/* Copyright (c) 2000, 2016, Oracle and/or its affiliates. Copyright (c) 2009, 2019, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ /** @file handler.cc @brief Handler-calling-functions */ #include "mariadb.h" #include #include "sql_priv.h" #include "unireg.h" #include "rpl_rli.h" #include "sql_cache.h" // query_cache, query_cache_* #include "sql_connect.h" // global_table_stats #include "key.h" // key_copy, key_unpack, key_cmp_if_same, key_cmp #include "sql_table.h" // build_table_filename #include "sql_parse.h" // check_stack_overrun #include "sql_acl.h" // SUPER_ACL #include "sql_base.h" // TDC_element #include "discover.h" // extension_based_table_discovery, etc #include "log_event.h" // *_rows_log_event #include "create_options.h" #include #include "transaction.h" #include "myisam.h" #include "probes_mysql.h" #include #include "debug_sync.h" // DEBUG_SYNC #include "sql_audit.h" #include "ha_sequence.h" #include "rowid_filter.h" #ifdef WITH_PARTITION_STORAGE_ENGINE #include "ha_partition.h" #endif #ifdef WITH_ARIA_STORAGE_ENGINE #include "../storage/maria/ha_maria.h" #endif #include "semisync_master.h" #include "wsrep_mysqld.h" #ifdef WITH_WSREP #include "wsrep_binlog.h" #include "wsrep_xid.h" #include "wsrep_thd.h" #include "wsrep_trans_observer.h" /* wsrep transaction hooks */ #endif /* WITH_WSREP */ /* While we have legacy_db_type, we have this array to check for dups and to find handlerton from legacy_db_type. Remove when legacy_db_type is finally gone */ st_plugin_int *hton2plugin[MAX_HA]; static handlerton *installed_htons[128]; #define BITMAP_STACKBUF_SIZE (128/8) KEY_CREATE_INFO default_key_create_info= { HA_KEY_ALG_UNDEF, 0, 0, {NullS, 0}, {NullS, 0}, true }; /* number of entries in handlertons[] */ ulong total_ha= 0; /* number of storage engines (from handlertons[]) that support 2pc */ ulong total_ha_2pc= 0; #ifdef DBUG_ASSERT_EXISTS /* Number of non-mandatory 2pc handlertons whose initialization failed to estimate total_ha_2pc value under supposition of the failures have not occcured. */ ulong failed_ha_2pc= 0; #endif /* size of savepoint storage area (see ha_init) */ ulong savepoint_alloc_size= 0; static const LEX_CSTRING sys_table_aliases[]= { { STRING_WITH_LEN("INNOBASE") }, { STRING_WITH_LEN("INNODB") }, { STRING_WITH_LEN("HEAP") }, { STRING_WITH_LEN("MEMORY") }, { STRING_WITH_LEN("MERGE") }, { STRING_WITH_LEN("MRG_MYISAM") }, { STRING_WITH_LEN("Maria") }, { STRING_WITH_LEN("Aria") }, {NullS, 0} }; const char *ha_row_type[] = { "", "FIXED", "DYNAMIC", "COMPRESSED", "REDUNDANT", "COMPACT", "PAGE" }; const char *tx_isolation_names[] = { "READ-UNCOMMITTED", "READ-COMMITTED", "REPEATABLE-READ", "SERIALIZABLE", NullS}; TYPELIB tx_isolation_typelib= {array_elements(tx_isolation_names)-1,"", tx_isolation_names, NULL}; static TYPELIB known_extensions= {0,"known_exts", NULL, NULL}; uint known_extensions_id= 0; static int commit_one_phase_2(THD *thd, bool all, THD_TRANS *trans, bool is_real_trans); static plugin_ref ha_default_plugin(THD *thd) { if (thd->variables.table_plugin) return thd->variables.table_plugin; return my_plugin_lock(thd, global_system_variables.table_plugin); } static plugin_ref ha_default_tmp_plugin(THD *thd) { if (thd->variables.tmp_table_plugin) return thd->variables.tmp_table_plugin; if (global_system_variables.tmp_table_plugin) return my_plugin_lock(thd, global_system_variables.tmp_table_plugin); return ha_default_plugin(thd); } /** @brief Return the default storage engine handlerton for thread SYNOPSIS ha_default_handlerton(thd) thd current thread RETURN pointer to handlerton */ handlerton *ha_default_handlerton(THD *thd) { plugin_ref plugin= ha_default_plugin(thd); DBUG_ASSERT(plugin); handlerton *hton= plugin_hton(plugin); DBUG_ASSERT(hton); return hton; } handlerton *ha_default_tmp_handlerton(THD *thd) { plugin_ref plugin= ha_default_tmp_plugin(thd); DBUG_ASSERT(plugin); handlerton *hton= plugin_hton(plugin); DBUG_ASSERT(hton); return hton; } /** @brief Return the storage engine handlerton for the supplied name SYNOPSIS ha_resolve_by_name(thd, name) thd current thread name name of storage engine RETURN pointer to storage engine plugin handle */ plugin_ref ha_resolve_by_name(THD *thd, const LEX_CSTRING *name, bool tmp_table) { const LEX_CSTRING *table_alias; plugin_ref plugin; redo: /* my_strnncoll is a macro and gcc doesn't do early expansion of macro */ if (thd && !my_charset_latin1.coll->strnncoll(&my_charset_latin1, (const uchar *)name->str, name->length, (const uchar *)STRING_WITH_LEN("DEFAULT"), 0)) return tmp_table ? ha_default_tmp_plugin(thd) : ha_default_plugin(thd); if ((plugin= my_plugin_lock_by_name(thd, name, MYSQL_STORAGE_ENGINE_PLUGIN))) { handlerton *hton= plugin_hton(plugin); if (hton && !(hton->flags & HTON_NOT_USER_SELECTABLE)) return plugin; /* unlocking plugin immediately after locking is relatively low cost. */ plugin_unlock(thd, plugin); } /* We check for the historical aliases. */ for (table_alias= sys_table_aliases; table_alias->str; table_alias+= 2) { if (!my_strnncoll(&my_charset_latin1, (const uchar *)name->str, name->length, (const uchar *)table_alias->str, table_alias->length)) { name= table_alias + 1; goto redo; } } return NULL; } bool Storage_engine_name::resolve_storage_engine_with_error(THD *thd, handlerton **ha, bool tmp_table) { if (plugin_ref plugin= ha_resolve_by_name(thd, &m_storage_engine_name, tmp_table)) { *ha= plugin_hton(plugin); return false; } *ha= NULL; if (thd->variables.sql_mode & MODE_NO_ENGINE_SUBSTITUTION) { my_error(ER_UNKNOWN_STORAGE_ENGINE, MYF(0), m_storage_engine_name.str); return true; } push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_STORAGE_ENGINE, ER_THD(thd, ER_UNKNOWN_STORAGE_ENGINE), m_storage_engine_name.str); return false; } plugin_ref ha_lock_engine(THD *thd, const handlerton *hton) { if (hton) { st_plugin_int *plugin= hton2plugin[hton->slot]; return my_plugin_lock(thd, plugin_int_to_ref(plugin)); } return NULL; } handlerton *ha_resolve_by_legacy_type(THD *thd, enum legacy_db_type db_type) { plugin_ref plugin; switch (db_type) { case DB_TYPE_DEFAULT: return ha_default_handlerton(thd); default: if (db_type > DB_TYPE_UNKNOWN && db_type < DB_TYPE_DEFAULT && (plugin= ha_lock_engine(thd, installed_htons[db_type]))) return plugin_hton(plugin); /* fall through */ case DB_TYPE_UNKNOWN: return NULL; } } /** Use other database handler if databasehandler is not compiled in. */ handlerton *ha_checktype(THD *thd, handlerton *hton, bool no_substitute) { if (ha_storage_engine_is_enabled(hton)) return hton; if (no_substitute) return NULL; #ifdef WITH_WSREP (void)wsrep_after_rollback(thd, false); #endif /* WITH_WSREP */ return ha_default_handlerton(thd); } /* ha_checktype */ handler *get_new_handler(TABLE_SHARE *share, MEM_ROOT *alloc, handlerton *db_type) { handler *file; DBUG_ENTER("get_new_handler"); DBUG_PRINT("enter", ("alloc: %p", alloc)); if (ha_storage_engine_is_enabled(db_type)) { if ((file= db_type->create(db_type, share, alloc))) file->init(); DBUG_RETURN(file); } /* Try the default table type Here the call to current_thd() is ok as we call this function a lot of times but we enter this branch very seldom. */ file= get_new_handler(share, alloc, ha_default_handlerton(current_thd)); DBUG_RETURN(file); } #ifdef WITH_PARTITION_STORAGE_ENGINE handler *get_ha_partition(partition_info *part_info) { ha_partition *partition; DBUG_ENTER("get_ha_partition"); if ((partition= new ha_partition(partition_hton, part_info))) { if (partition->initialize_partition(current_thd->mem_root)) { delete partition; partition= 0; } else partition->init(); } else { my_error(ER_OUTOFMEMORY, MYF(ME_FATAL), static_cast(sizeof(ha_partition))); } DBUG_RETURN(((handler*) partition)); } #endif static const char **handler_errmsgs; C_MODE_START static const char **get_handler_errmsgs(int nr) { return handler_errmsgs; } C_MODE_END /** Register handler error messages for use with my_error(). @retval 0 OK @retval !