/* Copyright (C) 2000-2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This file defines the NDB Cluster handler: the interface between MySQL and NDB Cluster */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #ifdef HAVE_NDBCLUSTER_DB #include #include "ha_ndbcluster.h" #include #include // options from from mysqld.cc extern my_bool opt_ndb_optimized_node_selection; extern const char *opt_ndbcluster_connectstring; // Default value for parallelism static const int parallelism= 0; // Default value for max number of transactions // createable against NDB from this handler static const int max_transactions= 2; static const char *ha_ndb_ext=".ndb"; static int ndbcluster_close_connection(THD *thd); static int ndbcluster_commit(THD *thd, bool all); static int ndbcluster_rollback(THD *thd, bool all); handlerton ndbcluster_hton = { "ndbcluster", SHOW_OPTION_YES, "Clustered, fault-tolerant, memory-based tables", DB_TYPE_NDBCLUSTER, ndbcluster_init, 0, /* slot */ 0, /* savepoint size */ ndbcluster_close_connection, NULL, /* savepoint_set */ NULL, /* savepoint_rollback */ NULL, /* savepoint_release */ ndbcluster_commit, ndbcluster_rollback, NULL, /* prepare */ NULL, /* recover */ NULL, /* commit_by_xid */ NULL, /* rollback_by_xid */ NULL, /* create_cursor_read_view */ NULL, /* set_cursor_read_view */ NULL, /* close_cursor_read_view */ HTON_NO_FLAGS }; #define NDB_FAILED_AUTO_INCREMENT ~(Uint64)0 #define NDB_AUTO_INCREMENT_RETRIES 10 #define NDB_INVALID_SCHEMA_OBJECT 241 #define ERR_PRINT(err) \ DBUG_PRINT("error", ("%d message: %s", err.code, err.message)) #define ERR_RETURN(err) \ { \ const NdbError& tmp= err; \ ERR_PRINT(tmp); \ DBUG_RETURN(ndb_to_mysql_error(&tmp)); \ } // Typedefs for long names typedef NdbDictionary::Column NDBCOL; typedef NdbDictionary::Table NDBTAB; typedef NdbDictionary::Index NDBINDEX; typedef NdbDictionary::Dictionary NDBDICT; bool ndbcluster_inited= FALSE; static Ndb* g_ndb= NULL; static Ndb_cluster_connection* g_ndb_cluster_connection= NULL; // Handler synchronization pthread_mutex_t ndbcluster_mutex; // Table lock handling static HASH ndbcluster_open_tables; static byte *ndbcluster_get_key(NDB_SHARE *share,uint *length, my_bool not_used __attribute__((unused))); static NDB_SHARE *get_share(const char *table_name); static void free_share(NDB_SHARE *share); static int packfrm(const void *data, uint len, const void **pack_data, uint *pack_len); static int unpackfrm(const void **data, uint *len, const void* pack_data); static int ndb_get_table_statistics(Ndb*, const char *, struct Ndb_statistics *); // Util thread variables static pthread_t ndb_util_thread; pthread_mutex_t LOCK_ndb_util_thread; pthread_cond_t COND_ndb_util_thread; pthread_handler_t ndb_util_thread_func(void *arg); ulong ndb_cache_check_time; /* Dummy buffer to read zero pack_length fields which are mapped to 1 char */ static uint32 dummy_buf; /* Stats that can be retrieved from ndb */ struct Ndb_statistics { Uint64 row_count; Uint64 commit_count; Uint64 row_size; Uint64 fragment_memory; }; /* Status variables shown with 'show status like 'Ndb%' */ static long ndb_cluster_node_id= 0; static const char * ndb_connected_host= 0; static long ndb_connected_port= 0; static long ndb_number_of_replicas= 0; static long ndb_number_of_storage_nodes= 0; static int update_status_variables(Ndb_cluster_connection *c) { ndb_cluster_node_id= c->node_id(); ndb_connected_port= c->get_connected_port(); ndb_connected_host= c->get_connected_host(); ndb_number_of_replicas= 0; ndb_number_of_storage_nodes= c->no_db_nodes(); return 0; } struct show_var_st ndb_status_variables[]= { {"cluster_node_id", (char*) &ndb_cluster_node_id, SHOW_LONG}, {"connected_host", (char*) &ndb_connected_host, SHOW_CHAR_PTR}, {"connected_port", (char*) &ndb_connected_port, SHOW_LONG}, // {"number_of_replicas", (char*) &ndb_number_of_replicas, SHOW_LONG}, {"number_of_storage_nodes",(char*) &ndb_number_of_storage_nodes, SHOW_LONG}, {NullS, NullS, SHOW_LONG} }; /* Error handling functions */ struct err_code_mapping { int ndb_err; int my_err; int show_warning; }; static const err_code_mapping err_map[]= { { 626, HA_ERR_KEY_NOT_FOUND, 0 }, { 630, HA_ERR_FOUND_DUPP_KEY, 0 }, { 893, HA_ERR_FOUND_DUPP_KEY, 0 }, { 721, HA_ERR_TABLE_EXIST, 1 }, { 4244, HA_ERR_TABLE_EXIST, 1 }, { 709, HA_ERR_NO_SUCH_TABLE, 0 }, { 266, HA_ERR_LOCK_WAIT_TIMEOUT, 1 }, { 274, HA_ERR_LOCK_WAIT_TIMEOUT, 1 }, { 296, HA_ERR_LOCK_WAIT_TIMEOUT, 1 }, { 297, HA_ERR_LOCK_WAIT_TIMEOUT, 1 }, { 237, HA_ERR_LOCK_WAIT_TIMEOUT, 1 }, { 623, HA_ERR_RECORD_FILE_FULL, 1 }, { 624, HA_ERR_RECORD_FILE_FULL, 1 }, { 625, HA_ERR_RECORD_FILE_FULL, 1 }, { 826, HA_ERR_RECORD_FILE_FULL, 1 }, { 827, HA_ERR_RECORD_FILE_FULL, 1 }, { 832, HA_ERR_RECORD_FILE_FULL, 1 }, { 284, HA_ERR_TABLE_DEF_CHANGED, 0 }, { 0, 1, 0 }, { -1, -1, 1 } }; static int ndb_to_mysql_error(const NdbError *err) { uint i; for (i=0; err_map[i].ndb_err != err->code && err_map[i].my_err != -1; i++); if (err_map[i].show_warning) { // Push the NDB error message as warning push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR, ER_GET_ERRMSG, ER(ER_GET_ERRMSG), err->code, err->message, "NDB"); } if (err_map[i].my_err == -1) return err->code; return err_map[i].my_err; } inline int execute_no_commit(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::NoCommit, NdbTransaction::AbortOnError, h->m_force_send); } inline int execute_commit(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::Commit, NdbTransaction::AbortOnError, h->m_force_send); } inline int execute_commit(THD *thd, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::Commit, NdbTransaction::AbortOnError, thd->variables.ndb_force_send); } inline int execute_no_commit_ie(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::NoCommit, NdbTransaction::AO_IgnoreError, h->m_force_send); } /* Place holder for ha_ndbcluster thread specific data */ Thd_ndb::Thd_ndb() { ndb= new Ndb(g_ndb_cluster_connection, ""); lock_count= 0; count= 0; all= NULL; stmt= NULL; error= 0; } Thd_ndb::~Thd_ndb() { if (ndb) { #ifndef DBUG_OFF Ndb::Free_list_usage tmp; tmp.m_name= 0; while (ndb->get_free_list_usage(&tmp)) { uint leaked= (uint) tmp.m_created - tmp.m_free; if (leaked) fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n", leaked, tmp.m_name, (leaked == 1)?"":"'s", (leaked == 1)?"has":"have"); } #endif delete ndb; ndb= NULL; } changed_tables.empty(); } inline Thd_ndb * get_thd_ndb(THD *thd) { return (Thd_ndb *) thd->ha_data[ndbcluster_hton.slot]; } inline void set_thd_ndb(THD *thd, Thd_ndb *thd_ndb) { thd->ha_data[ndbcluster_hton.slot]= thd_ndb; } inline Ndb *ha_ndbcluster::get_ndb() { return get_thd_ndb(current_thd)->ndb; } /* * manage uncommitted insert/deletes during transactio to get records correct */ struct Ndb_local_table_statistics { int no_uncommitted_rows_count; ulong last_count; ha_rows records; }; void ha_ndbcluster::set_rec_per_key() { DBUG_ENTER("ha_ndbcluster::get_status_const"); for (uint i=0 ; i < table->s->keys ; i++) { table->key_info[i].rec_per_key[table->key_info[i].key_parts-1]= 1; } DBUG_VOID_RETURN; } void ha_ndbcluster::records_update() { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::records_update"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); // if (info->records == ~(ha_rows)0) { Ndb *ndb= get_ndb(); struct Ndb_statistics stat; if (ndb_get_table_statistics(ndb, m_tabname, &stat) == 0){ mean_rec_length= stat.row_size; data_file_length= stat.fragment_memory; info->records= stat.row_count; } } { THD *thd= current_thd; if (get_thd_ndb(thd)->error) info->no_uncommitted_rows_count= 0; } records= info->records+ info->no_uncommitted_rows_count; DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_execute_failure() { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_execute_failure"); get_thd_ndb(current_thd)->error= 1; DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_init(THD *thd) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_init"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; Thd_ndb *thd_ndb= get_thd_ndb(thd); if (info->last_count != thd_ndb->count) { info->last_count= thd_ndb->count; info->no_uncommitted_rows_count= 0; info->records= ~(ha_rows)0; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); } DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_update(int c) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_update"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; info->no_uncommitted_rows_count+= c; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_reset(THD *thd) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_reset"); Thd_ndb *thd_ndb= get_thd_ndb(thd); thd_ndb->count++; thd_ndb->error= 0; DBUG_VOID_RETURN; } /* Take care of the error that occured in NDB RETURN 0 No error # The mapped error code */ void ha_ndbcluster::invalidate_dictionary_cache(bool global) { NDBDICT *dict= get_ndb()->getDictionary(); DBUG_ENTER("invalidate_dictionary_cache"); DBUG_PRINT("info", ("invalidating %s", m_tabname)); if (global) { const NDBTAB *tab= dict->getTable(m_tabname); if (!tab) DBUG_VOID_RETURN; if (tab->getObjectStatus() == NdbDictionary::Object::Invalid) { // Global cache has already been invalidated dict->removeCachedTable(m_tabname); global= FALSE; } else dict->invalidateTable(m_tabname); } else dict->removeCachedTable(m_tabname); table->s->version=0L; /* Free when thread is ready */ /* Invalidate indexes */ for (uint i= 0; i < table->s->keys; i++) { NDBINDEX *index = (NDBINDEX *) m_index[i].index; NDBINDEX *unique_index = (NDBINDEX *) m_index[i].unique_index; NDB_INDEX_TYPE idx_type= m_index[i].type; switch (idx_type) { case PRIMARY_KEY_ORDERED_INDEX: case ORDERED_INDEX: if (global) dict->invalidateIndex(index->getName(), m_tabname); else dict->removeCachedIndex(index->getName(), m_tabname); break; case UNIQUE_ORDERED_INDEX: if (global) dict->invalidateIndex(index->getName(), m_tabname); else dict->removeCachedIndex(index->getName(), m_tabname); case UNIQUE_INDEX: if (global) dict->invalidateIndex(unique_index->getName(), m_tabname); else dict->removeCachedIndex(unique_index->getName(), m_tabname); break; case PRIMARY_KEY_INDEX: case UNDEFINED_INDEX: break; } } DBUG_VOID_RETURN; } int ha_ndbcluster::ndb_err(NdbTransaction *trans) { int res; NdbError err= trans->getNdbError(); DBUG_ENTER("ndb_err"); ERR_PRINT(err); switch (err.classification) { case NdbError::SchemaError: invalidate_dictionary_cache(TRUE); if (err.code==284) { /* Check if the table is _really_ gone or if the table has been alterend and thus changed table id */ NDBDICT *dict= get_ndb()->getDictionary(); DBUG_PRINT("info", ("Check if table %s is really gone", m_tabname)); if (!(dict->getTable(m_tabname))) { err= dict->getNdbError(); DBUG_PRINT("info", ("Table not found, error: %d", err.code)); if (err.code != 709) DBUG_RETURN(1); } DBUG_PRINT("info", ("Table exists but must have changed")); } break; default: break; } res= ndb_to_mysql_error(&err); DBUG_PRINT("info", ("transformed ndbcluster error %d to mysql error %d", err.code, res)); if (res == HA_ERR_FOUND_DUPP_KEY) { if (m_rows_to_insert == 1) m_dupkey= table->s->primary_key; else { /* We are batching inserts, offending key is not available */ m_dupkey= (uint) -1; } } DBUG_RETURN(res); } /* Override the default get_error_message in order to add the error message of NDB */ bool ha_ndbcluster::get_error_message(int error, String *buf) { DBUG_ENTER("ha_ndbcluster::get_error_message"); DBUG_PRINT("enter", ("error: %d", error)); Ndb *ndb= get_ndb(); if (!ndb) DBUG_RETURN(FALSE); const NdbError err= ndb->getNdbError(error); bool temporary= err.status==NdbError::TemporaryError; buf->set(err.message, strlen(err.message), &my_charset_bin); DBUG_PRINT("exit", ("message: %s, temporary: %d", buf->ptr(), temporary)); DBUG_RETURN(temporary); } #ifndef DBUG_OFF /* Check if type is supported by NDB. */ static bool ndb_supported_type(enum_field_types type) { switch (type) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_INT24: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_NEWDECIMAL: case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_DATE: case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_TIME: case MYSQL_TYPE_YEAR: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: case MYSQL_TYPE_BIT: case MYSQL_TYPE_GEOMETRY: return TRUE; case MYSQL_TYPE_NULL: break; } return FALSE; } #endif /* !DBUG_OFF */ /* Instruct NDB to set the value of the hidden primary key */ bool ha_ndbcluster::set_hidden_key(NdbOperation *ndb_op, uint fieldnr, const byte *field_ptr) { DBUG_ENTER("set_hidden_key"); DBUG_RETURN(ndb_op->equal(fieldnr, (char*)field_ptr, NDB_HIDDEN_PRIMARY_KEY_LENGTH) != 0); } /* Instruct NDB to set the value of one primary key attribute */ int ha_ndbcluster::set_ndb_key(NdbOperation *ndb_op, Field *field, uint fieldnr, const byte *field_ptr) { uint32 pack_len= field->pack_length(); DBUG_ENTER("set_ndb_key"); DBUG_PRINT("enter", ("%d: %s, ndb_type: %u, len=%d", fieldnr, field->field_name, field->type(), pack_len)); DBUG_DUMP("key", (char*)field_ptr, pack_len); DBUG_ASSERT(ndb_supported_type(field->type())); DBUG_ASSERT(! (field->flags & BLOB_FLAG)); // Common implementation for most field types DBUG_RETURN(ndb_op->equal(fieldnr, (char*) field_ptr, pack_len) != 0); } /* Instruct NDB to set the value of one attribute */ int ha_ndbcluster::set_ndb_value(NdbOperation *ndb_op, Field *field, uint fieldnr, bool *set_blob_value) { const byte* field_ptr= field->ptr; uint32 pack_len= field->pack_length(); DBUG_ENTER("set_ndb_value"); DBUG_PRINT("enter", ("%d: %s, type: %u, len=%d, is_null=%s", fieldnr, field->field_name, field->type(), pack_len, field->is_null()?"Y":"N")); DBUG_DUMP("value", (char*) field_ptr, pack_len); DBUG_ASSERT(ndb_supported_type(field->type())); { // ndb currently does not support size 0 uint32 empty_field; if (pack_len == 0) { pack_len= sizeof(empty_field); field_ptr= (byte *)&empty_field; if (field->is_null()) empty_field= 0; else empty_field= 1; } if (! (field->flags & BLOB_FLAG)) { if (field->type() != MYSQL_TYPE_BIT) { if (field->is_null()) // Set value to NULL DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL, pack_len) != 0)); // Common implementation for most field types DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)field_ptr, pack_len) != 0); } else // if (field->type() == MYSQL_TYPE_BIT) { longlong bits= field->val_int(); // Round up bit field length to nearest word boundry pack_len= ((pack_len + 3) >> 2) << 2; DBUG_ASSERT(pack_len <= 8); if (field->is_null()) // Set value to NULL DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL, pack_len) != 0)); DBUG_PRINT("info", ("bit field")); DBUG_DUMP("value", (char*)&bits, pack_len); #ifdef WORDS_BIGENDIAN if (pack_len < 5) { DBUG_RETURN(ndb_op->setValue(fieldnr, ((char*)&bits)+4, pack_len) != 0); } #endif DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)&bits, pack_len) != 0); } } // Blob type NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr); if (ndb_blob != NULL) { if (field->is_null()) DBUG_RETURN(ndb_blob->setNull() != 0); Field_blob *field_blob= (Field_blob*)field; // Get length and pointer to data uint32 blob_len= field_blob->get_length(field_ptr); char* blob_ptr= NULL; field_blob->get_ptr(&blob_ptr); // Looks like NULL ptr signals length 0 blob if (blob_ptr == NULL) { DBUG_ASSERT(blob_len == 0); blob_ptr= (char*)""; } DBUG_PRINT("value", ("set blob ptr=%p len=%u", blob_ptr, blob_len)); DBUG_DUMP("value", (char*)blob_ptr, min(blob_len, 26)); if (set_blob_value) *set_blob_value= TRUE; // No callback needed to write value DBUG_RETURN(ndb_blob->setValue(blob_ptr, blob_len) != 0); } DBUG_RETURN(1); } } /* Callback to read all blob values. - not done in unpack_record because unpack_record is valid after execute(Commit) but reading blobs is not - may only generate read operations; they have to be executed somewhere before the data is available - due to single buffer for all blobs, we let the last blob process all blobs (last so that all are active) - null bit is still set in unpack_record - TODO allocate blob part aligned buffers */ NdbBlob::ActiveHook g_get_ndb_blobs_value; int g_get_ndb_blobs_value(NdbBlob *ndb_blob, void *arg) { DBUG_ENTER("g_get_ndb_blobs_value"); if (ndb_blob->blobsNextBlob() != NULL) DBUG_RETURN(0); ha_ndbcluster *ha= (ha_ndbcluster *)arg; DBUG_RETURN(ha->get_ndb_blobs_value(ndb_blob)); } int ha_ndbcluster::get_ndb_blobs_value(NdbBlob *last_ndb_blob) { DBUG_ENTER("get_ndb_blobs_value"); // Field has no field number so cannot use TABLE blob_field // Loop twice, first only counting total buffer size for (int loop= 0; loop <= 1; loop++) { uint32 offset= 0; for (uint i= 0; i < table->s->fields; i++) { Field *field= table->field[i]; NdbValue value= m_value[i]; if (value.ptr != NULL && (field->flags & BLOB_FLAG)) { Field_blob *field_blob= (Field_blob *)field; NdbBlob *ndb_blob= value.blob; Uint64 blob_len= 0; if (ndb_blob->getLength(blob_len) != 0) DBUG_RETURN(-1); // Align to Uint64 uint32 blob_size= blob_len; if (blob_size % 8 != 0) blob_size+= 8 - blob_size % 8; if (loop == 1) { char *buf= m_blobs_buffer + offset; uint32 len= 0xffffffff; // Max uint32 DBUG_PRINT("value", ("read blob ptr=%x len=%u", (UintPtr)buf, (uint)blob_len)); if (ndb_blob->readData(buf, len) != 0) DBUG_RETURN(-1); DBUG_ASSERT(len == blob_len); field_blob->set_ptr(len, buf); } offset+= blob_size; } } if (loop == 0 && offset > m_blobs_buffer_size) { my_free(m_blobs_buffer, MYF(MY_ALLOW_ZERO_PTR)); m_blobs_buffer_size= 0; DBUG_PRINT("value", ("allocate blobs buffer size %u", offset)); m_blobs_buffer= my_malloc(offset, MYF(MY_WME)); if (m_blobs_buffer == NULL) DBUG_RETURN(-1); m_blobs_buffer_size= offset; } } DBUG_RETURN(0); } /* Instruct NDB to fetch one field - data is read directly into buffer provided by field if field is NULL, data is read into memory provided by NDBAPI */ int ha_ndbcluster::get_ndb_value(NdbOperation *ndb_op, Field *field, uint fieldnr, byte* buf) { DBUG_ENTER("get_ndb_value"); DBUG_PRINT("enter", ("fieldnr: %d flags: %o", fieldnr, (int)(field != NULL ? field->flags : 0))); if (field != NULL) { DBUG_ASSERT(buf); DBUG_ASSERT(ndb_supported_type(field->type())); DBUG_ASSERT(field->ptr != NULL); if (! (field->flags & BLOB_FLAG)) { if (field->type() != MYSQL_TYPE_BIT) { byte *field_buf; if (field->pack_length() != 0) field_buf= buf + (field->ptr - table->record[0]); else field_buf= (byte *)&dummy_buf; m_value[fieldnr].rec= ndb_op->getValue(fieldnr, field_buf); } else // if (field->type() == MYSQL_TYPE_BIT) { m_value[fieldnr].rec= ndb_op->getValue(fieldnr); } DBUG_RETURN(m_value[fieldnr].rec == NULL); } // Blob type NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr); m_value[fieldnr].blob= ndb_blob; if (ndb_blob != NULL) { // Set callback void *arg= (void *)this; DBUG_RETURN(ndb_blob->setActiveHook(g_get_ndb_blobs_value, arg) != 0); } DBUG_RETURN(1); } // Used for hidden key only m_value[fieldnr].rec= ndb_op->getValue(fieldnr, m_ref); DBUG_RETURN(m_value[fieldnr].rec == NULL); } /* Check if any set or get of blob value in current query. */ bool ha_ndbcluster::uses_blob_value(bool all_fields) { if (table->s->blob_fields == 0) return FALSE; if (all_fields) return TRUE; { uint no_fields= table->s->fields; int i; THD *thd= current_thd; // They always put blobs at the end.. for (i= no_fields - 1; i >= 0; i--) { Field *field= table->field[i]; if (thd->query_id == field->query_id) { return TRUE; } } } return FALSE; } /* Get metadata for this table from NDB IMPLEMENTATION - check that frm-file on disk is equal to frm-file of table accessed in NDB */ int ha_ndbcluster::get_metadata(const char *path) { Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); const NDBTAB *tab; int error; bool invalidating_ndb_table= FALSE; DBUG_ENTER("get_metadata"); DBUG_PRINT("enter", ("m_tabname: %s, path: %s", m_tabname, path)); do { const void *data, *pack_data; uint length, pack_length; if (!(tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); // Check if thread has stale local cache if (tab->getObjectStatus() == NdbDictionary::Object::Invalid) { invalidate_dictionary_cache(FALSE); if (!(tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); } /* Compare FrmData in NDB with frm file from disk. */ error= 0; if (readfrm(path, &data, &length) || packfrm(data, length, &pack_data, &pack_length)) { my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(1); } if ((pack_length != tab->getFrmLength()) || (memcmp(pack_data, tab->getFrmData(), pack_length))) { if (!invalidating_ndb_table) { DBUG_PRINT("info", ("Invalidating table")); invalidate_dictionary_cache(TRUE); invalidating_ndb_table= TRUE; } else { DBUG_PRINT("error", ("metadata, pack_length: %d getFrmLength: %d memcmp: %d", pack_length, tab->getFrmLength(), memcmp(pack_data, tab->getFrmData(), pack_length))); DBUG_DUMP("pack_data", (char*)pack_data, pack_length); DBUG_DUMP("frm", (char*)tab->getFrmData(), tab->getFrmLength()); error= 3; invalidating_ndb_table= FALSE; } } else { invalidating_ndb_table= FALSE; } my_free((char*)data, MYF(0)); my_free((char*)pack_data, MYF(0)); } while (invalidating_ndb_table); if (error) DBUG_RETURN(error); m_table_version= tab->getObjectVersion(); m_table= (void *)tab; m_table_info= NULL; // Set in external lock DBUG_RETURN(build_index_list(ndb, table, ILBP_OPEN)); } static int fix_unique_index_attr_order(NDB_INDEX_DATA &data, const NDBINDEX *index, KEY *key_info) { DBUG_ENTER("fix_unique_index_attr_order"); unsigned sz= index->getNoOfIndexColumns(); if (data.unique_index_attrid_map) my_free((char*)data.unique_index_attrid_map, MYF(0)); data.unique_index_attrid_map= (unsigned char*)my_malloc(sz,MYF(MY_WME)); KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ASSERT(key_info->key_parts == sz); for (unsigned i= 0; key_part != end; key_part++, i++) { const char *field_name= key_part->field->field_name; #ifndef DBUG_OFF data.unique_index_attrid_map[i]= 255; #endif for (unsigned j= 0; j < sz; j++) { const NDBCOL *c= index->getColumn(j); if (strcmp(field_name, c->getName()) == 0) { data.unique_index_attrid_map[i]= j; break; } } DBUG_ASSERT(data.unique_index_attrid_map[i] != 255); } DBUG_RETURN(0); } int ha_ndbcluster::build_index_list(Ndb *ndb, TABLE *tab, enum ILBP phase) { uint i; int error= 0; const char *index_name; char unique_index_name[FN_LEN]; static const char* unique_suffix= "$unique"; KEY* key_info= tab->key_info; const char **key_name= tab->s->keynames.type_names; NDBDICT *dict= ndb->getDictionary(); DBUG_ENTER("ha_ndbcluster::build_index_list"); // Save information about all known indexes for (i= 0; i < tab->s->keys; i++, key_info++, key_name++) { index_name= *key_name; NDB_INDEX_TYPE idx_type= get_index_type_from_table(i); m_index[i].type= idx_type; if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX) { strxnmov(unique_index_name, FN_LEN, index_name, unique_suffix, NullS); DBUG_PRINT("info", ("Created unique index name \'%s\' for index %d", unique_index_name, i)); } // Create secondary indexes if in create phase if (phase == ILBP_CREATE) { DBUG_PRINT("info", ("Creating index %u: %s", i, index_name)); switch (idx_type){ case PRIMARY_KEY_INDEX: // Do nothing, already created break; case PRIMARY_KEY_ORDERED_INDEX: error= create_ordered_index(index_name, key_info); break; case UNIQUE_ORDERED_INDEX: if (!(error= create_ordered_index(index_name, key_info))) error= create_unique_index(unique_index_name, key_info); break; case UNIQUE_INDEX: if (!(error= check_index_fields_not_null(i))) error= create_unique_index(unique_index_name, key_info); break; case ORDERED_INDEX: error= create_ordered_index(index_name, key_info); break; default: DBUG_ASSERT(FALSE); break; } if (error) { DBUG_PRINT("error", ("Failed to create index %u", i)); drop_table(); break; } } // Add handles to index objects if (idx_type != PRIMARY_KEY_INDEX && idx_type != UNIQUE_INDEX) { DBUG_PRINT("info", ("Get handle to index %s", index_name)); const NDBINDEX *index= dict->getIndex(index_name, m_tabname); if (!index) DBUG_RETURN(1); m_index[i].index= (void *) index; } if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX) { DBUG_PRINT("info", ("Get handle to unique_index %s", unique_index_name)); const NDBINDEX *index= dict->getIndex(unique_index_name, m_tabname); if (!index) DBUG_RETURN(1); m_index[i].unique_index= (void *) index; error= fix_unique_index_attr_order(m_index[i], index, key_info); } } DBUG_RETURN(error); } /* Decode the type of an index from information provided in table object */ NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_table(uint inx) const { bool is_hash_index= (table->key_info[inx].algorithm == HA_KEY_ALG_HASH); if (inx == table->s->primary_key) return is_hash_index ? PRIMARY_KEY_INDEX : PRIMARY_KEY_ORDERED_INDEX; return ((table->key_info[inx].flags & HA_NOSAME) ? (is_hash_index ? UNIQUE_INDEX : UNIQUE_ORDERED_INDEX) : ORDERED_INDEX); } int ha_ndbcluster::check_index_fields_not_null(uint inx) { KEY* key_info= table->key_info + inx; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("ha_ndbcluster::check_index_fields_not_null"); for (; key_part != end; key_part++) { Field* field= key_part->field; if (field->maybe_null()) { my_printf_error(ER_NULL_COLUMN_IN_INDEX,ER(ER_NULL_COLUMN_IN_INDEX), MYF(0),field->field_name); DBUG_RETURN(ER_NULL_COLUMN_IN_INDEX); } } DBUG_RETURN(0); } void ha_ndbcluster::release_metadata() { uint i; DBUG_ENTER("release_metadata"); DBUG_PRINT("enter", ("m_tabname: %s", m_tabname)); m_table= NULL; m_table_info= NULL; // Release index list for (i= 0; i < MAX_KEY; i++) { m_index[i].unique_index= NULL; m_index[i].index= NULL; if (m_index[i].unique_index_attrid_map) { my_free((char *)m_index[i].unique_index_attrid_map, MYF(0)); m_index[i].unique_index_attrid_map= NULL; } } DBUG_VOID_RETURN; } int ha_ndbcluster::get_ndb_lock_type(enum thr_lock_type type) { if (type >= TL_WRITE_ALLOW_WRITE) return NdbOperation::LM_Exclusive; else if (uses_blob_value(m_retrieve_all_fields)) return NdbOperation::LM_Read; else return NdbOperation::LM_CommittedRead; } static const ulong index_type_flags[]= { /* UNDEFINED_INDEX */ 0, /* PRIMARY_KEY_INDEX */ HA_ONLY_WHOLE_INDEX, /* PRIMARY_KEY_ORDERED_INDEX */ /* Enable HA_KEYREAD_ONLY when "sorted" indexes are supported, thus ORDERD BY clauses can be optimized by reading directly through the index. */ // HA_KEYREAD_ONLY | HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER, /* UNIQUE_INDEX */ HA_ONLY_WHOLE_INDEX, /* UNIQUE_ORDERED_INDEX */ HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER, /* ORDERED_INDEX */ HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER }; static const int index_flags_size= sizeof(index_type_flags)/sizeof(ulong); inline NDB_INDEX_TYPE ha_ndbcluster::get_index_type(uint idx_no) const { DBUG_ASSERT(idx_no < MAX_KEY); return m_index[idx_no].type; } /* Get the flags for an index RETURN flags depending on the type of the index. */ inline ulong ha_ndbcluster::index_flags(uint idx_no, uint part, bool all_parts) const { DBUG_ENTER("ha_ndbcluster::index_flags"); DBUG_PRINT("info", ("idx_no: %d", idx_no)); DBUG_ASSERT(get_index_type_from_table(idx_no) < index_flags_size); DBUG_RETURN(index_type_flags[get_index_type_from_table(idx_no)] | HA_KEY_SCAN_NOT_ROR); } static void shrink_varchar(Field* field, const byte* & ptr, char* buf) { if (field->type() == MYSQL_TYPE_VARCHAR && ptr != NULL) { Field_varstring* f= (Field_varstring*)field; if (f->length_bytes == 1) { uint pack_len= field->pack_length(); DBUG_ASSERT(1 <= pack_len && pack_len <= 256); if (ptr[1] == 0) { buf[0]= ptr[0]; } else { DBUG_ASSERT(FALSE); buf[0]= 255; } memmove(buf + 1, ptr + 2, pack_len - 1); ptr= buf; } } } int ha_ndbcluster::set_primary_key(NdbOperation *op, const byte *key) { KEY* key_info= table->key_info + table->s->primary_key; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("set_primary_key"); for (; key_part != end; key_part++) { Field* field= key_part->field; const byte* ptr= key; char buf[256]; shrink_varchar(field, ptr, buf); if (set_ndb_key(op, field, key_part->fieldnr-1, ptr)) ERR_RETURN(op->getNdbError()); key += key_part->store_length; } DBUG_RETURN(0); } int ha_ndbcluster::set_primary_key_from_record(NdbOperation *op, const byte *record) { KEY* key_info= table->key_info + table->s->primary_key; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("set_primary_key_from_record"); for (; key_part != end; key_part++) { Field* field= key_part->field; if (set_ndb_key(op, field, key_part->fieldnr-1, record+key_part->offset)) ERR_RETURN(op->getNdbError()); } DBUG_RETURN(0); } int ha_ndbcluster::set_index_key(NdbOperation *op, const KEY *key_info, const byte * key_ptr) { DBUG_ENTER("ha_ndbcluster::set_index_key"); uint i; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; for (i= 0; key_part != end; key_part++, i++) { Field* field= key_part->field; const byte* ptr= key_part->null_bit ? key_ptr + 1 : key_ptr; char buf[256]; shrink_varchar(field, ptr, buf); if (set_ndb_key(op, field, m_index[active_index].unique_index_attrid_map[i], ptr)) ERR_RETURN(m_active_trans->getNdbError()); key_ptr+= key_part->store_length; } DBUG_RETURN(0); } inline int ha_ndbcluster::define_read_attrs(byte* buf, NdbOperation* op) { uint i; THD *thd= current_thd; DBUG_ENTER("define_read_attrs"); // Define attributes to read for (i= 0; i < table->s->fields; i++) { Field *field= table->field[i]; if ((thd->query_id == field->query_id) || ((field->flags & PRI_KEY_FLAG)) || m_retrieve_all_fields) { if (get_ndb_value(op, field, i, buf)) ERR_RETURN(op->getNdbError()); } else { m_value[i].ptr= NULL; } } if (table->s->primary_key == MAX_KEY) { DBUG_PRINT("info", ("Getting hidden key")); // Scanning table with no primary key int hidden_no= table->s->fields; #ifndef DBUG_OFF const NDBTAB *tab= (const NDBTAB *) m_table; if (!tab->getColumn(hidden_no)) DBUG_RETURN(1); #endif if (get_ndb_value(op, NULL, hidden_no, NULL)) ERR_RETURN(op->getNdbError()); } DBUG_RETURN(0); } /* Read one record from NDB using primary key */ int ha_ndbcluster::pk_read(const byte *key, uint key_len, byte *buf) { uint no_fields= table->s->fields; NdbConnection *trans= m_active_trans; NdbOperation *op; int res; DBUG_ENTER("pk_read"); DBUG_PRINT("enter", ("key_len: %u", key_len)); DBUG_DUMP("key", (char*)key, key_len); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); if (table->s->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); DBUG_DUMP("key", (char*)key, 8); if (set_hidden_key(op, no_fields, key)) ERR_RETURN(trans->getNdbError()); // Read key at the same time, for future reference if (get_ndb_value(op, NULL, no_fields, NULL)) ERR_RETURN(trans->getNdbError()); } else { if ((res= set_primary_key(op, key))) return res; } if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(buf); table->status= 0; DBUG_RETURN(0); } /* Read one complementing record from NDB using primary key from old_data */ int ha_ndbcluster::complemented_pk_read(const byte *old_data, byte *new_data) { uint no_fields= table->s->fields, i; NdbTransaction *trans= m_active_trans; NdbOperation *op; THD *thd= current_thd; DBUG_ENTER("complemented_pk_read"); if (m_retrieve_all_fields) // We have allready retrieved all fields, nothing to complement DBUG_RETURN(0); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); int res; if ((res= set_primary_key_from_record(op, old_data))) ERR_RETURN(trans->getNdbError()); // Read all unreferenced non-key field(s) for (i= 0; i < no_fields; i++) { Field *field= table->field[i]; if (!((field->flags & PRI_KEY_FLAG) || (thd->query_id == field->query_id))) { if (get_ndb_value(op, field, i, new_data)) ERR_RETURN(trans->getNdbError()); } } if (execute_no_commit(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(new_data); table->status= 0; /** * restore m_value */ for (i= 0; i < no_fields; i++) { Field *field= table->field[i]; if (!((field->flags & PRI_KEY_FLAG) || (thd->query_id == field->query_id))) { m_value[i].ptr= NULL; } } DBUG_RETURN(0); } /* Peek to check if a particular row already exists */ int ha_ndbcluster::peek_row(const byte *record) { NdbTransaction *trans= m_active_trans; NdbOperation *op; DBUG_ENTER("peek_row"); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); int res; if ((res= set_primary_key_from_record(op, record))) ERR_RETURN(trans->getNdbError()); if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Read one record from NDB using unique secondary index */ int ha_ndbcluster::unique_index_read(const byte *key, uint key_len, byte *buf) { int res; NdbTransaction *trans= m_active_trans; NdbIndexOperation *op; DBUG_ENTER("ha_ndbcluster::unique_index_read"); DBUG_PRINT("enter", ("key_len: %u, index: %u", key_len, active_index)); DBUG_DUMP("key", (char*)key, key_len); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbIndexOperation((NDBINDEX *) m_index[active_index].unique_index, (const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); // Set secondary index key(s) if ((res= set_index_key(op, table->key_info + active_index, key))) DBUG_RETURN(res); if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(buf); table->status= 0; DBUG_RETURN(0); } inline int ha_ndbcluster::fetch_next(NdbScanOperation* cursor) { DBUG_ENTER("fetch_next"); int check; NdbTransaction *trans= m_active_trans; bool contact_ndb= m_lock.type < TL_WRITE_ALLOW_WRITE; do { DBUG_PRINT("info", ("Call nextResult, contact_ndb: %d", contact_ndb)); /* We can only handle one tuple with blobs at a time. */ if (m_ops_pending && m_blobs_pending) { if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); m_ops_pending= 0; m_blobs_pending= FALSE; } if ((check= cursor->nextResult(contact_ndb, m_force_send)) == 0) { DBUG_RETURN(0); } else if (check == 1 || check == 2) { // 1: No more records // 2: No more cached records /* Before fetching more rows and releasing lock(s), all pending update or delete operations should be sent to NDB */ DBUG_PRINT("info", ("ops_pending: %d", m_ops_pending)); if (m_ops_pending) { if (m_transaction_on) { if (execute_no_commit(this,trans) != 0) DBUG_RETURN(-1); } else { if (execute_commit(this,trans) != 0) DBUG_RETURN(-1); if (trans->restart() != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } m_ops_pending= 0; } contact_ndb= (check == 2); } else { DBUG_RETURN(-1); } } while (check == 2); DBUG_RETURN(1); } /* Get the next record of a started scan. Try to fetch it locally from NdbApi cached records if possible, otherwise ask NDB for more. NOTE If this is a update/delete make sure to not contact NDB before any pending ops have been sent to NDB. */ inline int ha_ndbcluster::next_result(byte *buf) { int res; DBUG_ENTER("next_result"); if (!m_active_cursor) DBUG_RETURN(HA_ERR_END_OF_FILE); if ((res= fetch_next(m_active_cursor)) == 0) { DBUG_PRINT("info", ("One more record found")); unpack_record(buf); table->status= 0; DBUG_RETURN(0); } else if (res == 1) { // No more records table->status= STATUS_NOT_FOUND; DBUG_PRINT("info", ("No more records")); DBUG_RETURN(HA_ERR_END_OF_FILE); } else { DBUG_RETURN(ndb_err(m_active_trans)); } } /* Set bounds for ordered index scan. */ int ha_ndbcluster::set_bounds(NdbIndexScanOperation *op, const key_range *keys[2], uint range_no) { const KEY *const key_info= table->key_info + active_index; const uint key_parts= key_info->key_parts; uint key_tot_len[2]; uint tot_len; uint i, j; DBUG_ENTER("set_bounds"); DBUG_PRINT("info", ("key_parts=%d", key_parts)); for (j= 0; j <= 1; j++) { const key_range *key= keys[j]; if (key != NULL) { // for key->flag see ha_rkey_function DBUG_PRINT("info", ("key %d length=%d flag=%d", j, key->length, key->flag)); key_tot_len[j]= key->length; } else { DBUG_PRINT("info", ("key %d not present", j)); key_tot_len[j]= 0; } } tot_len= 0; for (i= 0; i < key_parts; i++) { KEY_PART_INFO *key_part= &key_info->key_part[i]; Field *field= key_part->field; #ifndef DBUG_OFF uint part_len= key_part->length; #endif uint part_store_len= key_part->store_length; // Info about each key part struct part_st { bool part_last; const key_range *key; const byte *part_ptr; bool part_null; int bound_type; const char* bound_ptr; }; struct part_st part[2]; for (j= 0; j <= 1; j++) { struct part_st &p= part[j]; p.key= NULL; p.bound_type= -1; if (tot_len < key_tot_len[j]) { p.part_last= (tot_len + part_store_len >= key_tot_len[j]); p.key= keys[j]; p.part_ptr= &p.key->key[tot_len]; p.part_null= key_part->null_bit && *p.part_ptr; p.bound_ptr= (const char *) p.part_null ? 0 : key_part->null_bit ? p.part_ptr + 1 : p.part_ptr; if (j == 0) { switch (p.key->flag) { case HA_READ_KEY_EXACT: p.bound_type= NdbIndexScanOperation::BoundEQ; break; // ascending case HA_READ_KEY_OR_NEXT: p.bound_type= NdbIndexScanOperation::BoundLE; break; case HA_READ_AFTER_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundLE; else p.bound_type= NdbIndexScanOperation::BoundLT; break; // descending case HA_READ_PREFIX_LAST: // weird p.bound_type= NdbIndexScanOperation::BoundEQ; break; case HA_READ_PREFIX_LAST_OR_PREV: // weird p.bound_type= NdbIndexScanOperation::BoundGE; break; case HA_READ_BEFORE_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundGE; else p.bound_type= NdbIndexScanOperation::BoundGT; break; default: break; } } if (j == 1) { switch (p.key->flag) { // ascending case HA_READ_BEFORE_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundGE; else p.bound_type= NdbIndexScanOperation::BoundGT; break; case HA_READ_AFTER_KEY: // weird p.bound_type= NdbIndexScanOperation::BoundGE; break; default: break; // descending strangely sets no end key } } if (p.bound_type == -1) { DBUG_PRINT("error", ("key %d unknown flag %d", j, p.key->flag)); DBUG_ASSERT(FALSE); // Stop setting bounds but continue with what we have op->end_of_bound(range_no); DBUG_RETURN(0); } } } // Seen with e.g. b = 1 and c > 1 if (part[0].bound_type == NdbIndexScanOperation::BoundLE && part[1].bound_type == NdbIndexScanOperation::BoundGE && memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0) { DBUG_PRINT("info", ("replace LE/GE pair by EQ")); part[0].bound_type= NdbIndexScanOperation::BoundEQ; part[1].bound_type= -1; } // Not seen but was in previous version if (part[0].bound_type == NdbIndexScanOperation::BoundEQ && part[1].bound_type == NdbIndexScanOperation::BoundGE && memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0) { DBUG_PRINT("info", ("remove GE from EQ/GE pair")); part[1].bound_type= -1; } for (j= 0; j <= 1; j++) { struct part_st &p= part[j]; // Set bound if not done with this key if (p.key != NULL) { DBUG_PRINT("info", ("key %d:%d offset=%d length=%d last=%d bound=%d", j, i, tot_len, part_len, p.part_last, p.bound_type)); DBUG_DUMP("info", (const char*)p.part_ptr, part_store_len); // Set bound if not cancelled via type -1 if (p.bound_type != -1) { const char* ptr= p.bound_ptr; char buf[256]; shrink_varchar(field, ptr, buf); if (op->setBound(i, p.bound_type, ptr)) ERR_RETURN(op->getNdbError()); } } } tot_len+= part_store_len; } op->end_of_bound(range_no); DBUG_RETURN(0); } /* Start ordered index scan in NDB */ int ha_ndbcluster::ordered_index_scan(const key_range *start_key, const key_range *end_key, bool sorted, bool descending, byte* buf) { int res; bool restart; NdbTransaction *trans= m_active_trans; NdbIndexScanOperation *op; DBUG_ENTER("ha_ndbcluster::ordered_index_scan"); DBUG_PRINT("enter", ("index: %u, sorted: %d, descending: %d", active_index, sorted, descending)); DBUG_PRINT("enter", ("Starting new ordered scan on %s", m_tabname)); // Check that sorted seems to be initialised DBUG_ASSERT(sorted == 0 || sorted == 1); if (m_active_cursor == 0) { restart= FALSE; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbIndexScanOperation((NDBINDEX *) m_index[active_index].index, (const NDBTAB *) m_table)) || op->readTuples(lm, 0, parallelism, sorted, descending)) ERR_RETURN(trans->getNdbError()); m_active_cursor= op; } else { restart= TRUE; op= (NdbIndexScanOperation*)m_active_cursor; DBUG_ASSERT(op->getSorted() == sorted); DBUG_ASSERT(op->getLockMode() == (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type)); if (op->reset_bounds(m_force_send)) DBUG_RETURN(ndb_err(m_active_trans)); } { const key_range *keys[2]= { start_key, end_key }; res= set_bounds(op, keys); if (res) DBUG_RETURN(res); } if (!restart && generate_scan_filter(m_cond_stack, op)) DBUG_RETURN(ndb_err(trans)); if (!restart && (res= define_read_attrs(buf, op))) { DBUG_RETURN(res); } if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); DBUG_RETURN(next_result(buf)); } /* Start full table scan in NDB */ int ha_ndbcluster::full_table_scan(byte *buf) { int res; NdbScanOperation *op; NdbTransaction *trans= m_active_trans; DBUG_ENTER("full_table_scan"); DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname)); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op=trans->getNdbScanOperation((const NDBTAB *) m_table)) || op->readTuples(lm, 0, parallelism)) ERR_RETURN(trans->getNdbError()); m_active_cursor= op; if (generate_scan_filter(m_cond_stack, op)) DBUG_RETURN(ndb_err(trans)); if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); DBUG_PRINT("exit", ("Scan started successfully")); DBUG_RETURN(next_result(buf)); } /* Insert one record into NDB */ int ha_ndbcluster::write_row(byte *record) { bool has_auto_increment; uint i; NdbTransaction *trans= m_active_trans; NdbOperation *op; int res; THD *thd= current_thd; DBUG_ENTER("write_row"); if (m_ignore_dup_key && table->s->primary_key != MAX_KEY) { int peek_res= peek_row(record); if (!peek_res) { m_dupkey= table->s->primary_key; DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY); } if (peek_res != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(peek_res); } statistic_increment(thd->status_var.ha_write_count, &LOCK_status); if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT) table->timestamp_field->set_time(); has_auto_increment= (table->next_number_field && record == table->record[0]); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table))) ERR_RETURN(trans->getNdbError()); res= (m_use_write) ? op->writeTuple() :op->insertTuple(); if (res != 0) ERR_RETURN(trans->getNdbError()); if (table->s->primary_key == MAX_KEY) { // Table has hidden primary key Ndb *ndb= get_ndb(); Uint64 auto_value= NDB_FAILED_AUTO_INCREMENT; uint retries= NDB_AUTO_INCREMENT_RETRIES; do { auto_value= ndb->getAutoIncrementValue((const NDBTAB *) m_table); } while (auto_value == NDB_FAILED_AUTO_INCREMENT && --retries && ndb->getNdbError().status == NdbError::TemporaryError); if (auto_value == NDB_FAILED_AUTO_INCREMENT) ERR_RETURN(ndb->getNdbError()); if (set_hidden_key(op, table->s->fields, (const byte*)&auto_value)) ERR_RETURN(op->getNdbError()); } else { int res; if (has_auto_increment) { THD *thd= table->in_use; m_skip_auto_increment= FALSE; update_auto_increment(); /* Ensure that handler is always called for auto_increment values */ thd->next_insert_id= 0; m_skip_auto_increment= !auto_increment_column_changed; } if ((res= set_primary_key_from_record(op, record))) return res; } // Set non-key attribute(s) bool set_blob_value= FALSE; for (i= 0; i < table->s->fields; i++) { Field *field= table->field[i]; if (!(field->flags & PRI_KEY_FLAG) && set_ndb_value(op, field, i, &set_blob_value)) { m_skip_auto_increment= TRUE; ERR_RETURN(op->getNdbError()); } } m_rows_changed++; /* Execute write operation NOTE When doing inserts with many values in each INSERT statement it should not be necessary to NoCommit the transaction between each row. Find out how this is detected! */ m_rows_inserted++; no_uncommitted_rows_update(1); m_bulk_insert_not_flushed= TRUE; if ((m_rows_to_insert == (ha_rows) 1) || ((m_rows_inserted % m_bulk_insert_rows) == 0) || m_primary_key_update || set_blob_value) { // Send rows to NDB DBUG_PRINT("info", ("Sending inserts to NDB, "\ "rows_inserted:%d, bulk_insert_rows: %d", (int)m_rows_inserted, (int)m_bulk_insert_rows)); m_bulk_insert_not_flushed= FALSE; if (m_transaction_on) { if (execute_no_commit(this,trans) != 0) { m_skip_auto_increment= TRUE; no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } } else { if (execute_commit(this,trans) != 0) { m_skip_auto_increment= TRUE; no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } if (trans->restart() != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } } if ((has_auto_increment) && (m_skip_auto_increment)) { Ndb *ndb= get_ndb(); Uint64 next_val= (Uint64) table->next_number_field->val_int() + 1; DBUG_PRINT("info", ("Trying to set next auto increment value to %lu", (ulong) next_val)); if (ndb->setAutoIncrementValue((const NDBTAB *) m_table, next_val, TRUE)) DBUG_PRINT("info", ("Setting next auto increment value to %u", next_val)); } m_skip_auto_increment= TRUE; DBUG_RETURN(0); } /* Compare if a key in a row has changed */ int ha_ndbcluster::key_cmp(uint keynr, const byte * old_row, const byte * new_row) { KEY_PART_INFO *key_part=table->key_info[keynr].key_part; KEY_PART_INFO *end=key_part+table->key_info[keynr].key_parts; for (; key_part != end ; key_part++) { if (key_part->null_bit) { if ((old_row[key_part->null_offset] & key_part->null_bit) != (new_row[key_part->null_offset] & key_part->null_bit)) return 1; } if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART)) { if (key_part->field->cmp_binary((char*) (old_row + key_part->offset), (char*) (new_row + key_part->offset), (ulong) key_part->length)) return 1; } else { if (memcmp(old_row+key_part->offset, new_row+key_part->offset, key_part->length)) return 1; } } return 0; } /* Update one record in NDB using primary key */ int ha_ndbcluster::update_row(const byte *old_data, byte *new_data) { THD *thd= current_thd; NdbTransaction *trans= m_active_trans; NdbScanOperation* cursor= m_active_cursor; NdbOperation *op; uint i; DBUG_ENTER("update_row"); statistic_increment(thd->status_var.ha_update_count, &LOCK_status); if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE) { table->timestamp_field->set_time(); // Set query_id so that field is really updated table->timestamp_field->query_id= thd->query_id; } /* Check for update of primary key for special handling */ if ((table->s->primary_key != MAX_KEY) && (key_cmp(table->s->primary_key, old_data, new_data))) { int read_res, insert_res, delete_res, undo_res; DBUG_PRINT("info", ("primary key update, doing pk read+delete+insert")); // Get all old fields, since we optimize away fields not in query read_res= complemented_pk_read(old_data, new_data); if (read_res) { DBUG_PRINT("info", ("pk read failed")); DBUG_RETURN(read_res); } // Delete old row m_primary_key_update= TRUE; delete_res= delete_row(old_data); m_primary_key_update= FALSE; if (delete_res) { DBUG_PRINT("info", ("delete failed")); DBUG_RETURN(delete_res); } // Insert new row DBUG_PRINT("info", ("delete succeded")); m_primary_key_update= TRUE; insert_res= write_row(new_data); m_primary_key_update= FALSE; if (insert_res) { DBUG_PRINT("info", ("insert failed")); if (trans->commitStatus() == NdbConnection::Started) { // Undo delete_row(old_data) m_primary_key_update= TRUE; undo_res= write_row((byte *)old_data); if (undo_res) push_warning(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN, undo_res, "NDB failed undoing delete at primary key update"); m_primary_key_update= FALSE; } DBUG_RETURN(insert_res); } DBUG_PRINT("info", ("delete+insert succeeded")); DBUG_RETURN(0); } if (cursor) { /* We are scanning records and want to update the record that was just found, call updateTuple on the cursor to take over the lock to a new update operation And thus setting the primary key of the record from the active record in cursor */ DBUG_PRINT("info", ("Calling updateTuple on cursor")); if (!(op= cursor->updateCurrentTuple())) ERR_RETURN(trans->getNdbError()); m_ops_pending++; if (uses_blob_value(FALSE)) m_blobs_pending= TRUE; } else { if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->updateTuple() != 0) ERR_RETURN(trans->getNdbError()); if (table->s->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); // Require that the PK for this record has previously been // read into m_ref DBUG_DUMP("key", m_ref, NDB_HIDDEN_PRIMARY_KEY_LENGTH); if (set_hidden_key(op, table->s->fields, m_ref)) ERR_RETURN(op->getNdbError()); } else { int res; if ((res= set_primary_key_from_record(op, old_data))) DBUG_RETURN(res); } } m_rows_changed++; // Set non-key attribute(s) for (i= 0; i < table->s->fields; i++) { Field *field= table->field[i]; if (((thd->query_id == field->query_id) || m_retrieve_all_fields) && (!(field->flags & PRI_KEY_FLAG)) && set_ndb_value(op, field, i)) ERR_RETURN(op->getNdbError()); } // Execute update operation if (!cursor && execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Delete one record from NDB, using primary key */ int ha_ndbcluster::delete_row(const byte *record) { THD *thd= current_thd; NdbTransaction *trans= m_active_trans; NdbScanOperation* cursor= m_active_cursor; NdbOperation *op; DBUG_ENTER("delete_row"); statistic_increment(thd->status_var.ha_delete_count,&LOCK_status); m_rows_changed++; if (cursor) { /* We are scanning records and want to delete the record that was just found, call deleteTuple on the cursor to take over the lock to a new delete operation And thus setting the primary key of the record from the active record in cursor */ DBUG_PRINT("info", ("Calling deleteTuple on cursor")); if (cursor->deleteCurrentTuple() != 0) ERR_RETURN(trans->getNdbError()); m_ops_pending++; no_uncommitted_rows_update(-1); if (!m_primary_key_update) // If deleting from cursor, NoCommit will be handled in next_result DBUG_RETURN(0); } else { if (!(op=trans->getNdbOperation((const NDBTAB *) m_table)) || op->deleteTuple() != 0) ERR_RETURN(trans->getNdbError()); no_uncommitted_rows_update(-1); if (table->s->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); if (set_hidden_key(op, table->s->fields, m_ref)) ERR_RETURN(op->getNdbError()); } else { int res; if ((res= set_primary_key_from_record(op, record))) return res; } } // Execute delete operation if (execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Unpack a record read from NDB SYNOPSIS unpack_record() buf Buffer to store read row NOTE The data for each row is read directly into the destination buffer. This function is primarily called in order to check if any fields should be set to null. */ void ha_ndbcluster::unpack_record(byte* buf) { uint row_offset= (uint) (buf - table->record[0]); Field **field, **end; NdbValue *value= m_value; DBUG_ENTER("unpack_record"); end= table->field + table->s->fields; // Set null flag(s) bzero(buf, table->s->null_bytes); for (field= table->field; field < end; field++, value++) { if ((*value).ptr) { if (! ((*field)->flags & BLOB_FLAG)) { if ((*value).rec->isNULL()) (*field)->set_null(row_offset); else if ((*field)->type() == MYSQL_TYPE_BIT) { uint pack_len= (*field)->pack_length(); if (pack_len < 5) { DBUG_PRINT("info", ("bit field H'%.8X", (*value).rec->u_32_value())); ((Field_bit *) *field)->store((longlong) (*value).rec->u_32_value(), FALSE); } else { DBUG_PRINT("info", ("bit field H'%.8X%.8X", *(Uint32 *)(*value).rec->aRef(), *((Uint32 *)(*value).rec->aRef()+1))); ((Field_bit *) *field)->store((longlong) (*value).rec->u_64_value(), TRUE); } } } else { NdbBlob* ndb_blob= (*value).blob; bool isNull= TRUE; #ifndef DBUG_OFF int ret= #endif ndb_blob->getNull(isNull); DBUG_ASSERT(ret == 0); if (isNull) (*field)->set_null(row_offset); } } } #ifndef DBUG_OFF // Read and print all values that was fetched if (table->s->primary_key == MAX_KEY) { // Table with hidden primary key int hidden_no= table->s->fields; const NDBTAB *tab= (const NDBTAB *) m_table; const NDBCOL *hidden_col= tab->getColumn(hidden_no); const NdbRecAttr* rec= m_value[hidden_no].rec; DBUG_ASSERT(rec); DBUG_PRINT("hidden", ("%d: %s \"%llu\"", hidden_no, hidden_col->getName(), rec->u_64_value())); } //print_results(); #endif DBUG_VOID_RETURN; } /* Utility function to print/dump the fetched field */ void ha_ndbcluster::print_results() { DBUG_ENTER("print_results"); #ifndef DBUG_OFF const NDBTAB *tab= (const NDBTAB*) m_table; if (!_db_on_) DBUG_VOID_RETURN; char buf_type[MAX_FIELD_WIDTH], buf_val[MAX_FIELD_WIDTH]; String type(buf_type, sizeof(buf_type), &my_charset_bin); String val(buf_val, sizeof(buf_val), &my_charset_bin); for (uint f= 0; f < table->s->fields; f++) { /* Use DBUG_PRINT since DBUG_FILE cannot be filtered out */ char buf[2000]; Field *field; void* ptr; NdbValue value; buf[0]= 0; field= table->field[f]; if (!(value= m_value[f]).ptr) { strmov(buf, "not read"); goto print_value; } ptr= field->ptr; if (! (field->flags & BLOB_FLAG)) { if (value.rec->isNULL()) { strmov(buf, "NULL"); goto print_value; } type.length(0); val.length(0); field->sql_type(type); field->val_str(&val); my_snprintf(buf, sizeof(buf), "%s %s", type.c_ptr(), val.c_ptr()); } else { NdbBlob *ndb_blob= value.blob; bool isNull= TRUE; ndb_blob->getNull(isNull); if (isNull) strmov(buf, "NULL"); } print_value: DBUG_PRINT("value", ("%u,%s: %s", f, field->field_name, buf)); } #endif DBUG_VOID_RETURN; } int ha_ndbcluster::index_init(uint index) { DBUG_ENTER("ha_ndbcluster::index_init"); DBUG_PRINT("enter", ("index: %u", index)); DBUG_RETURN(handler::index_init(index)); } int ha_ndbcluster::index_end() { DBUG_ENTER("ha_ndbcluster::index_end"); DBUG_RETURN(close_scan()); } /** * Check if key contains null */ static int check_null_in_key(const KEY* key_info, const byte *key, uint key_len) { KEY_PART_INFO *curr_part, *end_part; const byte* end_ptr= key + key_len; curr_part= key_info->key_part; end_part= curr_part + key_info->key_parts; for (; curr_part != end_part && key < end_ptr; curr_part++) { if (curr_part->null_bit && *key) return 1; key += curr_part->store_length; } return 0; } int ha_ndbcluster::index_read(byte *buf, const byte *key, uint key_len, enum ha_rkey_function find_flag) { DBUG_ENTER("ha_ndbcluster::index_read"); DBUG_PRINT("enter", ("active_index: %u, key_len: %u, find_flag: %d", active_index, key_len, find_flag)); int error; ndb_index_type type= get_index_type(active_index); const KEY* key_info= table->key_info+active_index; switch (type){ case PRIMARY_KEY_ORDERED_INDEX: case PRIMARY_KEY_INDEX: if (find_flag == HA_READ_KEY_EXACT && key_info->key_length == key_len) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); DBUG_RETURN(pk_read(key, key_len, buf)); } else if (type == PRIMARY_KEY_INDEX) { DBUG_RETURN(1); } break; case UNIQUE_ORDERED_INDEX: case UNIQUE_INDEX: if (find_flag == HA_READ_KEY_EXACT && key_info->key_length == key_len && !check_null_in_key(key_info, key, key_len)) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); DBUG_RETURN(unique_index_read(key, key_len, buf)); } else if (type == UNIQUE_INDEX) { DBUG_RETURN(1); } break; case ORDERED_INDEX: break; default: case UNDEFINED_INDEX: DBUG_ASSERT(FALSE); DBUG_RETURN(1); break; } key_range start_key; start_key.key= key; start_key.length= key_len; start_key.flag= find_flag; bool descending= FALSE; switch (find_flag) { case HA_READ_KEY_OR_PREV: case HA_READ_BEFORE_KEY: case HA_READ_PREFIX_LAST: case HA_READ_PREFIX_LAST_OR_PREV: descending= TRUE; break; default: break; } error= ordered_index_scan(&start_key, 0, TRUE, descending, buf); DBUG_RETURN(error == HA_ERR_END_OF_FILE ? HA_ERR_KEY_NOT_FOUND : error); } int ha_ndbcluster::index_read_idx(byte *buf, uint index_no, const byte *key, uint key_len, enum ha_rkey_function find_flag) { statistic_increment(current_thd->status_var.ha_read_key_count, &LOCK_status); DBUG_ENTER("ha_ndbcluster::index_read_idx"); DBUG_PRINT("enter", ("index_no: %u, key_len: %u", index_no, key_len)); index_init(index_no); DBUG_RETURN(index_read(buf, key, key_len, find_flag)); } int ha_ndbcluster::index_next(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_next"); statistic_increment(current_thd->status_var.ha_read_next_count, &LOCK_status); DBUG_RETURN(next_result(buf)); } int ha_ndbcluster::index_prev(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_prev"); statistic_increment(current_thd->status_var.ha_read_prev_count, &LOCK_status); DBUG_RETURN(next_result(buf)); } int ha_ndbcluster::index_first(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_first"); statistic_increment(current_thd->status_var.ha_read_first_count, &LOCK_status); // Start the ordered index scan and fetch the first row // Only HA_READ_ORDER indexes get called by index_first DBUG_RETURN(ordered_index_scan(0, 0, TRUE, FALSE, buf)); } int ha_ndbcluster::index_last(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_last"); statistic_increment(current_thd->status_var.ha_read_last_count,&LOCK_status); DBUG_RETURN(ordered_index_scan(0, 0, TRUE, TRUE, buf)); } int ha_ndbcluster::index_read_last(byte * buf, const byte * key, uint key_len) { DBUG_ENTER("ha_ndbcluster::index_read_last"); DBUG_RETURN(index_read(buf, key, key_len, HA_READ_PREFIX_LAST)); } inline int ha_ndbcluster::read_range_first_to_buf(const key_range *start_key, const key_range *end_key, bool eq_r, bool sorted, byte* buf) { KEY* key_info; int error= 1; DBUG_ENTER("ha_ndbcluster::read_range_first_to_buf"); DBUG_PRINT("info", ("eq_r: %d, sorted: %d", eq_r, sorted)); switch (get_index_type(active_index)){ case PRIMARY_KEY_ORDERED_INDEX: case PRIMARY_KEY_INDEX: key_info= table->key_info + active_index; if (start_key && start_key->length == key_info->key_length && start_key->flag == HA_READ_KEY_EXACT) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); error= pk_read(start_key->key, start_key->length, buf); DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error); } break; case UNIQUE_ORDERED_INDEX: case UNIQUE_INDEX: key_info= table->key_info + active_index; if (start_key && start_key->length == key_info->key_length && start_key->flag == HA_READ_KEY_EXACT && !check_null_in_key(key_info, start_key->key, start_key->length)) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); error= unique_index_read(start_key->key, start_key->length, buf); DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error); } break; default: break; } // Start the ordered index scan and fetch the first row error= ordered_index_scan(start_key, end_key, sorted, FALSE, buf); DBUG_RETURN(error); } int ha_ndbcluster::read_range_first(const key_range *start_key, const key_range *end_key, bool eq_r, bool sorted) { byte* buf= table->record[0]; DBUG_ENTER("ha_ndbcluster::read_range_first"); DBUG_RETURN(read_range_first_to_buf(start_key, end_key, eq_r, sorted, buf)); } int ha_ndbcluster::read_range_next() { DBUG_ENTER("ha_ndbcluster::read_range_next"); DBUG_RETURN(next_result(table->record[0])); } int ha_ndbcluster::rnd_init(bool scan) { NdbScanOperation *cursor= m_active_cursor; DBUG_ENTER("rnd_init"); DBUG_PRINT("enter", ("scan: %d", scan)); // Check if scan is to be restarted if (cursor) { if (!scan) DBUG_RETURN(1); if (cursor->restart(m_force_send) != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } index_init(table->s->primary_key); DBUG_RETURN(0); } int ha_ndbcluster::close_scan() { NdbTransaction *trans= m_active_trans; DBUG_ENTER("close_scan"); m_multi_cursor= 0; if (!m_active_cursor && !m_multi_cursor) DBUG_RETURN(1); NdbScanOperation *cursor= m_active_cursor ? m_active_cursor : m_multi_cursor; if (m_ops_pending) { /* Take over any pending transactions to the deleteing/updating transaction before closing the scan */ DBUG_PRINT("info", ("ops_pending: %d", m_ops_pending)); if (execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } m_ops_pending= 0; } cursor->close(m_force_send, TRUE); m_active_cursor= m_multi_cursor= NULL; DBUG_RETURN(0); } int ha_ndbcluster::rnd_end() { DBUG_ENTER("rnd_end"); DBUG_RETURN(close_scan()); } int ha_ndbcluster::rnd_next(byte *buf) { DBUG_ENTER("rnd_next"); statistic_increment(current_thd->status_var.ha_read_rnd_next_count, &LOCK_status); if (!m_active_cursor) DBUG_RETURN(full_table_scan(buf)); DBUG_RETURN(next_result(buf)); } /* An "interesting" record has been found and it's pk retrieved by calling position Now it's time to read the record from db once again */ int ha_ndbcluster::rnd_pos(byte *buf, byte *pos) { DBUG_ENTER("rnd_pos"); statistic_increment(current_thd->status_var.ha_read_rnd_count, &LOCK_status); // The primary key for the record is stored in pos // Perform a pk_read using primary key "index" DBUG_RETURN(pk_read(pos, ref_length, buf)); } /* Store the primary key of this record in ref variable, so that the row can be retrieved again later using "reference" in rnd_pos */ void ha_ndbcluster::position(const byte *record) { KEY *key_info; KEY_PART_INFO *key_part; KEY_PART_INFO *end; byte *buff; DBUG_ENTER("position"); if (table->s->primary_key != MAX_KEY) { key_info= table->key_info + table->s->primary_key; key_part= key_info->key_part; end= key_part + key_info->key_parts; buff= ref; for (; key_part != end; key_part++) { if (key_part->null_bit) { /* Store 0 if the key part is a NULL part */ if (record[key_part->null_offset] & key_part->null_bit) { *buff++= 1; continue; } *buff++= 0; } size_t len = key_part->length; const byte * ptr = record + key_part->offset; Field *field = key_part->field; if ((field->type() == MYSQL_TYPE_VARCHAR) && ((Field_varstring*)field)->length_bytes == 1) { /** * Keys always use 2 bytes length */ buff[0] = ptr[0]; buff[1] = 0; memcpy(buff+2, ptr + 1, len); len += 2; } else { memcpy(buff, ptr, len); } buff += len; } } else { // No primary key, get hidden key DBUG_PRINT("info", ("Getting hidden key")); #ifndef DBUG_OFF int hidden_no= table->s->fields; const NDBTAB *tab= (const NDBTAB *) m_table; const NDBCOL *hidden_col= tab->getColumn(hidden_no); DBUG_ASSERT(hidden_col->getPrimaryKey() && hidden_col->getAutoIncrement() && ref_length == NDB_HIDDEN_PRIMARY_KEY_LENGTH); #endif memcpy(ref, m_ref, ref_length); } DBUG_DUMP("ref", (char*)ref, ref_length); DBUG_VOID_RETURN; } void ha_ndbcluster::info(uint flag) { DBUG_ENTER("info"); DBUG_PRINT("enter", ("flag: %d", flag)); if (flag & HA_STATUS_POS) DBUG_PRINT("info", ("HA_STATUS_POS")); if (flag & HA_STATUS_NO_LOCK) DBUG_PRINT("info", ("HA_STATUS_NO_LOCK")); if (flag & HA_STATUS_TIME) DBUG_PRINT("info", ("HA_STATUS_TIME")); if (flag & HA_STATUS_VARIABLE) { DBUG_PRINT("info", ("HA_STATUS_VARIABLE")); if (m_table_info) { if (m_ha_not_exact_count) records= 100; else records_update(); } else { if ((my_errno= check_ndb_connection())) DBUG_VOID_RETURN; Ndb *ndb= get_ndb(); struct Ndb_statistics stat; if (current_thd->variables.ndb_use_exact_count && ndb_get_table_statistics(ndb, m_tabname, &stat) == 0) { mean_rec_length= stat.row_size; data_file_length= stat.fragment_memory; records= stat.row_count; } else { mean_rec_length= 0; records= 100; } } } if (flag & HA_STATUS_CONST) { DBUG_PRINT("info", ("HA_STATUS_CONST")); set_rec_per_key(); } if (flag & HA_STATUS_ERRKEY) { DBUG_PRINT("info", ("HA_STATUS_ERRKEY")); errkey= m_dupkey; } if (flag & HA_STATUS_AUTO) { DBUG_PRINT("info", ("HA_STATUS_AUTO")); if (m_table) { Ndb *ndb= get_ndb(); auto_increment_value= ndb->readAutoIncrementValue((const NDBTAB *) m_table); } } DBUG_VOID_RETURN; } int ha_ndbcluster::extra(enum ha_extra_function operation) { DBUG_ENTER("extra"); switch (operation) { case HA_EXTRA_NORMAL: /* Optimize for space (def) */ DBUG_PRINT("info", ("HA_EXTRA_NORMAL")); break; case HA_EXTRA_QUICK: /* Optimize for speed */ DBUG_PRINT("info", ("HA_EXTRA_QUICK")); break; case HA_EXTRA_RESET: /* Reset database to after open */ DBUG_PRINT("info", ("HA_EXTRA_RESET")); DBUG_PRINT("info", ("Clearing condition stack")); cond_clear(); break; case HA_EXTRA_CACHE: /* Cash record in HA_rrnd() */ DBUG_PRINT("info", ("HA_EXTRA_CACHE")); break; case HA_EXTRA_NO_CACHE: /* End cacheing of records (def) */ DBUG_PRINT("info", ("HA_EXTRA_NO_CACHE")); break; case HA_EXTRA_NO_READCHECK: /* No readcheck on update */ DBUG_PRINT("info", ("HA_EXTRA_NO_READCHECK")); break; case HA_EXTRA_READCHECK: /* Use readcheck (def) */ DBUG_PRINT("info", ("HA_EXTRA_READCHECK")); break; case HA_EXTRA_KEYREAD: /* Read only key to database */ DBUG_PRINT("info", ("HA_EXTRA_KEYREAD")); break; case HA_EXTRA_NO_KEYREAD: /* Normal read of records (def) */ DBUG_PRINT("info", ("HA_EXTRA_NO_KEYREAD")); break; case HA_EXTRA_NO_USER_CHANGE: /* No user is allowed to write */ DBUG_PRINT("info", ("HA_EXTRA_NO_USER_CHANGE")); break; case HA_EXTRA_KEY_CACHE: DBUG_PRINT("info", ("HA_EXTRA_KEY_CACHE")); break; case HA_EXTRA_NO_KEY_CACHE: DBUG_PRINT("info", ("HA_EXTRA_NO_KEY_CACHE")); break; case HA_EXTRA_WAIT_LOCK: /* Wait until file is avalably (def) */ DBUG_PRINT("info", ("HA_EXTRA_WAIT_LOCK")); break; case HA_EXTRA_NO_WAIT_LOCK: /* If file is locked, return quickly */ DBUG_PRINT("info", ("HA_EXTRA_NO_WAIT_LOCK")); break; case HA_EXTRA_WRITE_CACHE: /* Use write cache in ha_write() */ DBUG_PRINT("info", ("HA_EXTRA_WRITE_CACHE")); break; case HA_EXTRA_FLUSH_CACHE: /* flush write_record_cache */ DBUG_PRINT("info", ("HA_EXTRA_FLUSH_CACHE")); break; case HA_EXTRA_NO_KEYS: /* Remove all update of keys */ DBUG_PRINT("info", ("HA_EXTRA_NO_KEYS")); break; case HA_EXTRA_KEYREAD_CHANGE_POS: /* Keyread, but change pos */ DBUG_PRINT("info", ("HA_EXTRA_KEYREAD_CHANGE_POS")); /* xxxxchk -r must be used */ break; case HA_EXTRA_REMEMBER_POS: /* Remember pos for next/prev */ DBUG_PRINT("info", ("HA_EXTRA_REMEMBER_POS")); break; case HA_EXTRA_RESTORE_POS: DBUG_PRINT("info", ("HA_EXTRA_RESTORE_POS")); break; case HA_EXTRA_REINIT_CACHE: /* init cache from current record */ DBUG_PRINT("info", ("HA_EXTRA_REINIT_CACHE")); break; case HA_EXTRA_FORCE_REOPEN: /* Datafile have changed on disk */ DBUG_PRINT("info", ("HA_EXTRA_FORCE_REOPEN")); break; case HA_EXTRA_FLUSH: /* Flush tables to disk */ DBUG_PRINT("info", ("HA_EXTRA_FLUSH")); break; case HA_EXTRA_NO_ROWS: /* Don't write rows */ DBUG_PRINT("info", ("HA_EXTRA_NO_ROWS")); break; case HA_EXTRA_RESET_STATE: /* Reset positions */ DBUG_PRINT("info", ("HA_EXTRA_RESET_STATE")); break; case HA_EXTRA_IGNORE_DUP_KEY: /* Dup keys don't rollback everything*/ DBUG_PRINT("info", ("HA_EXTRA_IGNORE_DUP_KEY")); if (current_thd->lex->sql_command == SQLCOM_REPLACE) { DBUG_PRINT("info", ("Turning ON use of write instead of insert")); m_use_write= TRUE; } else { DBUG_PRINT("info", ("Ignoring duplicate key")); m_ignore_dup_key= TRUE; } break; case HA_EXTRA_NO_IGNORE_DUP_KEY: DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_DUP_KEY")); DBUG_PRINT("info", ("Turning OFF use of write instead of insert")); m_use_write= FALSE; m_ignore_dup_key= FALSE; break; case HA_EXTRA_RETRIEVE_ALL_COLS: /* Retrieve all columns, not just those where field->query_id is the same as the current query id */ DBUG_PRINT("info", ("HA_EXTRA_RETRIEVE_ALL_COLS")); m_retrieve_all_fields= TRUE; break; case HA_EXTRA_PREPARE_FOR_DELETE: DBUG_PRINT("info", ("HA_EXTRA_PREPARE_FOR_DELETE")); break; case HA_EXTRA_PREPARE_FOR_UPDATE: /* Remove read cache if problems */ DBUG_PRINT("info", ("HA_EXTRA_PREPARE_FOR_UPDATE")); break; case HA_EXTRA_PRELOAD_BUFFER_SIZE: DBUG_PRINT("info", ("HA_EXTRA_PRELOAD_BUFFER_SIZE")); break; case HA_EXTRA_RETRIEVE_PRIMARY_KEY: DBUG_PRINT("info", ("HA_EXTRA_RETRIEVE_PRIMARY_KEY")); m_retrieve_primary_key= TRUE; break; case HA_EXTRA_CHANGE_KEY_TO_UNIQUE: DBUG_PRINT("info", ("HA_EXTRA_CHANGE_KEY_TO_UNIQUE")); break; case HA_EXTRA_CHANGE_KEY_TO_DUP: DBUG_PRINT("info", ("HA_EXTRA_CHANGE_KEY_TO_DUP")); case HA_EXTRA_KEYREAD_PRESERVE_FIELDS: DBUG_PRINT("info", ("HA_EXTRA_KEYREAD_PRESERVE_FIELDS")); break; } DBUG_RETURN(0); } /* Start of an insert, remember number of rows to be inserted, it will be used in write_row and get_autoincrement to send an optimal number of rows in each roundtrip to the server SYNOPSIS rows number of rows to insert, 0 if unknown */ void ha_ndbcluster::start_bulk_insert(ha_rows rows) { int bytes, batch; const NDBTAB *tab= (const NDBTAB *) m_table; DBUG_ENTER("start_bulk_insert"); DBUG_PRINT("enter", ("rows: %d", (int)rows)); m_rows_inserted= (ha_rows) 0; if (rows == (ha_rows) 0) { /* We don't know how many will be inserted, guess */ m_rows_to_insert= m_autoincrement_prefetch; } else m_rows_to_insert= rows; /* Calculate how many rows that should be inserted per roundtrip to NDB. This is done in order to minimize the number of roundtrips as much as possible. However performance will degrade if too many bytes are inserted, thus it's limited by this calculation. */ const int bytesperbatch= 8192; bytes= 12 + tab->getRowSizeInBytes() + 4 * tab->getNoOfColumns(); batch= bytesperbatch/bytes; batch= batch == 0 ? 1 : batch; DBUG_PRINT("info", ("batch: %d, bytes: %d", batch, bytes)); m_bulk_insert_rows= batch; DBUG_VOID_RETURN; } /* End of an insert */ int ha_ndbcluster::end_bulk_insert() { int error= 0; DBUG_ENTER("end_bulk_insert"); // Check if last inserts need to be flushed if (m_bulk_insert_not_flushed) { NdbTransaction *trans= m_active_trans; // Send rows to NDB DBUG_PRINT("info", ("Sending inserts to NDB, "\ "rows_inserted:%d, bulk_insert_rows: %d", (int) m_rows_inserted, (int) m_bulk_insert_rows)); m_bulk_insert_not_flushed= FALSE; if (m_transaction_on) { if (execute_no_commit(this, trans) != 0) { no_uncommitted_rows_execute_failure(); my_errno= error= ndb_err(trans); } } else { if (execute_commit(this, trans) != 0) { no_uncommitted_rows_execute_failure(); my_errno= error= ndb_err(trans); } else { int res= trans->restart(); DBUG_ASSERT(res == 0); } } } m_rows_inserted= (ha_rows) 0; m_rows_to_insert= (ha_rows) 1; DBUG_RETURN(error); } int ha_ndbcluster::extra_opt(enum ha_extra_function operation, ulong cache_size) { DBUG_ENTER("extra_opt"); DBUG_PRINT("enter", ("cache_size: %lu", cache_size)); DBUG_RETURN(extra(operation)); } static const char *ha_ndbcluster_exts[] = { ha_ndb_ext, NullS }; const char** ha_ndbcluster::bas_ext() const { return ha_ndbcluster_exts; } /* How many seeks it will take to read through the table This is to be comparable to the number returned by records_in_range so that we can decide if we should scan the table or use keys. */ double ha_ndbcluster::scan_time() { DBUG_ENTER("ha_ndbcluster::scan_time()"); double res= rows2double(records*1000); DBUG_PRINT("exit", ("table: %s value: %f", m_tabname, res)); DBUG_RETURN(res); } /* Convert MySQL table locks into locks supported by Ndb Cluster. Note that MySQL Cluster does currently not support distributed table locks, so to be safe one should set cluster in Single User Mode, before relying on table locks when updating tables from several MySQL servers */ THR_LOCK_DATA **ha_ndbcluster::store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type) { DBUG_ENTER("store_lock"); if (lock_type != TL_IGNORE && m_lock.type == TL_UNLOCK) { /* If we are not doing a LOCK TABLE, then allow multiple writers */ /* Since NDB does not currently have table locks this is treated as a ordinary lock */ if ((lock_type >= TL_WRITE_CONCURRENT_INSERT && lock_type <= TL_WRITE) && !thd->in_lock_tables) lock_type= TL_WRITE_ALLOW_WRITE; /* In queries of type INSERT INTO t1 SELECT ... FROM t2 ... MySQL would use the lock TL_READ_NO_INSERT on t2, and that would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts to t2. Convert the lock to a normal read lock to allow concurrent inserts to t2. */ if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables) lock_type= TL_READ; m_lock.type=lock_type; } *to++= &m_lock; DBUG_PRINT("exit", ("lock_type: %d", lock_type)); DBUG_RETURN(to); } #ifndef DBUG_OFF #define PRINT_OPTION_FLAGS(t) { \ if (t->options & OPTION_NOT_AUTOCOMMIT) \ DBUG_PRINT("thd->options", ("OPTION_NOT_AUTOCOMMIT")); \ if (t->options & OPTION_BEGIN) \ DBUG_PRINT("thd->options", ("OPTION_BEGIN")); \ if (t->options & OPTION_TABLE_LOCK) \ DBUG_PRINT("thd->options", ("OPTION_TABLE_LOCK")); \ } #else #define PRINT_OPTION_FLAGS(t) #endif /* As MySQL will execute an external lock for every new table it uses we can use this to start the transactions. If we are in auto_commit mode we just need to start a transaction for the statement, this will be stored in thd_ndb.stmt. If not, we have to start a master transaction if there doesn't exist one from before, this will be stored in thd_ndb.all When a table lock is held one transaction will be started which holds the table lock and for each statement a hupp transaction will be started If we are locking the table then: - save the NdbDictionary::Table for easy access - save reference to table statistics - refresh list of the indexes for the table if needed (if altered) */ int ha_ndbcluster::external_lock(THD *thd, int lock_type) { int error=0; NdbTransaction* trans= NULL; DBUG_ENTER("external_lock"); /* Check that this handler instance has a connection set up to the Ndb object of thd */ if (check_ndb_connection(thd)) DBUG_RETURN(1); Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; DBUG_PRINT("enter", ("thd: %x, thd_ndb: %x, thd_ndb->lock_count: %d", thd, thd_ndb, thd_ndb->lock_count)); if (lock_type != F_UNLCK) { DBUG_PRINT("info", ("lock_type != F_UNLCK")); if (!thd->transaction.on) m_transaction_on= FALSE; else m_transaction_on= thd->variables.ndb_use_transactions; if (!thd_ndb->lock_count++) { PRINT_OPTION_FLAGS(thd); if (!(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))) { // Autocommit transaction DBUG_ASSERT(!thd_ndb->stmt); DBUG_PRINT("trans",("Starting transaction stmt")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->stmt= trans; trans_register_ha(thd, FALSE, &ndbcluster_hton); } else { if (!thd_ndb->all) { // Not autocommit transaction // A "master" transaction ha not been started yet DBUG_PRINT("trans",("starting transaction, all")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->all= trans; trans_register_ha(thd, TRUE, &ndbcluster_hton); /* If this is the start of a LOCK TABLE, a table look should be taken on the table in NDB Check if it should be read or write lock */ if (thd->options & (OPTION_TABLE_LOCK)) { //lockThisTable(); DBUG_PRINT("info", ("Locking the table..." )); } } } } /* This is the place to make sure this handler instance has a started transaction. The transaction is started by the first handler on which MySQL Server calls external lock Other handlers in the same stmt or transaction should use the same NDB transaction. This is done by setting up the m_active_trans pointer to point to the NDB transaction. */ // store thread specific data first to set the right context m_force_send= thd->variables.ndb_force_send; m_ha_not_exact_count= !thd->variables.ndb_use_exact_count; m_autoincrement_prefetch= (ha_rows) thd->variables.ndb_autoincrement_prefetch_sz; m_active_trans= thd_ndb->all ? thd_ndb->all : thd_ndb->stmt; DBUG_ASSERT(m_active_trans); // Start of transaction m_rows_changed= 0; m_retrieve_all_fields= FALSE; m_retrieve_primary_key= FALSE; m_ops_pending= 0; { NDBDICT *dict= ndb->getDictionary(); const NDBTAB *tab; void *tab_info; if (!(tab= dict->getTable(m_tabname, &tab_info))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); // Check if thread has stale local cache // New transaction must not use old tables... (trans != 0) // Running might... if ((trans && tab->getObjectStatus() != NdbDictionary::Object::Retrieved) || tab->getObjectStatus() == NdbDictionary::Object::Invalid) { invalidate_dictionary_cache(FALSE); if (!(tab= dict->getTable(m_tabname, &tab_info))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); } if (m_table_version < tab->getObjectVersion()) { /* The table has been altered, caller has to retry */ NdbError err= ndb->getNdbError(NDB_INVALID_SCHEMA_OBJECT); DBUG_RETURN(ndb_to_mysql_error(&err)); } if (m_table != (void *)tab) { m_table= (void *)tab; m_table_version = tab->getObjectVersion(); if (!(my_errno= build_index_list(ndb, table, ILBP_OPEN))) DBUG_RETURN(my_errno); } m_table_info= tab_info; } no_uncommitted_rows_init(thd); } else { DBUG_PRINT("info", ("lock_type == F_UNLCK")); if (ndb_cache_check_time && m_rows_changed) { DBUG_PRINT("info", ("Rows has changed and util thread is running")); if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)) { DBUG_PRINT("info", ("Add share to list of tables to be invalidated")); /* NOTE push_back allocates memory using transactions mem_root! */ thd_ndb->changed_tables.push_back(m_share, &thd->transaction.mem_root); } pthread_mutex_lock(&m_share->mutex); DBUG_PRINT("info", ("Invalidating commit_count")); m_share->commit_count= 0; m_share->commit_count_lock++; pthread_mutex_unlock(&m_share->mutex); } if (!--thd_ndb->lock_count) { DBUG_PRINT("trans", ("Last external_lock")); PRINT_OPTION_FLAGS(thd); if (thd_ndb->stmt) { /* Unlock is done without a transaction commit / rollback. This happens if the thread didn't update any rows We must in this case close the transaction to release resources */ DBUG_PRINT("trans",("ending non-updating transaction")); ndb->closeTransaction(m_active_trans); thd_ndb->stmt= NULL; } } m_table_info= NULL; /* This is the place to make sure this handler instance no longer are connected to the active transaction. And since the handler is no longer part of the transaction it can't have open cursors, ops or blobs pending. */ m_active_trans= NULL; if (m_active_cursor) DBUG_PRINT("warning", ("m_active_cursor != NULL")); m_active_cursor= NULL; if (m_multi_cursor) DBUG_PRINT("warning", ("m_multi_cursor != NULL")); m_multi_cursor= NULL; if (m_blobs_pending) DBUG_PRINT("warning", ("blobs_pending != 0")); m_blobs_pending= 0; if (m_ops_pending) DBUG_PRINT("warning", ("ops_pending != 0L")); m_ops_pending= 0; } DBUG_RETURN(error); } /* Start a transaction for running a statement if one is not already running in a transaction. This will be the case in a BEGIN; COMMIT; block When using LOCK TABLE's external_lock will start a transaction since ndb does not currently does not support table locking */ int ha_ndbcluster::start_stmt(THD *thd, thr_lock_type lock_type) { int error=0; DBUG_ENTER("start_stmt"); PRINT_OPTION_FLAGS(thd); Thd_ndb *thd_ndb= get_thd_ndb(thd); NdbTransaction *trans= (thd_ndb->stmt)?thd_ndb->stmt:thd_ndb->all; if (!trans){ Ndb *ndb= thd_ndb->ndb; DBUG_PRINT("trans",("Starting transaction stmt")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->stmt= trans; trans_register_ha(thd, FALSE, &ndbcluster_hton); } m_active_trans= trans; // Start of statement m_retrieve_all_fields= FALSE; m_retrieve_primary_key= FALSE; m_ops_pending= 0; DBUG_RETURN(error); } /* Commit a transaction started in NDB */ int ndbcluster_commit(THD *thd, bool all) { int res= 0; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt; DBUG_ENTER("ndbcluster_commit"); DBUG_PRINT("transaction",("%s", trans == thd_ndb->stmt ? "stmt" : "all")); DBUG_ASSERT(ndb && trans); if (execute_commit(thd,trans) != 0) { const NdbError err= trans->getNdbError(); const NdbOperation *error_op= trans->getNdbErrorOperation(); ERR_PRINT(err); res= ndb_to_mysql_error(&err); if (res != -1) ndbcluster_print_error(res, error_op); } ndb->closeTransaction(trans); if (all) thd_ndb->all= NULL; else thd_ndb->stmt= NULL; /* Clear commit_count for tables changed by transaction */ NDB_SHARE* share; List_iterator_fast it(thd_ndb->changed_tables); while ((share= it++)) { pthread_mutex_lock(&share->mutex); DBUG_PRINT("info", ("Invalidate commit_count for %s, share->commit_count: %d ", share->table_name, share->commit_count)); share->commit_count= 0; share->commit_count_lock++; pthread_mutex_unlock(&share->mutex); } thd_ndb->changed_tables.empty(); DBUG_RETURN(res); } /* Rollback a transaction started in NDB */ int ndbcluster_rollback(THD *thd, bool all) { int res= 0; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt; DBUG_ENTER("ndbcluster_rollback"); DBUG_PRINT("transaction",("%s", trans == thd_ndb->stmt ? "stmt" : "all")); DBUG_ASSERT(ndb && trans); if (trans->execute(NdbTransaction::Rollback) != 0) { const NdbError err= trans->getNdbError(); const NdbOperation *error_op= trans->getNdbErrorOperation(); ERR_PRINT(err); res= ndb_to_mysql_error(&err); if (res != -1) ndbcluster_print_error(res, error_op); } ndb->closeTransaction(trans); if (all) thd_ndb->all= NULL; else thd_ndb->stmt= NULL; /* Clear list of tables changed by transaction */ thd_ndb->changed_tables.empty(); DBUG_RETURN(res); } /* Define NDB column based on Field. Returns 0 or mysql error code. Not member of ha_ndbcluster because NDBCOL cannot be declared. MySQL text types with character set "binary" are mapped to true NDB binary types without a character set. This may change. */ static int create_ndb_column(NDBCOL &col, Field *field, HA_CREATE_INFO *info) { // Set name col.setName(field->field_name); // Get char set CHARSET_INFO *cs= field->charset(); // Set type and sizes const enum enum_field_types mysql_type= field->real_type(); switch (mysql_type) { // Numeric types case MYSQL_TYPE_TINY: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Tinyunsigned); else col.setType(NDBCOL::Tinyint); col.setLength(1); break; case MYSQL_TYPE_SHORT: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Smallunsigned); else col.setType(NDBCOL::Smallint); col.setLength(1); break; case MYSQL_TYPE_LONG: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Unsigned); else col.setType(NDBCOL::Int); col.setLength(1); break; case