIME(<ime, ptr_in_record(record), sql_mode_for_dates(thd)); } my_decimal *Field_temporal::val_decimal(my_decimal *d) { MYSQL_TIME ltime; if (get_date(<ime, 0)) { bzero(<ime, sizeof(ltime)); ltime.time_type= mysql_type_to_time_type(type()); } return TIME_to_my_decimal(<ime, d); } bool Field_temporal::can_optimize_keypart_ref(const Item_bool_func *cond, const Item *value) const { return true; // Field is of TIME_RESULT, which supersedes everything else. } bool Field_temporal::can_optimize_group_min_max(const Item_bool_func *cond, const Item *const_item) const { return true; // Field is of TIME_RESULT, which supersedes everything else. } Item *Field_temporal::get_equal_const_item_datetime(THD *thd, const Context &ctx, Item *const_item) { switch (ctx.subst_constraint()) { case IDENTITY_SUBST: if ((const_item->field_type() != MYSQL_TYPE_DATETIME && const_item->field_type() != MYSQL_TYPE_TIMESTAMP) || const_item->decimals != decimals()) { MYSQL_TIME ltime; if (const_item->field_type() == MYSQL_TYPE_TIME ? const_item->get_date_with_conversion(<ime, 0) : const_item->get_date(<ime, 0)) return NULL; /* See comments about truncation in the same place in Field_time::get_equal_const_item(). */ return new (thd->mem_root) Item_datetime_literal(thd, <ime, decimals()); } break; case ANY_SUBST: if (!is_temporal_type_with_date(const_item->field_type())) { MYSQL_TIME ltime; if (const_item->get_date_with_conversion(<ime, TIME_FUZZY_DATES | TIME_INVALID_DATES)) return NULL; return new (thd->mem_root) Item_datetime_literal_for_invalid_dates(thd, <ime, ltime.second_part ? TIME_SECOND_PART_DIGITS : 0); } break; } return const_item; } /**************************************************************************** ** time type ** In string context: HH:MM:SS ** In number context: HHMMSS ** Stored as a 3 byte unsigned int ****************************************************************************/ int Field_time::store_TIME_with_warning(MYSQL_TIME *ltime, const ErrConv *str, int was_cut, int have_smth_to_conv) { Sql_condition::enum_warning_level trunc_level= Sql_condition::WARN_LEVEL_WARN; int ret= 2; ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; if (!have_smth_to_conv) { bzero(ltime, sizeof(*ltime)); was_cut= MYSQL_TIME_WARN_TRUNCATED; ret= 1; } else if (!MYSQL_TIME_WARN_HAVE_WARNINGS(was_cut) && ((ltime->year || ltime->month) || MYSQL_TIME_WARN_HAVE_NOTES(was_cut))) { if (ltime->year || ltime->month) ltime->year= ltime->month= ltime->day= 0; trunc_level= Sql_condition::WARN_LEVEL_NOTE; was_cut|= MYSQL_TIME_WARN_TRUNCATED; ret= 3; } set_warnings(trunc_level, str, was_cut, MYSQL_TIMESTAMP_TIME); store_TIME(ltime); return was_cut ? ret : 0; } void Field_time::store_TIME(MYSQL_TIME *ltime) { long tmp= (ltime->day*24L+ltime->hour)*10000L + (ltime->minute*100+ltime->second); if (ltime->neg) tmp= -tmp; int3store(ptr,tmp); } int Field_time::store(const char *from,uint len,CHARSET_INFO *cs) { MYSQL_TIME ltime; MYSQL_TIME_STATUS status; ErrConvString str(from, len, cs); bool have_smth_to_conv= !str_to_time(cs, from, len, <ime, sql_mode_for_dates(get_thd()), &status); return store_TIME_with_warning(<ime, &str, status.warnings, have_smth_to_conv); } /** subtract a given number of days from DATETIME, return TIME optimized version of calc_time_diff() @note it might generate TIME values outside of the valid TIME range! */ static void calc_datetime_days_diff(MYSQL_TIME *ltime, long days) { long daydiff= calc_daynr(ltime->year, ltime->month, ltime->day) - days; ltime->year= ltime->month= 0; if (daydiff >=0 ) ltime->day= daydiff; else { longlong timediff= ((((daydiff * 24LL + ltime->hour) * 60LL + ltime->minute) * 60LL + ltime->second) * 1000000LL + ltime->second_part); unpack_time(timediff, ltime); } ltime->time_type= MYSQL_TIMESTAMP_TIME; } int Field_time::store_time_dec(MYSQL_TIME *ltime, uint dec) { MYSQL_TIME l_time= *ltime; ErrConvTime str(ltime); int was_cut= 0; if (curdays && l_time.time_type != MYSQL_TIMESTAMP_TIME) calc_datetime_days_diff(&l_time, curdays); int have_smth_to_conv= !check_time_range(&l_time, decimals(), &was_cut); return store_TIME_with_warning(&l_time, &str, was_cut, have_smth_to_conv); } int Field_time::store(double nr) { MYSQL_TIME ltime; ErrConvDouble str(nr); int was_cut; bool neg= nr < 0; if (neg) nr= -nr; int have_smth_to_conv= !number_to_time(neg, (ulonglong) nr, (ulong)((nr - floor(nr)) * TIME_SECOND_PART_FACTOR), <ime, &was_cut); return store_TIME_with_warning(<ime, &str, was_cut, have_smth_to_conv); } int Field_time::store(longlong nr, bool unsigned_val) { MYSQL_TIME ltime; ErrConvInteger str(nr, unsigned_val); int was_cut; if (nr < 0 && unsigned_val) nr= 99991231235959LL + 1; int have_smth_to_conv= !number_to_time(nr < 0, (ulonglong) (nr < 0 ? -nr : nr), 0, <ime, &was_cut); return store_TIME_with_warning(<ime, &str, was_cut, have_smth_to_conv); } void Field_time::set_curdays(THD *thd) { MYSQL_TIME ltime; set_current_date(thd, <ime); curdays= calc_daynr(ltime.year, ltime.month, ltime.day); } Field *Field_time::new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr, uint32 length, uchar *new_null_ptr, uint new_null_bit) { THD *thd= get_thd(); Field_time *res= (Field_time*) Field::new_key_field(root, new_table, new_ptr, length, new_null_ptr, new_null_bit); if (!(thd->variables.old_behavior & OLD_MODE_ZERO_DATE_TIME_CAST) && res) res->set_curdays(thd); return res; } double Field_time::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; uint32 j= (uint32) uint3korr(ptr); return (double) j; } longlong Field_time::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; return (longlong) sint3korr(ptr); } /** @note This function is multi-byte safe as the result string is always of type my_charset_bin */ String *Field_time::val_str(String *str, String *unused __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; MYSQL_TIME ltime; get_date(<ime, TIME_TIME_ONLY); str->alloc(field_length + 1); str->length(my_time_to_str(<ime, const_cast(str->ptr()), decimals())); str->set_charset(&my_charset_numeric); return str; } bool Field_time::check_zero_in_date_with_warn(ulonglong fuzzydate) { if (!(fuzzydate & TIME_TIME_ONLY) && (fuzzydate & TIME_NO_ZERO_IN_DATE)) { THD *thd= get_thd(); push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_WARN_DATA_OUT_OF_RANGE, ER_THD(thd, ER_WARN_DATA_OUT_OF_RANGE), field_name, thd->get_stmt_da()->current_row_for_warning()); return true; } return false; } /** @note Normally we would not consider 'time' as a valid date, but we allow get_date() here to be able to do things like DATE_FORMAT(time, "%l.%i %p") */ bool Field_time::get_date(MYSQL_TIME *ltime, ulonglong fuzzydate) { if (check_zero_in_date_with_warn(fuzzydate)) return true; long tmp=(long) sint3korr(ptr); ltime->neg=0; if (tmp < 0) { ltime->neg= 1; tmp=-tmp; } ltime->year= ltime->month= ltime->day= 0; ltime->hour= (int) (tmp/10000); tmp-=ltime->hour*10000; ltime->minute= (int) tmp/100; ltime->second= (int) tmp % 100; ltime->second_part=0; ltime->time_type= MYSQL_TIMESTAMP_TIME; return 0; } bool Field_time::send_binary(Protocol *protocol) { MYSQL_TIME ltime; get_date(<ime, TIME_TIME_ONLY); return protocol->store_time(<ime, decimals()); } int Field_time::cmp(const uchar *a_ptr, const uchar *b_ptr) { int32 a,b; a=(int32) sint3korr(a_ptr); b=(int32) sint3korr(b_ptr); return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_time::sort_string(uchar *to,uint length __attribute__((unused))) { to[0] = (uchar) (ptr[2] ^ 128); to[1] = ptr[1]; to[2] = ptr[0]; } void Field_time::sql_type(String &res) const { if (decimals() == 0) { res.set_ascii(STRING_WITH_LEN("time")); return; } CHARSET_INFO *cs= res.charset(); res.length(cs->cset->snprintf(cs, (char*) res.ptr(), res.alloced_length(), "time(%d)", decimals())); } int Field_time_hires::reset() { store_bigendian(zero_point, ptr, Field_time_hires::pack_length()); return 0; } void Field_time_hires::store_TIME(MYSQL_TIME *ltime) { ulonglong packed= sec_part_shift(pack_time(ltime), dec) + zero_point; store_bigendian(packed, ptr, Field_time_hires::pack_length()); } int Field_time::store_decimal(const my_decimal *d) { ulonglong nr; ulong sec_part; ErrConvDecimal str(d); MYSQL_TIME ltime; int was_cut; bool neg= my_decimal2seconds(d, &nr, &sec_part); int have_smth_to_conv= !number_to_time(neg, nr, sec_part, <ime, &was_cut); return store_TIME_with_warning(<ime, &str, was_cut, have_smth_to_conv); } Item *Field_time::get_equal_const_item(THD *thd, const Context &ctx, Item *const_item) { switch (ctx.subst_constraint()) { case ANY_SUBST: if (const_item->field_type() != MYSQL_TYPE_TIME) { MYSQL_TIME ltime; // Get the value of const_item with conversion from DATETIME to TIME if (const_item->get_time_with_conversion(thd, <ime, TIME_TIME_ONLY | TIME_FUZZY_DATES | TIME_INVALID_DATES)) return NULL; /* Replace a DATE/DATETIME constant to a TIME constant: WHERE LENGTH(time_column)=8 AND time_column=TIMESTAMP'2015-08-30 10:20:30'; to: WHERE LENGTH(time_column)=10 AND time_column=TIME'10:20:30' (assuming CURRENT_DATE is '2015-08-30' */ return new (thd->mem_root) Item_time_literal(thd, <ime, ltime.second_part ? TIME_SECOND_PART_DIGITS : 0); } break; case IDENTITY_SUBST: if (const_item->field_type() != MYSQL_TYPE_TIME || const_item->decimals != decimals()) { MYSQL_TIME ltime; if (const_item->get_time_with_conversion(thd, <ime, TIME_TIME_ONLY)) return NULL; /* Note, the value returned in "ltime" can have more fractional digits that decimals(). The Item_time_literal constructor will truncate these digits. We could disallow propagation is such cases, but it's still useful (and safe) to optimize: WHERE time0_column='00:00:00.123' AND LENGTH(a)=12 to WHERE time0_column='00:00:00.123' AND LENGTH(TIME'00:00:00')=12 and then to WHERE FALSE The original WHERE would do the full table scan (in case of no keys). The optimized WHERE will return with "Impossible WHERE", without having to do the full table scan. */ return new (thd->mem_root) Item_time_literal(thd, <ime, decimals()); } break; } return const_item; } uint32 Field_time_hires::pack_length() const { return time_hires_bytes[dec]; } longlong Field_time_with_dec::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; MYSQL_TIME ltime; get_date(<ime, TIME_TIME_ONLY); longlong val= TIME_to_ulonglong_time(<ime); return ltime.neg ? -val : val; } double Field_time_with_dec::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; MYSQL_TIME ltime; get_date(<ime, TIME_TIME_ONLY); return TIME_to_double(<ime); } bool Field_time_hires::get_date(MYSQL_TIME *ltime, ulonglong fuzzydate) { if (check_zero_in_date_with_warn(fuzzydate)) return true; uint32 len= pack_length(); longlong packed= read_bigendian(ptr, len); packed= sec_part_unshift(packed - zero_point, dec); unpack_time(packed, ltime); /* unpack_time() returns MYSQL_TIMESTAMP_DATETIME. To get MYSQL_TIMESTAMP_TIME we need few adjustments */ ltime->time_type= MYSQL_TIMESTAMP_TIME; ltime->hour+= (ltime->month*32+ltime->day)*24; ltime->month= ltime->day= 0; return false; } int Field_time_hires::cmp(const uchar *a_ptr, const uchar *b_ptr) { ulonglong a=read_bigendian(a_ptr, Field_time_hires::pack_length()); ulonglong b=read_bigendian(b_ptr, Field_time_hires::pack_length()); return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_time_hires::sort_string(uchar *to,uint length __attribute__((unused))) { DBUG_ASSERT(length == Field_time_hires::pack_length()); memcpy(to, ptr, length); to[0]^= 128; } void Field_time_with_dec::make_field(Send_field *field) { Field::make_field(field); field->decimals= dec; } /**************************************************************************** ** time type with fsp (MySQL-5.6 version) ** In string context: HH:MM:SS.FFFFFF ** In number context: HHMMSS.FFFFFF ****************************************************************************/ int Field_timef::reset() { my_time_packed_to_binary(0, ptr, dec); return 0; } void Field_timef::store_TIME(MYSQL_TIME *ltime) { my_time_trunc(ltime, decimals()); longlong tmp= TIME_to_longlong_time_packed(ltime); my_time_packed_to_binary(tmp, ptr, dec); } bool Field_timef::get_date(MYSQL_TIME *ltime, ulonglong fuzzydate) { if (check_zero_in_date_with_warn(fuzzydate)) return true; longlong tmp= my_time_packed_from_binary(ptr, dec); TIME_from_longlong_time_packed(ltime, tmp); return false; } /**************************************************************************** ** year type ** Save in a byte the year 0, 1901->2155 ** Can handle 2 byte or 4 byte years! ****************************************************************************/ int Field_year::store(const char *from, uint len,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; char *end; int error; longlong nr= cs->cset->strntoull10rnd(cs, from, len, 0, &end, &error); if (nr < 0 || (nr >= 100 && nr <= 1900) || nr > 2155 || error == MY_ERRNO_ERANGE) { *ptr=0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } if (get_thd()->count_cuted_fields && (error= check_int(cs, from, len, end, error))) { if (error == 1) /* empty or incorrect string */ { *ptr= 0; return 1; } error= 1; } if (nr != 0 || len != 4) { if (nr < YY_PART_YEAR) nr+=100; // 2000 - 2069 else if (nr > 1900) nr-= 1900; } *ptr= (char) (uchar) nr; return error; } int Field_year::store(double nr) { if (nr < 0.0 || nr > 2155.0) { (void) Field_year::store((longlong) -1, FALSE); return 1; } return Field_year::store((longlong) nr, FALSE); } int Field_year::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; if (nr < 0 || (nr >= 100 && nr <= 1900) || nr > 2155) { *ptr= 0; set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } if (nr != 0 || field_length != 4) // 0000 -> 0; 00 -> 2000 { if (nr < YY_PART_YEAR) nr+=100; // 2000 - 2069 else if (nr > 1900) nr-= 1900; } *ptr= (char) (uchar) nr; return 0; } int Field_year::store_time_dec(MYSQL_TIME *ltime, uint dec_arg) { ErrConvTime str(ltime); if (Field_year::store(ltime->year, 0)) return 1; set_datetime_warning(WARN_DATA_TRUNCATED, &str, ltime->time_type, 1); return 0; } bool Field_year::send_binary(Protocol *protocol) { ASSERT_COLUMN_MARKED_FOR_READ; ulonglong tmp= Field_year::val_int(); return protocol->store_short(tmp); } double Field_year::val_real(void) { return (double) Field_year::val_int(); } longlong Field_year::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; DBUG_ASSERT(field_length == 2 || field_length == 4); int tmp= (int) ptr[0]; if (field_length != 4) tmp%=100; // Return last 2 char else if (tmp) tmp+=1900; return (longlong) tmp; } String *Field_year::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { DBUG_ASSERT(field_length < 5); val_buffer->alloc(5); val_buffer->length(field_length); char *to=(char*) val_buffer->ptr(); sprintf(to,field_length == 2 ? "%02d" : "%04d",(int) Field_year::val_int()); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } bool Field_year::get_date(MYSQL_TIME *ltime,ulonglong fuzzydate) { int tmp= (int) ptr[0]; if (tmp || field_length != 4) tmp+= 1900; return int_to_datetime_with_warn(false, tmp * 10000, ltime, fuzzydate, field_name); } void Field_year::sql_type(String &res) const { CHARSET_INFO *cs=res.charset(); res.length(cs->cset->snprintf(cs,(char*)res.ptr(),res.alloced_length(), "year(%d)",(int) field_length)); } /**************************************************************************** ** date type ** In string context: YYYY-MM-DD ** In number context: YYYYMMDD ** Stored as a 4 byte unsigned int ****************************************************************************/ void Field_date::store_TIME(MYSQL_TIME *ltime) { uint tmp= ltime->year*10000L + ltime->month*100+ltime->day; int4store(ptr,tmp); } bool Field_date::send_binary(Protocol *protocol) { longlong tmp= Field_date::val_int(); MYSQL_TIME tm; tm.year= (uint32) tmp/10000L % 10000; tm.month= (uint32) tmp/100 % 100; tm.day= (uint32) tmp % 100; return protocol->store_date(&tm); } double Field_date::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; int32 j; j=sint4korr(ptr); return (double) (uint32) j; } longlong Field_date::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; int32 j; j=sint4korr(ptr); return (longlong) (uint32) j; } bool Field_date::get_TIME(MYSQL_TIME *ltime, const uchar *pos, ulonglong fuzzydate) const { ASSERT_COLUMN_MARKED_FOR_READ; int32 tmp= sint4korr(pos); ltime->year= (int) ((uint32) tmp/10000L % 10000); ltime->month= (int) ((uint32) tmp/100 % 100); ltime->day= (int) ((uint32) tmp % 100); ltime->time_type= MYSQL_TIMESTAMP_DATE; ltime->hour= ltime->minute= ltime->second= ltime->second_part= ltime->neg= 0; return validate_MMDD(tmp, ltime->month, ltime->day, fuzzydate); } String *Field_date::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { MYSQL_TIME ltime; get_TIME(<ime, ptr, 0); val_buffer->alloc(MAX_DATE_STRING_REP_LENGTH); uint length= (uint) my_date_to_str(<ime, const_cast(val_buffer->ptr())); val_buffer->length(length); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } int Field_date::cmp(const uchar *a_ptr, const uchar *b_ptr) { int32 a,b; a=sint4korr(a_ptr); b=sint4korr(b_ptr); return ((uint32) a < (uint32) b) ? -1 : ((uint32) a > (uint32) b) ? 