=0 Error */ int ha_init_errors(void) { #define SETMSG(nr, msg) handler_errmsgs[(nr) - HA_ERR_FIRST]= (msg) /* Allocate a pointer array for the error message strings. */ /* Zerofill it to avoid uninitialized gaps. */ if (! (handler_errmsgs= (const char**) my_malloc(HA_ERR_ERRORS * sizeof(char*), MYF(MY_WME | MY_ZEROFILL)))) return 1; /* Set the dedicated error messages. */ SETMSG(HA_ERR_KEY_NOT_FOUND, ER_DEFAULT(ER_KEY_NOT_FOUND)); SETMSG(HA_ERR_FOUND_DUPP_KEY, ER_DEFAULT(ER_DUP_KEY)); SETMSG(HA_ERR_RECORD_CHANGED, "Update which is recoverable"); SETMSG(HA_ERR_WRONG_INDEX, "Wrong index given to function"); SETMSG(HA_ERR_CRASHED, ER_DEFAULT(ER_NOT_KEYFILE)); SETMSG(HA_ERR_WRONG_IN_RECORD, ER_DEFAULT(ER_CRASHED_ON_USAGE)); SETMSG(HA_ERR_OUT_OF_MEM, "Table handler out of memory"); SETMSG(HA_ERR_NOT_A_TABLE, "Incorrect file format '%.64s'"); SETMSG(HA_ERR_WRONG_COMMAND, "Command not supported"); SETMSG(HA_ERR_OLD_FILE, ER_DEFAULT(ER_OLD_KEYFILE)); SETMSG(HA_ERR_NO_ACTIVE_RECORD, "No record read in update"); SETMSG(HA_ERR_RECORD_DELETED, "Intern record deleted"); SETMSG(HA_ERR_RECORD_FILE_FULL, ER_DEFAULT(ER_RECORD_FILE_FULL)); SETMSG(HA_ERR_INDEX_FILE_FULL, "No more room in index file '%.64s'"); SETMSG(HA_ERR_END_OF_FILE, "End in next/prev/first/last"); SETMSG(HA_ERR_UNSUPPORTED, ER_DEFAULT(ER_ILLEGAL_HA)); SETMSG(HA_ERR_TO_BIG_ROW, "Too big row"); SETMSG(HA_WRONG_CREATE_OPTION, "Wrong create option"); SETMSG(HA_ERR_FOUND_DUPP_UNIQUE, ER_DEFAULT(ER_DUP_UNIQUE)); SETMSG(HA_ERR_UNKNOWN_CHARSET, "Can't open charset"); SETMSG(HA_ERR_WRONG_MRG_TABLE_DEF, ER_DEFAULT(ER_WRONG_MRG_TABLE)); SETMSG(HA_ERR_CRASHED_ON_REPAIR, ER_DEFAULT(ER_CRASHED_ON_REPAIR)); SETMSG(HA_ERR_CRASHED_ON_USAGE, ER_DEFAULT(ER_CRASHED_ON_USAGE)); SETMSG(HA_ERR_LOCK_WAIT_TIMEOUT, ER_DEFAULT(ER_LOCK_WAIT_TIMEOUT)); SETMSG(HA_ERR_LOCK_TABLE_FULL, ER_DEFAULT(ER_LOCK_TABLE_FULL)); SETMSG(HA_ERR_READ_ONLY_TRANSACTION, ER_DEFAULT(ER_READ_ONLY_TRANSACTION)); SETMSG(HA_ERR_LOCK_DEADLOCK, ER_DEFAULT(ER_LOCK_DEADLOCK)); SETMSG(HA_ERR_CANNOT_ADD_FOREIGN, ER_DEFAULT(ER_CANNOT_ADD_FOREIGN)); SETMSG(HA_ERR_NO_REFERENCED_ROW, ER_DEFAULT(ER_NO_REFERENCED_ROW_2)); SETMSG(HA_ERR_ROW_IS_REFERENCED, ER_DEFAULT(ER_ROW_IS_REFERENCED_2)); SETMSG(HA_ERR_NO_SAVEPOINT, "No savepoint with that name"); SETMSG(HA_ERR_NON_UNIQUE_BLOCK_SIZE, "Non unique key block size"); SETMSG(HA_ERR_NO_SUCH_TABLE, "No such table: '%.64s'"); SETMSG(HA_ERR_TABLE_EXIST, ER_DEFAULT(ER_TABLE_EXISTS_ERROR)); SETMSG(HA_ERR_NO_CONNECTION, "Could not connect to storage engine"); SETMSG(HA_ERR_TABLE_DEF_CHANGED, ER_DEFAULT(ER_TABLE_DEF_CHANGED)); SETMSG(HA_ERR_FOREIGN_DUPLICATE_KEY, "FK constraint would lead to duplicate key"); SETMSG(HA_ERR_TABLE_NEEDS_UPGRADE, ER_DEFAULT(ER_TABLE_NEEDS_UPGRADE)); SETMSG(HA_ERR_TABLE_READONLY, ER_DEFAULT(ER_OPEN_AS_READONLY)); SETMSG(HA_ERR_AUTOINC_READ_FAILED, ER_DEFAULT(ER_AUTOINC_READ_FAILED)); SETMSG(HA_ERR_AUTOINC_ERANGE, ER_DEFAULT(ER_WARN_DATA_OUT_OF_RANGE)); SETMSG(HA_ERR_TOO_MANY_CONCURRENT_TRXS, ER_DEFAULT(ER_TOO_MANY_CONCURRENT_TRXS)); SETMSG(HA_ERR_INDEX_COL_TOO_LONG, ER_DEFAULT(ER_INDEX_COLUMN_TOO_LONG)); SETMSG(HA_ERR_INDEX_CORRUPT, ER_DEFAULT(ER_INDEX_CORRUPT)); SETMSG(HA_FTS_INVALID_DOCID, "Invalid InnoDB FTS Doc ID"); SETMSG(HA_ERR_TABLE_IN_FK_CHECK, ER_DEFAULT(ER_TABLE_IN_FK_CHECK)); SETMSG(HA_ERR_DISK_FULL, ER_DEFAULT(ER_DISK_FULL)); SETMSG(HA_ERR_FTS_TOO_MANY_WORDS_IN_PHRASE, "Too many words in a FTS phrase or proximity search"); SETMSG(HA_ERR_FK_DEPTH_EXCEEDED, "Foreign key cascade delete/update exceeds"); SETMSG(HA_ERR_TABLESPACE_MISSING, ER_DEFAULT(ER_TABLESPACE_MISSING)); /* Register the error messages for use with my_error(). */ return my_error_register(get_handler_errmsgs, HA_ERR_FIRST, HA_ERR_LAST); } /** Unregister handler error messages. @retval 0 OK @retval !=0 Error */ static int ha_finish_errors(void) { /* Allocate a pointer array for the error message strings. */ my_error_unregister(HA_ERR_FIRST, HA_ERR_LAST); my_free(handler_errmsgs); handler_errmsgs= 0; return 0; } static volatile int32 need_full_discover_for_existence= 0; static volatile int32 engines_with_discover_file_names= 0; static volatile int32 engines_with_discover= 0; static int full_discover_for_existence(handlerton *, const char *, const char *) { return 0; } static int ext_based_existence(handlerton *, const char *, const char *) { return 0; } static int hton_ext_based_table_discovery(handlerton *hton, LEX_CSTRING *db, MY_DIR *dir, handlerton::discovered_list *result) { /* tablefile_extensions[0] is the metadata file, see the comment above tablefile_extensions declaration */ return extension_based_table_discovery(dir, hton->tablefile_extensions[0], result); } static void update_discovery_counters(handlerton *hton, int val) { if (hton->discover_table_existence == full_discover_for_existence) my_atomic_add32(&need_full_discover_for_existence, val); if (hton->discover_table_names && hton->tablefile_extensions[0]) my_atomic_add32(&engines_with_discover_file_names, val); if (hton->discover_table) my_atomic_add32(&engines_with_discover, val); } int ha_finalize_handlerton(st_plugin_int *plugin) { handlerton *hton= (handlerton *)plugin->data; DBUG_ENTER("ha_finalize_handlerton"); /* hton can be NULL here, if ha_initialize_handlerton() failed. */ if (!hton) goto end; if (installed_htons[hton->db_type] == hton) installed_htons[hton->db_type]= NULL; if (hton->panic) hton->panic(hton, HA_PANIC_CLOSE); if (plugin->plugin->deinit) { /* Today we have no defined/special behavior for uninstalling engine plugins. */ DBUG_PRINT("info", ("Deinitializing plugin: '%s'", plugin->name.str)); if (plugin->plugin->deinit(NULL)) { DBUG_PRINT("warning", ("Plugin '%s' deinit function returned error.", plugin->name.str)); } } free_sysvar_table_options(hton); update_discovery_counters(hton, -1); /* In case a plugin is uninstalled and re-installed later, it should reuse an array slot. Otherwise the number of uninstall/install cycles would be limited. */ if (hton->slot != HA_SLOT_UNDEF) { /* Make sure we are not unpluging another plugin */ DBUG_ASSERT(hton2plugin[hton->slot] == plugin); DBUG_ASSERT(hton->slot < MAX_HA); hton2plugin[hton->slot]= NULL; } my_free(hton); end: DBUG_RETURN(0); } int ha_initialize_handlerton(st_plugin_int *plugin) { handlerton *hton; static const char *no_exts[]= { 0 }; DBUG_ENTER("ha_initialize_handlerton"); DBUG_PRINT("plugin", ("initialize plugin: '%s'", plugin->name.str)); hton= (handlerton *)my_malloc(sizeof(handlerton), MYF(MY_WME | MY_ZEROFILL)); if (hton == NULL) { sql_print_error("Unable to allocate memory for plugin '%s' handlerton.", plugin->name.str); goto err_no_hton_memory; } hton->tablefile_extensions= no_exts; hton->discover_table_names= hton_ext_based_table_discovery; hton->slot= HA_SLOT_UNDEF; /* Historical Requirement */ plugin->data= hton; // shortcut for the future if (plugin->plugin->init && plugin->plugin->init(hton)) { sql_print_error("Plugin '%s' init function returned error.", plugin->name.str); goto err; } // hton_ext_based_table_discovery() works only when discovery // is supported and the engine if file-based. if (hton->discover_table_names == hton_ext_based_table_discovery && (!hton->discover_table || !hton->tablefile_extensions[0])) hton->discover_table_names= NULL; // default discover_table_existence implementation if (!hton->discover_table_existence && hton->discover_table) { if (hton->tablefile_extensions[0]) hton->discover_table_existence= ext_based_existence; else hton->discover_table_existence= full_discover_for_existence; } uint tmp; ulong fslot; DBUG_EXECUTE_IF("unstable_db_type", { static int i= (int) DB_TYPE_FIRST_DYNAMIC; hton->db_type= (enum legacy_db_type)++i; }); /* now check the db_type for conflict */ if (hton->db_type <= DB_TYPE_UNKNOWN || hton->db_type >= DB_TYPE_DEFAULT || installed_htons[hton->db_type]) { int idx= (int) DB_TYPE_FIRST_DYNAMIC; while (idx < (int) DB_TYPE_DEFAULT && installed_htons[idx]) idx++; if (idx == (int) DB_TYPE_DEFAULT) { sql_print_warning("Too many storage engines!"); goto err_deinit; } if (hton->db_type != DB_TYPE_UNKNOWN) sql_print_warning("Storage engine '%s' has conflicting typecode. " "Assigning value %d.", plugin->plugin->name, idx); hton->db_type= (enum legacy_db_type) idx; } /* In case a plugin is uninstalled and re-installed later, it should reuse an array slot. Otherwise the number of uninstall/install cycles would be limited. So look for a free slot. */ DBUG_PRINT("plugin", ("total_ha: %lu", total_ha)); for (fslot= 0; fslot < total_ha; fslot++) { if (!hton2plugin[fslot]) break; } if (fslot < total_ha) hton->slot= fslot; else { if (total_ha >= MAX_HA) { sql_print_error("Too many plugins loaded. Limit is %lu. " "Failed on '%s'", (ulong) MAX_HA, plugin->name.str); goto