MYSQL_TYPE_INT24: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Mediumunsigned); else col.setType(NDBCOL::Mediumint); col.setLength(1); break; case MYSQL_TYPE_LONGLONG: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Bigunsigned); else col.setType(NDBCOL::Bigint); col.setLength(1); break; case MYSQL_TYPE_FLOAT: col.setType(NDBCOL::Float); col.setLength(1); break; case MYSQL_TYPE_DOUBLE: col.setType(NDBCOL::Double); col.setLength(1); break; case MYSQL_TYPE_DECIMAL: { Field_decimal *f= (Field_decimal*)field; uint precision= f->pack_length(); uint scale= f->decimals(); if (field->flags & UNSIGNED_FLAG) { col.setType(NDBCOL::Olddecimalunsigned); precision-= (scale > 0); } else { col.setType(NDBCOL::Olddecimal); precision-= 1 + (scale > 0); } col.setPrecision(precision); col.setScale(scale); col.setLength(1); } break; case MYSQL_TYPE_NEWDECIMAL: { Field_new_decimal *f= (Field_new_decimal*)field; uint precision= f->precision; uint scale= f->decimals(); if (field->flags & UNSIGNED_FLAG) { col.setType(NDBCOL::Decimalunsigned); } else { col.setType(NDBCOL::Decimal); } col.setPrecision(precision); col.setScale(scale); col.setLength(1); } break; // Date types case MYSQL_TYPE_DATETIME: col.setType(NDBCOL::Datetime); col.setLength(1); break; case MYSQL_TYPE_DATE: // ? col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_NEWDATE: col.setType(NDBCOL::Date); col.setLength(1); break; case MYSQL_TYPE_TIME: col.setType(NDBCOL::Time); col.setLength(1); break; case MYSQL_TYPE_YEAR: col.setType(NDBCOL::Year); col.setLength(1); break; case MYSQL_TYPE_TIMESTAMP: col.setType(NDBCOL::Timestamp); col.setLength(1); break; // Char types case MYSQL_TYPE_STRING: if (field->pack_length() == 0) { col.setType(NDBCOL::Bit); col.setLength(1); } else if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) { col.setType(NDBCOL::Binary); col.setLength(field->pack_length()); } else { col.setType(NDBCOL::Char); col.setCharset(cs); col.setLength(field->pack_length()); } break; case MYSQL_TYPE_VAR_STRING: // ? case MYSQL_TYPE_VARCHAR: { Field_varstring* f= (Field_varstring*)field; if (f->length_bytes == 1) { if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Varbinary); else { col.setType(NDBCOL::Varchar); col.setCharset(cs); } } else if (f->length_bytes == 2) { if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Longvarbinary); else { col.setType(NDBCOL::Longvarchar); col.setCharset(cs); } } else { return HA_ERR_UNSUPPORTED; } col.setLength(field->field_length); } break; // Blob types (all come in as MYSQL_TYPE_BLOB) mysql_type_tiny_blob: case MYSQL_TYPE_TINY_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); // No parts col.setPartSize(0); col.setStripeSize(0); break; //mysql_type_blob: case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } // Use "<=" even if "<" is the exact condition if (field->max_length() <= (1 << 8)) goto mysql_type_tiny_blob; else if (field->max_length() <= (1 << 16)) { col.setInlineSize(256); col.setPartSize(2000); col.setStripeSize(16); } else if (field->max_length() <= (1 << 24)) goto mysql_type_medium_blob; else goto mysql_type_long_blob; break; mysql_type_medium_blob: case MYSQL_TYPE_MEDIUM_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); col.setPartSize(4000); col.setStripeSize(8); break; mysql_type_long_blob: case MYSQL_TYPE_LONG_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); col.setPartSize(8000); col.setStripeSize(4); break; // Other types case MYSQL_TYPE_ENUM: col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_SET: col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_BIT: { int no_of_bits= field->field_length*8 + ((Field_bit *) field)->bit_len; col.setType(NDBCOL::Bit); if (!no_of_bits) col.setLength(1); else col.setLength(no_of_bits); break; } case MYSQL_TYPE_NULL: goto mysql_type_unsupported; mysql_type_unsupported: default: return HA_ERR_UNSUPPORTED; } // Set nullable and pk col.setNullable(field->maybe_null()); col.setPrimaryKey(field->flags & PRI_KEY_FLAG); // Set autoincrement if (field->flags & AUTO_INCREMENT_FLAG) { col.setAutoIncrement(TRUE); ulonglong value= info->auto_increment_value ? info->auto_increment_value : (ulonglong) 1; DBUG_PRINT("info", ("Autoincrement key, initial: %llu", value)); col.setAutoIncrementInitialValue(value); } else col.setAutoIncrement(FALSE); return 0; } /* Create a table in NDB Cluster */ static void ndb_set_fragmentation(NDBTAB &tab, TABLE *form, uint pk_length) { if (form->s->max_rows == (ha_rows) 0) /* default setting, don't set fragmentation */ return; /** * get the number of fragments right */ uint no_fragments; { #if MYSQL_VERSION_ID >= 50000 uint acc_row_size= 25 + /*safety margin*/ 2; #else uint acc_row_size= pk_length*4; /* add acc overhead */ if (pk_length <= 8) /* main page will set the limit */ acc_row_size+= 25 + /*safety margin*/ 2; else /* overflow page will set the limit */ acc_row_size+= 4 + /*safety margin*/ 4; #endif ulonglong acc_fragment_size= 512*1024*1024; ulonglong max_rows= form->s->max_rows; #if MYSQL_VERSION_ID >= 50100 no_fragments= (max_rows*acc_row_size)/acc_fragment_size+1; #else no_fragments= ((max_rows*acc_row_size)/acc_fragment_size+1 +1/*correct rounding*/)/2; #endif } { uint no_nodes= g_ndb_cluster_connection->no_db_nodes(); NDBTAB::FragmentType ftype; if (no_fragments > 2*no_nodes) { ftype= NDBTAB::FragAllLarge; if (no_fragments > 4*no_nodes) push_warning(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "Ndb might have problems storing the max amount of rows specified"); } else if (no_fragments > no_nodes) ftype= NDBTAB::FragAllMedium; else ftype= NDBTAB::FragAllSmall; tab.setFragmentType(ftype); } } int ha_ndbcluster::create(const char *name, TABLE *form, HA_CREATE_INFO *info) { NDBTAB tab; NDBCOL col; uint pack_length, length, i, pk_length= 0; const void *data, *pack_data; char name2[FN_HEADLEN]; bool create_from_engine= (info->table_options & HA_OPTION_CREATE_FROM_ENGINE); DBUG_ENTER("ha_ndbcluster::create"); DBUG_PRINT("enter", ("name: %s", name)); fn_format(name2, name, "", "",2); // Remove the .frm extension set_dbname(name2); set_tabname(name2); if (create_from_engine) { /* Table alreay exists in NDB and frm file has been created by caller. Do Ndb specific stuff, such as create a .ndb file */ my_errno= write_ndb_file(); DBUG_RETURN(my_errno); } DBUG_PRINT("table", ("name: %s", m_tabname)); tab.setName(m_tabname); tab.setLogging(!(info->options & HA_LEX_CREATE_TMP_TABLE)); // Save frm data for this table if (readfrm(name, &data, &length)) DBUG_RETURN(1); if (packfrm(data, length, &pack_data, &pack_length)) DBUG_RETURN(2); DBUG_PRINT("info", ("setFrm data=%x, len=%d", pack_data, pack_length)); tab.setFrm(pack_data, pack_length); my_free((char*)data, MYF(0)); my_free((char*)pack_data, MYF(0)); for (i= 0; i < form->s->fields; i++) { Field *field= form->field[i]; DBUG_PRINT("info", ("name: %s, type: %u, pack_length: %d", field->field_name, field->real_type(), field->pack_length())); if ((my_errno= create_ndb_column(col, field, info))) DBUG_RETURN(my_errno); tab.addColumn(col); if (col.getPrimaryKey()) pk_length += (field->pack_length() + 3) / 4; } // No primary key, create shadow key as 64 bit, auto increment if (form->s->primary_key == MAX_KEY) { DBUG_PRINT("info", ("Generating shadow key")); col.setName("$PK"); col.setType(NdbDictionary::Column::Bigunsigned); col.setLength(1); col.setNullable(FALSE); col.setPrimaryKey(TRUE); col.setAutoIncrement(TRUE); tab.addColumn(col); pk_length += 2; } // Make sure that blob tables don't have to big part size for (i= 0; i < form->s->fields; i++) { /** * The extra +7 concists * 2 - words from pk in blob table * 5 - from extra words added by tup/dict?? */ switch (form->field[i]->real_type()) { case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: { NdbDictionary::Column * col= tab.getColumn(i); int size= pk_length + (col->getPartSize()+3)/4 + 7; if (size > NDB_MAX_TUPLE_SIZE_IN_WORDS && (pk_length+7) < NDB_MAX_TUPLE_SIZE_IN_WORDS) { size= NDB_MAX_TUPLE_SIZE_IN_WORDS - pk_length - 7; col->setPartSize(4*size); } /** * If size > NDB_MAX and pk_length+7 >= NDB_MAX * then the table can't be created anyway, so skip * changing part size, and have error later */ } default: break; } } ndb_set_fragmentation(tab, form, pk_length); if ((my_errno= check_ndb_connection())) DBUG_RETURN(my_errno); // Create the table in NDB Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); if (dict->createTable(tab) != 0) { const NdbError err= dict->getNdbError(); ERR_PRINT(err); my_errno= ndb_to_mysql_error(&err); DBUG_RETURN(my_errno); } DBUG_PRINT("info", ("Table %s/%s created successfully", m_dbname, m_tabname)); // Create secondary indexes my_errno= build_index_list(ndb, form, ILBP_CREATE); if (!my_errno) my_errno= write_ndb_file(); DBUG_RETURN(my_errno); } int ha_ndbcluster::create_ordered_index(const char *name, KEY *key_info) { DBUG_ENTER("ha_ndbcluster::create_ordered_index"); DBUG_RETURN(create_index(name, key_info, FALSE)); } int ha_ndbcluster::create_unique_index(const char *name, KEY *key_info) { DBUG_ENTER("ha_ndbcluster::create_unique_index"); DBUG_RETURN(create_index(name, key_info, TRUE)); } /* Create an index in NDB Cluster */ int ha_ndbcluster::create_index(const char *name, KEY *key_info, bool unique) { Ndb *ndb= get_ndb(); NdbDictionary::Dictionary *dict= ndb->getDictionary(); KEY_PART_INFO *key_part= key_info->key_part; KEY_PART_INFO *end= key_part + key_info->key_parts; DBUG_ENTER("ha_ndbcluster::create_index"); DBUG_PRINT("enter", ("name: %s ", name)); NdbDictionary::Index ndb_index(name); if (unique) ndb_index.setType(NdbDictionary::Index::UniqueHashIndex); else { ndb_index.setType(NdbDictionary::Index::OrderedIndex); // TODO Only temporary ordered indexes supported ndb_index.setLogging(FALSE); } ndb_index.setTable(m_tabname); for (; key_part != end; key_part++) { Field *field= key_part->field; DBUG_PRINT("info", ("attr: %s", field->field_name)); ndb_index.addColumnName(field->field_name); } if (dict->createIndex(ndb_index)) ERR_RETURN(dict->getNdbError()); // Success DBUG_PRINT("info", ("Created index %s", name)); DBUG_RETURN(0); } /* Rename a table in NDB Cluster */ int ha_ndbcluster::rename_table(const char *from, const char *to) { NDBDICT *dict; char new_tabname[FN_HEADLEN]; const NDBTAB *orig_tab; int result; DBUG_ENTER("ha_ndbcluster::rename_table"); DBUG_PRINT("info", ("Renaming %s to %s", from, to)); set_dbname(from); set_tabname(from); set_tabname(to, new_tabname); if (check_ndb_connection()) DBUG_RETURN(my_errno= HA_ERR_NO_CONNECTION); Ndb *ndb= get_ndb(); dict= ndb->getDictionary(); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); // Check if thread has stale local cache if (orig_tab->getObjectStatus() == NdbDictionary::Object::Invalid) { dict->removeCachedTable(m_tabname); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); } m_table= (void *)orig_tab; // Change current database to that of target table set_dbname(to); ndb->setDatabaseName(m_dbname); if (!(result= alter_table_name(new_tabname))) { // Rename .ndb file result= handler::rename_table(from, to); } DBUG_RETURN(result); } /* Rename a table in NDB Cluster using alter table */ int ha_ndbcluster::alter_table_name(const char *to) { Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); const NDBTAB *orig_tab= (const NDBTAB *) m_table; DBUG_ENTER("alter_table_name_table"); NdbDictionary::Table new_tab= *orig_tab; new_tab.setName(to); if (dict->alterTable(new_tab) != 0) ERR_RETURN(dict->getNdbError()); m_table= NULL; m_table_info= NULL; DBUG_RETURN(0); } /* Delete table from NDB Cluster */ int ha_ndbcluster::delete_table(const char *name) { DBUG_ENTER("ha_ndbcluster::delete_table"); DBUG_PRINT("enter", ("name: %s", name)); set_dbname(name); set_tabname(name); if (check_ndb_connection()) DBUG_RETURN(HA_ERR_NO_CONNECTION); /* Call ancestor function to delete .ndb file */ handler::delete_table(name); /* Drop the table from NDB */ DBUG_RETURN(drop_table()); } /* Drop table in NDB Cluster */ int ha_ndbcluster::drop_table() { Ndb *ndb= get_ndb(); NdbDictionary::Dictionary *dict= ndb->getDictionary(); DBUG_ENTER("drop_table"); DBUG_PRINT("enter", ("Deleting %s", m_tabname)); release_metadata(); if (dict->dropTable(m_tabname)) ERR_RETURN(dict->getNdbError()); DBUG_RETURN(0); } ulonglong ha_ndbcluster::get_auto_increment() { int cache_size; Uint64 auto_value; DBUG_ENTER("get_auto_increment"); DBUG_PRINT("enter", ("m_tabname: %s", m_tabname)); Ndb *ndb= get_ndb(); if (m_rows_inserted > m_rows_to_insert) { /* We guessed too low */ m_rows_to_insert+= m_autoincrement_prefetch; } cache_size= (int) ((m_rows_to_insert - m_rows_inserted < m_autoincrement_prefetch) ? m_rows_to_insert - m_rows_inserted : ((m_rows_to_insert > m_autoincrement_prefetch) ? m_rows_to_insert : m_autoincrement_prefetch)); auto_value= NDB_FAILED_AUTO_INCREMENT; uint retries= NDB_AUTO_INCREMENT_RETRIES; do { auto_value= (m_skip_auto_increment) ? ndb->readAutoIncrementValue((const NDBTAB *) m_table) : ndb->getAutoIncrementValue((const NDBTAB *) m_table, cache_size); } while (auto_value == NDB_FAILED_AUTO_INCREMENT && --retries && ndb->getNdbError().status == NdbError::TemporaryError); if (auto_value == NDB_FAILED_AUTO_INCREMENT) { const NdbError err= ndb->getNdbError(); sql_print_error("Error %lu in ::get_auto_increment(): %s", (ulong) err.code, err.message); DBUG_RETURN(~(ulonglong) 0); } DBUG_RETURN((longlong)auto_value); } /* Constructor for the NDB Cluster table handler */ ha_ndbcluster::ha_ndbcluster(TABLE *table_arg): handler(&ndbcluster_hton, table_arg), m_active_trans(NULL), m_active_cursor(NULL), m_table(NULL), m_table_version(-1), m_table_info(NULL), m_table_flags(HA_REC_NOT_IN_SEQ | HA_NULL_IN_KEY | HA_AUTO_PART_KEY | HA_NO_PREFIX_CHAR_KEYS | HA_NEED_READ_RANGE_BUFFER | HA_CAN_GEOMETRY | HA_CAN_BIT_FIELD), m_share(0), m_use_write(FALSE), m_ignore_dup_key(FALSE), m_primary_key_update(FALSE), m_retrieve_all_fields(FALSE), m_retrieve_primary_key(FALSE), m_rows_to_insert((ha_rows) 1), m_rows_inserted((ha_rows) 0), m_bulk_insert_rows((ha_rows) 1024), m_rows_changed((ha_rows) 0), m_bulk_insert_not_flushed(FALSE), m_ops_pending(0), m_skip_auto_increment(TRUE), m_blobs_pending(0), m_blobs_buffer(0), m_blobs_buffer_size(0), m_dupkey((uint) -1), m_ha_not_exact_count(FALSE), m_force_send(TRUE), m_autoincrement_prefetch((ha_rows) 32), m_transaction_on(TRUE), m_cond_stack(NULL), m_multi_cursor(NULL) { int i; DBUG_ENTER("ha_ndbcluster"); m_tabname[0]= '\0'; m_dbname[0]= '\0'; records= ~(ha_rows)0; // uninitialized block_size= 1024; for (i= 0; i < MAX_KEY; i++) { m_index[i].type= UNDEFINED_INDEX; m_index[i].unique_index= NULL; m_index[i].index= NULL; m_index[i].unique_index_attrid_map= NULL; } DBUG_VOID_RETURN; } /* Destructor for NDB Cluster table handler */ ha_ndbcluster::~ha_ndbcluster() { DBUG_ENTER("~ha_ndbcluster"); if (m_share) free_share(m_share); release_metadata(); my_free(m_blobs_buffer, MYF(MY_ALLOW_ZERO_PTR)); m_blobs_buffer= 0; // Check for open cursor/transaction if (m_active_cursor) { } DBUG_ASSERT(m_active_cursor == NULL); if (m_active_trans) { } DBUG_ASSERT(m_active_trans == NULL); // Discard the condition stack DBUG_PRINT("info", ("Clearing condition stack")); cond_clear(); DBUG_VOID_RETURN; } /* Open a table for further use - fetch metadata for this table from NDB - check that table exists */ int ha_ndbcluster::open(const char *name, int mode, uint test_if_locked) { int res; KEY *key; DBUG_ENTER("open"); DBUG_PRINT("enter", ("name: %s mode: %d test_if_locked: %d", name, mode, test_if_locked)); // Setup ref_length to make room for the whole // primary key to be written in the ref variable if (table->s->primary_key != MAX_KEY) { key= table->key_info+table->s->primary_key; ref_length= key->key_length; DBUG_PRINT("info", (" ref_length: %d", ref_length)); } // Init table lock structure if (!(m_share=get_share(name))) DBUG_RETURN(1); thr_lock_data_init(&m_share->lock,&m_lock,(void*) 0); set_dbname(name); set_tabname(name); if (check_ndb_connection()) { free_share(m_share); m_share= 0; DBUG_RETURN(HA_ERR_NO_CONNECTION); } res= get_metadata(name); if (!res) info(HA_STATUS_VARIABLE | HA_STATUS_CONST); DBUG_RETURN(res); } /* Close the table - release resources setup by open() */ int ha_ndbcluster::close(void) { DBUG_ENTER("close"); free_share(m_share); m_share= 0; release_metadata(); DBUG_RETURN(0); } Thd_ndb* ha_ndbcluster::seize_thd_ndb() { Thd_ndb *thd_ndb; DBUG_ENTER("seize_thd_ndb"); thd_ndb= new Thd_ndb(); thd_ndb->ndb->getDictionary()->set_local_table_data_size( sizeof(Ndb_local_table_statistics) ); if (thd_ndb->ndb->init(max_transactions) != 0) { ERR_PRINT(thd_ndb->ndb->getNdbError()); /* TODO Alt.1 If init fails because to many allocated Ndb wait on condition for a Ndb object to be released. Alt.2 Seize/release from pool, wait until next release */ delete thd_ndb; thd_ndb= NULL; } DBUG_RETURN(thd_ndb); } void ha_ndbcluster::release_thd_ndb(Thd_ndb* thd_ndb) { DBUG_ENTER("release_thd_ndb"); delete thd_ndb; DBUG_VOID_RETURN; } /* If this thread already has a Thd_ndb object allocated in current THD, reuse it. Otherwise seize a Thd_ndb object, assign it to current THD and use it. */ Ndb* check_ndb_in_thd(THD* thd) { Thd_ndb *thd_ndb= get_thd_ndb(thd); if (!thd_ndb) { if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb())) return NULL; set_thd_ndb(thd, thd_ndb); } return thd_ndb->ndb; } int ha_ndbcluster::check_ndb_connection(THD* thd) { Ndb *ndb; DBUG_ENTER("check_ndb_connection"); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(m_dbname); DBUG_RETURN(0); } int ndbcluster_close_connection(THD *thd) { Thd_ndb *thd_ndb= get_thd_ndb(thd); DBUG_ENTER("ndbcluster_close_connection"); if (thd_ndb) { ha_ndbcluster::release_thd_ndb(thd_ndb); set_thd_ndb(thd, NULL); // not strictly required but does not hurt either } DBUG_RETURN(0); } /* Try to discover one table from NDB */ int ndbcluster_discover(THD* thd, const char *db, const char *name, const void** frmblob, uint* frmlen) { uint len; const void* data; const NDBTAB* tab; Ndb* ndb; DBUG_ENTER("ndbcluster_discover"); DBUG_PRINT("enter", ("db: %s, name: %s", db, name)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(db); NDBDICT* dict= ndb->getDictionary(); dict->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); dict->invalidateTable(name); if (!(tab= dict->getTable(name))) { const NdbError err= dict->getNdbError(); if (err.code == 709) DBUG_RETURN(-1); ERR_RETURN(err); } DBUG_PRINT("info", ("Found table %s", tab->getName())); len= tab->getFrmLength(); if (len == 0 || tab->getFrmData() == NULL) { DBUG_PRINT("error", ("No frm data found.")); DBUG_RETURN(1); } if (unpackfrm(&data, &len, tab->getFrmData())) { DBUG_PRINT("error", ("Could not unpack table")); DBUG_RETURN(1); } *frmlen= len; *frmblob= data; DBUG_RETURN(0); } /* Check if a table exists in NDB */ int ndbcluster_table_exists_in_engine(THD* thd, const char *db, const char *name) { const NDBTAB* tab; Ndb* ndb; DBUG_ENTER("ndbcluster_table_exists_in_engine"); DBUG_PRINT("enter", ("db: %s, name: %s", db, name)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(db); NDBDICT* dict= ndb->getDictionary(); dict->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); dict->invalidateTable(name); if (!