/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef GCALC_TOOLS_INCLUDED #define GCALC_TOOLS_INCLUDED #include "gcalc_slicescan.h" /* The Gcalc_function class objects are used to check for a binary relation. The relation can be constructed with the prefix notation using predicates as op_not (as !A) op_union ( A || B || C... ) op_intersection ( A && B && C ... ) op_symdifference ( A+B+C+... == 1 ) op_difference ( A && !(B||C||..)) with the calls of the add_operation(operation, n_operands) method. The relation is calculated over a set of shapes, that in turn have to be added with the add_new_shape() method. All the 'shapes' can be set to 0 with clear_shapes() method and single value can be changed with the invert_state() method. Then the value of the relation can be calculated with the count() method. Frequently used method is find_function(Gcalc_scan_iterator it) that iterates through the 'it' until the relation becomes TRUE. */ class Gcalc_function { private: String shapes_buffer; String function_buffer; const char *cur_func; int *i_states; uint32 cur_object_id; uint n_shapes; int count_internal(); public: enum op_type { op_shape= 0, op_not= 0x80000000, op_union= 0x10000000, op_intersection= 0x20000000, op_symdifference= 0x30000000, op_difference= 0x40000000, op_backdifference= 0x50000000, op_any= 0x70000000 }; enum shape_type { shape_point= 0, shape_line= 1, shape_polygon= 2, shape_hole= 3 }; Gcalc_function() : n_shapes(0) {} gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind); /* Adds the leaf operation that returns the shape value. Also adds the shape to the list of operands. */ int single_shape_op(shape_type shape_kind, gcalc_shape_info *si); void add_operation(op_type operation, uint32 n_operands); void add_not_operation(op_type operation, uint32 n_operands); uint32 get_next_operation_pos() { return function_buffer.length(); } void add_operands_to_op(uint32 operation_pos, uint32 n_operands); void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; } int reserve_shape_buffer(uint n_shapes); int reserve_op_buffer(uint n_ops); uint get_nshapes() const { return n_shapes; } shape_type get_shape_kind(gcalc_shape_info si) const { return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4)); } void set_states(int *shape_states) { i_states= shape_states; } int alloc_states(); void invert_state(gcalc_shape_info shape) { i_states[shape]^= 1; } int get_state(gcalc_shape_info shape) { return i_states[shape]; } int count() { cur_func= function_buffer.ptr(); return count_internal(); } void clear_state() { bzero(i_states, n_shapes * sizeof(int)); } void reset(); int find_function(Gcalc_scan_iterator &scan_it); }; /* Gcalc_operation_transporter class extends the Gcalc_shape_transporter. In addition to the parent's functionality, it fills the Gcalc_function object so it has the function that determines the proper shape. For example Multipolyline will be represented as an union of polylines. */ class Gcalc_operation_transporter : public Gcalc_shape_transporter { protected: Gcalc_function *m_fn; gcalc_shape_info m_si; public: Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) : Gcalc_shape_transporter(heap), m_fn(fn) {} int single_point(double x, double y); int start_line(); int complete_line(); int start_poly(); int complete_poly(); int start_ring(); int complete_ring(); int add_point(double x, double y); int start_collection(int n_objects); }; /* When we calculate the result of an spatial operation like Union or Intersection, we receive vertexes of the result one-by-one, and probably need to treat them in variative ways. So, the Gcalc_result_receiver class designed to get these vertexes and construct shapes/objects out of them. and to store the result in an appropriate format */ class Gcalc_result_receiver { String buffer; uint32 n_points; Gcalc_function::shape_type common_shapetype; bool collection_result; uint32 n_shapes; uint32 n_holes; Gcalc_function::shape_type cur_shape; uint32 shape_pos; double first_x, first_y, prev_x, prev_y; double shape_area; public: Gcalc_result_receiver() : collection_result(FALSE), n_shapes(0), n_holes(0) {} int