err_deinit; } hton->slot= total_ha++; } installed_htons[hton->db_type]= hton; tmp= hton->savepoint_offset; hton->savepoint_offset= savepoint_alloc_size; savepoint_alloc_size+= tmp; hton2plugin[hton->slot]=plugin; if (hton->prepare) { total_ha_2pc++; if (tc_log && tc_log != get_tc_log_implementation()) { total_ha_2pc--; hton->prepare= 0; push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "Cannot enable tc-log at run-time. " "XA features of %s are disabled", plugin->name.str); } } /* This is entirely for legacy. We will create a new "disk based" hton and a "memory" hton which will be configurable longterm. We should be able to remove partition. */ switch (hton->db_type) { case DB_TYPE_HEAP: heap_hton= hton; break; case DB_TYPE_MYISAM: myisam_hton= hton; break; case DB_TYPE_PARTITION_DB: partition_hton= hton; break; case DB_TYPE_SEQUENCE: sql_sequence_hton= hton; break; default: break; }; resolve_sysvar_table_options(hton); update_discovery_counters(hton, 1); DBUG_RETURN(0); err_deinit: /* Let plugin do its inner deinitialization as plugin->init() was successfully called before. */ if (plugin->plugin->deinit) (void) plugin->plugin->deinit(NULL); err: #ifdef DBUG_ASSERT_EXISTS if (hton->prepare) failed_ha_2pc++; #endif my_free(hton); err_no_hton_memory: plugin->data= NULL; DBUG_RETURN(1); } int ha_init() { int error= 0; DBUG_ENTER("ha_init"); DBUG_ASSERT(total_ha < MAX_HA); /* Check if there is a transaction-capable storage engine besides the binary log (which is considered a transaction-capable storage engine in counting total_ha) */ opt_using_transactions= total_ha > (ulong) opt_bin_log; savepoint_alloc_size+= sizeof(SAVEPOINT); DBUG_RETURN(error); } int ha_end() { int error= 0; DBUG_ENTER("ha_end"); /* This should be eventualy based on the graceful shutdown flag. So if flag is equal to HA_PANIC_CLOSE, the deallocate the errors. */ if (unlikely(ha_finish_errors())) error= 1; DBUG_RETURN(error); } static my_bool dropdb_handlerton(THD *unused1, plugin_ref plugin, void *path) { handlerton *hton= plugin_hton(plugin); if (hton->drop_database) hton->drop_database(hton, (char *)path); return FALSE; } void ha_drop_database(char* path) { plugin_foreach(NULL, dropdb_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, path); } static my_bool checkpoint_state_handlerton(THD *unused1, plugin_ref plugin, void *disable) { handlerton *hton= plugin_hton(plugin); if (hton->checkpoint_state) hton->checkpoint_state(hton, (int) *(bool*) disable); return FALSE; } void ha_checkpoint_state(bool disable) { plugin_foreach(NULL, checkpoint_state_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &disable); } struct st_commit_checkpoint_request { void *cookie; void (*pre_hook)(void *); }; static my_bool commit_checkpoint_request_handlerton(THD *unused1, plugin_ref plugin, void *data) { st_commit_checkpoint_request *st= (st_commit_checkpoint_request *)data; handlerton *hton= plugin_hton(plugin); if (hton->commit_checkpoint_request) { void *cookie= st->cookie; if (st->pre_hook) (*st->pre_hook)(cookie); (*hton->commit_checkpoint_request)(hton, cookie); } return FALSE; } /* Invoke commit_checkpoint_request() in all storage engines that implement it. If pre_hook is non-NULL, the hook will be called prior to each invocation. */ void ha_commit_checkpoint_request(void *cookie, void (*pre_hook)(void *)) { st_commit_checkpoint_request st; st.cookie= cookie; st.pre_hook= pre_hook; plugin_foreach(NULL, commit_checkpoint_request_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &st); } /** @note don't bother to rollback here, it's done already there's no need to rollback here as all transactions must be rolled back already */ void ha_close_connection(THD* thd) { for (auto i= 0; i < MAX_HA; i++) { if (thd->ha_data[i].lock) { handlerton *hton= plugin_hton(thd->ha_data[i].lock); if (hton->close_connection) hton->close_connection(hton, thd); /* make sure SE didn't reset ha_data in close_connection() */ DBUG_ASSERT(thd->ha_data[i].lock); /* make sure ha_data is reset and ha_data_lock is released */ thd_set_ha_data(thd, hton, 0); } DBUG_ASSERT(!thd->ha_data[i].ha_ptr); } } static my_bool kill_handlerton(THD *thd, plugin_ref plugin, void *level) { handlerton *hton= plugin_hton(plugin); if (hton->kill_query && thd_get_ha_data(thd, hton)) hton->kill_query(hton, thd, *(enum thd_kill_levels *) level); return FALSE; } void ha_kill_query(THD* thd, enum thd_kill_levels level) { DBUG_ENTER("ha_kill_query"); plugin_foreach(thd, kill_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &level); DBUG_VOID_RETURN; } /***************************************************************************** Backup functions ******************************************************************************/ static my_bool plugin_prepare_for_backup(THD *unused1, plugin_ref plugin, void *not_used) { handlerton *hton= plugin_hton(plugin); if (hton->prepare_for_backup) hton->prepare_for_backup(); return FALSE; } void ha_prepare_for_backup() { plugin_foreach_with_mask(0, plugin_prepare_for_backup, MYSQL_STORAGE_ENGINE_PLUGIN, PLUGIN_IS_DELETED|PLUGIN_IS_READY, 0); } static my_bool plugin_end_backup(THD *unused1, plugin_ref plugin, void *not_used) { handlerton *hton= plugin_hton(plugin); if (hton->end_backup) hton->end_backup(); return FALSE; } void ha_end_backup() { plugin_foreach_with_mask(0, plugin_end_backup, MYSQL_STORAGE_ENGINE_PLUGIN, PLUGIN_IS_DELETED|PLUGIN_IS_READY, 0); } /* ======================================================================== ======================= TRANSACTIONS ===================================*/ /** Transaction handling in the server ================================== In each client connection, MySQL maintains two transactional states: - a statement transaction, - a standard, also called normal transaction. Historical note --------------- "Statement transaction" is a non-standard term that comes from the times when MySQL supported BerkeleyDB storage engine. First of all, it should be said that in BerkeleyDB auto-commit mode auto-commits operations that are atomic to the storage engine itself, such as a write of a record, and are too high-granular to be atomic from the application perspective (MySQL). One SQL statement could involve many BerkeleyDB auto-committed operations and thus BerkeleyDB auto-commit was of little use to MySQL. Secondly, instead of SQL standard savepoints, BerkeleyDB provided the concept of "nested transactions". In a nutshell, transactions could be arbitrarily nested, but when the parent transaction was committed or aborted, all its child (nested) transactions were handled committed or aborted as well. Commit of a nested transaction, in turn, made its changes visible, but not durable: it destroyed the nested transaction, all its changes would become available to the parent and currently active nested transactions of this parent. So the mechanism of nested transactions was employed to provide "all or nothing" guarantee of SQL statements required by the standard. A nested transaction would be created at start of each SQL statement, and destroyed (committed or aborted) at statement end. Such nested transaction was internally referred to as a "statement transaction" and gave birth to the term. (Historical note ends) Since then a statement transaction is started for each statement that accesses transactional tables or uses the binary log. If the statement succeeds, the statement transaction is committed. If the statement fails, the transaction is rolled back. Commits of statement transactions are not durable -- each such transaction is nested in the normal transaction, and if the normal transaction is rolled back, the effects of all enclosed statement transactions are undone as well. Technically, a statement transaction can be viewed as a savepoint which is maintained automatically in order to make effects of one statement atomic. The normal transaction is started by the user and is ended usually upon a user request as well. The normal transaction encloses transactions of all statements issued between its beginning and its end. In autocommit mode, the normal transaction is equivalent to the statement transaction. Since MySQL supports PSEA (pluggable storage engine architecture), more than one transactional engine can be active at a time. Hence transactions, from the server point of view, are always distributed. In particular, transactional state is maintained independently for