(tab= dict->getTable(name))) { const NdbError err= dict->getNdbError(); if (err.code == 709) DBUG_RETURN(0); ERR_RETURN(err); } DBUG_PRINT("info", ("Found table %s", tab->getName())); DBUG_RETURN(1); } extern "C" byte* tables_get_key(const char *entry, uint *length, my_bool not_used __attribute__((unused))) { *length= strlen(entry); return (byte*) entry; } /* Drop a database in NDB Cluster */ int ndbcluster_drop_database(const char *path) { DBUG_ENTER("ndbcluster_drop_database"); THD *thd= current_thd; char dbname[FN_HEADLEN]; Ndb* ndb; NdbDictionary::Dictionary::List list; uint i; char *tabname; List drop_list; int ret= 0; ha_ndbcluster::set_dbname(path, (char *)&dbname); DBUG_PRINT("enter", ("db: %s", dbname)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); // List tables in NDB NDBDICT *dict= ndb->getDictionary(); if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0) ERR_RETURN(dict->getNdbError()); for (i= 0 ; i < list.count ; i++) { NdbDictionary::Dictionary::List::Element& t= list.elements[i]; DBUG_PRINT("info", ("Found %s/%s in NDB", t.database, t.name)); // Add only tables that belongs to db if (my_strcasecmp(system_charset_info, t.database, dbname)) continue; DBUG_PRINT("info", ("%s must be dropped", t.name)); drop_list.push_back(thd->strdup(t.name)); } // Drop any tables belonging to database ndb->setDatabaseName(dbname); List_iterator_fast it(drop_list); while ((tabname=it++)) { if (dict->dropTable(tabname)) { const NdbError err= dict->getNdbError(); if (err.code != 709) { ERR_PRINT(err); ret= ndb_to_mysql_error(&err); } } } DBUG_RETURN(ret); } int ndbcluster_find_files(THD *thd,const char *db,const char *path, const char *wild, bool dir, List *files) { DBUG_ENTER("ndbcluster_find_files"); DBUG_PRINT("enter", ("db: %s", db)); { // extra bracket to avoid gcc 2.95.3 warning uint i; Ndb* ndb; char name[FN_REFLEN]; HASH ndb_tables, ok_tables; NdbDictionary::Dictionary::List list; if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); if (dir) DBUG_RETURN(0); // Discover of databases not yet supported // List tables in NDB NDBDICT *dict= ndb->getDictionary(); if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0) ERR_RETURN(dict->getNdbError()); if (hash_init(&ndb_tables, system_charset_info,list.count,0,0, (hash_get_key)tables_get_key,0,0)) { DBUG_PRINT("error", ("Failed to init HASH ndb_tables")); DBUG_RETURN(-1); } if (hash_init(&ok_tables, system_charset_info,32,0,0, (hash_get_key)tables_get_key,0,0)) { DBUG_PRINT("error", ("Failed to init HASH ok_tables")); hash_free(&ndb_tables); DBUG_RETURN(-1); } for (i= 0 ; i < list.count ; i++) { NdbDictionary::Dictionary::List::Element& t= list.elements[i]; DBUG_PRINT("info", ("Found %s/%s in NDB", t.database, t.name)); // Add only tables that belongs to db if (my_strcasecmp(system_charset_info, t.database, db)) continue; // Apply wildcard to list of tables in NDB if (wild) { if (lower_case_table_names) { if (wild_case_compare(files_charset_info, t.name, wild)) continue; } else if (wild_compare(t.name,wild,0)) continue; } DBUG_PRINT("info", ("Inserting %s into ndb_tables hash", t.name)); my_hash_insert(&ndb_tables, (byte*)thd->strdup(t.name)); } char *file_name; List_iterator it(*files); List delete_list; while ((file_name=it++)) { DBUG_PRINT("info", ("%s", file_name)); if (hash_search(&ndb_tables, file_name, strlen(file_name))) { DBUG_PRINT("info", ("%s existed in NDB _and_ on disk ", file_name)); // File existed in NDB and as frm file, put in ok_tables list my_hash_insert(&ok_tables, (byte*)file_name); continue; } // File is not in NDB, check for .ndb file with this name (void)strxnmov(name, FN_REFLEN, mysql_data_home,"/",db,"/",file_name,ha_ndb_ext,NullS); DBUG_PRINT("info", ("Check access for %s", name)); if (access(name, F_OK)) { DBUG_PRINT("info", ("%s did not exist on disk", name)); // .ndb file did not exist on disk, another table type continue; } DBUG_PRINT("info", ("%s existed on disk", name)); // The .ndb file exists on disk, but it's not in list of tables in ndb // Verify that handler agrees table is gone. if (ndbcluster_table_exists_in_engine(thd, db, file_name) == 0) { DBUG_PRINT("info", ("NDB says %s does not exists", file_name)); it.remove(); // Put in list of tables to remove from disk delete_list.push_back(thd->strdup(file_name)); } } // Check for new files to discover DBUG_PRINT("info", ("Checking for new files to discover")); List create_list; for (i= 0 ; i < ndb_tables.records ; i++) { file_name= hash_element(&ndb_tables, i); if (!hash_search(&ok_tables, file_name, strlen(file_name))) { DBUG_PRINT("info", ("%s must be discovered", file_name)); // File is in list of ndb tables and not in ok_tables // This table need to be created create_list.push_back(thd->strdup(file_name)); } } // Lock mutex before deleting and creating frm files pthread_mutex_lock(&LOCK_open); if (!global_read_lock) { // Delete old files List_iterator_fast it3(delete_list); while ((file_name=it3++)) { DBUG_PRINT("info", ("Remove table %s/%s", db, file_name)); // Delete the table and all related files TABLE_LIST table_list; bzero((char*) &table_list,sizeof(table_list)); table_list.db= (char*) db; table_list.alias= table_list.table_name= (char*)file_name; (void)mysql_rm_table_part2(thd, &table_list, /* if_exists */ FALSE, /* drop_temporary */ FALSE, /* drop_view */ FALSE, /* dont_log_query*/ TRUE); /* Clear error message that is returned when table is deleted */ thd->clear_error(); } } // Create new files List_iterator_fast it2(create_list); while ((file_name=it2++)) { DBUG_PRINT("info", ("Table %s need discovery", file_name)); if (ha_create_table_from_engine(thd, db, file_name) == 0) files->push_back(thd->strdup(file_name)); } pthread_mutex_unlock(&LOCK_open); hash_free(&ok_tables); hash_free(&ndb_tables); } // extra bracket to avoid gcc 2.95.3 warning DBUG_RETURN(0); } /* Initialise all gloal variables before creating a NDB Cluster table handler */ /* Call back after cluster connect */ static int connect_callback() { update_status_variables(g_ndb_cluster_connection); return 0; } bool ndbcluster_init() { int res; DBUG_ENTER("ndbcluster_init"); if (have_ndbcluster != SHOW_OPTION_YES) goto ndbcluster_init_error; // Set connectstring if specified if (opt_ndbcluster_connectstring != 0) DBUG_PRINT("connectstring", ("%s", opt_ndbcluster_connectstring)); if ((g_ndb_cluster_connection= new Ndb_cluster_connection(opt_ndbcluster_connectstring)) == 0) { DBUG_PRINT("error",("Ndb_cluster_connection(%s)", opt_ndbcluster_connectstring)); goto ndbcluster_init_error; } { char buf[128]; my_snprintf(buf, sizeof(buf), "mysqld --server-id=%d", server_id); g_ndb_cluster_connection->set_name(buf); } g_ndb_cluster_connection->set_optimized_node_selection (opt_ndb_optimized_node_selection); // Create a Ndb object to open the connection to NDB if ( (g_ndb= new Ndb(g_ndb_cluster_connection, "sys")) == 0 ) { DBUG_PRINT("error", ("failed to create global ndb object")); goto ndbcluster_init_error; } g_ndb->getDictionary()->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); if (g_ndb->init() != 0) { ERR_PRINT (g_ndb->getNdbError()); goto ndbcluster_init_error; } if ((res= g_ndb_cluster_connection->connect(0,0,0)) == 0) { connect_callback(); DBUG_PRINT("info",("NDBCLUSTER storage engine at %s on port %d", g_ndb_cluster_connection->get_connected_host(), g_ndb_cluster_connection->get_connected_port())); g_ndb_cluster_connection->wait_until_ready(10,3); } else if (res == 1) { if (g_ndb_cluster_connection->start_connect_thread(connect_callback)) { DBUG_PRINT("error", ("g_ndb_cluster_connection->start_connect_thread()")); goto ndbcluster_init_error; } #ifndef DBUG_OFF { char buf[1024]; DBUG_PRINT("info", ("NDBCLUSTER storage engine not started, " "will connect using %s", g_ndb_cluster_connection-> get_connectstring(buf,sizeof(buf)))); } #endif } else { DBUG_ASSERT(res == -1); DBUG_PRINT("error", ("permanent error")); goto ndbcluster_init_error; } (void) hash_init(&ndbcluster_open_tables,system_charset_info,32,0,0, (hash_get_key) ndbcluster_get_key,0,0); pthread_mutex_init(&ndbcluster_mutex,MY_MUTEX_INIT_FAST); pthread_mutex_init(&LOCK_ndb_util_thread, MY_MUTEX_INIT_FAST); pthread_cond_init(&COND_ndb_util_thread, NULL); // Create utility thread pthread_t tmp; if (pthread_create(&tmp, &connection_attrib, ndb_util_thread_func, 0)) { DBUG_PRINT("error", ("Could not create ndb utility thread")); hash_free(&ndbcluster_open_tables); pthread_mutex_destroy(&ndbcluster_mutex); pthread_mutex_destroy(&LOCK_ndb_util_thread); pthread_cond_destroy(&COND_ndb_util_thread); goto ndbcluster_init_error; } ndbcluster_inited= 1; DBUG_RETURN(FALSE); ndbcluster_init_error: if (g_ndb) delete g_ndb; g_ndb= NULL; if (g_ndb_cluster_connection) delete g_ndb_cluster_connection; g_ndb_cluster_connection= NULL; have_ndbcluster= SHOW_OPTION_DISABLED; // If we couldn't use handler DBUG_RETURN(TRUE); } /* End use of the NDB Cluster table handler - free all global variables allocated by ndbcluster_init() */ bool ndbcluster_end() { DBUG_ENTER("ndbcluster_end"); if (!ndbcluster_inited) DBUG_RETURN(0); // Kill ndb utility thread (void) pthread_mutex_lock(&LOCK_ndb_util_thread); DBUG_PRINT("exit",("killing ndb util thread: %lx", ndb_util_thread)); (void) pthread_cond_signal(&COND_ndb_util_thread); (void) pthread_mutex_unlock(&LOCK_ndb_util_thread); if (g_ndb) { #ifndef DBUG_OFF Ndb::Free_list_usage tmp; tmp.m_name= 0; while (g_ndb->get_free_list_usage(&tmp)) { uint leaked= (uint) tmp.m_created - tmp.m_free; if (leaked) fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n", leaked, tmp.m_name, (leaked == 1)?"":"'s", (leaked == 1)?"has":"have"); } #endif delete g_ndb; g_ndb= NULL; } delete g_ndb_cluster_connection; g_ndb_cluster_connection= NULL; hash_free(&ndbcluster_open_tables); pthread_mutex_destroy(&ndbcluster_mutex); pthread_mutex_destroy(&LOCK_ndb_util_thread); pthread_cond_destroy(&COND_ndb_util_thread); ndbcluster_inited= 0; DBUG_RETURN(0); } /* Static error print function called from static handler method ndbcluster_commit and ndbcluster_rollback */ void ndbcluster_print_error(int error, const NdbOperation *error_op) { DBUG_ENTER("ndbcluster_print_error"); TABLE tab; const char *tab_name= (error_op) ? error_op->getTableName() : ""; tab.alias= (char *) tab_name; ha_ndbcluster error_handler(&tab); tab.file= &error_handler; error_handler.print_error(error, MYF(0)); DBUG_VOID_RETURN; } /** * Set a given location from full pathname to database name * */ void ha_ndbcluster::set_dbname(const char *path_name, char *dbname) { char *end, *ptr; /* Scan name from the end */ ptr= strend(path_name)-1; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } ptr--; end= ptr; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } uint name_len= end - ptr; memcpy(dbname, ptr + 1, name_len); dbname[name_len]= '\0'; #ifdef __WIN__ /* Put to lower case */ ptr= dbname; while (*ptr != '\0') { *ptr= tolower(*ptr); ptr++; } #endif } /* Set m_dbname from full pathname to table file */ void ha_ndbcluster::set_dbname(const char *path_name) { set_dbname(path_name, m_dbname); } /** * Set a given location from full pathname to table file * */ void ha_ndbcluster::set_tabname(const char *path_name, char * tabname) { char *end, *ptr; /* Scan name from the end */ end= strend(path_name)-1; ptr= end; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } uint name_len= end - ptr; memcpy(tabname, ptr + 1, end - ptr); tabname[name_len]= '\0'; #ifdef __WIN__ /* Put to lower case */ ptr= tabname; while (*ptr != '\0') { *ptr= tolower(*ptr); ptr++; } #endif } /* Set m_tabname from full pathname to table file */ void ha_ndbcluster::set_tabname(const char *path_name) { set_tabname(path_name, m_tabname); } ha_rows ha_ndbcluster::records_in_range(uint inx, key_range *min_key, key_range *max_key) { KEY *key_info= table->key_info + inx; uint key_length= key_info->key_length; NDB_INDEX_TYPE idx_type= get_index_type(inx); DBUG_ENTER("records_in_range"); // Prevent partial read of hash indexes by returning HA_POS_ERROR if ((idx_type == UNIQUE_INDEX || idx_type == PRIMARY_KEY_INDEX) && ((min_key && min_key->length < key_length) || (max_key && max_key->length < key_length))) DBUG_RETURN(HA_POS_ERROR); // Read from hash index with full key // This is a "const" table which returns only one record! if ((idx_type != ORDERED_INDEX) && ((min_key && min_key->length == key_length) || (max_key && max_key->length == key_length))) DBUG_RETURN(1); DBUG_RETURN(10); /* Good guess when you don't know anything */ } ulong ha_ndbcluster::table_flags(void) const { if (m_ha_not_exact_count) return m_table_flags | HA_NOT_EXACT_COUNT; else return m_table_flags; } const char * ha_ndbcluster::table_type() const { return("ndbcluster"); } uint ha_ndbcluster::max_supported_record_length() const { return NDB_MAX_TUPLE_SIZE; } uint ha_ndbcluster::max_supported_keys() const { return MAX_KEY; } uint ha_ndbcluster::max_supported_key_parts() const { return NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY; } uint ha_ndbcluster::max_supported_key_length() const { return NDB_MAX_KEY_SIZE; } uint ha_ndbcluster::max_supported_key_part_length() const { return NDB_MAX_KEY_SIZE; } bool ha_ndbcluster::low_byte_first() const { #ifdef WORDS_BIGENDIAN return FALSE; #else return TRUE; #endif } bool ha_ndbcluster::has_transactions() { return TRUE; } const char* ha_ndbcluster::index_type(uint key_number) { switch (get_index_type(key_number)) { case ORDERED_INDEX: case UNIQUE_ORDERED_INDEX: case PRIMARY_KEY_ORDERED_INDEX: return "BTREE"; case UNIQUE_INDEX: case PRIMARY_KEY_INDEX: default: return "HASH"; } } uint8 ha_ndbcluster::table_cache_type() { DBUG_ENTER("ha_ndbcluster::table_cache_type=HA_CACHE_TBL_ASKTRANSACT"); DBUG_RETURN(HA_CACHE_TBL_ASKTRANSACT); } uint ndb_get_commitcount(THD *thd, char *dbname, char *tabname, Uint64 *commit_count) { DBUG_ENTER("ndb_get_commitcount"); char name[FN_REFLEN]; NDB_SHARE *share; (void)strxnmov(name, FN_REFLEN, "./",dbname,"/",tabname,NullS); DBUG_PRINT("enter", ("name: %s", name)); pthread_mutex_lock(&ndbcluster_mutex); if (!(share=(NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) name, strlen(name)))) { pthread_mutex_unlock(&ndbcluster_mutex); DBUG_PRINT("info", ("Table %s not found in ndbcluster_open_tables", name)); DBUG_RETURN(1); } share->use_count++; pthread_mutex_unlock(&ndbcluster_mutex); pthread_mutex_lock(&share->mutex); if (ndb_cache_check_time > 0) { if (share->commit_count != 0) { *commit_count= share->commit_count; DBUG_PRINT("info", ("Getting commit_count: %llu from share", share->commit_count)); pthread_mutex_unlock(&share->mutex); free_share(share); DBUG_RETURN(0); } } DBUG_PRINT("info", ("Get commit_count from NDB")); Ndb *ndb; if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(1); ndb->setDatabaseName(dbname); uint lock= share->commit_count_lock; pthread_mutex_unlock(&share->mutex); struct Ndb_statistics stat; if (ndb_get_table_statistics(ndb, tabname, &stat)) { free_share(share); DBUG_RETURN(1); } pthread_mutex_lock(&share->mutex); if (share->commit_count_lock == lock) { DBUG_PRINT("info", ("Setting commit_count to %llu", stat.commit_count)); share->commit_count= stat.commit_count; *commit_count= stat.commit_count; } else { DBUG_PRINT("info", ("Discarding commit_count, comit_count_lock changed")); *commit_count= 0; } pthread_mutex_unlock(&share->mutex); free_share(share); DBUG_RETURN(0); } /* Check if a cached query can be used. This is done by comparing the supplied engine_data to commit_count of the table. The commit_count is either retrieved from the share for the table, where it has been cached by the util thread. If the util thread is not started, NDB has to be contacetd to retrieve the commit_count, this will introduce a small delay while waiting for NDB to answer. SYNOPSIS ndbcluster_cache_retrieval_allowed thd thread handle full_name concatenation of database name, the null character '\0', and the table name full_name_len length of the full name, i.e. len(dbname) + len(tablename) + 1 engine_data parameter retrieved when query was first inserted into the cache. If the value of engine_data is changed, all queries for this table should be invalidated. RETURN VALUE TRUE Yes, use the query from cache FALSE No, don't use the cached query, and if engine_data has changed, all queries for this table should be invalidated */ static my_bool ndbcluster_cache_retrieval_allowed(THD *thd, char *full_name, uint full_name_len, ulonglong *engine_data) { DBUG_ENTER("ndbcluster_cache_retrieval_allowed"); Uint64 commit_count; bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)); char *dbname= full_name; char *tabname= dbname+strlen(dbname)+1; DBUG_PRINT("enter", ("dbname: %s, tabname: %s, is_autocommit: %d", dbname, tabname, is_autocommit)); if (!is_autocommit) { DBUG_PRINT("exit", ("No, don't use cache in transaction")); DBUG_RETURN(FALSE); } if (ndb_get_commitcount(thd, dbname, tabname, &commit_count)) { *engine_data= 0; /* invalidate */ DBUG_PRINT("exit", ("No, could not retrieve commit_count")); DBUG_RETURN(FALSE); } DBUG_PRINT("info", ("*engine_data: %llu, commit_count: %llu", *engine_data, commit_count)); if (commit_count == 0) { *engine_data= 0; /* invalidate */ DBUG_PRINT("exit", ("No, local commit has been performed")); DBUG_RETURN(FALSE); } else if (*engine_data != commit_count) { *engine_data= commit_count; /* invalidate */ DBUG_PRINT("exit", ("No, commit_count has changed")); DBUG_RETURN(FALSE); } DBUG_PRINT("exit", ("OK to use cache, engine_data: %llu", *engine_data)); DBUG_RETURN(TRUE); } /** Register a table for use in the query cache. Fetch the commit_count for the table and return it in engine_data, this will later be used to check if the table has changed, before the cached query is reused. SYNOPSIS ha_ndbcluster::can_query_cache_table thd thread handle full_name concatenation of database name, the null character '\0', and the table name full_name_len length of the full name, i.e. len(dbname) + len(tablename) + 1 qc_engine_callback function to be called before using cache on this table engine_data out, commit_count for this table RETURN VALUE TRUE Yes, it's ok to cahce this query FALSE No, don't cach the query */ my_bool ha_ndbcluster::register_query_cache_table(THD *thd, char *full_name, uint full_name_len, qc_engine_callback *engine_callback, ulonglong *engine_data) { DBUG_ENTER("ha_ndbcluster::register_query_cache_table"); bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)); DBUG_PRINT("enter",("dbname: %s, tabname: %s, is_autocommit: %d", m_dbname, m_tabname, is_autocommit)); if (!is_autocommit) { DBUG_PRINT("exit", ("Can't register table during transaction")) DBUG_RETURN(FALSE); } Uint64 commit_count; if (ndb_get_commitcount(thd, m_dbname, m_tabname, &commit_count)) { *engine_data= 0; DBUG_PRINT("exit", ("Error, could not get commitcount")) DBUG_RETURN(FALSE); } *engine_data= commit_count; *engine_callback= ndbcluster_cache_retrieval_allowed; DBUG_PRINT("exit", ("commit_count: %llu", commit_count)); DBUG_RETURN(commit_count > 0); } /* Handling the shared NDB_SHARE structure that is needed to provide table locking. It's also used for sharing data with other NDB handlers in the same MySQL Server. There is currently not much data we want to or can share. */ static byte* ndbcluster_get_key(NDB_SHARE *share,uint *length, my_bool not_used __attribute__((unused))) { *length=share->table_name_length; return (byte*) share->table_name; } static NDB_SHARE* get_share(const char *table_name) { NDB_SHARE *share; pthread_mutex_lock(&ndbcluster_mutex); uint length=(uint) strlen(table_name); if (!(share=(NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) table_name, length))) { if ((share=(NDB_SHARE *) my_malloc(sizeof(*share)+length+1, MYF(MY_WME | MY_ZEROFILL)))) { share->table_name_length=length; share->table_name=(char*) (share+1); strmov(share->table_name,table_name); if (my_hash_insert(&ndbcluster_open_tables, (byte*) share)) { pthread_mutex_unlock(&ndbcluster_mutex); my_free((gptr) share,0); return 0; } thr_lock_init(&share->lock); pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST); share->commit_count= 0; share->commit_count_lock= 0; } else { DBUG_PRINT("error", ("Failed to alloc share")); pthread_mutex_unlock(&ndbcluster_mutex); return 0; } } share->use_count++; DBUG_PRINT("share", ("table_name: %s, length: %d, use_count: %d, commit_count: %d", share->table_name, share->table_name_length, share->use_count, share->commit_count)); pthread_mutex_unlock(&ndbcluster_mutex); return share; } static void free_share(NDB_SHARE *share) { pthread_mutex_lock(&ndbcluster_mutex); if (!--share->use_count) { hash_delete(&ndbcluster_open_tables, (byte*) share); thr_lock_delete(&share->lock); pthread_mutex_destroy(&share->mutex); my_free((gptr) share, MYF(0)); } pthread_mutex_unlock(&ndbcluster_mutex); } /* Internal representation of the frm blob */ struct frm_blob_struct { struct frm_blob_header { uint ver; // Version of header uint orglen; // Original length of compressed data uint complen; // Compressed length of data, 0=uncompressed } head; char data[1]; }; static int packfrm(const void *data, uint len, const void **pack_data, uint *pack_len) { int error; ulong org_len, comp_len; uint blob_len; frm_blob_struct* blob; DBUG_ENTER("packfrm"); DBUG_PRINT("enter", ("data: %x, len: %d", data, len)); error= 1; org_len= len; if (my_compress((byte*)data, &org_len, &comp_len)) goto err; DBUG_PRINT("info", ("org_len: %d, comp_len: %d", org_len, comp_len)); DBUG_DUMP("compressed", (char*)data, org_len); error= 2; blob_len= sizeof(frm_blob_struct::frm_blob_header)+org_len; if (!