start_shape(Gcalc_function::shape_type shape); int add_point(double x, double y); int complete_shape(); int single_point(double x, double y); int done(); void reset(); const char *result() { return buffer.ptr(); } uint length() { return buffer.length(); } int get_nshapes() { return n_shapes; } int get_nholes() { return n_holes; } int get_result_typeid(); uint32 position() { return buffer.length(); } int move_hole(uint32 dest_position, uint32 source_position, uint32 *new_dest_position); }; /* Gcalc_operation_reducer class incapsulates the spatial operation functionality. It analyses the slices generated by the slicescan and calculates the shape of the result defined by some Gcalc_function. */ class Gcalc_operation_reducer : public Gcalc_dyn_list { public: enum modes { /* Numeric values important here - careful with changing */ default_mode= 0, prefer_big_with_holes= 1, polygon_selfintersections_allowed= 2, /* allowed in the result */ line_selfintersections_allowed= 4 /* allowed in the result */ }; Gcalc_operation_reducer(size_t blk_size=8192); void init(Gcalc_function *fn, modes mode= default_mode); Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode, size_t blk_size=8192); int count_slice(Gcalc_scan_iterator *si); int count_all(Gcalc_heap *hp); int get_result(Gcalc_result_receiver *storage); void reset(); class res_point : public Gcalc_dyn_list::Item { public: bool intersection_point; double x,y; res_point *up; res_point *down; res_point *glue; union { const Gcalc_heap::Info *pi; res_point *first_poly_node; }; union { res_point *outer_poly; uint32 poly_position; }; Gcalc_dyn_list::Item **prev_hook; res_point *get_next() { return (res_point *)next; } }; class active_thread : public Gcalc_dyn_list::Item { public: res_point *rp; int result_range; res_point *thread_start; active_thread *get_next() { return (active_thread *)next; } }; protected: Gcalc_function *m_fn; Gcalc_dyn_list::Item **m_res_hook; res_point *m_result; int m_mode; res_point *result_heap; active_thread *m_first_active_thread; res_point *add_res_point() { res_point *result= (res_point *)new_item(); *m_res_hook= result; result->prev_hook= m_res_hook; m_res_hook= &result->next; return result; } active_thread *new_active_thread() { return (active_thread *)new_item(); } private: int continue_range(active_thread *t, const Gcalc_heap::Info *p); int continue_i_range(active_thread *t, const Gcalc_heap::Info *p, double x, double y); int start_range(active_thread *t, const Gcalc_heap::Info *p); int start_i_range(active_thread *t, const Gcalc_heap::Info *p, double x, double y); int end_range(active_thread *t, const Gcalc_heap::Info *p); int end_i_range(active_thread *t, const Gcalc_heap::Info *p, double x, double y); int start_couple(active_thread *t0, active_thread *t1,const Gcalc_heap::Info *p, const active_thread *prev_range); int start_i_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p0, const Gcalc_heap::Info *p1, double x, double y, const active_thread *prev_range); int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p); int end_i_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p0, const Gcalc_heap::Info *p1, double x, double y); int add_single_point(const Gcalc_heap::Info *p); int add_i_single_point(const Gcalc_heap::Info *p, double x, double y); int handle_lines_intersection(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p0, const Gcalc_heap::Info *p1, double x, double y); int handle_polygons_intersection(active_thread *t0, active_thread *t1, Gcalc_dyn_list::Item **t_hook, const Gcalc_heap::Info *p0, const Gcalc_heap::Info *p1, int prev_state, double x, double y, const active_thread *prev_range); int handle_line_polygon_intersection(active_thread *l, const Gcalc_heap::Info *pl, int line_state, int poly_state, double x, double y); int get_single_result(res_point *res, Gcalc_result_receiver *storage); int get_result_thread(res_point *cur, Gcalc_result_receiver *storage, int move_upward); int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage); int get_line_result(res_point *cur, Gcalc_result_receiver *storage); void free_result(res_point *res); }; #endif /*GCALC_TOOLS_INCLUDED*/