each engine. In order to commit a transaction the two phase commit protocol is employed. Not all statements are executed in context of a transaction. Administrative and status information statements do not modify engine data, and thus do not start a statement transaction and also have no effect on the normal transaction. Examples of such statements are SHOW STATUS and RESET SLAVE. Similarly DDL statements are not transactional, and therefore a transaction is [almost] never started for a DDL statement. The difference between a DDL statement and a purely administrative statement though is that a DDL statement always commits the current transaction before proceeding, if there is any. At last, SQL statements that work with non-transactional engines also have no effect on the transaction state of the connection. Even though they are written to the binary log, and the binary log is, overall, transactional, the writes are done in "write-through" mode, directly to the binlog file, followed with a OS cache sync, in other words, bypassing the binlog undo log (translog). They do not commit the current normal transaction. A failure of a statement that uses non-transactional tables would cause a rollback of the statement transaction, but in case there no non-transactional tables are used, no statement transaction is started. Data layout ----------- The server stores its transaction-related data in thd->transaction. This structure has two members of type THD_TRANS. These members correspond to the statement and normal transactions respectively: - thd->transaction.stmt contains a list of engines that are participating in the given statement - thd->transaction.all contains a list of engines that have participated in any of the statement transactions started within the context of the normal transaction. Each element of the list contains a pointer to the storage engine, engine-specific transactional data, and engine-specific transaction flags. In autocommit mode thd->transaction.all is empty. Instead, data of thd->transaction.stmt is used to commit/rollback the normal transaction. The list of registered engines has a few important properties: - no engine is registered in the list twice - engines are present in the list a reverse temporal order -- new participants are always added to the beginning of the list. Transaction life cycle ---------------------- When a new connection is established, thd->transaction members are initialized to an empty state. If a statement uses any tables, all affected engines are registered in the statement engine list. In non-autocommit mode, the same engines are registered in the normal transaction list. At the end of the statement, the server issues a commit or a roll back for all engines in the statement list. At this point transaction flags of an engine, if any, are propagated from the statement list to the list of the normal transaction. When commit/rollback is finished, the statement list is cleared. It will be filled in again by the next statement, and emptied again at the next statement's end. The normal transaction is committed in a similar way (by going over all engines in thd->transaction.all list) but at different times: - upon COMMIT SQL statement is issued by the user - implicitly, by the server, at the beginning of a DDL statement or SET AUTOCOMMIT={0|1} statement. The normal transaction can be rolled back as well: - if the user has requested so, by issuing ROLLBACK SQL statement - if one of the storage engines requested a rollback by setting thd->transaction_rollback_request. This may happen in case, e.g., when the transaction in the engine was chosen a victim of the internal deadlock resolution algorithm and rolled back internally. When such a situation happens, there is little the server can do and the only option is to rollback transactions in all other participating engines. In this case the rollback is accompanied by an error sent to the user. As follows from the use cases above, the normal transaction is never committed when there is an outstanding statement transaction. In most cases there is no conflict, since commits of the normal transaction are issued by a stand-alone administrative or DDL statement, thus no outstanding statement transaction of the previous statement exists. Besides, all statements that manipulate with the normal transaction are prohibited in stored functions and triggers, therefore no conflicting situation can occur in a sub-statement either. The remaining rare cases when the server explicitly has to commit the statement transaction prior to committing the normal one cover error-handling scenarios (see for example SQLCOM_LOCK_TABLES). When committing a statement or a normal transaction, the server either uses the two-phase commit protocol, or issues a commit in each engine independently. The two-phase commit protocol is used only if: - all participating engines support two-phase commit (provide handlerton::prepare PSEA API call) and - transactions in at least two engines modify data (i.e. are not read-only). Note that the two phase commit is used for statement transactions, even though they are not durable anyway. This is done to ensure logical consistency of data in a multiple- engine transaction. For example, imagine that some day MySQL supports unique constraint checks deferred till the end of statement. In such case a commit in one of the engines may yield ER_DUP_KEY, and MySQL should be able to gracefully abort statement transactions of other participants. After the normal transaction has been committed, thd->transaction.all list is cleared. When a connection is closed, the current normal transaction, if any, is rolled back. Roles and responsibilities -------------------------- The server has no way to know that an engine participates in the statement and a transaction has been started in it unless the engine says so. Thus, in order to be a part of a transaction, the engine must "register" itself. This is done by invoking trans_register_ha() server call. Normally the engine registers itself whenever handler::external_lock() is called. trans_register_ha() can be invoked many times: if an engine is already registered, the call does nothing. In case autocommit is not set, the engine must register itself twice -- both in the statement list and in the normal transaction list. In which list to register is a parameter of trans_register_ha(). Note, that although the registration interface in itself is fairly clear, the current usage practice often leads to undesired effects. E.g. since a call to trans_register_ha() in most engines is embedded into implementation of handler::external_lock(), some DDL statements start a transaction (at least from the server point of view) even though they are not expected to. E.g. CREATE TABLE does not start a transaction, since handler::external_lock() is never called during CREATE TABLE. But CREATE TABLE ... SELECT does, since handler::external_lock() is called for the table that is being selected from. This has no practical effects currently, but must be kept in mind nevertheless. Once an engine is registered, the server will do the rest of the work. During statement execution, whenever any of data-modifying PSEA API methods is used, e.g. handler::write_row() or handler::update_row(), the read-write flag is raised in the statement transaction for the involved engine. Currently All PSEA calls are "traced", and the data can not be changed in a way other than issuing a PSEA call. Important: unless this invariant is preserved the server will not know that a transaction in a given engine is read-write and will not involve the two-phase commit protocol! At the end of a statement, server call trans_commit_stmt is invoked. This call in turn invokes handlerton::prepare() for every involved engine. Prepare is followed by a call to handlerton::commit_one_phase() If a one-phase commit will suffice, handlerton::prepare() is not invoked and the server only calls handlerton::commit_one_phase(). At statement commit, the statement-related read-write engine flag is propagated to the corresponding flag in the normal transaction. When the commit is complete, the list of registered engines is cleared. Rollback is handled in a similar fashion. Additional notes on DDL and the normal transaction. --------------------------------------------------- DDLs