1 : 0; } void Field_date::sort_string(uchar *to,uint length __attribute__((unused))) { to[0] = ptr[3]; to[1] = ptr[2]; to[2] = ptr[1]; to[3] = ptr[0]; } void Field_date::sql_type(String &res) const { res.set_ascii(STRING_WITH_LEN("date")); } /**************************************************************************** ** The new date type ** This is identical to the old date type, but stored on 3 bytes instead of 4 ** In number context: YYYYMMDD ****************************************************************************/ void Field_newdate::store_TIME(MYSQL_TIME *ltime) { uint tmp= ltime->year*16*32 + ltime->month*32+ltime->day; int3store(ptr,tmp); } bool Field_newdate::send_binary(Protocol *protocol) { MYSQL_TIME tm; Field_newdate::get_date(&tm,0); return protocol->store_date(&tm); } double Field_newdate::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; return (double) Field_newdate::val_int(); } longlong Field_newdate::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; ulong j= uint3korr(ptr); j= (j % 32L)+(j / 32L % 16L)*100L + (j/(16L*32L))*10000L; return (longlong) j; } String *Field_newdate::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; val_buffer->alloc(field_length); val_buffer->length(field_length); uint32 tmp=(uint32) uint3korr(ptr); int part; char *pos=(char*) val_buffer->ptr()+10; /* Open coded to get more speed */ *pos--=0; // End NULL part=(int) (tmp & 31); *pos--= (char) ('0'+part%10); *pos--= (char) ('0'+part/10); *pos--= '-'; part=(int) (tmp >> 5 & 15); *pos--= (char) ('0'+part%10); *pos--= (char) ('0'+part/10); *pos--= '-'; part=(int) (tmp >> 9); *pos--= (char) ('0'+part%10); part/=10; *pos--= (char) ('0'+part%10); part/=10; *pos--= (char) ('0'+part%10); part/=10; *pos= (char) ('0'+part); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } bool Field_newdate::get_TIME(MYSQL_TIME *ltime, const uchar *pos, ulonglong fuzzydate) const { ASSERT_COLUMN_MARKED_FOR_READ; uint32 tmp=(uint32) uint3korr(pos); ltime->day= tmp & 31; ltime->month= (tmp >> 5) & 15; ltime->year= (tmp >> 9); ltime->time_type= MYSQL_TIMESTAMP_DATE; ltime->hour= ltime->minute= ltime->second= ltime->second_part= ltime->neg= 0; return validate_MMDD(tmp, ltime->month, ltime->day, fuzzydate); } int Field_newdate::cmp(const uchar *a_ptr, const uchar *b_ptr) { uint32 a,b; a=(uint32) uint3korr(a_ptr); b=(uint32) uint3korr(b_ptr); return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_newdate::sort_string(uchar *to,uint length __attribute__((unused))) { to[0] = ptr[2]; to[1] = ptr[1]; to[2] = ptr[0]; } void Field_newdate::sql_type(String &res) const { res.set_ascii(STRING_WITH_LEN("date")); } Item *Field_newdate::get_equal_const_item(THD *thd, const Context &ctx, Item *const_item) { switch (ctx.subst_constraint()) { case ANY_SUBST: if (!is_temporal_type_with_date(const_item->field_type())) { MYSQL_TIME ltime; // Get the value of const_item with conversion from TIME to DATETIME if (const_item->get_date_with_conversion(<ime, TIME_FUZZY_DATES | TIME_INVALID_DATES)) return NULL; /* Replace the constant to a DATE or DATETIME constant. Example: WHERE LENGTH(date_column)=10 AND date_column=TIME'10:20:30'; to: WHERE LENGTH(date_column)=10 AND date_column=TIMESTAMP'2015-08-30 10:20:30' (assuming CURRENT_DATE is '2015-08-30' */ if (non_zero_hhmmssuu(<ime)) return new (thd->mem_root) Item_datetime_literal_for_invalid_dates(thd, <ime, ltime.second_part ? TIME_SECOND_PART_DIGITS : 0); datetime_to_date(<ime); return new (thd->mem_root) Item_date_literal_for_invalid_dates(thd, <ime); } break; case IDENTITY_SUBST: if (const_item->field_type() != MYSQL_TYPE_DATE) { MYSQL_TIME ltime; if (const_item->field_type() == MYSQL_TYPE_TIME ? const_item->get_date_with_conversion(<ime, 0) : const_item->get_date(<ime, 0)) return NULL; datetime_to_date(<ime); return new (thd->mem_root) Item_date_literal(thd, <ime); } break; } return const_item; } /**************************************************************************** ** datetime type ** In string context: YYYY-MM-DD HH:MM:DD ** In number context: YYYYMMDDHHMMDD ** Stored as a 8 byte unsigned int. Should sometimes be change to a 6 byte int. ****************************************************************************/ void Field_datetime::store_TIME(MYSQL_TIME *ltime) { ulonglong tmp= TIME_to_ulonglong_datetime(ltime); int8store(ptr,tmp); } bool Field_datetime::send_binary(Protocol *protocol) { MYSQL_TIME tm; Field_datetime::get_date(&tm, 0); return protocol->store(&tm, 0); } double Field_datetime::val_real(void) { return (double) Field_datetime::val_int(); } longlong Field_datetime::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; longlong j; j=sint8korr(ptr); return j; } String *Field_datetime::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { val_buffer->alloc(field_length); val_buffer->length(field_length); ASSERT_COLUMN_MARKED_FOR_READ; ulonglong tmp; long part1,part2; char *pos; int part3; tmp= Field_datetime::val_int(); /* Avoid problem with slow longlong arithmetic and sprintf */ part1=(long) (tmp/1000000LL); part2=(long) (tmp - (ulonglong) part1*1000000LL); pos=(char*) val_buffer->ptr() + MAX_DATETIME_WIDTH; *pos--=0; *pos--= (char) ('0'+(char) (part2%10)); part2/=10; *pos--= (char) ('0'+(char) (part2%10)); part3= (int) (part2 / 10); *pos--= ':'; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos--= ':'; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos--= (char) ('0'+(char) part3); *pos--= ' '; *pos--= (char) ('0'+(char) (part1%10)); part1/=10; *pos--= (char) ('0'+(char) (part1%10)); part1/=10; *pos--= '-'; *pos--= (char) ('0'+(char) (part1%10)); part1/=10; *pos--= (char) ('0'+(char) (part1%10)); part3= (int) (part1/10); *pos--= '-'; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos--= (char) ('0'+(char) (part3%10)); part3/=10; *pos=(char) ('0'+(char) part3); val_buffer->set_charset(&my_charset_numeric); return val_buffer; } bool Field_datetime::get_TIME(MYSQL_TIME *ltime, const uchar *pos, ulonglong fuzzydate) const { ASSERT_COLUMN_MARKED_FOR_READ; longlong tmp= sint8korr(pos); uint32 part1,part2; part1=(uint32) (tmp/1000000LL); part2=(uint32) (tmp - (ulonglong) part1*1000000LL); ltime->time_type= MYSQL_TIMESTAMP_DATETIME; ltime->neg= 0; ltime->second_part= 0; ltime->second= (int) (part2%100); ltime->minute= (int) (part2/100%100); ltime->hour= (int) (part2/10000); ltime->day= (int) (part1%100); ltime->month= (int) (part1/100%100); ltime->year= (int) (part1/10000); return validate_MMDD(tmp, ltime->month, ltime->day, fuzzydate); } int Field_datetime::cmp(const uchar *a_ptr, const uchar *b_ptr) { longlong a,b; a=sint8korr(a_ptr); b=sint8korr(b_ptr); return ((ulonglong) a < (ulonglong) b) ? -1 : ((ulonglong) a > (ulonglong) b) ? 1 : 0; } void Field_datetime::sort_string(uchar *to,uint length __attribute__((unused))) { to[0] = ptr[7]; to[1] = ptr[6]; to[2] = ptr[5]; to[3] = ptr[4]; to[4] = ptr[3]; to[5] = ptr[2]; to[6] = ptr[1]; to[7] = ptr[0]; } void Field_datetime::sql_type(String &res) const { if (decimals() == 0) { res.set_ascii(STRING_WITH_LEN("datetime")); return; } CHARSET_INFO *cs= res.charset(); res.length(cs->cset->snprintf(cs, (char*) res.ptr(), res.alloced_length(), "datetime(%u)", decimals())); } int Field_datetime::set_time() { THD *thd= table->in_use; MYSQL_TIME now_time; thd->variables.time_zone->gmt_sec_to_TIME(&now_time, thd->query_start()); now_time.second_part= thd->query_start_sec_part(); set_notnull(); store_TIME(&now_time); thd->time_zone_used= 1; return 0; } void Field_datetime_hires::store_TIME(MYSQL_TIME *ltime) { ulonglong packed= sec_part_shift(pack_time(ltime), dec); store_bigendian(packed, ptr, Field_datetime_hires::pack_length()); } int Field_temporal_with_date::store_decimal(const my_decimal *d) { ulonglong nr; ulong sec_part; int error; MYSQL_TIME ltime; longlong tmp; THD *thd= get_thd(); ErrConvDecimal str(d); if (my_decimal2seconds(d, &nr, &sec_part)) { tmp= -1; error= 2; } else tmp= number_to_datetime(nr, sec_part, <ime, sql_mode_for_dates(thd), &error); return store_TIME_with_warning(<ime, &str, error, tmp != -1); } bool Field_datetime_with_dec::send_binary(Protocol *protocol) { MYSQL_TIME ltime; get_date(<ime, 0); return protocol->store(<ime, dec); } double Field_datetime_with_dec::val_real(void) { MYSQL_TIME ltime; get_date(<ime, 0); return TIME_to_double(<ime); } longlong Field_datetime_with_dec::val_int(void) { MYSQL_TIME ltime; get_date(<ime, 0); return TIME_to_ulonglong_datetime(<ime); } String *Field_datetime_with_dec::val_str(String *str, String *unused __attribute__((unused))) { MYSQL_TIME ltime; get_date(<ime, 0); str->alloc(field_length+1); str->length(field_length); my_datetime_to_str(<ime, (char*) str->ptr(), dec); str->set_charset(&my_charset_numeric); return str; } bool Field_datetime_hires::get_TIME(MYSQL_TIME *ltime, const uchar *pos, ulonglong fuzzydate) const { ASSERT_COLUMN_MARKED_FOR_READ; ulonglong packed= read_bigendian(pos, Field_datetime_hires::pack_length()); unpack_time(sec_part_unshift(packed, dec), ltime); return validate_MMDD(packed, ltime->month, ltime->day, fuzzydate); } uint32 Field_datetime_hires::pack_length() const { return datetime_hires_bytes[dec]; } int Field_datetime_hires::cmp(const uchar *a_ptr, const uchar *b_ptr) { ulonglong a=read_bigendian(a_ptr, Field_datetime_hires::pack_length()); ulonglong b=read_bigendian(b_ptr, Field_datetime_hires::pack_length()); return a < b ? -1 : a > b ? 1 : 0; } void Field_datetime_with_dec::make_field(Send_field *field) { Field::make_field(field); field->decimals= dec; } /**************************************************************************** ** MySQL-5.6 compatible DATETIME(N) ** ****************************************************************************/ int Field_datetimef::reset() { my_datetime_packed_to_binary(0, ptr, dec); return 0; } void Field_datetimef::store_TIME(MYSQL_TIME *ltime) { my_time_trunc(ltime, decimals()); longlong tmp= TIME_to_longlong_datetime_packed(ltime); my_datetime_packed_to_binary(tmp, ptr, dec); } bool Field_datetimef::get_TIME(MYSQL_TIME *ltime, const uchar *pos, ulonglong fuzzydate) const { ASSERT_COLUMN_MARKED_FOR_READ; longlong tmp= my_datetime_packed_from_binary(pos, dec); TIME_from_longlong_datetime_packed(ltime, tmp); return validate_MMDD(tmp, ltime->month, ltime->day, fuzzydate); } /**************************************************************************** ** string type ** A string may be varchar or binary ****************************************************************************/ /* Report "not well formed" or "cannot convert" error after storing a character string info a field. SYNOPSIS check_string_copy_error() copier - the conversion status end - the very end of the source string that was just copied cs - character set of the string NOTES As of version 5.0 both cases return the same error: "Invalid string value: 'xxx' for column 't' at row 1" Future versions will possibly introduce a new error message: "Cannot convert character string: 'xxx' for column 't' at row 1" RETURN FALSE - If errors didn't happen TRUE - If an error happened */ bool Field_longstr::check_string_copy_error(const String_copier *copier, const char *end, CHARSET_INFO *cs) { const char *pos; char tmp[32]; if (!(pos= copier->most_important_error_pos())) return FALSE; convert_to_printable(tmp, sizeof(tmp), pos, (end - pos), cs, 6); set_warning_truncated_wrong_value("string", tmp); return TRUE; } /* Check if we lost any important data and send a truncation error/warning SYNOPSIS Field_longstr::report_if_important_data() pstr - Truncated rest of string end - End of truncated string count_spaces - Treat traling spaces as important data RETURN VALUES 0 - None was truncated (or we don't count cut fields) 2 - Some bytes was truncated NOTE Check if we lost any important data (anything in a binary string, or any non-space in others). If only trailing spaces was lost, send a truncation note, otherwise send a truncation error. Silently ignore traling spaces if the count_space parameter is FALSE. */ int Field_longstr::report_if_important_data(const char *pstr, const char *end, bool count_spaces) { THD *thd= get_thd(); if ((pstr < end) && thd->count_cuted_fields) { if (test_if_important_data(field_charset, pstr, end)) { if (thd->abort_on_warning) set_warning(ER_DATA_TOO_LONG, 1); else set_warning(WARN_DATA_TRUNCATED, 1); return 2; } else if (count_spaces) { /* If we lost only spaces then produce a NOTE, not a WARNING */ set_note(WARN_DATA_TRUNCATED, 1); return 2; } } return 0; } /* Copy a string and fill with space */ int Field_string::store(const char *from,uint length,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; uint copy_length; String_copier copier; /* See the comment for Field_long::store(long long) */ DBUG_ASSERT(!table || table->in_use == current_thd); copy_length= copier.well_formed_copy(field_charset, (char*) ptr, field_length, cs, from, length, field_length / field_charset->mbmaxlen); /* Append spaces if the string was shorter than the field. */ if (copy_length < field_length) field_charset->cset->fill(field_charset,(char*) ptr+copy_length, field_length-copy_length, field_charset->pad_char); return check_conversion_status(&copier, from + length, cs, false); } /** Store double value in Field_string or Field_varstring. Pretty prints double number into field_length characters buffer. @param nr number */ int Field_str::store(double nr) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; char buff[DOUBLE_TO_STRING_CONVERSION_BUFFER_SIZE]; uint local_char_length= field_length / charset()->mbmaxlen; size_t length= 0; my_bool error= (local_char_length == 0); // my_gcvt() requires width > 0, and we may have a CHAR(0) column. if (!error) length= my_gcvt(nr, MY_GCVT_ARG_DOUBLE, local_char_length, buff, &error); if (error) { if (get_thd()->abort_on_warning) set_warning(ER_DATA_TOO_LONG, 1); else set_warning(WARN_DATA_TRUNCATED, 1); } return store(buff, length, &my_charset_numeric); } uint Field::is_equal(Create_field *new_field) { return (new_field->sql_type == real_type()); } uint Field_str::is_equal(Create_field *new_field) { return ((new_field->sql_type == real_type()) && new_field->charset == field_charset && new_field->length == max_display_length()); } int Field_string::store(longlong nr, bool unsigned_val) { char buff[64]; int l; CHARSET_INFO *cs=charset(); l= (cs->cset->longlong10_to_str)(cs,buff,sizeof(buff), unsigned_val ? 