(blob= (frm_blob_struct*) my_malloc(blob_len,MYF(MY_WME)))) goto err; // Store compressed blob in machine independent format int4store((char*)(&blob->head.ver), 1); int4store((char*)(&blob->head.orglen), comp_len); int4store((char*)(&blob->head.complen), org_len); // Copy frm data into blob, already in machine independent format memcpy(blob->data, data, org_len); *pack_data= blob; *pack_len= blob_len; error= 0; DBUG_PRINT("exit", ("pack_data: %x, pack_len: %d", *pack_data, *pack_len)); err: DBUG_RETURN(error); } static int unpackfrm(const void **unpack_data, uint *unpack_len, const void *pack_data) { const frm_blob_struct *blob= (frm_blob_struct*)pack_data; byte *data; ulong complen, orglen, ver; DBUG_ENTER("unpackfrm"); DBUG_PRINT("enter", ("pack_data: %x", pack_data)); complen= uint4korr((char*)&blob->head.complen); orglen= uint4korr((char*)&blob->head.orglen); ver= uint4korr((char*)&blob->head.ver); DBUG_PRINT("blob",("ver: %d complen: %d orglen: %d", ver,complen,orglen)); DBUG_DUMP("blob->data", (char*) blob->data, complen); if (ver != 1) DBUG_RETURN(1); if (!(data= my_malloc(max(orglen, complen), MYF(MY_WME)))) DBUG_RETURN(2); memcpy(data, blob->data, complen); if (my_uncompress(data, &complen, &orglen)) { my_free((char*)data, MYF(0)); DBUG_RETURN(3); } *unpack_data= data; *unpack_len= complen; DBUG_PRINT("exit", ("frmdata: %x, len: %d", *unpack_data, *unpack_len)); DBUG_RETURN(0); } static int ndb_get_table_statistics(Ndb* ndb, const char * table, struct Ndb_statistics * ndbstat) { DBUG_ENTER("ndb_get_table_statistics"); DBUG_PRINT("enter", ("table: %s", table)); NdbTransaction* pTrans= ndb->startTransaction(); do { if (pTrans == NULL) break; NdbScanOperation* pOp= pTrans->getNdbScanOperation(table); if (pOp == NULL) break; if (pOp->readTuples(NdbOperation::LM_CommittedRead)) break; int check= pOp->interpret_exit_last_row(); if (check == -1) break; Uint64 rows, commits, mem; Uint32 size; pOp->getValue(NdbDictionary::Column::ROW_COUNT, (char*)&rows); pOp->getValue(NdbDictionary::Column::COMMIT_COUNT, (char*)&commits); pOp->getValue(NdbDictionary::Column::ROW_SIZE, (char*)&size); pOp->getValue(NdbDictionary::Column::FRAGMENT_MEMORY, (char*)&mem); check= pTrans->execute(NdbTransaction::NoCommit, NdbTransaction::AbortOnError, TRUE); if (check == -1) break; Uint32 count= 0; Uint64 sum_rows= 0; Uint64 sum_commits= 0; Uint64 sum_row_size= 0; Uint64 sum_mem= 0; while ((check= pOp->nextResult(TRUE, TRUE)) == 0) { sum_rows+= rows; sum_commits+= commits; if (sum_row_size < size) sum_row_size= size; sum_mem+= mem; count++; } if (check == -1) break; pOp->close(TRUE); ndb->closeTransaction(pTrans); ndbstat->row_count= sum_rows; ndbstat->commit_count= sum_commits; ndbstat->row_size= sum_row_size; ndbstat->fragment_memory= sum_mem; DBUG_PRINT("exit", ("records: %llu commits: %llu " "row_size: %llu mem: %llu count: %u", sum_rows, sum_commits, sum_row_size, sum_mem, count)); DBUG_RETURN(0); } while (0); if (pTrans) ndb->closeTransaction(pTrans); DBUG_PRINT("exit", ("failed")); DBUG_RETURN(-1); } /* Create a .ndb file to serve as a placeholder indicating that the table with this name is a ndb table */ int ha_ndbcluster::write_ndb_file() { File file; bool error=1; char path[FN_REFLEN]; DBUG_ENTER("write_ndb_file"); DBUG_PRINT("enter", ("db: %s, name: %s", m_dbname, m_tabname)); (void)strxnmov(path, FN_REFLEN, mysql_data_home,"/",m_dbname,"/",m_tabname,ha_ndb_ext,NullS); if ((file=my_create(path, CREATE_MODE,O_RDWR | O_TRUNC,MYF(MY_WME))) >= 0) { // It's an empty file error=0; my_close(file,MYF(0)); } DBUG_RETURN(error); } int ha_ndbcluster::read_multi_range_first(KEY_MULTI_RANGE **found_range_p, KEY_MULTI_RANGE *ranges, uint range_count, bool sorted, HANDLER_BUFFER *buffer) { DBUG_ENTER("ha_ndbcluster::read_multi_range_first"); int res; KEY* key_info= table->key_info + active_index; NDB_INDEX_TYPE index_type= get_index_type(active_index); ulong reclength= table->s->reclength; NdbOperation* op; if (uses_blob_value(m_retrieve_all_fields)) { /** * blobs can't be batched currently */ m_disable_multi_read= TRUE; DBUG_RETURN(handler::read_multi_range_first(found_range_p, ranges, range_count, sorted, buffer)); } m_disable_multi_read= FALSE; /** * Copy arguments into member variables */ m_multi_ranges= ranges; multi_range_curr= ranges; multi_range_end= ranges+range_count; multi_range_sorted= sorted; multi_range_buffer= buffer; /** * read multi range will read ranges as follows (if not ordered) * * input read order * ====== ========== * pk-op 1 pk-op 1 * pk-op 2 pk-op 2 * range 3 range (3,5) NOTE result rows will be intermixed * pk-op 4 pk-op 4 * range 5 * pk-op 6 pk-ok 6 */ /** * Variables for loop */ byte *curr= (byte*)buffer->buffer; byte *end_of_buffer= (byte*)buffer->buffer_end; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); const NDBTAB *tab= (const NDBTAB *) m_table; const NDBINDEX *unique_idx= (NDBINDEX *) m_index[active_index].unique_index; const NDBINDEX *idx= (NDBINDEX *) m_index[active_index].index; const NdbOperation* lastOp= m_active_trans->getLastDefinedOperation(); NdbIndexScanOperation* scanOp= 0; for (; multi_range_currstart_key.length == key_info->key_length && multi_range_curr->start_key.flag == HA_READ_KEY_EXACT)) goto range; /* fall through */ case PRIMARY_KEY_INDEX: { multi_range_curr->range_flag |= UNIQUE_RANGE; if ((op= m_active_trans->getNdbOperation(tab)) && !op->readTuple(lm) && !set_primary_key(op, multi_range_curr->start_key.key) && !define_read_attrs(curr, op) && (op->setAbortOption(AO_IgnoreError), TRUE)) curr += reclength; else ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError()); break; } break; case UNIQUE_ORDERED_INDEX: if (!(multi_range_curr->start_key.length == key_info->key_length && multi_range_curr->start_key.flag == HA_READ_KEY_EXACT && !check_null_in_key(key_info, multi_range_curr->start_key.key, multi_range_curr->start_key.length))) goto range; /* fall through */ case UNIQUE_INDEX: { multi_range_curr->range_flag |= UNIQUE_RANGE; if ((op= m_active_trans->getNdbIndexOperation(unique_idx, tab)) && !op->readTuple(lm) && !set_index_key(op, key_info, multi_range_curr->start_key.key) && !define_read_attrs(curr, op) && (op->setAbortOption(AO_IgnoreError), TRUE)) curr += reclength; else ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError()); break; } case ORDERED_INDEX: { range: multi_range_curr->range_flag &= ~(uint)UNIQUE_RANGE; if (scanOp == 0) { if (m_multi_cursor) { scanOp= m_multi_cursor; DBUG_ASSERT(scanOp->getSorted() == sorted); DBUG_ASSERT(scanOp->getLockMode() == (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type)); if (scanOp->reset_bounds(m_force_send)) DBUG_RETURN(ndb_err(m_active_trans)); end_of_buffer -= reclength; } else if ((scanOp= m_active_trans->getNdbIndexScanOperation(idx, tab)) &&!scanOp->readTuples(lm, 0, parallelism, sorted, FALSE, TRUE) &&!generate_scan_filter(m_cond_stack, scanOp) &&!define_read_attrs(end_of_buffer-reclength, scanOp)) { m_multi_cursor= scanOp; m_multi_range_cursor_result_ptr= end_of_buffer-reclength; } else { ERR_RETURN(scanOp ? scanOp->getNdbError() : m_active_trans->getNdbError()); } } const key_range *keys[2]= { &multi_range_curr->start_key, &multi_range_curr->end_key }; if ((res= set_bounds(scanOp, keys, multi_range_curr-ranges))) DBUG_RETURN(res); break; } case UNDEFINED_INDEX: DBUG_ASSERT(FALSE); DBUG_RETURN(1); break; } } if (multi_range_curr != multi_range_end) { /** * Mark that we're using entire buffer (even if might not) as * we haven't read all ranges for some reason * This as we don't want mysqld to reuse the buffer when we read * the remaining ranges */ buffer->end_of_used_area= (byte*)buffer->buffer_end; } else { buffer->end_of_used_area= curr; } /** * Set first operation in multi range */ m_current_multi_operation= lastOp ? lastOp->next() : m_active_trans->getFirstDefinedOperation(); if (!(res= execute_no_commit_ie(this, m_active_trans))) { m_multi_range_defined= multi_range_curr; multi_range_curr= ranges; m_multi_range_result_ptr= (byte*)buffer->buffer; DBUG_RETURN(read_multi_range_next(found_range_p)); } ERR_RETURN(m_active_trans->getNdbError()); } #if 0 #define DBUG_MULTI_RANGE(x) printf("read_multi_range_next: case %d\n", x); #else #define DBUG_MULTI_RANGE(x) #endif int ha_ndbcluster::read_multi_range_next(KEY_MULTI_RANGE ** multi_range_found_p) { DBUG_ENTER("ha_ndbcluster::read_multi_range_next"); if (m_disable_multi_read) { DBUG_RETURN(handler::read_multi_range_next(multi_range_found_p)); } int res; int range_no; ulong reclength= table->s->reclength; const NdbOperation* op= m_current_multi_operation; for (;multi_range_curr < m_multi_range_defined; multi_range_curr++) { if (multi_range_curr->range_flag & UNIQUE_RANGE) { if (op->getNdbError().code == 0) goto found_next; op= m_active_trans->getNextCompletedOperation(op); m_multi_range_result_ptr += reclength; continue; } else if (m_multi_cursor && !multi_range_sorted) { DBUG_MULTI_RANGE(1); if ((res= fetch_next(m_multi_cursor)) == 0) { DBUG_MULTI_RANGE(2); range_no= m_multi_cursor->get_range_no(); goto found; } else { goto close_scan; } } else if (m_multi_cursor && multi_range_sorted) { if (m_active_cursor && (res= fetch_next(m_multi_cursor))) { DBUG_MULTI_RANGE(3); goto close_scan; } range_no= m_multi_cursor->get_range_no(); uint current_range_no= multi_range_curr - m_multi_ranges; if ((uint) range_no == current_range_no) { DBUG_MULTI_RANGE(4); // return current row goto found; } else if (range_no > (int)current_range_no) { DBUG_MULTI_RANGE(5); // wait with current row m_active_cursor= 0; continue; } else { DBUG_MULTI_RANGE(6); // First fetch from cursor DBUG_ASSERT(range_no == -1); if ((res= m_multi_cursor->nextResult(true))) { goto close_scan; } multi_range_curr--; // Will be increased in for-loop continue; } } else /** m_multi_cursor == 0 */ { DBUG_MULTI_RANGE(7); /** * Corresponds to range 5 in example in read_multi_range_first */ (void)1; continue; } DBUG_ASSERT(FALSE); // Should only get here via goto's close_scan: if (res == 1) { m_multi_cursor->close(FALSE, TRUE); m_active_cursor= m_multi_cursor= 0; DBUG_MULTI_RANGE(8); continue; } else { DBUG_RETURN(ndb_err(m_active_trans)); } } if (multi_range_curr == multi_range_end) DBUG_RETURN(HA_ERR_END_OF_FILE); /** * Read remaining ranges */ DBUG_RETURN(read_multi_range_first(multi_range_found_p, multi_range_curr, multi_range_end - multi_range_curr, multi_range_sorted, multi_range_buffer)); found: /** * Found a record belonging to a scan */ m_active_cursor= m_multi_cursor; * multi_range_found_p= m_multi_ranges + range_no; memcpy(table->record[0], m_multi_range_cursor_result_ptr, reclength); setup_recattr(m_active_cursor->getFirstRecAttr()); unpack_record(table->record[0]); table->status= 0; DBUG_RETURN(0); found_next: /** * Found a record belonging to a pk/index op, * copy result and move to next to prepare for next call */ * multi_range_found_p= multi_range_curr; memcpy(table->record[0], m_multi_range_result_ptr, reclength); setup_recattr(op->getFirstRecAttr()); unpack_record(table->record[0]); table->status= 0; multi_range_curr++; m_current_multi_operation= m_active_trans->getNextCompletedOperation(op); m_multi_range_result_ptr += reclength; DBUG_RETURN(0); } int ha_ndbcluster::setup_recattr(const NdbRecAttr* curr) { DBUG_ENTER("setup_recattr"); Field **field, **end; NdbValue *value= m_value; end= table->field + table->s->fields; for (field= table->field; field < end; field++, value++) { if ((* value).ptr) { DBUG_ASSERT(curr != 0); (* value).rec= curr; curr= curr->next(); } } DBUG_RETURN(0); } char* ha_ndbcluster::update_table_comment( /* out: table comment + additional */ const char* comment)/* in: table comment defined by user */ { uint length= strlen(comment); if (length > 64000 - 3) { return((char*)comment); /* string too long */ } Ndb* ndb; if (!(ndb= get_ndb())) { return((char*)comment); } ndb->setDatabaseName(m_dbname); NDBDICT* dict= ndb->getDictionary(); const NDBTAB* tab; if (!(tab= dict->getTable(m_tabname))) { return((char*)comment); } char *str; const char *fmt="%s%snumber_of_replicas: %d"; const unsigned fmt_len_plus_extra= length + strlen(fmt); if ((str= my_malloc(fmt_len_plus_extra, MYF(0))) == NULL) { return (char*)comment; } my_snprintf(str,fmt_len_plus_extra,fmt,comment, length > 0 ? " ":"", tab->getReplicaCount()); return str; } // Utility thread main loop pthread_handler_t ndb_util_thread_func(void *arg __attribute__((unused))) { THD *thd; /* needs to be first for thread_stack */ Ndb* ndb; struct timespec abstime; my_thread_init(); DBUG_ENTER("ndb_util_thread"); DBUG_PRINT("enter", ("ndb_cache_check_time: %d", ndb_cache_check_time)); thd= new THD; /* note that contructor of THD uses DBUG_ */ THD_CHECK_SENTRY(thd); ndb= new Ndb(g_ndb_cluster_connection, ""); pthread_detach_this_thread(); ndb_util_thread= pthread_self(); thd->thread_stack= (char*)&thd; /* remember where our stack is */ if (thd->store_globals() && (ndb->init() != -1)) { thd->cleanup(); delete thd; delete ndb; DBUG_RETURN(NULL); } List util_open_tables; set_timespec(abstime, 0); for (;;) { pthread_mutex_lock(&LOCK_ndb_util_thread); pthread_cond_timedwait(&COND_ndb_util_thread, &LOCK_ndb_util_thread, &abstime); pthread_mutex_unlock(&LOCK_ndb_util_thread); DBUG_PRINT("ndb_util_thread", ("Started, ndb_cache_check_time: %d", ndb_cache_check_time)); if (abort_loop) break; /* Shutting down server */ if (ndb_cache_check_time == 0) { /* Wake up in 1 second to check if value has changed */ set_timespec(abstime, 1); continue; } /* Lock mutex and fill list with pointers to all open tables */ NDB_SHARE *share; pthread_mutex_lock(&ndbcluster_mutex); for (uint i= 0; i < ndbcluster_open_tables.records; i++) { share= (NDB_SHARE *)hash_element(&ndbcluster_open_tables, i); share->use_count++; /* Make sure the table can't be closed */ DBUG_PRINT("ndb_util_thread", ("Found open table[%d]: %s, use_count: %d", i, share->table_name, share->use_count)); /* Store pointer to table */ util_open_tables.push_back(share); } pthread_mutex_unlock(&ndbcluster_mutex); /* Iterate through the open files list */ List_iterator_fast it(util_open_tables); while ((share= it++)) { /* Split tab- and dbname */ char buf[FN_REFLEN]; char *tabname, *db; uint length= dirname_length(share->table_name); tabname= share->table_name+length; memcpy(buf, share->table_name, length-1); buf[length-1]= 0; db= buf+dirname_length(buf); DBUG_PRINT("ndb_util_thread", ("Fetching commit count for: %s", share->table_name)); /* Contact NDB to get commit count for table */ ndb->setDatabaseName(db); struct Ndb_statistics stat; uint lock; pthread_mutex_lock(&share->mutex); lock= share->commit_count_lock; pthread_mutex_unlock(&share->mutex); if (ndb_get_table_statistics(ndb, tabname, &stat) == 0) { DBUG_PRINT("ndb_util_thread", ("Table: %s, commit_count: %llu, rows: %llu", share->table_name, stat.commit_count, stat.row_count)); } else { DBUG_PRINT("ndb_util_thread", ("Error: Could not get commit count for table %s", share->table_name)); stat.commit_count= 0; } pthread_mutex_lock(&share->mutex); if (share->commit_count_lock == lock) share->commit_count= stat.commit_count; pthread_mutex_unlock(&share->mutex); /* Decrease the use count and possibly free share */ free_share(share); } /* Clear the list of open tables */ util_open_tables.empty(); /* Calculate new time to wake up */ int secs= 0; int msecs= ndb_cache_check_time; struct timeval tick_time; gettimeofday(&tick_time, 0); abstime.tv_sec= tick_time.tv_sec; abstime.tv_nsec= tick_time.tv_usec * 1000; if (msecs >= 1000){ secs= msecs / 1000; msecs= msecs % 1000; } abstime.tv_sec+= secs; abstime.tv_nsec+= msecs * 1000000; if (abstime.tv_nsec >= 1000000000) { abstime.tv_sec+= 1; abstime.tv_nsec-= 1000000000; } } thd->cleanup(); delete thd; delete ndb; DBUG_PRINT("exit", ("ndb_util_thread")); my_thread_end(); pthread_exit(0); DBUG_RETURN(NULL); } /* Condition pushdown */ /* Push a condition to ndbcluster storage engine for evaluation during table and index scans. The conditions will be stored on a stack for possibly storing several conditions. The stack can be popped by calling cond_pop, handler::extra(HA_EXTRA_RESET) (handler::reset()) will clear the stack. The current implementation supports arbitrary AND/OR nested conditions with comparisons between columns and constants (including constant expressions and function calls) and the following comparison operators: =, !=, >, >=, <, <=, "is null", and "is not null". RETURN NULL The condition was supported and will be evaluated for each row found during the scan cond The condition was not supported and all rows will be returned from the scan for evaluation (and thus not saved on stack) */ const COND* ha_ndbcluster::cond_push(const COND *cond) { DBUG_ENTER("cond_push"); Ndb_cond_stack *ndb_cond = new Ndb_cond_stack(); DBUG_EXECUTE("where",print_where((COND *)cond, m_tabname);); if (m_cond_stack) ndb_cond->next= m_cond_stack; else ndb_cond->next= NULL; m_cond_stack= ndb_cond; if (serialize_cond(cond, ndb_cond)) { DBUG_RETURN(NULL); } else { cond_pop(); } DBUG_RETURN(cond); } /* Pop the top condition from the condition stack of the handler instance. */ void ha_ndbcluster::cond_pop() { Ndb_cond_stack *ndb_cond_stack= m_cond_stack; if (ndb_cond_stack) { m_cond_stack= ndb_cond_stack->next; delete ndb_cond_stack; } } /* Clear the condition stack */ void ha_ndbcluster::cond_clear() { DBUG_ENTER("cond_clear"); while (m_cond_stack) cond_pop(); DBUG_VOID_RETURN; } /* Serialize the item tree into a linked list represented by Ndb_cond for fast generation of NbdScanFilter. Adds information such as position of fields that is not directly available in the Item tree. Also checks if condition is supported. */ void ndb_serialize_cond(const Item *item, void *arg) { Ndb_cond_traverse_context *context= (Ndb_cond_traverse_context *) arg; DBUG_ENTER("ndb_serialize_cond"); // Check if we are skipping arguments to a function to be evaluated if (context->skip) { DBUG_PRINT("info", ("Skiping argument %d", context->skip)); context->skip--; switch (item->type()) { case Item::FUNC_ITEM: { Item_func *func_item= (Item_func *) item; context->skip+= func_item->argument_count(); break; } case Item::INT_ITEM: case Item::REAL_ITEM: case Item::STRING_ITEM: case Item::VARBIN_ITEM: case Item::DECIMAL_ITEM: break; default: context->supported= FALSE; break; } DBUG_VOID_RETURN; } if (context->supported) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; const Item_func *func_item; // Check if we are rewriting some unsupported function call if (rewrite_context && (func_item= rewrite_context->func_item) && rewrite_context->count++ == 0) { switch (func_item->functype()) { case Item_func::BETWEEN: /* Rewrite | BETWEEN | AND | to | > | AND | < | or actually in prefix format BEGIN(AND) GT(|, |), LT(|, |), END() */ case Item_func::IN_FUNC: { /* Rewrite | IN(|, |,..) to | = | OR = | ... or actually in prefix format BEGIN(OR) EQ(|, ), EQ(|, |), ... END() Each part of the disjunction is added for each call to ndb_serialize_cond and end of rewrite statement is wrapped in end of ndb_serialize_cond */ if (context->expecting(item->type())) { // This is the | item, save it in the rewrite context rewrite_context->left_hand_item= item; if (item->type() == Item::FUNC_ITEM) { Item_func *func_item= (Item_func *) item; if (func_item->functype() == Item_func::UNKNOWN_FUNC && func_item->const_item()) { // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); } else { DBUG_PRINT("info", ("Found unsupported functional expression in BETWEEN|IN")); context->supported= FALSE; DBUG_VOID_RETURN; } } } else { // Non-supported BETWEEN|IN expression DBUG_PRINT("info", ("Found unexpected item of type %u in BETWEEN|IN", item->type())); context->supported= FALSE; DBUG_VOID_RETURN; } break; } default: context->supported= FALSE; break; } DBUG_VOID_RETURN; } else { Ndb_cond_stack *ndb_stack= context->stack_ptr; Ndb_cond *prev_cond= context->cond_ptr; Ndb_cond *curr_cond= context->cond_ptr= new Ndb_cond(); if (!ndb_stack->ndb_cond) ndb_stack->ndb_cond= curr_cond; curr_cond->prev= prev_cond; if (prev_cond) prev_cond->next= curr_cond; // Check if we are rewriting some unsupported function call if (context->rewrite_stack) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; const Item_func *func_item= rewrite_context->func_item; switch (func_item->functype()) { case Item_func::BETWEEN: { /* Rewrite | BETWEEN | AND | to | > | AND | < | or actually in prefix format BEGIN(AND) GT(|, |), LT(|, |), END() */ if (rewrite_context->count == 2) { // Lower limit of BETWEEN DBUG_PRINT("info", ("GE_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::GE_FUNC, 2); } else if (rewrite_context->count == 3) { // Upper limit of BETWEEN DBUG_PRINT("info", ("LE_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::LE_FUNC, 2); } else { // Illegal BETWEEN expression DBUG_PRINT("info", ("Illegal BETWEEN expression")); context->supported= FALSE; DBUG_VOID_RETURN; } break; } case Item_func::IN_FUNC: { /* Rewrite | IN(|, |,..) to | = | OR = | ... or actually in prefix format BEGIN(OR) EQ(|, ), EQ(|, |), ... END() Each part of the disjunction is added for each call to ndb_serialize_cond and end of rewrite statement is wrapped in end of ndb_serialize_cond */ DBUG_PRINT("info", ("EQ_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::EQ_FUNC, 2); break; } default: context->supported= FALSE; } // Handle left hand | context->rewrite_stack= NULL; // Disable rewrite mode context->expect_only(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); ndb_serialize_cond(rewrite_context->left_hand_item, arg); context->skip= 0; // Any FUNC_ITEM expression has already been parsed context->rewrite_stack= rewrite_context; // Enable rewrite mode if (!context->supported) DBUG_VOID_RETURN; prev_cond= context->cond_ptr; curr_cond= context->cond_ptr= new Ndb_cond(); prev_cond->next= curr_cond; } // Check for end of AND/OR expression if (!item) { // End marker for condition group DBUG_PRINT("info", ("End of condition group")); curr_cond->ndb_item= new Ndb_item(NDB_END_COND); } else { switch (item->type()) { case Item::FIELD_ITEM: { Item_field *field_item= (Item_field *) item; Field *field= field_item->field; enum_field_types type= field->type(); /* Check that the field is part of the table of the handler instance and that we expect a field with of this result type. */ if (context->table == field->table) { const NDBTAB *tab= (const NDBTAB *) context->ndb_table; DBUG_PRINT("info", ("FIELD_ITEM")); DBUG_PRINT("info", ("table %s", tab->getName())); DBUG_PRINT("info", ("column %s", field->field_name)); DBUG_PRINT("info", ("result type %d", field->result_type())); // Check that we are expecting a field and with the correct // result type if (context->expecting(Item::FIELD_ITEM) && (context->expecting_field_result(field->result_type()) || // Date and year can be written as string or int ((type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE || type == MYSQL_TYPE_YEAR || type == MYSQL_TYPE_DATETIME) ? (context->expecting_field_result(STRING_RESULT) || context->expecting_field_result(INT_RESULT)) : true)) && // Bit fields no yet supported in scan filter type != MYSQL_TYPE_BIT) { const NDBCOL *col= tab->getColumn(field->field_name); DBUG_ASSERT(col); curr_cond->ndb_item= new Ndb_item(field, col->getColumnNo()); context->dont_expect(Item::FIELD_ITEM); context->expect_no_field_result(); if (context->expect_mask) { // We have not seen second argument yet if (type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE || type == MYSQL_TYPE_YEAR || type == MYSQL_TYPE_DATETIME) { context->expect_only(Item::STRING_ITEM); context->expect(Item::INT_ITEM); } else switch (field->result_type()) { case STRING_RESULT: // Expect char string or binary string context->expect_only(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect_collation(field_item->collation.collation); break; case REAL_RESULT: context->expect_only(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::INT_ITEM); break; case INT_RESULT: context->expect_only(Item::INT_ITEM); context->expect(Item::VARBIN_ITEM); break; case DECIMAL_RESULT: context->expect_only(Item::DECIMAL_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::INT_ITEM); break; default: break; } } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that field and string constant collations are the same if ((field->result_type() == STRING_RESULT) && !context->expecting_collation(item->collation.collation) && type != MYSQL_TYPE_TIME && type != MYSQL_TYPE_DATE && type != MYSQL_TYPE_YEAR && type != MYSQL_TYPE_DATETIME) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } break; } else { DBUG_PRINT("info", ("Was not expecting field of type %u(%u)", field->result_type(), type)); context->supported= FALSE; } } else { DBUG_PRINT("info", ("Was not expecting field from table %s(%s)", context->table->s->table_name, field->table->s->table_name)); context->supported= FALSE; } break; } case Item::FUNC_ITEM: { Item_func *func_item= (Item_func *) item; // Check that we expect a function or functional expression here if (context->expecting(Item::FUNC_ITEM) || func_item->functype() == Item_func::UNKNOWN_FUNC) context->expect_nothing(); else { // Did not expect function here context->supported= FALSE; break; } switch (func_item->functype()) { case Item_func::EQ_FUNC: { DBUG_PRINT("info", ("EQ_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::NE_FUNC: { DBUG_PRINT("info", ("NE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LT_FUNC: { DBUG_PRINT("info", ("LT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LE_FUNC: { DBUG_PRINT("info", ("LE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::GE_FUNC: { DBUG_PRINT("info", ("GE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::GT_FUNC: { DBUG_PRINT("info", ("GT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LIKE_FUNC: { DBUG_PRINT("info", ("LIKE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect(Item::FUNC_ITEM); break; } case Item_func::ISNULL_FUNC: { DBUG_PRINT("info", ("ISNULL_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::ISNOTNULL_FUNC: { DBUG_PRINT("info", ("ISNOTNULL_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::NOT_FUNC: { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); break; } case Item_func::BETWEEN: { DBUG_PRINT("info", ("BETWEEN, rewriting using AND")); Item_func_between *between_func= (Item_func_between *) func_item; Ndb_rewrite_context *rewrite_context= new Ndb_rewrite_context(func_item); rewrite_context->next= context->rewrite_stack; context->rewrite_stack= rewrite_context; if (between_func->negated) { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::NOT_FUNC, 1); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; } DBUG_PRINT("info", ("COND_AND_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::COND_AND_FUNC, func_item->argument_count() - 1); context->expect_only(Item::FIELD_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); break; } case Item_func::IN_FUNC: { DBUG_PRINT("info", ("IN_FUNC, rewriting using OR")); Item_func_in *in_func= (Item_func_in *) func_item; Ndb_rewrite_context *rewrite_context= new Ndb_rewrite_context(func_item); rewrite_context->next= context->rewrite_stack; context->rewrite_stack= rewrite_context; if (in_func->negated) { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::NOT_FUNC, 1); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; } DBUG_PRINT("info", ("COND_OR_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::COND_OR_FUNC, func_item->argument_count() - 1); context->expect_only(Item::FIELD_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); break; } case Item_func::UNKNOWN_FUNC: { DBUG_PRINT("info", ("UNKNOWN_FUNC %s", func_item->const_item()?"const":"")); DBUG_PRINT("info", ("result type %d", func_item->result_type())); if (func_item->const_item()) { switch (func_item->result_type()) { case STRING_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::STRING_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); context->expect_collation(func_item->collation.collation); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that string result have correct collation if (!context->expecting_collation(item->collation.collation)) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case REAL_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::REAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case INT_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::INT_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(INT_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case DECIMAL_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::DECIMAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } default: break; } } else // Function does not return constant expression context->supported= FALSE; break; } default: { DBUG_PRINT("info", ("Found func_item of type %d", func_item->functype())); context->supported= FALSE; } } break; } case Item::STRING_ITEM: DBUG_PRINT("info", ("STRING_ITEM")); if (context->expecting(Item::STRING_ITEM)) { #ifndef DBUG_OFF char buff[256]; String str(buff,(uint32) sizeof(buff), system_charset_info); str.length(0); Item_string *string_item= (Item_string *) item; DBUG_PRINT("info", ("value \"%s\"", string_item->val_str(&str)->ptr())); #endif NDB_ITEM_QUALIFICATION q; q.value_type= Item::STRING_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); context->expect_collation(item->collation.collation); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that we are comparing with a field with same collation if (!context->expecting_collation(item->collation.collation)) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } } else context->supported= FALSE; break; case Item::INT_ITEM: DBUG_PRINT("info", ("INT_ITEM")); if (context->expecting(Item::INT_ITEM)) { Item_int *int_item= (Item_int *) item; DBUG_PRINT("info", ("value %d", int_item->value)); NDB_ITEM_QUALIFICATION q; q.value_type= Item::INT_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(INT_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::REAL_ITEM: DBUG_PRINT("info", ("REAL_ITEM %s")); if (context->expecting(Item::REAL_ITEM)) { Item_float *float_item= (Item_float *) item; DBUG_PRINT("info", ("value %f", float_item->value)); NDB_ITEM_QUALIFICATION q; q.value_type= Item::REAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::VARBIN_ITEM: DBUG_PRINT("info", ("VARBIN_ITEM")); if (context->expecting(Item::VARBIN_ITEM)) { NDB_ITEM_QUALIFICATION q; q.value_type= Item::VARBIN_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::DECIMAL_ITEM: DBUG_PRINT("info", ("DECIMAL_ITEM %s")); if (context->expecting(Item::DECIMAL_ITEM)) { Item_decimal *decimal_item= (Item_decimal *) item; DBUG_PRINT("info", ("value %f", decimal_item->val_real())); NDB_ITEM_QUALIFICATION q; q.value_type= Item::DECIMAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); context->expect_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::COND_ITEM: { Item_cond *cond_item= (Item_cond *) item; if (context->expecting(Item::COND_ITEM)) { switch (cond_item->functype()) { case Item_func::COND_AND_FUNC: DBUG_PRINT("info", ("COND_AND_FUNC")); curr_cond->ndb_item= new Ndb_item(cond_item->functype(), cond_item); break; case Item_func::COND_OR_FUNC: DBUG_PRINT("info", ("COND_OR_FUNC")); curr_cond->ndb_item= new Ndb_item(cond_item->functype(), cond_item); break; default: DBUG_PRINT("info", ("COND_ITEM %d", cond_item->functype())); context->supported= FALSE; break; } } else { /* Did not expect condition */ context->supported= FALSE; } break; } default: { DBUG_PRINT("info", ("Found item of type %d", item->type())); context->supported= FALSE; } } } if (context->supported && context->rewrite_stack) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; if (rewrite_context->count == rewrite_context->func_item->argument_count()) { // Rewrite is done, wrap an END() at the en DBUG_PRINT("info", ("End of condition group")); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; curr_cond->ndb_item= new Ndb_item(NDB_END_COND); // Pop rewrite stack context->rewrite_stack= context->rewrite_stack->next; } } } } DBUG_VOID_RETURN; } bool ha_ndbcluster::serialize_cond(const COND *cond, Ndb_cond_stack *ndb_cond) { DBUG_ENTER("serialize_cond"); Item *item= (Item *) cond; Ndb_cond_traverse_context context(table, (void *)m_table, ndb_cond); // Expect a logical expression context.expect(Item::FUNC_ITEM); context.expect(Item::COND_ITEM); item->traverse_cond(&ndb_serialize_cond, (void *) &context, Item::PREFIX); DBUG_PRINT("info", ("The pushed condition is %ssupported", (context.supported)?"":"not ")); DBUG_RETURN(context.supported); } int ha_ndbcluster::build_scan_filter_predicate(Ndb_cond * &cond, NdbScanFilter *filter, bool negated) { DBUG_ENTER("build_scan_filter_predicate"); switch (cond->ndb_item->type) { case NDB_FUNCTION: { if (!cond->next) break; Ndb_item *a= cond->next->ndb_item; Ndb_item *b, *field, *value= NULL; LINT_INIT(field); switch (cond->ndb_item->argument_count()) { case 1: field= (a->type == NDB_FIELD)? a : NULL; break; case 2: if (!cond->next->next) break; b= cond->next->next->ndb_item; value= (a->type == NDB_VALUE)? a : (b->type == NDB_VALUE)? b : NULL; field= (a->type == NDB_FIELD)? a : (b->type == NDB_FIELD)? b : NULL; break; default: break; } switch ((negated) ? Ndb_item::negate(cond->ndb_item->qualification.function_type) : cond->ndb_item->qualification.function_type) { case NDB_EQ_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating EQ filter")); if (filter->cmp(NdbScanFilter::COND_EQ, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_NE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating NE filter")); if (filter->cmp(NdbScanFilter::COND_NE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LT_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating LT filter")); if (filter->cmp(NdbScanFilter::COND_LT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating GT filter")); if (filter->cmp(NdbScanFilter::COND_GT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating LE filter")); if (filter->cmp(NdbScanFilter::COND_LE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating GE filter")); if (filter->cmp(NdbScanFilter::COND_GE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_GE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating GE filter")); if (filter->cmp(NdbScanFilter::COND_GE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating LE filter")); if (filter->cmp(NdbScanFilter::COND_LE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_GT_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating GT filter")); if (filter->cmp(NdbScanFilter::COND_GT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating LT filter")); if (filter->cmp(NdbScanFilter::COND_LT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LIKE_FUNC: { if (!value || !field) break; if ((value->qualification.value_type != Item::STRING_ITEM) && (value->qualification.value_type != Item::VARBIN_ITEM)) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating LIKE filter: like(%d,%s,%d)", field->get_field_no(), value->get_val(), value->pack_length())); if (filter->cmp(NdbScanFilter::COND_LIKE, field->get_field_no(), value->get_val(), value->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_NOTLIKE_FUNC: { if (!value || !field) break; if ((value->qualification.value_type != Item::STRING_ITEM) && (value->qualification.value_type != Item::VARBIN_ITEM)) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating NOTLIKE filter: notlike(%d,%s,%d)", field->get_field_no(), value->get_val(), value->pack_length())); if (filter->cmp(NdbScanFilter::COND_NOT_LIKE, field->get_field_no(), value->get_val(), value->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_ISNULL_FUNC: if (!field) break; DBUG_PRINT("info", ("Generating ISNULL filter")); if (filter->isnull(field->get_field_no()) == -1) DBUG_RETURN(1); cond= cond->next->next; DBUG_RETURN(0); case NDB_ISNOTNULL_FUNC: { if (!field) break; DBUG_PRINT("info", ("Generating ISNOTNULL filter")); if (filter->isnotnull(field->get_field_no()) == -1) DBUG_RETURN(1); cond= cond->next->next; DBUG_RETURN(0); } default: break; } break; } default: break; } DBUG_PRINT("info", ("Found illegal condition")); DBUG_RETURN(1); } int ha_ndbcluster::build_scan_filter_group(Ndb_cond* &cond, NdbScanFilter *filter) { uint level=0; bool negated= FALSE; DBUG_ENTER("build_scan_filter_group"); do { if (!cond) DBUG_RETURN(1); switch (cond->ndb_item->type) { case NDB_FUNCTION: { switch (cond->ndb_item->qualification.function_type) { case NDB_COND_AND_FUNC: { level++; DBUG_PRINT("info", ("Generating %s group %u", (negated)?"NAND":"AND", level)); if ((negated) ? filter->begin(NdbScanFilter::NAND) : filter->begin(NdbScanFilter::AND) == -1) DBUG_RETURN(1); negated= FALSE; cond= cond->next; break; } case NDB_COND_OR_FUNC: { level++; DBUG_PRINT("info", ("Generating %s group %u", (negated)?"NOR":"OR", level)); if ((negated) ? filter->begin(NdbScanFilter::NOR) : filter->begin(NdbScanFilter::OR) == -1) DBUG_RETURN(1); negated= FALSE; cond= cond->next; break; } case NDB_NOT_FUNC: { DBUG_PRINT("info", ("Generating negated query")); cond= cond->next; negated= TRUE; break; } default: if (build_scan_filter_predicate(cond, filter, negated)) DBUG_RETURN(1); negated= FALSE; break; } break; } case NDB_END_COND: DBUG_PRINT("info", ("End of group %u", level)); level--; if (cond) cond= cond->next; if (filter->end() == -1) DBUG_RETURN(1); if (!negated) break; // else fall through (NOT END is an illegal condition) default: { DBUG_PRINT("info", ("Illegal scan filter")); } } } while (level > 0 || negated); DBUG_RETURN(0); } int ha_ndbcluster::build_scan_filter(Ndb_cond * &cond, NdbScanFilter *filter) { bool simple_cond= TRUE; DBUG_ENTER("build_scan_filter"); switch (cond->ndb_item->type) { case NDB_FUNCTION: switch (cond->ndb_item->qualification.function_type) { case NDB_COND_AND_FUNC: case NDB_COND_OR_FUNC: simple_cond= FALSE; break; default: break; } break; default: break; } if (simple_cond && filter->begin() == -1) DBUG_RETURN(1); if (build_scan_filter_group(cond, filter)) DBUG_RETURN(1); if (simple_cond && filter->end() == -1) DBUG_RETURN(1); DBUG_RETURN(0); } int ha_ndbcluster::generate_scan_filter(Ndb_cond_stack *ndb_cond_stack, NdbScanOperation *op) { DBUG_ENTER("generate_scan_filter"); if (ndb_cond_stack) { DBUG_PRINT("info", ("Generating scan filter")); NdbScanFilter filter(op); bool multiple_cond= FALSE; // Wrap an AND group around multiple conditions if (ndb_cond_stack->next) { multiple_cond= TRUE; if (filter.begin() == -1) DBUG_RETURN(1); } for (Ndb_cond_stack *stack= ndb_cond_stack; (stack); stack= stack->next) { Ndb_cond *cond= stack->ndb_cond; if (build_scan_filter(cond, &filter)) { DBUG_PRINT("info", ("build_scan_filter failed")); DBUG_RETURN(1); } } if (multiple_cond && filter.end() == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Empty stack")); } DBUG_RETURN(0); } int ndbcluster_show_status(THD* thd) { Protocol *protocol= thd->protocol; DBUG_ENTER("ndbcluster_show_status"); if (have_ndbcluster != SHOW_OPTION_YES) { my_message(ER_NOT_SUPPORTED_YET, "Cannot call SHOW NDBCLUSTER STATUS because skip-ndbcluster is " "defined", MYF(0)); DBUG_RETURN(TRUE); } List field_list; field_list.push_back(new Item_empty_string("free_list", 255)); field_list.push_back(new Item_return_int("created", 10,MYSQL_TYPE_LONG)); field_list.push_back(new Item_return_int("free", 10,MYSQL_TYPE_LONG)); field_list.push_back(new Item_return_int("sizeof", 10,MYSQL_TYPE_LONG)); if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) DBUG_RETURN(TRUE); if (get_thd_ndb(thd) && get_thd_ndb(thd)->ndb) { Ndb* ndb= (get_thd_ndb(thd))->ndb; Ndb::Free_list_usage tmp; tmp.m_name= 0; while (ndb->get_free_list_usage(&tmp)) { protocol->prepare_for_resend(); protocol->store(tmp.m_name, &my_charset_bin); protocol->store((uint)tmp.m_created); protocol->store((uint)tmp.m_free); protocol->store((uint)tmp.m_sizeof); if (protocol->write()) DBUG_RETURN(TRUE); } } send_eof(thd); DBUG_RETURN(FALSE); } #endif /* HAVE_NDBCLUSTER_DB */