and operations with non-transactional engines do not "register" in thd->transaction lists, and thus do not modify the transaction state. Besides, each DDL in MySQL is prefixed with an implicit normal transaction commit (a call to trans_commit_implicit()), and thus leaves nothing to modify. However, as it has been pointed out with CREATE TABLE .. SELECT, some DDL statements can start a *new* transaction. Behaviour of the server in this case is currently badly defined. DDL statements use a form of "semantic" logging to maintain atomicity: if CREATE TABLE .. SELECT failed, the newly created table is deleted. In addition, some DDL statements issue interim transaction commits: e.g. ALTER TABLE issues a commit after data is copied from the original table to the internal temporary table. Other statements, e.g. CREATE TABLE ... SELECT do not always commit after itself. And finally there is a group of DDL statements such as RENAME/DROP TABLE that doesn't start a new transaction and doesn't commit. This diversity makes it hard to say what will happen if by chance a stored function is invoked during a DDL -- whether any modifications it makes will be committed or not is not clear. Fortunately, SQL grammar of few DDLs allows invocation of a stored function. A consistent behaviour is perhaps to always commit the normal transaction after all DDLs, just like the statement transaction is always committed at the end of all statements. */ /** Register a storage engine for a transaction. Every storage engine MUST call this function when it starts a transaction or a statement (that is it must be called both for the "beginning of transaction" and "beginning of statement"). Only storage engines registered for the transaction/statement will know when to commit/rollback it. @note trans_register_ha is idempotent - storage engine may register many times per transaction. */ void trans_register_ha(THD *thd, bool all, handlerton *ht_arg) { THD_TRANS *trans; Ha_trx_info *ha_info; DBUG_ENTER("trans_register_ha"); DBUG_PRINT("enter",("%s", all ? "all" : "stmt")); if (all) { trans= &thd->transaction.all; thd->server_status|= SERVER_STATUS_IN_TRANS; if (thd->tx_read_only) thd->server_status|= SERVER_STATUS_IN_TRANS_READONLY; DBUG_PRINT("info", ("setting SERVER_STATUS_IN_TRANS")); } else trans= &thd->transaction.stmt; ha_info= thd->ha_data[ht_arg->slot].ha_info + (all ? 1 : 0); if (ha_info->is_started()) DBUG_VOID_RETURN; /* already registered, return */ ha_info->register_ha(trans, ht_arg); trans->no_2pc|=(ht_arg->prepare==0); /* Set implicit xid even if there's explicit XA, it will be ignored anyway. */ if (thd->transaction.implicit_xid.is_null()) thd->transaction.implicit_xid.set(thd->query_id); DBUG_VOID_RETURN; } static int prepare_or_error(handlerton *ht, THD *thd, bool all) { #ifdef WITH_WSREP const bool run_wsrep_hooks= wsrep_run_commit_hook(thd, all); if (run_wsrep_hooks && ht->flags & HTON_WSREP_REPLICATION && wsrep_before_prepare(thd, all)) { return(1); } #endif /* WITH_WSREP */ int err= ht->prepare(ht, thd, all); status_var_increment(thd->status_var.ha_prepare_count); if (err) { my_error(ER_ERROR_DURING_COMMIT, MYF(0), err); } #ifdef WITH_WSREP if (run_wsrep_hooks && !err && ht->flags & HTON_WSREP_REPLICATION && wsrep_after_prepare(thd, all)) { err= 1; } #endif /* WITH_WSREP */ return err; } /** @retval 0 ok @retval 1 error, transaction was rolled back */ int ha_prepare(THD *thd) { int error=0, all=1; THD_TRANS *trans=all ? &thd->transaction.all : &thd->transaction.stmt; Ha_trx_info *ha_info= trans->ha_list; DBUG_ENTER("ha_prepare"); if (ha_info) { for (; ha_info; ha_info= ha_info->next()) { handlerton *ht= ha_info->ht(); if (ht->prepare) { if (unlikely(prepare_or_error(ht, thd, all))) { ha_rollback_trans(thd, all); error=1; break; } } else { push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, ER_GET_ERRNO, ER_THD(thd, ER_GET_ERRNO), HA_ERR_WRONG_COMMAND, ha_resolve_storage_engine_name(ht)); } } } DBUG_RETURN(error); } /** Check if we can skip the two-phase commit. A helper function to evaluate if two-phase commit is mandatory. As a side effect, propagates the read-only/read-write flags of the statement transaction to its enclosing normal transaction. If we have at least two engines with read-write changes we must run a two-phase commit. Otherwise we can run several independent commits as the only transactional engine has read-write changes and others are read-only. @retval 0 All engines are read-only. @retval 1 We have the only engine with read-write changes. @retval >1 More than one engine have read-write changes. Note: return value might NOT be the exact number of engines with read-write changes. */ static uint ha_check_and_coalesce_trx_read_only(THD *thd, Ha_trx_info *ha_list, bool all) { /* The number of storage engines that have actual changes. */ unsigned rw_ha_count= 0; Ha_trx_info *ha_info; for (ha_info= ha_list; ha_info; ha_info= ha_info->next()) { if (ha_info->is_trx_read_write()) ++rw_ha_count; if (! all) { Ha_trx_info *ha_info_all= &thd->ha_data[ha_info->ht()->slot].ha_info[1]; DBUG_ASSERT(ha_info != ha_info_all); /* Merge read-only/read-write information about statement transaction to its enclosing normal transaction. Do this only if in a real transaction -- that is, if we know that ha_info_all is registered in thd->transaction.all. Since otherwise we only clutter the normal transaction flags. */ if (ha_info_all->is_started()) /* FALSE if autocommit. */ ha_info_all->coalesce_trx_with(ha_info); } else if (rw_ha_count > 1) { /* It is a normal transaction, so we don't need to merge read/write information up, and the need for two-phase commit has been already established. Break the loop prematurely. */ break; } } return rw_ha_count; } /** @retval 0 ok @retval 1 transaction was rolled back @retval 2 error during commit, data may be inconsistent @todo Since we don't support nested statement transactions in 5.0, we can't commit or rollback stmt transactions while we are inside stored functions or triggers. So we simply do nothing now. TODO: This should be fixed in later ( >= 5.1) releases. */ int ha_commit_trans(THD *thd, bool all) { int error= 0, cookie; /* 'all' means that this is either an explicit commit issued by user, or an implicit commit issued by a DDL. */ THD_TRANS *trans= all ? &thd->transaction.all : &thd->transaction.stmt; /* "real" is a nick name for a transaction for which a commit will make persistent changes. E.g. a 'stmt' transaction inside a 'all' transation is not 'real': even though it's possible to commit it, the changes are not durable as they might be rolled back if the enclosing 'all' transaction is rolled back. */ bool is_real_trans= ((all || thd->transaction.all.ha_list == 0) && !(thd->variables.option_bits & OPTION_GTID_BEGIN)); Ha_trx_info *ha_info= trans->ha_list; bool need_prepare_ordered, need_commit_ordered; my_xid xid; #ifdef WITH_WSREP const bool run_wsrep_hooks= wsrep_run_commit_hook(thd, all); #endif /* WITH_WSREP */ DBUG_ENTER("ha_commit_trans"); DBUG_PRINT("info",("thd: %p option_bits: %lu all: %d", thd, (ulong) thd->variables.option_bits, all)); /* Just a random warning to test warnings pushed during autocommit. */ DBUG_EXECUTE_IF("warn_during_ha_commit_trans", push_warning(thd, Sql_condition::WARN_LEVEL_WARN, ER_WARNING_NOT_COMPLETE_ROLLBACK, ER_THD(thd, ER_WARNING_NOT_COMPLETE_ROLLBACK));); DBUG_PRINT("info", ("all: %d thd->in_sub_stmt: %d ha_info: %p is_real_trans: %d", all, thd->in_sub_stmt, ha_info, is_real_trans)); /* We must not commit the normal transaction if a statement transaction is pending. Otherwise statement transaction flags will not get propagated to its normal transaction's counterpart. */ DBUG_ASSERT(thd->transaction.stmt.ha_list == NULL || trans == &thd->transaction.stmt); if (thd->in_sub_stmt) { DBUG_ASSERT(0); /* Since we don't support nested statement transactions in 5.0, we can't commit or rollback stmt transactions while we are inside stored functions or triggers. So we simply do nothing now. TODO: This should be fixed in later ( >= 5.1) releases. */ if (!all) DBUG_RETURN(0); /* We assume that all statements which commit or rollback main transaction are prohibited inside of stored functions or triggers. So they should bail out with error even before ha_commit_trans() call. To be 100% safe let us throw error in non-debug builds. */ my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0)); DBUG_RETURN(2); } #ifdef WITH_ARIA_STORAGE_ENGINE ha_maria::implicit_commit(thd, TRUE); #endif if (!ha_info) { /* Free resources and perform other cleanup even for 'empty' transactions. */ if (is_real_trans) thd->transaction.cleanup(); #ifdef WITH_WSREP if (wsrep_is_active(thd) && is_real_trans && !error) { wsrep_commit_empty(thd, all); } #endif /* WITH_WSREP */ DBUG_RETURN(0); } DBUG_EXECUTE_IF("crash_commit_before", DBUG_SUICIDE();); /* Close all cursors that can not survive COMMIT */ if (is_real_trans) /* not a statement commit */ thd->stmt_map.close_transient_cursors(); uint rw_ha_count= ha_check_and_coalesce_trx_read_only(thd, ha_info, all); /* rw_trans is TRUE when we in a transaction changing data */ bool rw_trans= is_real_trans && (rw_ha_count > (thd->is_current_stmt_binlog_disabled()?0U:1U)); MDL_request mdl_request; DBUG_PRINT("info", ("is_real_trans: %d rw_trans: %d rw_ha_count: %d", is_real_trans, rw_trans, rw_ha_count)); if (rw_trans) { /* Acquire a metadata lock which will ensure that COMMIT is blocked by an active FLUSH TABLES WITH READ LOCK (and vice versa: COMMIT in progress blocks FTWRL). We allow the owner of FTWRL to COMMIT; we assume that it knows what it does. */ mdl_request.init(MDL_key::BACKUP, "", "", MDL_BACKUP_COMMIT, MDL_EXPLICIT); if (!WSREP(thd) && thd->mdl_context.acquire_lock(&mdl_request, thd->variables.lock_wait_timeout)) { ha_rollback_trans(thd, all); DBUG_RETURN(1); } DEBUG_SYNC(thd, "ha_commit_trans_after_acquire_commit_lock"); } if (rw_trans && opt_readonly && !(thd->security_ctx->master_access & SUPER_ACL) && !thd->slave_thread) { my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--read-only"); goto err; } #if 1 // FIXME: This should be done in ha_prepare(). if (rw_trans || (thd->lex->sql_command == SQLCOM_ALTER_TABLE && thd->lex->alter_info.flags & ALTER_ADD_SYSTEM_VERSIONING)) { ulonglong trx_start_id= 0, trx_end_id= 0; for (Ha_trx_info *ha_info= trans->ha_list; ha_info; ha_info= ha_info->next()) { if (ha_info->ht()->prepare_commit_versioned) { trx_end_id= ha_info->ht()->prepare_commit_versioned(thd, &trx_start_id); if (trx_end_id) break; // FIXME: use a common ID for cross-engine transactions } } if (trx_end_id) { if (!TR_table::use_transaction_registry) { my_error(ER_VERS_TRT_IS_DISABLED, MYF(0)); goto err; } DBUG_ASSERT(trx_start_id); TR_table trt(thd, true); if (trt.update(trx_start_id, trx_end_id)) goto err; // Here, the call will not commit inside InnoDB. It is only working // around closing thd->transaction.stmt open by TR_table::open(). if (all) commit_one_phase_2(thd, false, &thd->transaction.stmt, false); } } #endif if (trans->no_2pc || (rw_ha_count <= 1)) { #ifdef WITH_WSREP /* This commit will not go through log_and_order() where wsrep commit ordering is normally done. Commit ordering must be done here. */ if (run_wsrep_hooks) error= wsrep_before_commit(thd, all); if (error) { ha_rollback_trans(thd, FALSE); goto wsrep_err; } #endif /* WITH_WSREP */ error= ha_commit_one_phase(thd, all); #ifdef WITH_WSREP // Here in case of error we must return 2 for inconsistency if (run_wsrep_hooks && !error) error= wsrep_after_commit(thd, all) ? 2 : 0; #endif /* WITH_WSREP */ goto done; } need_prepare_ordered= FALSE; need_commit_ordered= FALSE; DBUG_ASSERT(thd->transaction.implicit_xid.get_my_xid() == thd->transaction.implicit_xid.quick_get_my_xid()); xid= thd->transaction.xid_state.is_explicit_XA() ? 0 : thd->transaction.implicit_xid.quick_get_my_xid(); for (Ha_trx_info *hi= ha_info; hi; hi= hi->next()) { handlerton *ht= hi->ht(); /* Do not call two-phase commit if this particular transaction is read-only. This allows for simpler implementation in engines that are always read-only. */ if (! hi->is_trx_read_write()) continue; /* Sic: we know that prepare() is not NULL since otherwise trans->no_2pc would have been set. */ if (unlikely(prepare_or_error(ht, thd, all))) goto err; need_prepare_ordered|= (ht->prepare_ordered != NULL); need_commit_ordered|= (ht->commit_ordered != NULL); } DEBUG_SYNC(thd, "ha_commit_trans_after_prepare"); DBUG_EXECUTE_IF("crash_commit_after_prepare", DBUG_SUICIDE();); #ifdef WITH_WSREP if (run_wsrep_hooks && !error) { wsrep::seqno const s= wsrep_xid_seqno(thd->wsrep_xid); if (!s.is_undefined()) { // xid was rewritten by wsrep xid= s.get(); } } #endif /* WITH_WSREP */ if (!is_real_trans) { error= commit_one_phase_2(thd, all, trans, is_real_trans); goto done; } #ifdef WITH_WSREP if (run_wsrep_hooks && (error = wsrep_before_commit(thd, all))) goto wsrep_err; #endif /* WITH_WSREP */ DEBUG_SYNC(thd, "ha_commit_trans_before_log_and_order"); cookie= tc_log->log_and_order(thd, xid, all, need_prepare_ordered, need_commit_ordered); if (!cookie) { WSREP_DEBUG("log_and_order has failed %llu %d", thd->thread_id, cookie); goto err; } DEBUG_SYNC(thd, "ha_commit_trans_after_log_and_order"); DBUG_EXECUTE_IF("crash_commit_after_log", DBUG_SUICIDE();); error= commit_one_phase_2(thd, all, trans, is_real_trans) ? 2 : 0; #ifdef WITH_WSREP if (run_wsrep_hooks && (error || (error = wsrep_after_commit(thd, all)))) { error = 2; mysql_mutex_lock(&thd->LOCK_thd_data); if (wsrep_must_abort(thd)) { mysql_mutex_unlock(&thd->LOCK_thd_data); (void)tc_log->unlog(cookie, xid); goto wsrep_err; } mysql_mutex_unlock(&thd->LOCK_thd_data); } #endif /* WITH_WSREP */ DBUG_EXECUTE_IF("crash_commit_before_unlog", DBUG_SUICIDE();); if (tc_log->unlog(cookie, xid)) { error= 2; /* Error during commit */ goto end; } done: DBUG_EXECUTE_IF("crash_commit_after", DBUG_SUICIDE();); mysql_mutex_assert_not_owner(&LOCK_prepare_ordered); mysql_mutex_assert_not_owner(mysql_bin_log.get_log_lock()); mysql_mutex_assert_not_owner(&LOCK_after_binlog_sync); mysql_mutex_assert_not_owner(&LOCK_commit_ordered); #ifdef HAVE_REPLICATION repl_semisync_master.wait_after_commit(thd, all); DEBUG_SYNC(thd, "after_group_after_commit"); #endif goto end; /* Come here if error and we need to rollback. */ #ifdef WITH_WSREP wsrep_err: mysql_mutex_lock(&thd->LOCK_thd_data); if (run_wsrep_hooks && wsrep_must_abort(thd)) { WSREP_DEBUG("BF abort has happened after prepare & certify"); mysql_mutex_unlock(&thd->LOCK_thd_data); ha_rollback_trans(thd, TRUE); } else mysql_mutex_unlock(&thd->LOCK_thd_data); #endif /* WITH_WSREP */ err: error= 1; /* Transaction was rolled back */ /* In parallel replication, rollback is delayed, as there is extra replication book-keeping to be done before rolling back and allowing a conflicting transaction to continue (MDEV-7458). */ if (!(thd->rgi_slave && thd->rgi_slave->is_parallel_exec)) ha_rollback_trans(thd, all); else { WSREP_DEBUG("rollback skipped %p %d",thd->rgi_slave, thd->rgi_slave->is_parallel_exec); } end: if (rw_trans && mdl_request.ticket) { /* We do not always immediately release transactional locks after ha_commit_trans() (see uses of ha_enable_transaction()), thus we release the commit blocker lock as soon as it's not needed. */ thd->mdl_context.release_lock(mdl_request.ticket); } #ifdef WITH_WSREP if (wsrep_is_active(thd) && is_real_trans && !error && (rw_ha_count == 0) && wsrep_not_committed(thd)) { wsrep_commit_empty(thd, all); } #endif /* WITH_WSREP */ DBUG_RETURN(error); } /** @note This function does not care about global read lock. A caller should. @param[in] all Is set in case of explicit commit (COMMIT statement), or implicit commit issued by DDL. Is not set when called at the end of statement, even if autocommit=1. */ int ha_commit_one_phase(THD *thd, bool all) { THD_TRANS *trans=all ? &thd->transaction.all : &thd->transaction.stmt; /* "real" is a nick name for a transaction for which a commit will make persistent changes. E.g. a 'stmt' transaction inside a 'all' transaction is not 'real': even though it's possible to commit it, the changes are not durable as they might be rolled back if the enclosing 'all' transaction is rolled back. We establish the value of 'is_real_trans' by checking if it's an explicit COMMIT/BEGIN statement, or implicit commit issued by DDL (all == TRUE), or if we're running in autocommit mode (it's only in the autocommit mode ha_commit_one_phase() can be called with an empty transaction.all.ha_list, see why in trans_register_ha()). */ bool is_real_trans= ((all || thd->transaction.all.ha_list == 0) && !