10 : -10, nr); return Field_string::store(buff,(uint)l,cs); } int Field_longstr::store_decimal(const my_decimal *d) { char buff[DECIMAL_MAX_STR_LENGTH+1]; String str(buff, sizeof(buff), &my_charset_numeric); my_decimal2string(E_DEC_FATAL_ERROR, d, 0, 0, 0, &str); return store(str.ptr(), str.length(), str.charset()); } uint32 Field_longstr::max_data_length() const { return field_length + (field_length > 255 ? 2 : 1); } bool Field_longstr::cmp_to_string_with_same_collation(const Item_bool_func *cond, const Item *item) const { return item->cmp_type() == STRING_RESULT && charset() == cond->compare_collation(); } bool Field_longstr::cmp_to_string_with_stricter_collation(const Item_bool_func *cond, const Item *item) const { return item->cmp_type() == STRING_RESULT && (charset() == cond->compare_collation() || cond->compare_collation()->state & MY_CS_BINSORT); } bool Field_longstr::can_optimize_keypart_ref(const Item_bool_func *cond, const Item *item) const { DBUG_ASSERT(cmp_type() == STRING_RESULT); return cmp_to_string_with_stricter_collation(cond, item); } bool Field_longstr::can_optimize_hash_join(const Item_bool_func *cond, const Item *item) const { DBUG_ASSERT(cmp_type() == STRING_RESULT); return cmp_to_string_with_same_collation(cond, item); } bool Field_longstr::can_optimize_group_min_max(const Item_bool_func *cond, const Item *const_item) const { /* Can't use indexes when comparing a string to a number or a date Don't use an index when comparing strings of different collations. */ DBUG_ASSERT(cmp_type() == STRING_RESULT); return cmp_to_string_with_same_collation(cond, const_item); } bool Field_longstr::can_optimize_range(const Item_bool_func *cond, const Item *item, bool is_eq_func) const { return is_eq_func ? cmp_to_string_with_stricter_collation(cond, item) : cmp_to_string_with_same_collation(cond, item); } /** This overrides the default behavior of the parent constructor Warn_filter(thd) to suppress notes about trailing spaces in case of CHAR(N), as they are truncated during val_str(). We still do want truncation notes in case of BINARY(N), as trailing spaces are not truncated in val_str(). */ Field_string::Warn_filter_string::Warn_filter_string(const THD *thd, const Field_string *field) :Warn_filter(!thd->no_errors, !thd->no_errors && field->Field_string::charset() == &my_charset_bin) { } double Field_string::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); return Converter_strntod_with_warn(get_thd(), Warn_filter_string(thd, this), Field_string::charset(), (const char *) ptr, field_length).result(); } longlong Field_string::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); return Converter_strntoll_with_warn(thd, Warn_filter_string(thd, this), Field_string::charset(), (const char *) ptr, field_length).result(); } String *Field_string::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) { ASSERT_COLUMN_MARKED_FOR_READ; /* See the comment for Field_long::store(long long) */ DBUG_ASSERT(!table || table->in_use == current_thd); uint length; if (get_thd()->variables.sql_mode & MODE_PAD_CHAR_TO_FULL_LENGTH) length= my_charpos(field_charset, ptr, ptr + field_length, field_length / field_charset->mbmaxlen); else length= field_charset->cset->lengthsp(field_charset, (const char*) ptr, field_length); val_ptr->set((const char*) ptr, length, field_charset); return val_ptr; } my_decimal *Field_string::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); Converter_str2my_decimal_with_warn(thd, Warn_filter_string(thd, this), E_DEC_FATAL_ERROR, Field_string::charset(), (const char *) ptr, field_length, decimal_value); return decimal_value; } struct Check_field_param { Field *field; }; #ifdef HAVE_REPLICATION static bool check_field_for_37426(const void *param_arg) { Check_field_param *param= (Check_field_param*) param_arg; DBUG_ASSERT(param->field->real_type() == MYSQL_TYPE_STRING); DBUG_PRINT("debug", ("Field %s - type: %d, size: %d", param->field->field_name, param->field->real_type(), param->field->row_pack_length())); return param->field->row_pack_length() > 255; } #endif bool Field_string::compatible_field_size(uint field_metadata, Relay_log_info *rli_arg, uint16 mflags __attribute__((unused)), int *order_var) { #ifdef HAVE_REPLICATION const Check_field_param check_param = { this }; if (rpl_master_has_bug(rli_arg, 37426, TRUE, check_field_for_37426, &check_param)) return FALSE; // Not compatible field sizes #endif return Field::compatible_field_size(field_metadata, rli_arg, mflags, order_var); } int Field_string::cmp(const uchar *a_ptr, const uchar *b_ptr) { uint a_len, b_len; if (field_charset->mbmaxlen != 1) { uint char_len= field_length/field_charset->mbmaxlen; a_len= my_charpos(field_charset, a_ptr, a_ptr + field_length, char_len); b_len= my_charpos(field_charset, b_ptr, b_ptr + field_length, char_len); } else a_len= b_len= field_length; /* We have to remove end space to be able to compare multi-byte-characters like in latin_de 'ae' and 0xe4 */ return field_charset->coll->strnncollsp(field_charset, a_ptr, a_len, b_ptr, b_len); } void Field_string::sort_string(uchar *to,uint length) { uint tmp __attribute__((unused))= field_charset->coll->strnxfrm(field_charset, to, length, char_length() * field_charset->strxfrm_multiply, ptr, field_length, MY_STRXFRM_PAD_WITH_SPACE | MY_STRXFRM_PAD_TO_MAXLEN); DBUG_ASSERT(tmp == length); } void Field_string::sql_type(String &res) const { THD *thd= table->in_use; CHARSET_INFO *cs=res.charset(); ulong length; length= cs->cset->snprintf(cs,(char*) res.ptr(), res.alloced_length(), "%s(%d)", (type() == MYSQL_TYPE_VAR_STRING ? (has_charset() ? "varchar" : "varbinary") : (has_charset() ? "char" : "binary")), (int) field_length / charset()->mbmaxlen); res.length(length); if ((thd->variables.sql_mode & (MODE_MYSQL323 | MODE_MYSQL40)) && has_charset() && (charset()->state & MY_CS_BINSORT)) res.append(STRING_WITH_LEN(" binary")); } uchar *Field_string::pack(uchar *to, const uchar *from, uint max_length) { uint length= MY_MIN(field_length,max_length); uint local_char_length= max_length/field_charset->mbmaxlen; DBUG_PRINT("debug", ("Packing field '%s' - length: %u ", field_name, length)); if (length > local_char_length) local_char_length= my_charpos(field_charset, from, from+length, local_char_length); set_if_smaller(length, local_char_length); /* TODO: change charset interface to add a new function that does the following or add a flag to lengthsp to do it itself (this is for not packing padding adding bytes in BINARY fields). */ if (field_charset->mbmaxlen == 1) { while (length && from[length-1] == field_charset->pad_char) length --; } else length= field_charset->cset->lengthsp(field_charset, (const char*) from, length); // Length always stored little-endian *to++= (uchar) length; if (field_length > 255) *to++= (uchar) (length >> 8); // Store the actual bytes of the string memcpy(to, from, length); return to+length; } /** Unpack a string field from row data. This method is used to unpack a string field from a master whose size of the field is less than that of the slave. Note that there can be a variety of field types represented with this class. Certain types like ENUM or SET are processed differently. Hence, the upper byte of the @c param_data argument contains the result of field->real_type() from the master. @note For information about how the length is packed, see @c Field_string::do_save_field_metadata @param to Destination of the data @param from Source of the data @param param_data Real type (upper) and length (lower) values @return New pointer into memory based on from + length of the data */ const uchar * Field_string::unpack(uchar *to, const uchar *from, const uchar *from_end, uint param_data) { uint from_length, length; /* Compute the declared length of the field on the master. This is used to decide if one or two bytes should be read as length. */ if (param_data) from_length= (((param_data >> 4) & 0x300) ^ 0x300) + (param_data & 0x00ff); else from_length= field_length; DBUG_PRINT("debug", ("param_data: 0x%x, field_length: %u, from_length: %u", param_data, field_length, from_length)); /* Compute the actual length of the data by reading one or two bits (depending on the declared field length on the master). */ if (from_length > 255) { if (from + 2 > from_end) return 0; length= uint2korr(from); from+= 2; } else { if (from + 1 > from_end) return 0; length= (uint) *from++; } if (from + length > from_end || length > field_length) return 0; memcpy(to, from, length); // Pad the string with the pad character of the fields charset field_charset->cset->fill(field_charset, (char*) to + length, field_length - length, field_charset->pad_char); return from+length; } /** Save the field metadata for string fields. Saves the real type in the first byte and the field length in the second byte of the field metadata array at index of *metadata_ptr and *(metadata_ptr + 1). @note In order to be able to handle lengths exceeding 255 and be backwards-compatible with pre-5.1.26 servers, an extra two bits of the length has been added to the metadata in such a way that if they are set, a new unrecognized type is generated. This will cause pre-5.1-26 servers to stop due to a field type mismatch, while new servers will be able to extract the extra bits. If the length is <256, there will be no difference and both a new and an old server will be able to handle it. @note The extra two bits are added to bits 13 and 14 of the parameter data (with 1 being the least siginficant bit and 16 the most significant bit of the word) by xoring the extra length bits with the real type. Since all allowable types have 0xF as most significant bits of the metadata word, lengths <256 will not affect the real type at all, while all other values will result in a non-existant type in the range 17-244. @see Field_string::unpack @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_string::do_save_field_metadata(uchar *metadata_ptr) { DBUG_ASSERT(field_length < 1024); DBUG_ASSERT((real_type() & 0xF0) == 0xF0); DBUG_PRINT("debug", ("field_length: %u, real_type: %u", field_length, real_type())); *metadata_ptr= (real_type() ^ ((field_length & 0x300) >> 4)); *(metadata_ptr + 1)= field_length & 0xFF; return 2; } uint Field_string::packed_col_length(const uchar *data_ptr, uint length) { if (length > 255) return uint2korr(data_ptr)+2; return (uint) *data_ptr + 1; } uint Field_string::max_packed_col_length(uint max_length) { return (max_length > 255 ? 2 : 1)+max_length; } uint Field_string::get_key_image(uchar *buff, uint length, imagetype type_arg) { uint bytes = my_charpos(field_charset, (char*) ptr, (char*) ptr + field_length, length / field_charset->mbmaxlen); memcpy(buff, ptr, bytes); if (bytes < length) field_charset->cset->fill(field_charset, (char*) buff + bytes, length - bytes, field_charset->pad_char); return bytes; } Field *Field_string::make_new_field(MEM_ROOT *root, TABLE *new_table, bool keep_type) { Field *field; if (type() != MYSQL_TYPE_VAR_STRING || keep_type) field= Field::make_new_field(root, new_table, keep_type); else if ((field= new (root) Field_varstring(field_length, maybe_null(), field_name, new_table->s, charset()))) { /* Old VARCHAR field which should be modified to a VARCHAR on copy This is done to ensure that ALTER TABLE will convert old VARCHAR fields to now VARCHAR fields. */ field->init(new_table); /* Normally orig_table is different from table only if field was created via ::make_new_field. Here we alter the type of field, so ::make_new_field is not applicable. But we still need to preserve the original field metadata for the client-server protocol. */ field->orig_table= orig_table; } return field; } /**************************************************************************** VARCHAR type Data in field->ptr is stored as: 1 or 2 bytes length-prefix-header (from Field_varstring::length_bytes) data NOTE: When VARCHAR is stored in a key (for handler::index_read() etc) it's always stored with a 2 byte prefix. (Just like blob keys). Normally length_bytes is calculated as (field_length < 256 : 1 ? 2) The exception is if there is a prefix key field that is part of a long VARCHAR, in which case field_length for this may be 1 but the length_bytes is 2. ****************************************************************************/ const uint Field_varstring::MAX_SIZE= UINT_MAX16; /** Save the field metadata for varstring fields. Saves the field length in the first byte. Note: may consume 2 bytes. Caller must ensure second byte is contiguous with first byte (e.g. array index 0,1). @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_varstring::do_save_field_metadata(uchar *metadata_ptr) { DBUG_ASSERT(field_length <= 65535); int2store((char*)metadata_ptr, field_length); return 2; } int Field_varstring::store(const char *from,uint length,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; uint copy_length; String_copier copier; copy_length= copier.well_formed_copy(field_charset, (char*) ptr + length_bytes, field_length, cs, from, length, field_length / field_charset->mbmaxlen); if (length_bytes == 1) *ptr= (uchar) copy_length; else int2store(ptr, copy_length); return check_conversion_status(&copier, from + length, cs, true); } int Field_varstring::store(longlong nr, bool unsigned_val) { char buff[64]; uint length; length= (uint) (field_charset->cset->longlong10_to_str)(field_charset, buff, sizeof(buff), (unsigned_val ? 10: -10), nr); return Field_varstring::store(buff, length, field_charset); } double Field_varstring::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); return Converter_strntod_with_warn(thd, Warn_filter(thd), Field_varstring::charset(), (const char *) get_data(), get_length()).result(); } longlong Field_varstring::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); return Converter_strntoll_with_warn(thd, Warn_filter(thd), Field_varstring::charset(), (const char *) get_data(), get_length()).result(); } String *Field_varstring::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) { ASSERT_COLUMN_MARKED_FOR_READ; val_ptr->set((const char*) get_data(), get_length(), field_charset); return val_ptr; } my_decimal *Field_varstring::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; THD *thd= get_thd(); Converter_str2my_decimal_with_warn(thd, Warn_filter(thd), E_DEC_FATAL_ERROR, Field_varstring::charset(), (const char *) get_data(), get_length(), decimal_value); return decimal_value; } int Field_varstring::cmp_max(const uchar *a_ptr, const uchar *b_ptr, uint max_len) { uint a_length, b_length; int diff; if (length_bytes == 1) { a_length= (uint) *a_ptr; b_length= (uint) *b_ptr; } else { a_length= uint2korr(a_ptr); b_length= uint2korr(b_ptr); } set_if_smaller(a_length, max_len); set_if_smaller(b_length, max_len); diff= field_charset->coll->strnncollsp(field_charset, a_ptr+ length_bytes, a_length, b_ptr+ length_bytes, b_length); return diff; } /** @note varstring and blob keys are ALWAYS stored with a 2 byte length prefix */ int Field_varstring::key_cmp(const uchar *key_ptr, uint max_key_length) { uint length= length_bytes == 1 ? (uint) *ptr : uint2korr(ptr); uint local_char_length= max_key_length / field_charset->mbmaxlen; local_char_length= my_charpos(field_charset, ptr + length_bytes, ptr + length_bytes + length, local_char_length); set_if_smaller(length, local_char_length); return field_charset->coll->strnncollsp(field_charset, ptr + length_bytes, length, key_ptr+ HA_KEY_BLOB_LENGTH, uint2korr(key_ptr)); } /** Compare to key segments (always 2 byte length prefix). @note This is used only to compare key segments created for index_read(). (keys are created and compared in key.cc) */ int Field_varstring::key_cmp(const uchar *a,const uchar *b) { return field_charset->coll->strnncollsp(field_charset, a + HA_KEY_BLOB_LENGTH, uint2korr(a), b + HA_KEY_BLOB_LENGTH, uint2korr(b)); } void Field_varstring::sort_string(uchar *to,uint length) { uint tot_length= length_bytes == 1 ? (uint) *ptr : uint2korr(ptr); if (field_charset == &my_charset_bin) { /* Store length last in high-byte order to sort longer strings first */ if (length_bytes == 1) to[length-1]= tot_length; else mi_int2store(to+length-2, tot_length); length-= length_bytes; } tot_length= field_charset->coll->strnxfrm(field_charset, to, length, char_length() * field_charset->strxfrm_multiply, ptr + length_bytes, tot_length, MY_STRXFRM_PAD_WITH_SPACE | MY_STRXFRM_PAD_TO_MAXLEN); DBUG_ASSERT(tot_length == length); } enum ha_base_keytype Field_varstring::key_type() const { enum ha_base_keytype res; if (binary()) res= length_bytes == 1 ? HA_KEYTYPE_VARBINARY1 : HA_KEYTYPE_VARBINARY2; else res= length_bytes == 1 ? HA_KEYTYPE_VARTEXT1 : HA_KEYTYPE_VARTEXT2; return res; } void Field_varstring::sql_type(String &res) const { THD *thd= table->in_use; CHARSET_INFO *cs=res.charset(); ulong length; length= cs->cset->snprintf(cs,(char*) res.ptr(), res.alloced_length(), "%s(%d)", (has_charset() ? "varchar" : "varbinary"), (int) field_length / charset()->mbmaxlen); res.length(length); if ((thd->variables.sql_mode & (MODE_MYSQL323 | MODE_MYSQL40)) && has_charset() && (charset()->state & MY_CS_BINSORT)) res.append(STRING_WITH_LEN(" binary")); } uint32 Field_varstring::data_length() { return length_bytes == 1 ? (uint32) *ptr : uint2korr(ptr); } /* Functions to create a packed row. Here the number of length bytes are depending on the given max_length */ uchar *Field_varstring::pack(uchar *to, const uchar *from, uint max_length) { uint length= length_bytes == 1 ? (uint) *from : uint2korr(from); set_if_smaller(max_length, field_length); if (length > max_length) length=max_length; /* Length always stored little-endian */ *to++= length & 0xFF; if (max_length > 255) *to++= (length >> 8) & 0xFF; /* Store bytes of string */ if (length > 0) memcpy(to, from+length_bytes, length); return to+length; } /** Unpack a varstring field from row data. This method is used to unpack a varstring field from a master whose size of the field is less than that of the slave. @note The string length is always packed little-endian. @param to Destination of the data @param from Source of the data @param param_data Length bytes from the master's field data @return New pointer into memory based on from + length of the data */ const uchar * Field_varstring::unpack(uchar *to, const uchar *from, const uchar *from_end, uint param_data) { uint length; uint l_bytes= (param_data && (param_data < field_length)) ? (param_data <= 255) ? 1 : 2 : length_bytes; if (from + l_bytes > from_end) return 0; // Error in data if (l_bytes == 1) { to[0]= *from++; length= to[0]; if (length_bytes == 2) to[1]= 0; } else /* l_bytes == 2 */ { length= uint2korr(from); to[0]= *from++; to[1]= *from++; } if (length) { if (from + length > from_end || length > field_length) return 0; // Error in data memcpy(to+ length_bytes, from, length); } return from+length; } uint Field_varstring::packed_col_length(const uchar *data_ptr, uint length) { if (length > 255) return uint2korr(data_ptr)+2; return (uint) *data_ptr + 1; } uint Field_varstring::max_packed_col_length(uint max_length) { return (max_length > 255 ? 2 : 1)+max_length; } uint Field_varstring::get_key_image(uchar *buff, uint length, imagetype type_arg) { uint f_length= length_bytes == 1 ? (uint) *ptr : uint2korr(ptr); uint local_char_length= length / field_charset->mbmaxlen; uchar *pos= ptr+length_bytes; local_char_length= my_charpos(field_charset, pos, pos + f_length, local_char_length); set_if_smaller(f_length, local_char_length); /* Key is always stored with 2 bytes */ int2store(buff,f_length); memcpy(buff+HA_KEY_BLOB_LENGTH, pos, f_length); if (f_length < length) { /* Must clear this as we do a memcmp in opt_range.cc to detect identical keys */ bzero(buff+HA_KEY_BLOB_LENGTH+f_length, (length-f_length)); } return HA_KEY_BLOB_LENGTH+f_length; } void Field_varstring::set_key_image(const uchar *buff,uint length) { length= uint2korr(buff); // Real length is here (void) Field_varstring::store((const char*) buff+HA_KEY_BLOB_LENGTH, length, field_charset); } int Field_varstring::cmp_binary(const uchar *a_ptr, const uchar *b_ptr, uint32 max_length) { uint32 a_length,b_length; if (length_bytes == 1) { a_length= (uint) *a_ptr; b_length= (uint) *b_ptr; } else { a_length= uint2korr(a_ptr); b_length= uint2korr(b_ptr); } set_if_smaller(a_length, max_length); set_if_smaller(b_length, max_length); if (a_length != b_length) return 1; return memcmp(a_ptr+length_bytes, b_ptr+length_bytes, a_length); } Field *Field_varstring::make_new_field(MEM_ROOT *root, TABLE *new_table, bool keep_type) { Field_varstring *res= (Field_varstring*) Field::make_new_field(root, new_table, keep_type); if (res) res->length_bytes= length_bytes; return res; } Field *Field_varstring::new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr, uint32 length, uchar *new_null_ptr, uint new_null_bit) { Field_varstring *res; if ((res= (Field_varstring*) Field::new_key_field(root, new_table, new_ptr, length, new_null_ptr, new_null_bit))) { /* Keys length prefixes are always packed with 2 bytes */ res->length_bytes= 2; } return res; } uint Field_varstring::is_equal(Create_field *new_field) { if (new_field->sql_type == real_type() && new_field->charset == field_charset) { if (new_field->length == max_display_length()) return IS_EQUAL_YES; if (new_field->length > max_display_length() && ((new_field->length <= 255 && max_display_length() <= 255) || (new_field->length > 255 && max_display_length() > 255))) return IS_EQUAL_PACK_LENGTH; // VARCHAR, longer variable length } return IS_EQUAL_NO; } void Field_varstring::hash(ulong *nr, ulong *nr2) { if (is_null()) { *nr^= (*nr << 1) | 1; } else { uint len= length_bytes == 1 ? (uint) *ptr : uint2korr(ptr); CHARSET_INFO *cs= charset(); cs->coll->hash_sort(cs, ptr + length_bytes, len, nr, nr2); } } /**************************************************************************** ** blob type ** A blob is saved as a length and a pointer. The length is stored in the ** packlength slot and may be from 1-4. ****************************************************************************/ Field_blob::Field_blob(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg, enum utype unireg_check_arg, const char *field_name_arg, TABLE_SHARE *share, uint blob_pack_length, CHARSET_INFO *cs) :Field_longstr(ptr_arg, BLOB_PACK_LENGTH_TO_MAX_LENGH(blob_pack_length), null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg, cs), packlength(blob_pack_length) { DBUG_ASSERT(blob_pack_length <= 4); // Only pack lengths 1-4 supported currently flags|= BLOB_FLAG; share->blob_fields++; /* TODO: why do not fill table->s->blob_field array here? */ } void Field_blob::store_length(uchar *i_ptr, uint i_packlength, uint32 i_number) { store_lowendian(i_number, i_ptr, i_packlength); } uint32 Field_blob::get_length(const uchar *pos, uint packlength_arg) { return (uint32)read_lowendian(pos, packlength_arg); } /** Copy a value from another BLOB field of the same character set. This method is used by Copy_field, e.g. during ALTER TABLE. */ int Field_blob::copy_value(Field_blob *from) { DBUG_ASSERT(field_charset == from->charset()); int rc= 0; uint32 length= from->get_length(); uchar *data; from->get_ptr(&data); if (packlength < from->packlength) { int well_formed_errors; set_if_smaller(length, Field_blob::max_data_length()); length= field_charset->cset->well_formed_len(field_charset, (const char *) data, (const char *) data + length, length, &well_formed_errors); rc= report_if_important_data((const char *) data + length, (const char *) data + from->get_length(), true); } store_length(length); bmove(ptr + packlength, (uchar*) &data, sizeof(char*)); return rc; } int Field_blob::store(const char *from,uint length,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; uint copy_length, new_length; String_copier copier; char *tmp; char buff[STRING_BUFFER_USUAL_SIZE]; String tmpstr(buff,sizeof(buff), &my_charset_bin); if (!length) { bzero(ptr,Field_blob::pack_length()); return 0; } if (table->blob_storage) // GROUP_CONCAT with ORDER BY | DISTINCT { DBUG_ASSERT(!f_is_hex_escape(flags)); DBUG_ASSERT(field_charset == cs); DBUG_ASSERT(length <= max_data_length()); new_length= length; copy_length= table->in_use->variables.group_concat_max_len; if (new_length > copy_length) { int well_formed_error; new_length= cs->cset->well_formed_len(cs, from, from + copy_length, new_length, &well_formed_error); table->blob_storage->set_truncated_value(true); } if (!(tmp= table->blob_storage->store(from, new_length))) goto oom_error; Field_blob::store_length(new_length); bmove(ptr + packlength, (uchar*) &tmp, sizeof(char*)); return 0; } /* If the 'from' address is in the range of the temporary 'value'- object we need to copy the content to a different location or it will be invalidated when the 'value'-object is reallocated to make room for the new character set. */ if (from >= value.ptr() && from <= value.ptr()+value.length()) { /* If content of the 'from'-address is cached in the 'value'-object it is possible that the content needs a character conversion. */ if (!String::needs_conversion_on_storage(length, cs, field_charset)) { Field_blob::store_length(length); bmove(ptr + packlength, &from, sizeof(char*)); return 0; } if (tmpstr.copy(from, length, cs)) goto oom_error; from= tmpstr.ptr(); } new_length= MY_MIN(max_data_length(), field_charset->mbmaxlen * length); if (value.alloc(new_length)) goto oom_error; tmp= const_cast(value.ptr()); if (f_is_hex_escape(flags)) { copy_length= my_copy_with_hex_escaping(field_charset, tmp, new_length, from, length); Field_blob::store_length(copy_length); bmove(ptr + packlength, (uchar*) &tmp, sizeof(char*)); return 0; } copy_length= copier.well_formed_copy(field_charset, (char*) value.ptr(), new_length, cs, from, length); Field_blob::store_length(copy_length); bmove(ptr+packlength,(uchar*) &tmp,sizeof(char*)); return check_conversion_status(&copier, from + length, cs, true); oom_error: /* Fatal OOM error */ bzero(ptr,Field_blob::pack_length()); return -1; } int Field_blob::store(double nr) { CHARSET_INFO *cs=charset(); value.set_real(nr, NOT_FIXED_DEC, cs); return Field_blob::store(value.ptr(),(uint) value.length(), cs); } int Field_blob::store(longlong nr, bool unsigned_val) { CHARSET_INFO *cs=charset(); value.set_int(nr, unsigned_val, cs); return Field_blob::store(value.ptr(), (uint) value.length(), cs); } double Field_blob::val_real(void) { ASSERT_COLUMN_MARKED_FOR_READ; char *blob; memcpy(&blob, ptr+packlength, sizeof(char*)); if (!blob) return 0.0; THD *thd= get_thd(); return Converter_strntod_with_warn(thd, Warn_filter(thd), Field_blob::charset(), blob, get_length(ptr)).result(); } longlong Field_blob::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; char *blob; memcpy(&blob, ptr+packlength, sizeof(char*)); if (!blob) return 0; THD *thd= get_thd(); return Converter_strntoll_with_warn(thd, Warn_filter(thd), Field_blob::charset(), blob, get_length(ptr)).result(); } String *Field_blob::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) { ASSERT_COLUMN_MARKED_FOR_READ; char *blob; memcpy(&blob, ptr+packlength, sizeof(char*)); if (!blob) val_ptr->set("",0,charset()); // A bit safer than ->length(0) else val_ptr->set((const char*) blob,get_length(ptr),charset()); return val_ptr; } my_decimal *Field_blob::val_decimal(my_decimal *decimal_value) { ASSERT_COLUMN_MARKED_FOR_READ; const char *blob; size_t length; memcpy(&blob, ptr+packlength, sizeof(const uchar*)); if (!blob) { blob= ""; length= 0; } else length= get_length(ptr); THD *thd= get_thd(); Converter_str2my_decimal_with_warn(thd, Warn_filter(thd), E_DEC_FATAL_ERROR, Field_blob::charset(), blob, length, decimal_value); return decimal_value; } int Field_blob::cmp(const uchar *a,uint32 a_length, const uchar *b, uint32 b_length) { return field_charset->coll->strnncollsp(field_charset, a, a_length, b, b_length); } int Field_blob::cmp_max(const uchar *a_ptr, const uchar *b_ptr, uint max_length) { uchar *blob1,*blob2; memcpy(&blob1, a_ptr+packlength, sizeof(char*)); memcpy(&blob2, b_ptr+packlength, sizeof(char*)); uint a_len= get_length(a_ptr), b_len= get_length(b_ptr); set_if_smaller(a_len, max_length); set_if_smaller(b_len, max_length); return Field_blob::cmp(blob1,a_len,blob2,b_len); } int Field_blob::cmp_binary(const uchar *a_ptr, const uchar *b_ptr, uint32 max_length) { char *a,*b; uint diff; uint32 a_length,b_length; memcpy(&a, a_ptr+packlength, sizeof(char*)); memcpy(&b, b_ptr+packlength, sizeof(char*)); a_length=get_length(a_ptr); if (a_length > max_length) a_length=max_length; b_length=get_length(b_ptr); if (b_length > max_length) b_length=max_length; diff=memcmp(a,b,MY_MIN(a_length,b_length)); return diff ? diff : (int) (a_length - b_length); } /* The following is used only when comparing a key */ uint Field_blob::get_key_image(uchar *buff,uint length, imagetype type_arg) { uint32 blob_length= get_length(ptr); uchar *blob; #ifdef HAVE_SPATIAL if (type_arg == itMBR) { const char *dummy; MBR mbr; Geometry_buffer buffer; Geometry *gobj; const uint image_length= SIZEOF_STORED_DOUBLE*4; if (blob_length < SRID_SIZE) { bzero(buff, image_length); return image_length; } get_ptr(&blob); gobj= Geometry::construct(&buffer, (char*) blob, blob_length); if (!gobj || gobj->get_mbr(&mbr, &dummy)) bzero(buff, image_length); else { float8store(buff, mbr.xmin); float8store(buff+8, mbr.xmax); float8store(buff+16, mbr.ymin); float8store(buff+24, mbr.ymax); } return image_length; } #endif /*HAVE_SPATIAL*/ get_ptr(&blob); uint local_char_length= length / field_charset->mbmaxlen; local_char_length= my_charpos(field_charset, blob, blob + blob_length, local_char_length); set_if_smaller(blob_length, local_char_length); if ((uint32) length > blob_length) { /* Must clear this as we do a memcmp in opt_range.cc to detect identical keys */ bzero(buff+HA_KEY_BLOB_LENGTH+blob_length, (length-blob_length)); length=(uint) blob_length; } int2store(buff,length); memcpy(buff+HA_KEY_BLOB_LENGTH, blob, length); return HA_KEY_BLOB_LENGTH+length; } void Field_blob::set_key_image(const uchar *buff,uint length) { length= uint2korr(buff); (void) Field_blob::store((const char*) buff+HA_KEY_BLOB_LENGTH, length, field_charset); } int Field_blob::key_cmp(const uchar *key_ptr, uint max_key_length) { uchar *blob1; uint blob_length=get_length(ptr); memcpy(&blob1, ptr+packlength, sizeof(char*)); CHARSET_INFO *cs= charset(); uint local_char_length= max_key_length / cs->mbmaxlen; local_char_length= my_charpos(cs, blob1, blob1+blob_length, local_char_length); set_if_smaller(blob_length, local_char_length); return Field_blob::cmp(blob1, blob_length, key_ptr+HA_KEY_BLOB_LENGTH, uint2korr(key_ptr)); } int Field_blob::key_cmp(const uchar *a,const uchar *b) { return Field_blob::cmp(a+HA_KEY_BLOB_LENGTH, uint2korr(a), b+HA_KEY_BLOB_LENGTH, uint2korr(b)); } Field *Field_blob::new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr, uint32 length, uchar *new_null_ptr, uint new_null_bit) { Field_varstring *res= new (root) Field_varstring(new_ptr, length, 2, new_null_ptr, new_null_bit, Field::NONE, field_name, table->s, charset()); res->init(new_table); return res; } /** Save the field metadata for blob fields. Saves the pack length in the first byte of the field metadata array at index of *metadata_ptr. @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_blob::do_save_field_metadata(uchar *metadata_ptr) { DBUG_ENTER("Field_blob::do_save_field_metadata"); *metadata_ptr= pack_length_no_ptr(); DBUG_PRINT("debug", ("metadata: %u (pack_length_no_ptr)", *metadata_ptr)); DBUG_RETURN(1); } uint32 Field_blob::sort_length() const { return (uint32) (get_thd()->variables.max_sort_length + (field_charset == &my_charset_bin ? 