(thd->variables.option_bits & OPTION_GTID_BEGIN)); int res; DBUG_ENTER("ha_commit_one_phase"); if (is_real_trans) { DEBUG_SYNC(thd, "ha_commit_one_phase"); if ((res= thd->wait_for_prior_commit())) DBUG_RETURN(res); } res= commit_one_phase_2(thd, all, trans, is_real_trans); DBUG_RETURN(res); } static int commit_one_phase_2(THD *thd, bool all, THD_TRANS *trans, bool is_real_trans) { int error= 0; uint count= 0; Ha_trx_info *ha_info= trans->ha_list, *ha_info_next; DBUG_ENTER("commit_one_phase_2"); if (is_real_trans) DEBUG_SYNC(thd, "commit_one_phase_2"); if (ha_info) { for (; ha_info; ha_info= ha_info_next) { int err; handlerton *ht= ha_info->ht(); if ((err= ht->commit(ht, thd, all))) { my_error(ER_ERROR_DURING_COMMIT, MYF(0), err); error=1; } /* Should this be done only if is_real_trans is set ? */ status_var_increment(thd->status_var.ha_commit_count); if (is_real_trans && ht != binlog_hton && ha_info->is_trx_read_write()) ++count; ha_info_next= ha_info->next(); ha_info->reset(); /* keep it conveniently zero-filled */ } trans->ha_list= 0; trans->no_2pc=0; if (all) { #ifdef HAVE_QUERY_CACHE if (thd->transaction.changed_tables) query_cache.invalidate(thd, thd->transaction.changed_tables); #endif } } /* Free resources and perform other cleanup even for 'empty' transactions. */ if (is_real_trans) { thd->has_waiter= false; thd->transaction.cleanup(); if (count >= 2) statistic_increment(transactions_multi_engine, LOCK_status); } DBUG_RETURN(error); } int ha_rollback_trans(THD *thd, bool all) { int error=0; THD_TRANS *trans=all ? &thd->transaction.all : &thd->transaction.stmt; Ha_trx_info *ha_info= trans->ha_list, *ha_info_next; /* "real" is a nick name for a transaction for which a commit will make persistent changes. E.g. a 'stmt' transaction inside a 'all' transaction is not 'real': even though it's possible to commit it, the changes are not durable as they might be rolled back if the enclosing 'all' transaction is rolled back. We establish the value of 'is_real_trans' by checking if it's an explicit COMMIT or BEGIN statement, or implicit commit issued by DDL (in these cases all == TRUE), or if we're running in autocommit mode (it's only in the autocommit mode ha_commit_one_phase() is called with an empty transaction.all.ha_list, see why in trans_register_ha()). */ bool is_real_trans=all || thd->transaction.all.ha_list == 0; DBUG_ENTER("ha_rollback_trans"); /* We must not rollback the normal transaction if a statement transaction is pending. */ DBUG_ASSERT(thd->transaction.stmt.ha_list == NULL || trans == &thd->transaction.stmt); #ifdef HAVE_REPLICATION if (is_real_trans) { /* In parallel replication, if we need to rollback during commit, we must first inform following transactions that we are going to abort our commit attempt. Otherwise those following transactions can run too early, and possibly cause replication to fail. See comments in retry_event_group(). There were several bugs with this in the past that were very hard to track down (MDEV-7458, MDEV-8302). So we add here an assertion for rollback without signalling following transactions. And in release builds, we explicitly do the signalling before rolling back. */ DBUG_ASSERT(!(thd->rgi_slave && thd->rgi_slave->did_mark_start_commit)); if (thd->rgi_slave && thd->rgi_slave->did_mark_start_commit) thd->rgi_slave->unmark_start_commit(); } #endif if (thd->in_sub_stmt) { DBUG_ASSERT(0); /* If we are inside stored function or trigger we should not commit or rollback current statement transaction. See comment in ha_commit_trans() call for more information. */ if (!all) DBUG_RETURN(0); my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0)); DBUG_RETURN(1); } #ifdef WITH_WSREP (void) wsrep_before_rollback(thd, all); #endif /* WITH_WSREP */ if (ha_info) { /* Close all cursors that can not survive ROLLBACK */ if (is_real_trans) /* not a statement commit */ thd->stmt_map.close_transient_cursors(); for (; ha_info; ha_info= ha_info_next) { int err; handlerton *ht= ha_info->ht(); if ((err= ht->rollback(ht, thd, all))) { // cannot happen my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err); error=1; #ifdef WITH_WSREP WSREP_WARN("handlerton rollback failed, thd %lld %lld conf %d SQL %s", thd->thread_id, thd->query_id, thd->wsrep_trx().state(), thd->query()); #endif /* WITH_WSREP */ } status_var_increment(thd->status_var.ha_rollback_count); ha_info_next= ha_info->next(); ha_info->reset(); /* keep it conveniently zero-filled */ } trans->ha_list= 0; trans->no_2pc=0; } #ifdef WITH_WSREP if (thd->is_error()) { WSREP_DEBUG("ha_rollback_trans(%lld, %s) rolled back: %s: %s; is_real %d", thd->thread_id, all?"TRUE":"FALSE", WSREP_QUERY(thd), thd->get_stmt_da()->message(), is_real_trans); } (void) wsrep_after_rollback(thd, all); #endif /* WITH_WSREP */ /* Always cleanup. Even if nht==0. There may be savepoints. */ if (is_real_trans) { /* Thanks to possibility of MDL deadlock rollback request can come even if transaction hasn't been started in any transactional storage engine. */ if (thd->transaction_rollback_request) thd->transaction.xid_state.set_error(thd->get_stmt_da()->sql_errno()); thd->has_waiter= false; thd->transaction.cleanup(); } if (all) thd->transaction_rollback_request= FALSE; /* If a non-transactional table was updated, warn; don't warn if this is a slave thread (because when a slave thread executes a ROLLBACK, it has been read from the binary log, so it's 100% sure and normal to produce error ER_WARNING_NOT_COMPLETE_ROLLBACK. If we sent the warning to the slave SQL thread, it would not stop the thread but just be printed in the error log; but we don't want users to wonder why they have this message in the error log, so we don't send it. We don't have to test for thd->killed == KILL_SYSTEM_THREAD as it doesn't matter if a warning is pushed to a system thread or not: No one will see it... */ if (is_real_trans && thd->transaction.all.modified_non_trans_table && !thd->slave_thread && thd->killed < KILL_CONNECTION) push_warning(thd, Sql_condition::WARN_LEVEL_WARN, ER_WARNING_NOT_COMPLETE_ROLLBACK, ER_THD(thd, ER_WARNING_NOT_COMPLETE_ROLLBACK)); #ifdef HAVE_REPLICATION repl_semisync_master.wait_after_rollback(thd, all); #endif DBUG_RETURN(error); } struct xahton_st { XID *xid; int result; }; static my_bool xacommit_handlerton(THD *unused1, plugin_ref plugin, void *arg) { handlerton *hton= plugin_hton(plugin); if (hton->recover) { hton->commit_by_xid(hton, ((struct xahton_st *)arg)->xid); ((struct xahton_st *)arg)->result= 0; } return FALSE; } static my_bool xarollback_handlerton(THD *unused1, plugin_ref plugin, void *arg) { handlerton *hton= plugin_hton(plugin); if (hton->recover) { hton->rollback_by_xid(hton, ((struct xahton_st *)arg)->xid); ((struct xahton_st *)arg)->result= 0; } return FALSE; } int ha_commit_or_rollback_by_xid(XID *xid, bool commit) { struct xahton_st xaop; xaop.xid= xid; xaop.result= 1; plugin_foreach(NULL, commit ? xacommit_handlerton : xarollback_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &xaop); return xaop.result; } #ifndef DBUG_OFF /** @note This does not need to be multi-byte safe or anything */ static char* xid_to_str(char *buf, XID *xid) { int i; char *s=buf; *s++='\''; for (i=0; i < xid->gtrid_length+xid->bqual_length; i++) { uchar c=(uchar)xid->data[i]; /* is_next_dig is set if next character is a number */ bool is_next_dig= FALSE; if (i < XIDDATASIZE) { char ch= xid->data[i+1]; is_next_dig= (ch >= '0' && ch <='9'); } if (i == xid->gtrid_length) { *s++='\''; if (xid->bqual_length) { *s++='.'; *s++='\''; } } if (c < 32 || c > 126) { *s++='\\'; /* If next character is a number, write current character with 3 octal numbers to ensure that the next number is not seen as part of the octal number */ if (c > 077 || is_next_dig) *s++=_dig_vec_lower[c >> 6]; if (c > 007 || is_next_dig) *s++=_dig_vec_lower[(c >> 3) & 7]; *s++=_dig_vec_lower[c & 7]; } else { if (c == '\'' || c == '\\') *s++='\\'; *s++=c; } } *s++='\''; *s=0; return buf; } #endif static my_xid wsrep_order_and_check_continuity(XID *list, int len) { #ifdef WITH_WSREP wsrep_sort_xid_array(list, len); wsrep::gtid cur_position= wsrep_get_SE_checkpoint(); long long cur_seqno= cur_position.seqno().get(); for (int i= 0; i < len; ++i) { if (!wsrep_is_wsrep_xid(list + i) || wsrep_xid_seqno(list + i) != cur_seqno + 1) { WSREP_WARN("Discovered discontinuity in recovered wsrep " "transaction XIDs. Truncating the recovery list to " "%d entries", i); break; } ++cur_seqno; } WSREP_INFO("Last wsrep seqno to be recovered %lld", cur_seqno); return (cur_seqno < 0 ? 