0 : packlength)); } void Field_blob::sort_string(uchar *to,uint length) { uchar *blob; uint blob_length=get_length(); if (!blob_length) bzero(to,length); else { if (field_charset == &my_charset_bin) { uchar *pos; /* Store length of blob last in blob to shorter blobs before longer blobs */ length-= packlength; pos= to+length; store_bigendian(blob_length, pos, packlength); } memcpy(&blob, ptr+packlength, sizeof(char*)); blob_length= field_charset->coll->strnxfrm(field_charset, to, length, length, blob, blob_length, MY_STRXFRM_PAD_WITH_SPACE | MY_STRXFRM_PAD_TO_MAXLEN); DBUG_ASSERT(blob_length == length); } } void Field_blob::sql_type(String &res) const { const char *str; uint length; switch (packlength) { default: str="tiny"; length=4; break; case 2: str=""; length=0; break; case 3: str="medium"; length= 6; break; case 4: str="long"; length=4; break; } res.set_ascii(str,length); if (charset() == &my_charset_bin) res.append(STRING_WITH_LEN("blob")); else { res.append(STRING_WITH_LEN("text")); } } uchar *Field_blob::pack(uchar *to, const uchar *from, uint max_length) { uchar *save= ptr; ptr= (uchar*) from; uint32 length=get_length(); // Length of from string /* Store max length, which will occupy packlength bytes. If the max length given is smaller than the actual length of the blob, we just store the initial bytes of the blob. */ store_length(to, packlength, MY_MIN(length, max_length)); /* Store the actual blob data, which will occupy 'length' bytes. */ if (length > 0) { get_ptr((uchar**) &from); memcpy(to+packlength, from,length); } ptr=save; // Restore org row pointer return to+packlength+length; } /** Unpack a blob field from row data. This method is used to unpack a blob field from a master whose size of the field is less than that of the slave. Note: This method is included to satisfy inheritance rules, but is not needed for blob fields. It simply is used as a pass-through to the original unpack() method for blob fields. @param to Destination of the data @param from Source of the data @param param_data @c TRUE if base types should be stored in little- endian format, @c FALSE if native format should be used. @return New pointer into memory based on from + length of the data */ const uchar *Field_blob::unpack(uchar *to, const uchar *from, const uchar *from_end, uint param_data) { DBUG_ENTER("Field_blob::unpack"); DBUG_PRINT("enter", ("to: 0x%lx; from: 0x%lx; param_data: %u", (ulong) to, (ulong) from, param_data)); uint const master_packlength= param_data > 0 ? param_data & 0xFF : packlength; if (from + master_packlength > from_end) DBUG_RETURN(0); // Error in data uint32 const length= get_length(from, master_packlength); DBUG_DUMP("packed", from, length + master_packlength); bitmap_set_bit(table->write_set, field_index); if (from + master_packlength + length > from_end) DBUG_RETURN(0); store(reinterpret_cast(from) + master_packlength, length, field_charset); DBUG_DUMP("record", to, table->s->reclength); DBUG_RETURN(from + master_packlength + length); } uint Field_blob::packed_col_length(const uchar *data_ptr, uint length) { if (length > 255) return uint2korr(data_ptr)+2; return (uint) *data_ptr + 1; } uint Field_blob::max_packed_col_length(uint max_length) { return (max_length > 255 ? 2 : 1)+max_length; } uint Field_blob::is_equal(Create_field *new_field) { return ((new_field->sql_type == get_blob_type_from_length(max_data_length())) && new_field->charset == field_charset && new_field->pack_length == pack_length()); } #ifdef HAVE_SPATIAL /* Values 1-40 reserved for 1-byte options, 41-80 for 2-byte options, 81-120 for 4-byte options, 121-160 for 8-byte options, other - varied length in next 1-3 bytes. */ enum extra2_gis_field_options { FIELDGEOM_END=0, FIELDGEOM_STORAGE_MODEL=1, FIELDGEOM_PRECISION=2, FIELDGEOM_SCALE=3, FIELDGEOM_SRID=81, }; uint gis_field_options_image(uchar *buff, List &create_fields) { uint image_size= 0; List_iterator it(create_fields); Create_field *field; while ((field= it++)) { if (field->sql_type != MYSQL_TYPE_GEOMETRY) continue; if (buff) { uchar *cbuf= buff + image_size; cbuf[0]= FIELDGEOM_STORAGE_MODEL; cbuf[1]= (uchar) Field_geom::GEOM_STORAGE_WKB; cbuf[2]= FIELDGEOM_PRECISION; cbuf[3]= (uchar) field->length; cbuf[4]= FIELDGEOM_SCALE; cbuf[5]= (uchar) field->decimals; cbuf[6]= FIELDGEOM_SRID; int4store(cbuf + 7, ((uint32) field->srid)); cbuf[11]= FIELDGEOM_END; } image_size+= 12; } return image_size; } uint gis_field_options_read(const uchar *buf, uint buf_len, Field_geom::storage_type *st_type,uint *precision, uint *scale, uint *srid) { const uchar *buf_end= buf + buf_len; const uchar *cbuf= buf; int option_id; *precision= *scale= *srid= 0; *st_type= Field_geom::GEOM_STORAGE_WKB; if (!buf) /* can only happen with the old FRM file */ goto end_of_record; while (cbuf < buf_end) { switch ((option_id= *(cbuf++))) { case FIELDGEOM_STORAGE_MODEL: *st_type= (Field_geom::storage_type) cbuf[0]; break; case FIELDGEOM_PRECISION: *precision= cbuf[0]; break; case FIELDGEOM_SCALE: *scale= cbuf[0]; break; case FIELDGEOM_SRID: *srid= uint4korr(cbuf); break; case FIELDGEOM_END: goto end_of_record; } if (option_id > 0 && option_id <= 40) cbuf+= 1; else if (option_id > 40 && option_id <= 80) cbuf+= 2; else if (option_id > 80 && option_id <= 120) cbuf+= 4; else if (option_id > 120 && option_id <= 160) cbuf+= 8; else /* > 160 and <=255 */ cbuf+= cbuf[0] ? 1 + cbuf[0] : 3 + uint2korr(cbuf+1); } end_of_record: return cbuf - buf; } void Field_geom::sql_type(String &res) const { CHARSET_INFO *cs= &my_charset_latin1; switch (geom_type) { case GEOM_POINT: res.set(STRING_WITH_LEN("point"), cs); break; case GEOM_LINESTRING: res.set(STRING_WITH_LEN("linestring"), cs); break; case GEOM_POLYGON: res.set(STRING_WITH_LEN("polygon"), cs); break; case GEOM_MULTIPOINT: res.set(STRING_WITH_LEN("multipoint"), cs); break; case GEOM_MULTILINESTRING: res.set(STRING_WITH_LEN("multilinestring"), cs); break; case GEOM_MULTIPOLYGON: res.set(STRING_WITH_LEN("multipolygon"), cs); break; case GEOM_GEOMETRYCOLLECTION: res.set(STRING_WITH_LEN("geometrycollection"), cs); break; default: res.set(STRING_WITH_LEN("geometry"), cs); } } int Field_geom::store(double nr) { my_message(ER_CANT_CREATE_GEOMETRY_OBJECT, ER_THD(get_thd(), ER_CANT_CREATE_GEOMETRY_OBJECT), MYF(0)); return -1; } int Field_geom::store(longlong nr, bool unsigned_val) { my_message(ER_CANT_CREATE_GEOMETRY_OBJECT, ER_THD(get_thd(), ER_CANT_CREATE_GEOMETRY_OBJECT), MYF(0)); return -1; } int Field_geom::store_decimal(const my_decimal *) { my_message(ER_CANT_CREATE_GEOMETRY_OBJECT, ER_THD(get_thd(), ER_CANT_CREATE_GEOMETRY_OBJECT), MYF(0)); return -1; } int Field_geom::store(const char *from, uint length, CHARSET_INFO *cs) { if (!length) bzero(ptr, Field_blob::pack_length()); else { if (from == Geometry::bad_geometry_data.ptr()) goto err; // Check given WKB uint32 wkb_type; if (length < SRID_SIZE + WKB_HEADER_SIZE + 4) goto err; wkb_type= uint4korr(from + SRID_SIZE + 1); if (wkb_type < (uint32) Geometry::wkb_point || wkb_type > (uint32) Geometry::wkb_last) goto err; if (geom_type != Field::GEOM_GEOMETRY && geom_type != Field::GEOM_GEOMETRYCOLLECTION && (uint32) geom_type != wkb_type) { my_printf_error(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD, ER_THD(get_thd(), ER_TRUNCATED_WRONG_VALUE_FOR_FIELD), MYF(0), Geometry::ci_collection[geom_type]->m_name.str, Geometry::ci_collection[wkb_type]->m_name.str, field_name, (ulong) table->in_use->get_stmt_da()-> current_row_for_warning()); goto err_exit; } Field_blob::store_length(length); if ((table->copy_blobs || length <= MAX_FIELD_WIDTH) && from != value.ptr()) { // Must make a copy value.copy(from, length, cs); from= value.ptr(); } bmove(ptr + packlength, &from, sizeof(char*)); } return 0; err: my_message(ER_CANT_CREATE_GEOMETRY_OBJECT, ER_THD(get_thd(), ER_CANT_CREATE_GEOMETRY_OBJECT), MYF(0)); err_exit: bzero(ptr, Field_blob::pack_length()); return -1; } Field::geometry_type Field_geom::geometry_type_merge(geometry_type a, geometry_type b) { if (a == b) return a; return Field::GEOM_GEOMETRY; } uint Field_geom::is_equal(Create_field *new_field) { return new_field->sql_type == MYSQL_TYPE_GEOMETRY && /* - Allow ALTER..INPLACE to supertype (GEOMETRY), e.g. POINT to GEOMETRY or POLYGON to GEOMETRY. - Allow ALTER..INPLACE to the same geometry type: POINT -> POINT */ (new_field->geom_type == geom_type || new_field->geom_type == GEOM_GEOMETRY); } bool Field_geom::can_optimize_range(const Item_bool_func *cond, const Item *item, bool is_eq_func) const { return item->cmp_type() == STRING_RESULT; } #endif /*HAVE_SPATIAL*/ /**************************************************************************** ** enum type. ** This is a string which only can have a selection of different values. ** If one uses this string in a number context one gets the type number. ****************************************************************************/ enum ha_base_keytype Field_enum::key_type() const { switch (packlength) { default: return HA_KEYTYPE_BINARY; case 2: return HA_KEYTYPE_USHORT_INT; case 3: return HA_KEYTYPE_UINT24; case 4: return HA_KEYTYPE_ULONG_INT; case 8: return HA_KEYTYPE_ULONGLONG; } } void Field_enum::store_type(ulonglong value) { store_lowendian(value, ptr, packlength); } /** @note Storing a empty string in a enum field gives a warning (if there isn't a empty value in the enum) */ int Field_enum::store(const char *from,uint length,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int err= 0; char buff[STRING_BUFFER_USUAL_SIZE]; String tmpstr(buff,sizeof(buff), &my_charset_bin); /* Convert character set if necessary */ if (String::needs_conversion_on_storage(length, cs, field_charset)) { uint dummy_errors; tmpstr.copy(from, length, cs, field_charset, &dummy_errors); from= tmpstr.ptr(); length= tmpstr.length(); } /* Remove end space */ length= field_charset->cset->lengthsp(field_charset, from, length); uint tmp=find_type2(typelib, from, length, field_charset); if (!tmp) { if (length < 6) // Can't be more than 99999 enums { /* This is for reading numbers with LOAD DATA INFILE */ char *end; tmp=(uint) my_strntoul(cs,from,length,10,&end,&err); if (err || end != from+length || tmp > typelib->count) { tmp=0; set_warning(WARN_DATA_TRUNCATED, 1); } if (!get_thd()->count_cuted_fields) err= 0; } else set_warning(WARN_DATA_TRUNCATED, 1); } store_type((ulonglong) tmp); return err; } int Field_enum::store(double nr) { return Field_enum::store((longlong) nr, FALSE); } int Field_enum::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; if ((ulonglong) nr > typelib->count || nr == 0) { set_warning(WARN_DATA_TRUNCATED, 1); if (nr != 0 || get_thd()->count_cuted_fields) { nr= 0; error= 1; } } store_type((ulonglong) (uint) nr); return error; } double Field_enum::val_real(void) { return (double) Field_enum::val_int(); } longlong Field_enum::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; return read_lowendian(ptr, packlength); } /** Save the field metadata for enum fields. Saves the real type in the first byte and the pack length in the second byte of the field metadata array at index of *metadata_ptr and *(metadata_ptr + 1). @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_enum::do_save_field_metadata(uchar *metadata_ptr) { *metadata_ptr= real_type(); *(metadata_ptr + 1)= pack_length(); return 2; } String *Field_enum::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) { uint tmp=(uint) Field_enum::val_int(); if (!tmp || tmp > typelib->count) val_ptr->set("", 0, field_charset); else val_ptr->set((const char*) typelib->type_names[tmp-1], typelib->type_lengths[tmp-1], field_charset); return val_ptr; } int Field_enum::cmp(const uchar *a_ptr, const uchar *b_ptr) { uchar *old= ptr; ptr= (uchar*) a_ptr; ulonglong a=Field_enum::val_int(); ptr= (uchar*) b_ptr; ulonglong b=Field_enum::val_int(); ptr= old; return (a < b) ? -1 : (a > b) ? 1 : 0; } void Field_enum::sort_string(uchar *to,uint length __attribute__((unused))) { ulonglong value=Field_enum::val_int(); to+=packlength-1; for (uint i=0 ; i < packlength ; i++) { *to-- = (uchar) (value & 255); value>>=8; } } void Field_enum::sql_type(String &res) const { char buffer[255]; String enum_item(buffer, sizeof(buffer), res.charset()); res.length(0); res.append(STRING_WITH_LEN("enum(")); bool flag=0; uint *len= typelib->type_lengths; for (const char **pos= typelib->type_names; *pos; pos++, len++) { uint dummy_errors; if (flag) res.append(','); /* convert to res.charset() == utf8, then quote */ enum_item.copy(*pos, *len, charset(), res.charset(), &dummy_errors); append_unescaped(&res, enum_item.ptr(), enum_item.length()); flag= 1; } res.append(')'); } Field *Field_enum::make_new_field(MEM_ROOT *root, TABLE *new_table, bool keep_type) { Field_enum *res= (Field_enum*) Field::make_new_field(root, new_table, keep_type); if (res) res->typelib= copy_typelib(root, typelib); return res; } /* set type. This is a string which can have a collection of different values. Each string value is separated with a ','. For example "One,two,five" If one uses this string in a number context one gets the bits as a longlong number. */ int Field_set::store(const char *from,uint length,CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; bool got_warning= 0; int err= 0; char *not_used; uint not_used2; char buff[STRING_BUFFER_USUAL_SIZE]; String tmpstr(buff,sizeof(buff), &my_charset_bin); /* Convert character set if necessary */ if (String::needs_conversion_on_storage(length, cs, field_charset)) { uint dummy_errors; tmpstr.copy(from, length, cs, field_charset, &dummy_errors); from= tmpstr.ptr(); length= tmpstr.length(); } ulonglong tmp= find_set(typelib, from, length, field_charset, ¬_used, ¬_used2, &got_warning); if (!tmp && length && length < 22) { /* This is for reading numbers with LOAD DATA INFILE */ char *end; tmp=my_strntoull(cs,from,length,10,&end,&err); if (err || end != from+length || tmp > (ulonglong) (((longlong) 1 << typelib->count) - (longlong) 1)) { tmp=0; set_warning(WARN_DATA_TRUNCATED, 1); } } else if (got_warning) set_warning(WARN_DATA_TRUNCATED, 1); store_type(tmp); return err; } int Field_set::store(longlong nr, bool unsigned_val) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int error= 0; ulonglong max_nr; if (sizeof(ulonglong)*8 <= typelib->count) max_nr= ULONGLONG_MAX; else max_nr= (1ULL << typelib->count) - 1; if ((ulonglong) nr > max_nr) { nr&= max_nr; set_warning(WARN_DATA_TRUNCATED, 1); error=1; } store_type((ulonglong) nr); return error; } String *Field_set::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ulonglong tmp=(ulonglong) Field_enum::val_int(); uint bitnr=0; if (tmp == 0) { /* Some callers expect *val_buffer to contain the result, so we assign to it, rather than doing 'return &empty_set_string. */ *val_buffer= empty_set_string; return val_buffer; } val_buffer->set_charset(field_charset); val_buffer->length(0); while (tmp && bitnr < (uint) typelib->count) { if (tmp & 1) { if (val_buffer->length()) val_buffer->append(&field_separator, 1, &my_charset_latin1); String str(typelib->type_names[bitnr], typelib->type_lengths[bitnr], field_charset); val_buffer->append(str); } tmp>>=1; bitnr++; } return val_buffer; } void Field_set::sql_type(String &res) const { char buffer[255]; String set_item(buffer, sizeof(buffer), res.charset()); res.length(0); res.append(STRING_WITH_LEN("set(")); bool flag=0; uint *len= typelib->type_lengths; for (const char **pos= typelib->type_names; *pos; pos++, len++) { uint dummy_errors; if (flag) res.append(','); /* convert to res.charset() == utf8, then quote */ set_item.copy(*pos, *len, charset(), res.charset(), &dummy_errors); append_unescaped(&res, set_item.ptr(), set_item.length()); flag= 1; } res.append(')'); } /** @retval 1 if the fields are equally defined @retval 0 if the fields are unequally defined */ bool Field::eq_def(const Field *field) const { if (real_type() != field->real_type() || charset() != field->charset() || pack_length() != field->pack_length()) return 0; return 1; } /** Compare the first t1::count type names. @return TRUE if the type names of t1 match those of t2. FALSE otherwise. */ static bool compare_type_names(CHARSET_INFO *charset, TYPELIB *t1, TYPELIB *t2) { for (uint i= 0; i < t1->count; i++) if (my_strnncoll(charset, (const uchar*) t1->type_names[i], t1->type_lengths[i], (const uchar*) t2->type_names[i], t2->type_lengths[i])) return FALSE; return TRUE; } /** @return returns 1 if the fields are equally defined */ bool Field_enum::eq_def(const Field *field) const { TYPELIB *values; if (!Field::eq_def(field)) return FALSE; values= ((Field_enum*) field)->typelib; /* Definition must be strictly equal. */ if (typelib->count != values->count) return FALSE; return compare_type_names(field_charset, typelib, values); } /** Check whether two fields can be considered 'equal' for table alteration purposes. Fields are equal if they retain the same pack length and if new members are added to the end of the list. @return IS_EQUAL_YES if fields are compatible. IS_EQUAL_NO otherwise. */ uint Field_enum::is_equal(Create_field *new_field) { TYPELIB *values= new_field->interval; /* The fields are compatible if they have the same flags, type, charset and have the same underlying length. */ if (new_field->sql_type != real_type() || new_field->charset != field_charset || new_field->pack_length != pack_length()) return IS_EQUAL_NO; /* Changing the definition of an ENUM or SET column by adding a new enumeration or set members to the end of the list of valid member values only alters table metadata and not table data. */ if (typelib->count > values->count) return IS_EQUAL_NO; /* Check whether there are modification before the end. */ if (! compare_type_names(field_charset, typelib, new_field->interval)) return IS_EQUAL_NO; return IS_EQUAL_YES; } uchar *Field_enum::pack(uchar *to, const uchar *from, uint max_length) { DBUG_ENTER("Field_enum::pack"); DBUG_PRINT("debug", ("packlength: %d", packlength)); DBUG_DUMP("from", from, packlength); DBUG_RETURN(pack_int(to, from, packlength)); } const uchar *Field_enum::unpack(uchar *to, const uchar *from, const uchar *from_end, uint param_data) { DBUG_ENTER("Field_enum::unpack"); DBUG_PRINT("debug", ("packlength: %d", packlength)); DBUG_DUMP("from", from, packlength); DBUG_RETURN(unpack_int(to, from, from_end, packlength)); } /** @return returns 1 if the fields are equally defined */ bool Field_num::eq_def(const Field *field) const { if (!Field::eq_def(field)) return 0; Field_num *from_num= (Field_num*) field; if (unsigned_flag != from_num->unsigned_flag || (zerofill && !from_num->zerofill && !zero_pack()) || dec != from_num->dec) return 0; return 1; } /** Check whether two numeric fields can be considered 'equal' for table alteration purposes. Fields are equal if they are of the same type and retain the same pack length. */ uint Field_num::is_equal(Create_field *new_field) { return ((new_field->sql_type == real_type()) && ((new_field->flags & UNSIGNED_FLAG) == (uint) (flags & UNSIGNED_FLAG)) && ((new_field->flags & AUTO_INCREMENT_FLAG) == (uint) (flags & AUTO_INCREMENT_FLAG)) && (new_field->pack_length == pack_length())); } bool Field_enum::can_optimize_keypart_ref(const Item_bool_func *cond, const Item *item) const { DBUG_ASSERT(cmp_type() == INT_RESULT); DBUG_ASSERT(result_type() == STRING_RESULT); switch (item->cmp_type()) { case TIME_RESULT: return false; case INT_RESULT: case DECIMAL_RESULT: case REAL_RESULT: return true; case STRING_RESULT: return charset() == cond->compare_collation(); case ROW_RESULT: DBUG_ASSERT(0); break; } return false; } /* Bit field. We store the first 0 - 6 uneven bits among the null bits at the start of the record. The rest bytes are stored in the record itself. For example: CREATE TABLE t1 (a int, b bit(17), c bit(21) not null, d bit(8)); We would store data as follows in the record: Byte Bit 1 7 - reserve for delete 6 - null bit for 'a' 5 - null bit for 'b' 4 - first (high) bit of 'b' 3 - first (high) bit of 'c' 2 - second bit of 'c' 1 - third bit of 'c' 0 - forth bit of 'c' 2 7 - firth bit of 'c' 6 - null bit for 'd' 3 - 6 four bytes for 'a' 7 - 8 two bytes for 'b' 9 - 10 two bytes for 'c' 11 one byte for 'd' */ Field_bit::Field_bit(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, uchar *bit_ptr_arg, uchar bit_ofs_arg, enum utype unireg_check_arg, const char *field_name_arg) : Field(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, unireg_check_arg, field_name_arg), bit_ptr(bit_ptr_arg), bit_ofs(bit_ofs_arg), bit_len(len_arg & 7), bytes_in_rec(len_arg / 8) { DBUG_ENTER("Field_bit::Field_bit"); DBUG_PRINT("enter", ("ptr_arg: %p, null_ptr_arg: %p, len_arg: %u, bit_len: %u, bytes_in_rec: %u", ptr_arg, null_ptr_arg, len_arg, bit_len, bytes_in_rec)); flags|= UNSIGNED_FLAG; /* Ensure that Field::eq() can distinguish between two different bit fields. (two bit fields that are not null, may have same ptr and null_ptr) */ if (!null_ptr_arg) null_bit= bit_ofs_arg; DBUG_VOID_RETURN; } void Field_bit::hash(ulong *nr, ulong *nr2) { if (is_null()) { *nr^= (*nr << 1) | 1; } else { CHARSET_INFO *cs= &my_charset_bin; longlong value= Field_bit::val_int(); uchar tmp[8]; mi_int8store(tmp,value); cs->coll->hash_sort(cs, tmp, 8, nr, nr2); } } size_t Field_bit::do_last_null_byte() const { /* Code elsewhere is assuming that bytes are 8 bits, so I'm using that value instead of the correct one: CHAR_BIT. REFACTOR SUGGESTION (Matz): Change to use the correct number of bits. On systems with CHAR_BIT > 8 (not very common), the storage will lose the extra bits. */ DBUG_PRINT("test", ("bit_ofs: %d, bit_len: %d bit_ptr: 0x%lx", bit_ofs, bit_len, (long) bit_ptr)); uchar *result; if (bit_len == 0) result= null_ptr; else if (bit_ofs + bit_len > 8) result= bit_ptr + 1; else result= bit_ptr; if (result) return (size_t) (result - table->record[0]) + 1; return LAST_NULL_BYTE_UNDEF; } Field *Field_bit::new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr, uint32 length, uchar *new_null_ptr, uint new_null_bit) { Field_bit *res; if ((res= (Field_bit*) Field::new_key_field(root, new_table, new_ptr, length, new_null_ptr, new_null_bit))) { /* Move bits normally stored in null_pointer to new_ptr */ res->bit_ptr= new_ptr; res->bit_ofs= 0; if (bit_len) res->ptr++; // Store rest of data here } return res; } uint Field_bit::is_equal(Create_field *new_field) { return (new_field->sql_type == real_type() && new_field->length == max_display_length()); } int Field_bit::store(const char *from, uint length, CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int delta; for (; length && !*from; from++, length--) // skip left 0's ; delta= bytes_in_rec - length; if (delta < -1 || (delta == -1 && (uchar) *from > ((1 << bit_len) - 1)) || (!bit_len && delta < 0)) { set_rec_bits((1 << bit_len) - 1, bit_ptr, bit_ofs, bit_len); memset(ptr, 0xff, bytes_in_rec); if (get_thd()->really_abort_on_warning()) set_warning(ER_DATA_TOO_LONG, 1); else set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } /* delta is >= -1 here */ if (delta > 0) { if (bit_len) clr_rec_bits(bit_ptr, bit_ofs, bit_len); bzero(ptr, delta); memcpy(ptr + delta, from, length); } else if (delta == 0) { if (bit_len) clr_rec_bits(bit_ptr, bit_ofs, bit_len); memcpy(ptr, from, length); } else { if (bit_len) { set_rec_bits((uchar) *from, bit_ptr, bit_ofs, bit_len); from++; } memcpy(ptr, from, bytes_in_rec); } return 0; } int Field_bit::store(double nr) { return Field_bit::store((longlong) nr, FALSE); } int Field_bit::store(longlong nr, bool unsigned_val) { char buf[8]; mi_int8store(buf, nr); return store(buf, 8, NULL); } int Field_bit::store_decimal(const my_decimal *val) { int err= 0; longlong i= convert_decimal2longlong(val, 1, &err); return MY_TEST(err | store(i, TRUE)); } double Field_bit::val_real(void) { return (double) Field_bit::val_int(); } longlong Field_bit::val_int(void) { ASSERT_COLUMN_MARKED_FOR_READ; ulonglong bits= 0; if (bit_len) { bits= get_rec_bits(bit_ptr, bit_ofs, bit_len); bits<<= (bytes_in_rec * 8); } switch (bytes_in_rec) { case 0: return bits; case 1: return bits | (ulonglong) ptr[0]; case 2: return bits | mi_uint2korr(ptr); case 3: return bits | mi_uint3korr(ptr); case 4: return bits | mi_uint4korr(ptr); case 5: return bits | mi_uint5korr(ptr); case 6: return bits | mi_uint6korr(ptr); case 7: return bits | mi_uint7korr(ptr); default: return mi_uint8korr(ptr + bytes_in_rec - sizeof(longlong)); } } String *Field_bit::val_str(String *val_buffer, String *val_ptr __attribute__((unused))) { ASSERT_COLUMN_MARKED_FOR_READ; char buff[sizeof(longlong)]; uint length= MY_MIN(pack_length(), sizeof(longlong)); ulonglong bits= val_int(); mi_int8store(buff,bits); val_buffer->alloc(length); memcpy((char *) val_buffer->ptr(), buff+8-length, length); val_buffer->length(length); val_buffer->set_charset(&my_charset_bin); return val_buffer; } my_decimal *Field_bit::val_decimal(my_decimal *deciaml_value) { ASSERT_COLUMN_MARKED_FOR_READ; int2my_decimal(E_DEC_FATAL_ERROR, val_int(), 1, deciaml_value); return deciaml_value; } /* Compare two bit fields using pointers within the record. SYNOPSIS cmp_max() a Pointer to field->ptr in first record b Pointer to field->ptr in second record max_len Maximum length used in index DESCRIPTION This method is used from key_rec_cmp used by merge sorts used by partitioned index read and later other similar places. The a and b pointer must be pointers to the field in a record (not the table->record[0] necessarily) */ int Field_bit::cmp_max(const uchar *a, const uchar *b, uint max_len) { my_ptrdiff_t a_diff= a - ptr; my_ptrdiff_t b_diff= b - ptr; if (bit_len) { int flag; uchar bits_a= get_rec_bits(bit_ptr+a_diff, bit_ofs, bit_len); uchar bits_b= get_rec_bits(bit_ptr+b_diff, bit_ofs, bit_len); if ((flag= (int) (bits_a - bits_b))) return flag; } if (!bytes_in_rec) return 0; return memcmp(a, b, bytes_in_rec); } int Field_bit::key_cmp(const uchar *str, uint length) { if (bit_len) { int flag; uchar bits= get_rec_bits(bit_ptr, bit_ofs, bit_len); if ((flag= (int) (bits - *str))) return flag; str++; length--; } return memcmp(ptr, str, length); } int Field_bit::cmp_offset(uint row_offset) { if (bit_len) { int flag; uchar bits_a= get_rec_bits(bit_ptr, bit_ofs, bit_len); uchar bits_b= get_rec_bits(bit_ptr + row_offset, bit_ofs, bit_len); if ((flag= (int) (bits_a - bits_b))) return flag; } return memcmp(ptr, ptr + row_offset, bytes_in_rec); } uint Field_bit::get_key_image(uchar *buff, uint length, imagetype type_arg) { if (bit_len) { uchar bits= get_rec_bits(bit_ptr, bit_ofs, bit_len); *buff++= bits; length--; } uint tmp_data_length = MY_MIN(length, bytes_in_rec); memcpy(buff, ptr, tmp_data_length); return tmp_data_length + 1; } /** Save the field metadata for bit fields. Saves the bit length in the first byte and bytes in record in the second byte of the field metadata array at index of *metadata_ptr and *(metadata_ptr + 1). @param metadata_ptr First byte of field metadata @returns number of bytes written to metadata_ptr */ int Field_bit::do_save_field_metadata(uchar *metadata_ptr) { DBUG_ENTER("Field_bit::do_save_field_metadata"); DBUG_PRINT("debug", ("bit_len: %d, bytes_in_rec: %d", bit_len, bytes_in_rec)); /* Since this class and Field_bit_as_char have different ideas of what should be stored here, we compute the values of the metadata explicitly using the field_length. */ metadata_ptr[0]= field_length % 8; metadata_ptr[1]= field_length / 8; DBUG_RETURN(2); } /** Returns the number of bytes field uses in row-based replication row packed size. This method is used in row-based replication to determine the number of bytes that the field consumes in the row record format. This is used to skip fields in the master that do not exist on the slave. @param field_metadata Encoded size in field metadata @returns The size of the field based on the field metadata. */ uint Field_bit::pack_length_from_metadata(uint field_metadata) { uint const from_len= (field_metadata >> 8U) & 0x00ff; uint const from_bit_len= field_metadata & 0x00ff; uint const source_size= from_len + ((from_bit_len > 0) ? 1 : 0); return (source_size); } bool Field_bit::compatible_field_size(uint field_metadata, Relay_log_info * __attribute__((unused)), uint16 mflags, int *order_var) { DBUG_ENTER("Field_bit::compatible_field_size"); DBUG_ASSERT((field_metadata >> 16) == 0); uint from_bit_len= 8 * (field_metadata >> 8) + (field_metadata & 0xff); uint to_bit_len= max_display_length(); DBUG_PRINT("debug", ("from_bit_len: %u, to_bit_len: %u", from_bit_len, to_bit_len)); /* If the bit length exact flag is clear, we are dealing with an old master, so we allow some less strict behaviour if replicating by moving both bit lengths to an even multiple of 8. We do this by computing the number of bytes to store the field instead, and then compare the result. */ if (!(mflags & Table_map_log_event::TM_BIT_LEN_EXACT_F)) { from_bit_len= (from_bit_len + 7) / 8; to_bit_len= (to_bit_len + 7) / 8; } *order_var= compare(from_bit_len, to_bit_len); DBUG_RETURN(TRUE); } void Field_bit::sql_type(String &res) const { CHARSET_INFO *cs= res.charset(); ulong length= cs->cset->snprintf(cs, (char*) res.ptr(), res.alloced_length(), "bit(%d)", (int) field_length); res.length((uint) length); } uchar * Field_bit::pack(uchar *to, const uchar *from, uint max_length) { DBUG_ASSERT(max_length > 0); uint length; if (bit_len > 0) { /* We have the following: ptr Points into a field in record R1 from Points to a field in a record R2 bit_ptr Points to the byte (in the null bytes) that holds the odd bits of R1 from_bitp Points to the byte that holds the odd bits of R2 We have the following: ptr - bit_ptr = from - from_bitp We want to isolate 'from_bitp', so this gives: ptr - bit_ptr - from = - from_bitp - ptr + bit_ptr + from = from_bitp bit_ptr + from - ptr = from_bitp */ uchar bits= get_rec_bits(bit_ptr + (from - ptr), bit_ofs, bit_len); *to++= bits; } length= MY_MIN(bytes_in_rec, max_length - (bit_len > 0)); memcpy(to, from, length); return to + length; } /** Unpack a bit field from row data. This method is used to unpack a bit field from a master whose size of the field is less than that of the slave. @param to Destination of the data @param from Source of the data @param param_data Bit length (upper) and length (lower) values @return New pointer into memory based on from + length of the data */ const uchar * Field_bit::unpack(uchar *to, const uchar *from, const uchar *from_end, uint param_data) { DBUG_ENTER("Field_bit::unpack"); DBUG_PRINT("enter", ("to: %p, from: %p, param_data: 0x%x", to, from, param_data)); DBUG_PRINT("debug", ("bit_ptr: %p, bit_len: %u, bit_ofs: %u", bit_ptr, bit_len, bit_ofs)); uint const from_len= (param_data >> 8U) & 0x00ff; uint const from_bit_len= param_data & 0x00ff; DBUG_PRINT("debug", ("from_len: %u, from_bit_len: %u", from_len, from_bit_len)); /* If the parameter data is zero (i.e., undefined), or if the master and slave have the same sizes, then use the old unpack() method. */ if (param_data == 0 || ((from_bit_len == bit_len) && (from_len == bytes_in_rec))) { if (from + bytes_in_rec + MY_TEST(bit_len) > from_end) return 0; // Error in data if (bit_len > 0) { /* set_rec_bits is a macro, don't put the post-increment in the argument since that might cause strange side-effects. For the choice of the second argument, see the explanation for Field_bit::pack(). */ set_rec_bits(*from, bit_ptr + (to - ptr), bit_ofs, bit_len); from++; } memcpy(to, from, bytes_in_rec); DBUG_RETURN(from + bytes_in_rec); } /* We are converting a smaller bit field to a larger one here. To do that, we first need to construct a raw value for the original bit value stored in the from buffer. Then that needs to be converted to the larger field then sent to store() for writing to the field. Lastly the odd bits need to be masked out if the bytes_in_rec > 0. Otherwise stray bits can cause spurious values. */ uint len= from_len + ((from_bit_len > 0) ? 1 : 0); uint new_len= (field_length + 7) / 8; if (from + len > from_end || new_len < len) return 0; // Error in data char *value= (char *)my_alloca(new_len); bzero(value, new_len); memcpy(value + (new_len - len), from, len); /* Mask out the unused bits in the partial byte. TODO: Add code to the master to always mask these bits and remove the following. */ if ((from_bit_len > 0) && (from_len > 0)) value[new_len - len]= value[new_len - len] & ((1U << from_bit_len) - 1); bitmap_set_bit(table->write_set,field_index); store(value, new_len, system_charset_info); my_afree(value); DBUG_RETURN(from + len); } void Field_bit::set_default() { if (bit_len > 0) { my_ptrdiff_t const col_offset= table->s->default_values - table->record[0]; uchar bits= get_rec_bits(bit_ptr + col_offset, bit_ofs, bit_len); set_rec_bits(bits, bit_ptr, bit_ofs, bit_len); } Field::set_default(); } /* Bit field support for non-MyISAM tables. */ Field_bit_as_char::Field_bit_as_char(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg, uchar null_bit_arg, enum utype unireg_check_arg, const char *field_name_arg) :Field_bit(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, 0, 0, unireg_check_arg, field_name_arg) { flags|= UNSIGNED_FLAG; bit_len= 0; bytes_in_rec= (len_arg + 7) / 8; } int Field_bit_as_char::store(const char *from, uint length, CHARSET_INFO *cs) { ASSERT_COLUMN_MARKED_FOR_WRITE_OR_COMPUTED; int delta; uchar bits= (uchar) (field_length & 7); for (; length && !*from; from++, length--) // skip left 0's ; delta= bytes_in_rec - length; if (delta < 0 || (delta == 0 && bits && (uint) (uchar) *from >= (uint) (1 << bits))) { memset(ptr, 0xff, bytes_in_rec); if (bits) *ptr&= ((1 << bits) - 1); /* set first uchar */ if (get_thd()->really_abort_on_warning()) set_warning(ER_DATA_TOO_LONG, 1); else set_warning(ER_WARN_DATA_OUT_OF_RANGE, 1); return 1; } bzero(ptr, delta); memcpy(ptr + delta, from, length); return 0; } void Field_bit_as_char::sql_type(String &res) const { CHARSET_INFO *cs= res.charset(); ulong length= cs->cset->snprintf(cs, (char*) res.ptr(), res.alloced_length(), "bit(%d)", (int) field_length); res.length((uint) length); } /***************************************************************************** Handling of field and Create_field *****************************************************************************/ /** Convert create_field::length from number of characters to number of bytes. */ void Column_definition::create_length_to_internal_length(void) { switch (sql_type) { case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VARCHAR: length*= charset->mbmaxlen; key_length= length; pack_length= calc_pack_length(sql_type, length); break; case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: /* Pack_length already calculated in sql_parse.cc */ length*= charset->mbmaxlen; key_length= pack_length; break; case MYSQL_TYPE_BIT: if (f_bit_as_char(pack_flag)) { key_length= pack_length= ((length + 7) & ~7) / 8; } else { pack_length= length / 8; /* We need one extra byte to store the bits we save among the null bits */ key_length= pack_length + MY_TEST(length & 7); } break; case MYSQL_TYPE_NEWDECIMAL: key_length= pack_length= my_decimal_get_binary_size(my_decimal_length_to_precision(length, decimals, flags & UNSIGNED_FLAG), decimals); break; default: key_length= pack_length= calc_pack_length(sql_type, length); break; } } bool check_expression(Virtual_column_info *vcol, const char *type, const char *name, bool must_be_determinstic) { bool ret; Item::vcol_func_processor_result res; /* We use 2 bytes to store the expression length */ if (vcol->expr_str.length > UINT_MAX32) { my_error(ER_EXPRESSION_IS_TOO_BIG, MYF(0), type, name); return TRUE; } /* Walk through the Item tree checking if all items are valid to be part of the virtual column */ res.errors= 0; ret= vcol->expr_item->walk(&Item::check_vcol_func_processor, 0, &res); vcol->flags= res.errors; if (ret || (res.errors & (VCOL_IMPOSSIBLE | (must_be_determinstic ? VCOL_NON_DETERMINISTIC | VCOL_TIME_FUNC: 0)))) { my_error(ER_VIRTUAL_COLUMN_FUNCTION_IS_NOT_ALLOWED, MYF(0), res.name, type, name); return TRUE; } /* Safe to call before fix_fields as long as vcol's don't include sub queries (which is now checked in check_vcol_func_processor) */ if (vcol->expr_item->check_cols(1)) return TRUE; return FALSE; } bool Column_definition::check(THD *thd) { const uint conditional_type_modifiers= AUTO_INCREMENT_FLAG; uint sign_len, allowed_type_modifier= 0; ulong max_field_charlength= MAX_FIELD_CHARLENGTH; DBUG_ENTER("Column_definition::check"); /* Initialize data for a computed field */ if (vcol_info) { DBUG_ASSERT(vcol_info->expr_item); vcol_info->set_field_type(sql_type); if (check_expression(vcol_info, "GENERATED ALWAYS AS", field_name, vcol_info->stored_in_db)) DBUG_RETURN(TRUE); } if (check_constraint && check_expression(check_constraint, "CHECK", field_name, 0)) DBUG_RETURN(1); if (default_value) { Item *def_expr= default_value->expr_item; if (check_expression(default_value, "DEFAULT", field_name, 0)) DBUG_RETURN(TRUE); /* Constant's are stored in the 'empty_record', except for blobs */ if (def_expr->basic_const_item()) { if (def_expr->type() == Item::NULL_ITEM) { default_value= 0; if ((flags & (NOT_NULL_FLAG | AUTO_INCREMENT_FLAG)) == NOT_NULL_FLAG) { my_error(ER_INVALID_DEFAULT, MYF(0), field_name); DBUG_RETURN(1); } } } } if (default_value && (flags & AUTO_INCREMENT_FLAG)) { my_error(ER_INVALID_DEFAULT, MYF(0), field_name); DBUG_RETURN(1); } if (default_value && !default_value->expr_item->basic_const_item()) { Item *def_expr= default_value->expr_item; unireg_check= Field::NONE; /* NOW() for TIMESTAMP and DATETIME fields are handled as in MariaDB 10.1 by marking them in unireg_check. */ if (def_expr->type() == Item::FUNC_ITEM && (static_cast(def_expr)->functype() == Item_func::NOW_FUNC && (mysql_type_to_time_type(sql_type) == MYSQL_TIMESTAMP_DATETIME))) { /* We are not checking the number of decimals for timestamps to allow one to write (for historical reasons) TIMESTAMP(6) NOT NULL DEFAULT CURRENT_TIMESTAMP Instead we are going to use the number of decimals specifed by the column. */ default_value= 0; unireg_check= (on_update ? Field::TIMESTAMP_DNUN_FIELD : // for insertions and for updates. Field::TIMESTAMP_DN_FIELD); // only for insertions. } else if (on_update) unireg_check= Field::TIMESTAMP_UN_FIELD; // function default for updates } else { /* No function default for insertions. Either NULL or a constant. */ if (on_update) unireg_check= Field::TIMESTAMP_UN_FIELD; // function default for updates else unireg_check= ((flags & AUTO_INCREMENT_FLAG) ? Field::NEXT_NUMBER : // Automatic increment. Field::NONE); } if (on_update && (mysql_type_to_time_type(sql_type) != MYSQL_TIMESTAMP_DATETIME || on_update->decimals < length)) { my_error(ER_INVALID_ON_UPDATE, MYF(0), field_name); DBUG_RETURN(TRUE); } sign_len= flags & UNSIGNED_FLAG ? 0 : 1; switch (sql_type) { case MYSQL_TYPE_TINY: if (!length) length= MAX_TINYINT_WIDTH+sign_len; allowed_type_modifier= AUTO_INCREMENT_FLAG; break; case MYSQL_TYPE_SHORT: if (!length) length= MAX_SMALLINT_WIDTH+sign_len; allowed_type_modifier= AUTO_INCREMENT_FLAG; break; case MYSQL_TYPE_INT24: if (!length) length= MAX_MEDIUMINT_WIDTH+sign_len; allowed_type_modifier= AUTO_INCREMENT_FLAG; break; case MYSQL_TYPE_LONG: if (!length) length= MAX_INT_WIDTH+sign_len; allowed_type_modifier= AUTO_INCREMENT_FLAG; break; case MYSQL_TYPE_LONGLONG: if (!length) length= MAX_BIGINT_WIDTH; allowed_type_modifier= AUTO_INCREMENT_FLAG; break; case MYSQL_TYPE_NULL: break; case MYSQL_TYPE_NEWDECIMAL: if (decimals >= NOT_FIXED_DEC) { my_error(ER_TOO_BIG_SCALE, MYF(0), static_cast(decimals), field_name, static_cast(NOT_FIXED_DEC - 1)); DBUG_RETURN(TRUE); } my_decimal_trim(&length, &decimals); if (length > DECIMAL_MAX_PRECISION) { my_error(ER_TOO_BIG_PRECISION, MYF(0), length, field_name, DECIMAL_MAX_PRECISION); DBUG_RETURN(TRUE); } if (length < decimals) { my_error(ER_M_BIGGER_THAN_D, MYF(0), field_name); DBUG_RETURN(TRUE); } length= my_decimal_precision_to_length(length, decimals, flags & UNSIGNED_FLAG); pack_length= my_decimal_get_binary_size(length, decimals); break; case MYSQL_TYPE_VARCHAR: /* Long VARCHAR's are automaticly converted to blobs in mysql_prepare_table if they don't have a default value */ max_field_charlength= MAX_FIELD_VARCHARLENGTH; break; case MYSQL_TYPE_STRING: break; case MYSQL_TYPE_BLOB: case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_GEOMETRY: flags|= BLOB_FLAG; break; case MYSQL_TYPE_YEAR: if (!length || length != 2) length= 4; /* Default length */ flags|= ZEROFILL_FLAG | UNSIGNED_FLAG; break; case MYSQL_TYPE_FLOAT: /* change FLOAT(precision) to FLOAT or DOUBLE */ allowed_type_modifier= AUTO_INCREMENT_FLAG; if (!length && !decimals) { length= MAX_FLOAT_STR_LENGTH; decimals= NOT_FIXED_DEC; } if (length < decimals && decimals != NOT_FIXED_DEC) { my_error(ER_M_BIGGER_THAN_D, MYF(0), field_name); DBUG_RETURN(TRUE); } if (decimals != NOT_FIXED_DEC && decimals >= FLOATING_POINT_DECIMALS) { my_error(ER_TOO_BIG_SCALE, MYF(0), static_cast(decimals), field_name, static_cast(FLOATING_POINT_DECIMALS-1)); DBUG_RETURN(TRUE); } break; case MYSQL_TYPE_DOUBLE: allowed_type_modifier= AUTO_INCREMENT_FLAG; if (!length && !decimals) { length= DBL_DIG+7; decimals= NOT_FIXED_DEC; } if (length < decimals && decimals != NOT_FIXED_DEC) { my_error(ER_M_BIGGER_THAN_D, MYF(0), field_name); DBUG_RETURN(TRUE); } if (decimals != NOT_FIXED_DEC && decimals >= FLOATING_POINT_DECIMALS) { my_error(ER_TOO_BIG_SCALE, MYF(0), static_cast(decimals), field_name, static_cast(FLOATING_POINT_DECIMALS-1)); DBUG_RETURN(TRUE); } break; case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_TIMESTAMP2: if (length > MAX_DATETIME_PRECISION) { my_error(ER_TOO_BIG_PRECISION, MYF(0), length, field_name, MAX_DATETIME_PRECISION); DBUG_RETURN(TRUE); } length+= MAX_DATETIME_WIDTH + (length ? 1 : 0); flags|= UNSIGNED_FLAG; break; case MYSQL_TYPE_DATE: /* We don't support creation of MYSQL_TYPE_DATE anymore */ sql_type= MYSQL_TYPE_NEWDATE; /* fall trough */ case MYSQL_TYPE_NEWDATE: length= MAX_DATE_WIDTH; break; case MYSQL_TYPE_TIME: case MYSQL_TYPE_TIME2: if (length > MAX_DATETIME_PRECISION) { my_error(ER_TOO_BIG_PRECISION, MYF(0), length, field_name, MAX_DATETIME_PRECISION); DBUG_RETURN(TRUE); } length+= MIN_TIME_WIDTH + (length ? 1 : 0); break; case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_DATETIME2: if (length > MAX_DATETIME_PRECISION) { my_error(ER_TOO_BIG_PRECISION, MYF(0), length, field_name, MAX_DATETIME_PRECISION); DBUG_RETURN(TRUE); } length+= MAX_DATETIME_WIDTH + (length ? 1 : 0); break; case MYSQL_TYPE_SET: pack_length= get_set_pack_length(interval_list.elements); break; case MYSQL_TYPE_ENUM: /* Should be safe. */ pack_length= get_enum_pack_length(interval_list.elements); break; case MYSQL_TYPE_VAR_STRING: DBUG_ASSERT(0); /* Impossible. */ break; case MYSQL_TYPE_BIT: { if (!length) length= 1; if (length > MAX_BIT_FIELD_LENGTH) { my_error(ER_TOO_BIG_DISPLAYWIDTH, MYF(0), field_name, static_cast(MAX_BIT_FIELD_LENGTH)); DBUG_RETURN(TRUE); } pack_length= (length + 7) / 8; break; } case MYSQL_TYPE_DECIMAL: DBUG_ASSERT(0); /* Was obsolete */ } /* Remember the value of length */ char_length= length; /* Set NO_DEFAULT_VALUE_FLAG if this field doesn't have a default value and it is NOT NULL, not an AUTO_INCREMENT field. We need to do this check here and in mysql_create_prepare_table() as sp_head::fill_field_definition() calls this function. */ if (!default_value && unireg_check == Field::NONE && (flags & NOT_NULL_FLAG)) { /* TIMESTAMP columns get implicit DEFAULT value when explicit_defaults_for_timestamp is not set. */ if (opt_explicit_defaults_for_timestamp || !is_timestamp_type(sql_type)) { flags|= NO_DEFAULT_VALUE_FLAG; } } if (!(flags & BLOB_FLAG) && ((length > max_field_charlength && sql_type != MYSQL_TYPE_VARCHAR) || (length == 0 && sql_type != MYSQL_TYPE_ENUM && sql_type != MYSQL_TYPE_SET && sql_type != MYSQL_TYPE_STRING && sql_type != MYSQL_TYPE_VARCHAR && sql_type != MYSQL_TYPE_GEOMETRY))) { my_error((sql_type == MYSQL_TYPE_VAR_STRING || sql_type == MYSQL_TYPE_VARCHAR || sql_type == MYSQL_TYPE_STRING) ? ER_TOO_BIG_FIELDLENGTH : ER_TOO_BIG_DISPLAYWIDTH, MYF(0), field_name, max_field_charlength); /* purecov: inspected */ DBUG_RETURN(TRUE); } else if (length > MAX_FIELD_BLOBLENGTH) { my_error(ER_TOO_BIG_DISPLAYWIDTH, MYF(0), field_name, MAX_FIELD_BLOBLENGTH); DBUG_RETURN(1); } if ((~allowed_type_modifier) & flags & conditional_type_modifiers) { my_error(ER_WRONG_FIELD_SPEC, MYF(0), field_name); DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); /* success */ } enum_field_types get_blob_type_from_length(ulong length) { enum_field_types type; if (length < 256) type= MYSQL_TYPE_TINY_BLOB; else if (length < 65536) type= MYSQL_TYPE_BLOB; else if (length < 256L*256L*256L) type= MYSQL_TYPE_MEDIUM_BLOB; else type= MYSQL_TYPE_LONG_BLOB; return type; } /* Make a field from the .frm file info */ uint32 calc_pack_length(enum_field_types type,uint32 length) { switch (type) { case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_STRING: case MYSQL_TYPE_DECIMAL: return (length); case MYSQL_TYPE_VARCHAR: return (length + (length < 256 ? 1: 2)); case MYSQL_TYPE_YEAR: case MYSQL_TYPE_TINY : return 1; case MYSQL_TYPE_SHORT : return 2; case MYSQL_TYPE_INT24: case MYSQL_TYPE_NEWDATE: return 3; case MYSQL_TYPE_TIME: return length > MIN_TIME_WIDTH ? time_hires_bytes[length - 1 - MIN_TIME_WIDTH] : 3; case MYSQL_TYPE_TIME2: return length > MIN_TIME_WIDTH ? my_time_binary_length(length - MIN_TIME_WIDTH - 1) : 3; case MYSQL_TYPE_TIMESTAMP: return length > MAX_DATETIME_WIDTH ? 4 + sec_part_bytes[length - 1 - MAX_DATETIME_WIDTH] : 4; case MYSQL_TYPE_TIMESTAMP2: return length > MAX_DATETIME_WIDTH ? my_timestamp_binary_length(length - MAX_DATETIME_WIDTH - 1) : 4; case MYSQL_TYPE_DATE: case MYSQL_TYPE_LONG : return 4; case MYSQL_TYPE_FLOAT : return sizeof(float); case MYSQL_TYPE_DOUBLE: return sizeof(double); case MYSQL_TYPE_DATETIME: return length > MAX_DATETIME_WIDTH ? datetime_hires_bytes[length - 1 - MAX_DATETIME_WIDTH] : 8; case MYSQL_TYPE_DATETIME2: return length > MAX_DATETIME_WIDTH ? my_datetime_binary_length(length - MAX_DATETIME_WIDTH - 1) : 5; case MYSQL_TYPE_LONGLONG: return 8; /* Don't crash if no longlong */ case MYSQL_TYPE_NULL : return 0; case MYSQL_TYPE_TINY_BLOB: return 1+portable_sizeof_char_ptr; case MYSQL_TYPE_BLOB: return 2+portable_sizeof_char_ptr; case MYSQL_TYPE_MEDIUM_BLOB: return 3+portable_sizeof_char_ptr; case MYSQL_TYPE_LONG_BLOB: return 4+portable_sizeof_char_ptr; case MYSQL_TYPE_GEOMETRY: return 4+portable_sizeof_char_ptr; case MYSQL_TYPE_SET: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_NEWDECIMAL: abort(); return 0; // This shouldn't happen case MYSQL_TYPE_BIT: return length / 8; default: return 0; } } uint pack_length_to_packflag(uint type) { switch (type) { case 1: return f_settype((uint) MYSQL_TYPE_TINY); case 2: return f_settype((uint) MYSQL_TYPE_SHORT); case 3: return f_settype((uint) MYSQL_TYPE_INT24); case 4: return f_settype((uint) MYSQL_TYPE_LONG); case 8: return f_settype((uint) MYSQL_TYPE_LONGLONG); } return 0; // This shouldn't happen } Field *make_field(TABLE_SHARE *share, MEM_ROOT *mem_root, uchar *ptr, uint32 field_length, uchar *null_pos, uchar null_bit, uint pack_flag, enum_field_types field_type, CHARSET_INFO *field_charset, Field::geometry_type geom_type, uint srid, Field::utype unireg_check, TYPELIB *interval, const char *field_name) { uchar *UNINIT_VAR(bit_ptr); uchar UNINIT_VAR(bit_offset); if (field_type == MYSQL_TYPE_BIT && !f_bit_as_char(pack_flag)) { bit_ptr= null_pos; bit_offset= null_bit; if (f_maybe_null(pack_flag)) // if null field { bit_ptr+= (null_bit == 7); // shift bit_ptr and bit_offset bit_offset= (bit_offset + 1) & 7; } } if (!f_maybe_null(pack_flag)) { null_pos=0; null_bit=0; } else { null_bit= ((uchar) 1) << null_bit; } DBUG_PRINT("debug", ("field_type: %d, field_length: %u, interval: %p, pack_flag: %s%s%s%s%s", field_type, field_length, interval, FLAGSTR(pack_flag, FIELDFLAG_BINARY), FLAGSTR(pack_flag, FIELDFLAG_INTERVAL), FLAGSTR(pack_flag, FIELDFLAG_NUMBER), FLAGSTR(pack_flag, FIELDFLAG_PACK), FLAGSTR(pack_flag, FIELDFLAG_BLOB))); if (f_is_alpha(pack_flag)) { if (!f_is_packed(pack_flag)) { if (field_type == MYSQL_TYPE_STRING || field_type == MYSQL_TYPE_DECIMAL || // 3.23 or 4.0 string field_type == MYSQL_TYPE_VAR_STRING) return new (mem_root) Field_string(ptr,field_length,null_pos,null_bit, unireg_check, field_name, field_charset); if (field_type == MYSQL_TYPE_VARCHAR) return new (mem_root) Field_varstring(ptr,field_length, HA_VARCHAR_PACKLENGTH(field_length), null_pos,null_bit, unireg_check, field_name, share, field_charset); return 0; // Error } uint pack_length=calc_pack_length((enum_field_types) f_packtype(pack_flag), field_length); #ifdef HAVE_SPATIAL if (f_is_geom(pack_flag)) { status_var_increment(current_thd->status_var.feature_gis); return new (mem_root) Field_geom(ptr,null_pos,null_bit, unireg_check, field_name, share, pack_length, geom_type, srid); } #endif if (f_is_blob(pack_flag)) return new (mem_root) Field_blob(ptr,null_pos,null_bit, unireg_check, field_name, share, pack_length, field_charset); if (interval) { if (f_is_enum(pack_flag)) return new (mem_root) Field_enum(ptr,field_length,null_pos,null_bit, unireg_check, field_name, pack_length, interval, field_charset); else return new (mem_root) Field_set(ptr,field_length,null_pos,null_bit, unireg_check, field_name, pack_length, interval, field_charset); } } switch (field_type) { case MYSQL_TYPE_DECIMAL: return new (mem_root) Field_decimal(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_decimals(pack_flag), f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_NEWDECIMAL: return new (mem_root) Field_new_decimal(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_decimals(pack_flag), f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_FLOAT: { int decimals= f_decimals(pack_flag); if (decimals == FLOATING_POINT_DECIMALS) decimals= NOT_FIXED_DEC; return new (mem_root) Field_float(ptr,field_length,null_pos,null_bit, unireg_check, field_name, decimals, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag)== 0); } case MYSQL_TYPE_DOUBLE: { int decimals= f_decimals(pack_flag); if (decimals == FLOATING_POINT_DECIMALS) decimals= NOT_FIXED_DEC; return new (mem_root) Field_double(ptr,field_length,null_pos,null_bit, unireg_check, field_name, decimals, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag)== 0); } case MYSQL_TYPE_TINY: return new (mem_root) Field_tiny(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_SHORT: return new (mem_root) Field_short(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_INT24: return new (mem_root) Field_medium(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_LONG: return new (mem_root) Field_long(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_LONGLONG: return new (mem_root) Field_longlong(ptr,field_length,null_pos,null_bit, unireg_check, field_name, f_is_zerofill(pack_flag) != 0, f_is_dec(pack_flag) == 0); case MYSQL_TYPE_TIMESTAMP: { uint dec= field_length > MAX_DATETIME_WIDTH ? field_length - MAX_DATETIME_WIDTH - 1: 0; return new_Field_timestamp(mem_root, ptr, null_pos, null_bit, unireg_check, field_name, share, dec); } case MYSQL_TYPE_TIMESTAMP2: { uint dec= field_length > MAX_DATETIME_WIDTH ? field_length - MAX_DATETIME_WIDTH - 1: 0; return new (mem_root) Field_timestampf(ptr, null_pos, null_bit, unireg_check, field_name, share, dec); } case MYSQL_TYPE_YEAR: return new (mem_root) Field_year(ptr,field_length,null_pos,null_bit, unireg_check, field_name); case MYSQL_TYPE_DATE: return new (mem_root) Field_date(ptr,null_pos,null_bit, unireg_check, field_name); case MYSQL_TYPE_NEWDATE: return new (mem_root) Field_newdate(ptr,null_pos,null_bit, unireg_check, field_name); case MYSQL_TYPE_TIME: { uint dec= field_length > MIN_TIME_WIDTH ? field_length - MIN_TIME_WIDTH - 1: 0; return new_Field_time(mem_root, ptr, null_pos, null_bit, unireg_check, field_name, dec); } case MYSQL_TYPE_TIME2: { uint dec= field_length > MIN_TIME_WIDTH ? field_length - MIN_TIME_WIDTH - 1: 0; return new (mem_root) Field_timef(ptr, null_pos, null_bit, unireg_check, field_name, dec); } case MYSQL_TYPE_DATETIME: { uint dec= field_length > MAX_DATETIME_WIDTH ? field_length - MAX_DATETIME_WIDTH - 1: 0; return new_Field_datetime(mem_root, ptr, null_pos, null_bit, unireg_check, field_name, dec); } case MYSQL_TYPE_DATETIME2: { uint dec= field_length > MAX_DATETIME_WIDTH ? field_length - MAX_DATETIME_WIDTH - 1: 0; return new (mem_root) Field_datetimef(ptr, null_pos, null_bit, unireg_check, field_name, dec); } case MYSQL_TYPE_NULL: return new (mem_root) Field_null(ptr, field_length, unireg_check, field_name, field_charset); case MYSQL_TYPE_BIT: return (f_bit_as_char(pack_flag) ? new (mem_root) Field_bit_as_char(ptr, field_length, null_pos, null_bit, unireg_check, field_name) : new (mem_root) Field_bit(ptr, field_length, null_pos, null_bit, bit_ptr, bit_offset, unireg_check, field_name)); default: // Impossible (Wrong version) break; } return 0; } /** Create a field suitable for create of table. */ Column_definition::Column_definition(THD *thd, Field *old_field, Field *orig_field) { field_name= old_field->field_name; length= old_field->field_length; flags= old_field->flags; unireg_check=old_field->unireg_check; pack_length=old_field->pack_length(); key_length= old_field->key_length(); sql_type= old_field->real_type(); charset= old_field->charset(); // May be NULL ptr comment= old_field->comment; decimals= old_field->decimals(); vcol_info= old_field->vcol_info; default_value= old_field->default_value; check_constraint= old_field->check_constraint; option_list= old_field->option_list; switch (sql_type) { case MYSQL_TYPE_BLOB: switch (pack_length - portable_sizeof_char_ptr) { case 1: sql_type= MYSQL_TYPE_TINY_BLOB; break; case 2: sql_type= MYSQL_TYPE_BLOB; break; case 3: sql_type= MYSQL_TYPE_MEDIUM_BLOB; break; default: sql_type= MYSQL_TYPE_LONG_BLOB; break; } length/= charset->mbmaxlen; key_length/= charset->mbmaxlen; break; case MYSQL_TYPE_STRING: /* Change CHAR -> VARCHAR if dynamic record length */ if (old_field->type() == MYSQL_TYPE_VAR_STRING) sql_type= MYSQL_TYPE_VARCHAR; /* fall through */ case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VAR_STRING: /* This is corrected in create_length_to_internal_length */ length= (length+charset->mbmaxlen-1) / charset->mbmaxlen; break; #ifdef HAVE_SPATIAL case MYSQL_TYPE_GEOMETRY: geom_type= ((Field_geom*)old_field)->geom_type; srid= ((Field_geom*)old_field)->srid; break; #endif case MYSQL_TYPE_YEAR: if (length != 4) { char buff[sizeof("YEAR()") + MY_INT64_NUM_DECIMAL_DIGITS + 1]; my_snprintf(buff, sizeof(buff), "YEAR(%lu)", length); push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE, ER_WARN_DEPRECATED_SYNTAX, ER_THD(thd, ER_WARN_DEPRECATED_SYNTAX), buff, "YEAR(4)"); } break; case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: /* Floating points are stored with FLOATING_POINT_DECIMALS but internally in MariaDB used with NOT_FIXED_DEC, which is >= FLOATING_POINT_DECIMALS. */ if (decimals >= FLOATING_POINT_DECIMALS) decimals= NOT_FIXED_DEC; break; default: break; } if (flags & (ENUM_FLAG | SET_FLAG)) interval= ((Field_enum*) old_field)->typelib; else interval=0; char_length= length; /* Copy the default (constant/function) from the column object orig_field, if supplied. We do this if all these conditions are met: - The column allows a default. - The column type is not a BLOB type (as BLOB's doesn't have constant defaults) - The original column (old_field) was properly initialized with a record buffer pointer. - The column didn't have a default expression */ if (!(flags & (NO_DEFAULT_VALUE_FLAG | BLOB_FLAG)) && old_field->ptr != NULL && orig_field != NULL && !default_value) { bool default_now= false; if (real_type_with_now_as_default(sql_type)) { // The SQL type of the new field allows a function default: default_now= orig_field->has_insert_default_function(); bool update_now= orig_field->has_update_default_function(); if (default_now && update_now) unireg_check= Field::TIMESTAMP_DNUN_FIELD; else if (default_now) unireg_check= Field::TIMESTAMP_DN_FIELD; else if (update_now) unireg_check= Field::TIMESTAMP_UN_FIELD; } if (!default_now) // Give a constant default { /* Get the value from default_values */ const uchar *dv= orig_field->table->s->default_values; if (!orig_field->is_null_in_record(dv)) { StringBuffer tmp(charset); String *res= orig_field->val_str(&tmp, orig_field->ptr_in_record(dv)); char *pos= (char*) thd->strmake(res->ptr(), res->length()); default_value= new (thd->mem_root) Virtual_column_info(); default_value->expr_str.str= pos; default_value->expr_str.length= res->length(); default_value->expr_item= new (thd->mem_root) Item_string(thd, pos, res->length(), charset); default_value->utf8= 0; } } } } /** maximum possible character length for blob. This method is used in Item_field::set_field to calculate max_length for Item. For example: CREATE TABLE t2 SELECT CONCAT(tinyblob_utf8_column) FROM t1; must create a "VARCHAR(255) CHARACTER SET utf8" column. @return length */ uint32 Field_blob::char_length() { switch (packlength) { case 1: return 255; case 2: return 65535; case 3: return 16777215; case 4: return (uint32) 4294967295U; default: DBUG_ASSERT(0); // we should never go here return 0; } } /** Makes a clone of this object for ALTER/CREATE TABLE @param mem_root MEM_ROOT where to clone the field */ Create_field *Create_field::clone(MEM_ROOT *mem_root) const { Create_field *res= new (mem_root) Create_field(*this); return res; } /** Return true if default is an expression that must be saved explicitely This is: - Not basic constants - If field is a BLOB (Which doesn't support normal DEFAULT) */ bool Column_definition::has_default_expression() { return (default_value && (!default_value->expr_item->basic_const_item() || (flags & BLOB_FLAG))); } /** maximum possible display length for blob. @return length */ uint32 Field_blob::max_display_length() { switch (packlength) { case 1: return 255 * field_charset->mbmaxlen; case 2: return 65535 * field_charset->mbmaxlen; case 3: return 16777215 * field_charset->mbmaxlen; case 4: return (uint32) 4294967295U; default: DBUG_ASSERT(0); // we should never go here return 0; } } /***************************************************************************** Warning handling *****************************************************************************/ /** * Produce warning or note about data saved into field. @param level - level of message (Note/Warning/Error) @param code - error code of message to be produced @param cut_increment - whenever we should increase cut fields count @note This function won't produce warning and increase cut fields counter if count_cuted_fields == CHECK_FIELD_IGNORE for current thread. if count_cuted_fields == CHECK_FIELD_IGNORE then we ignore notes. This allows us to avoid notes in optimisation, like convert_constant_item(). @retval 1 if count_cuted_fields == CHECK_FIELD_IGNORE and error level is not NOTE @retval 0 otherwise */ bool Field::set_warning(Sql_condition::enum_warning_level level, uint code, int cut_increment) const { /* If this field was created only for type conversion purposes it will have table == NULL. */ THD *thd= get_thd(); if (thd->count_cuted_fields) { thd->cuted_fields+= cut_increment; push_warning_printf(thd, level, code, ER_THD(thd, code), field_name, thd->get_stmt_da()->current_row_for_warning()); return 0; } return level >= Sql_condition::WARN_LEVEL_WARN; } /** Produce warning or note about datetime string data saved into field. @param level level of message (Note/Warning/Error) @param code error code of message to be produced @param str string value which we tried to save @param ts_type type of datetime value (datetime/date/time) @param cuted_increment whenever we should increase cut fields count or not @note This function will always produce some warning but won't increase cut fields counter if count_cuted_fields ==FIELD_CHECK_IGNORE for current thread. See also bug#2336 */ void Field::set_datetime_warning(Sql_condition::enum_warning_level level, uint code, const ErrConv *str, timestamp_type ts_type, int cuted_increment) const { THD *thd= get_thd(); if (thd->really_abort_on_warning() && level >= Sql_condition::WARN_LEVEL_WARN) make_truncated_value_warning(thd, level, str, ts_type, field_name); else set_warning(level, code, cuted_increment); } void Field::set_warning_truncated_wrong_value(const char *type_arg, const char *value) { THD *thd= get_thd(); push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_TRUNCATED_WRONG_VALUE_FOR_FIELD, ER_THD(thd, ER_TRUNCATED_WRONG_VALUE_FOR_FIELD), type_arg, value, field_name, static_cast(thd->get_stmt_da()-> current_row_for_warning())); } /* @brief Return possible keys for a field @details Return bit map of keys over this field which can be used by the range optimizer. For a field of a generic table such keys are all keys that starts from this field. For a field of a materialized derived table/view such keys are all keys in which this field takes a part. This is less restrictive as keys for a materialized derived table/view are generated on the fly from present fields, thus the case when a field for the beginning of a key is absent is impossible. @return map of possible keys */ key_map Field::get_possible_keys() { DBUG_ASSERT(table->pos_in_table_list); return (table->pos_in_table_list->is_materialized_derived() ? part_of_key : key_start); } /** Mark the field as having an explicit default value. @param value if available, the value that the field is being set to @note Fields that have an explicit default value should not be updated automatically via the DEFAULT or ON UPDATE functions. The functions that deal with data change functionality (INSERT/UPDATE/LOAD), determine if there is an explicit value for each field before performing the data change, and call this method to mark the field. If the 'value' parameter is NULL, then the field is marked unconditionally as having an explicit value. If 'value' is not NULL, then it can be further analyzed to check if it really should count as a value. */ void Field::set_explicit_default(Item *value) { if (value->type() == Item::DEFAULT_VALUE_ITEM && !((Item_default_value*)value)->arg) return; set_has_explicit_value(); } bool Field::validate_value_in_record_with_warn(THD *thd, const uchar *record) { my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); bool rc; if ((rc= validate_value_in_record(thd, record))) { // Get and report val_str() for the DEFAULT value StringBuffer tmp; val_str(&tmp, ptr_in_record(record)); push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_INVALID_DEFAULT_VALUE_FOR_FIELD, ER_THD(thd, ER_INVALID_DEFAULT_VALUE_FOR_FIELD), ErrConvString(&tmp).ptr(), field_name); } dbug_tmp_restore_column_map(table->read_set, old_map); return rc; }