0 : cur_seqno); #else return 0; #endif /* WITH_WSREP */ } /** recover() step of xa. @note there are three modes of operation: - automatic recover after a crash in this case commit_list != 0, tc_heuristic_recover==0 all xids from commit_list are committed, others are rolled back - manual (heuristic) recover in this case commit_list==0, tc_heuristic_recover != 0 DBA has explicitly specified that all prepared transactions should be committed (or rolled back). - no recovery (MySQL did not detect a crash) in this case commit_list==0, tc_heuristic_recover == 0 there should be no prepared transactions in this case. */ struct xarecover_st { int len, found_foreign_xids, found_my_xids; XID *list; HASH *commit_list; bool dry_run; }; static my_bool xarecover_handlerton(THD *unused, plugin_ref plugin, void *arg) { handlerton *hton= plugin_hton(plugin); struct xarecover_st *info= (struct xarecover_st *) arg; int got; if (hton->recover) { while ((got= hton->recover(hton, info->list, info->len)) > 0 ) { sql_print_information("Found %d prepared transaction(s) in %s", got, hton_name(hton)->str); /* If wsrep_on=ON, XIDs are first ordered and then the range of recovered XIDs is checked for continuity. All the XIDs which are in continuous range can be safely committed if binlog is off since they have already ordered and certified in the cluster. The discontinuity of wsrep XIDs may happen because the GTID is assigned for transaction in wsrep_before_prepare(), but the commit order is entered in wsrep_before_commit(). This means that transactions may run prepare step out of order and may result in gap in wsrep XIDs. This can be the case for example if we have T1 with seqno 1 and T2 with seqno 2 and the server crashes after T2 finishes prepare step but before T1 starts the prepare. */ my_xid wsrep_limit __attribute__((unused))= 0; if (WSREP_ON) wsrep_limit= wsrep_order_and_check_continuity(info->list, got); for (int i=0; i < got; i ++) { my_xid x= IF_WSREP(WSREP_ON && wsrep_is_wsrep_xid(&info->list[i]) ? wsrep_xid_seqno(&info->list[i]) : info->list[i].get_my_xid(), info->list[i].get_my_xid()); if (!x) // not "mine" - that is generated by external TM { DBUG_EXECUTE("info",{ char buf[XIDDATASIZE*4+6]; _db_doprnt_("ignore xid %s", xid_to_str(buf, info->list+i)); }); xid_cache_insert(info->list + i); info->found_foreign_xids++; continue; } if (IF_WSREP(!(wsrep_emulate_bin_log && wsrep_is_wsrep_xid(info->list + i) && x <= wsrep_limit) && info->dry_run, info->dry_run)) { info->found_my_xids++; continue; } // recovery mode if (IF_WSREP((wsrep_emulate_bin_log && wsrep_is_wsrep_xid(info->list + i) && x <= wsrep_limit), false) || (info->commit_list ? my_hash_search(info->commit_list, (uchar *)&x, sizeof(x)) != 0 : tc_heuristic_recover == TC_HEURISTIC_RECOVER_COMMIT)) { int rc= hton->commit_by_xid(hton, info->list+i); if (rc == 0) { DBUG_EXECUTE("info",{ char buf[XIDDATASIZE*4+6]; _db_doprnt_("commit xid %s", xid_to_str(buf, info->list+i)); }); } } else { int rc= hton->rollback_by_xid(hton, info->list+i); if (rc == 0) { DBUG_EXECUTE("info",{ char buf[XIDDATASIZE*4+6]; _db_doprnt_("rollback xid %s", xid_to_str(buf, info->list+i)); }); } } } if (got < info->len) break; } } return FALSE; } int ha_recover(HASH *commit_list) { struct xarecover_st info; DBUG_ENTER("ha_recover"); info.found_foreign_xids= info.found_my_xids= 0; info.commit_list= commit_list; info.dry_run= (info.commit_list==0 && tc_heuristic_recover==0); info.list= NULL; /* commit_list and tc_heuristic_recover cannot be set both */ DBUG_ASSERT(info.commit_list==0 || tc_heuristic_recover==0); /* if either is set, total_ha_2pc must be set too */ DBUG_ASSERT(info.dry_run || (failed_ha_2pc + total_ha_2pc) > (ulong)opt_bin_log); if (total_ha_2pc <= (ulong)opt_bin_log) DBUG_RETURN(0); if (info.commit_list) sql_print_information("Starting crash recovery..."); for (info.len= MAX_XID_LIST_SIZE ; info.list==0 && info.len > MIN_XID_LIST_SIZE; info.len/=2) { DBUG_EXECUTE_IF("min_xa_len", info.len = 16;); info.list=(XID *)my_malloc(info.len*sizeof(XID), MYF(0)); } if (!info.list) { sql_print_error(ER(ER_OUTOFMEMORY), static_cast(info.len*sizeof(XID))); DBUG_RETURN(1); } plugin_foreach(NULL, xarecover_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &info); my_free(info.list); if (info.found_foreign_xids) sql_print_warning("Found %d prepared XA transactions", info.found_foreign_xids); if (info.dry_run && info.found_my_xids) { sql_print_error("Found %d prepared transactions! It means that mysqld was " "not shut down properly last time and critical recovery " "information (last binlog or %s file) was manually deleted " "after a crash. You have to start mysqld with " "--tc-heuristic-recover switch to commit or rollback " "pending transactions.", info.found_my_xids, opt_tc_log_file); DBUG_RETURN(1); } if (info.commit_list) sql_print_information("Crash recovery finished."); DBUG_RETURN(0); } /* Called by engine to notify TC that a new commit checkpoint has been reached. See comments on handlerton method commit_checkpoint_request() for details. */ void commit_checkpoint_notify_ha(handlerton *hton, void *cookie) { tc_log->commit_checkpoint_notify(cookie); } /** Check if all storage engines used in transaction agree that after rollback to savepoint it is safe to release MDL locks acquired after savepoint creation. @param thd The client thread that executes the transaction. @return true - It is safe to release MDL locks. false - If it is not. */ bool ha_rollback_to_savepoint_can_release_mdl(THD *thd) { Ha_trx_info *ha_info; THD_TRANS *trans= (thd->in_sub_stmt ? &thd->transaction.stmt : &thd->transaction.all); DBUG_ENTER("ha_rollback_to_savepoint_can_release_mdl"); /** Checking whether it is safe to release metadata locks after rollback to savepoint in all the storage engines that are part of the transaction. */ for (ha_info= trans->ha_list; ha_info; ha_info= ha_info->next()) { handlerton *ht= ha_info->ht(); DBUG_ASSERT(ht); if (ht->savepoint_rollback_can_release_mdl == 0 || ht->savepoint_rollback_can_release_mdl(ht, thd) == false) DBUG_RETURN(false); } DBUG_RETURN(true); } int ha_rollback_to_savepoint(THD *thd, SAVEPOINT *sv) { int error=0; THD_TRANS *trans= (thd->in_sub_stmt ? &thd->transaction.stmt : &thd->transaction.all); Ha_trx_info *ha_info, *ha_info_next; DBUG_ENTER("ha_rollback_to_savepoint"); trans->no_2pc=0; /* rolling back to savepoint in all storage engines that were part of the transaction when the savepoint was set */ for (ha_info= sv->ha_list; ha_info; ha_info= ha_info->next()) { int err; handlerton *ht= ha_info->ht(); DBUG_ASSERT(ht); DBUG_ASSERT(ht->savepoint_set != 0); if ((err= ht->savepoint_rollback(ht, thd, (uchar *)(sv+1)+ht->savepoint_offset))) { // cannot happen my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err); error=1; } status_var_increment(thd->status_var.ha_savepoint_rollback_count); trans->no_2pc|= ht->prepare == 0; } /* rolling back the transaction in all storage engines that were not part of the transaction when the savepoint was set */ for (ha_info= trans->ha_list; ha_info != sv->ha_list; ha_info= ha_info_next) { int err; handlerton *ht= ha_info->ht(); #ifdef WITH_WSREP if (WSREP(thd) && ht->flags & HTON_WSREP_REPLICATION) { WSREP_DEBUG("ha_rollback_to_savepoint: run before_rollbackha_rollback_trans hook"); (void) wsrep_before_rollback(thd, !thd->in_sub_stmt); } #endif // WITH_WSREP if ((err= ht->rollback(ht, thd, !thd->in_sub_stmt))) { // cannot happen my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err); error=1; } #ifdef WITH_WSREP if (WSREP(thd) && ht->flags & HTON_WSREP_REPLICATION) { WSREP_DEBUG("ha_rollback_to_savepoint: run after_rollback hook"); (void) wsrep_after_rollback(thd, !thd->in_sub_stmt); } #endif // WITH_WSREP status_var_increment(thd->status_var.ha_rollback_count); ha_info_next= ha_info->next(); ha_info->reset(); /* keep it conveniently zero-filled */ } trans->ha_list= sv->ha_list; DBUG_RETURN(error); } /** @note according to the sql standard (ISO/IEC 9075-2:2003) section "4.33.4 SQL-statements and transaction states", SAVEPOINT is *not* transaction-initiating SQL-statement */ int ha_savepoint(THD *thd, SAVEPOINT *sv) { #ifdef WITH_WSREP /* Register binlog hton for savepoint processing if wsrep binlog emulation is on. */ if (WSREP_EMULATE_BINLOG(thd) && wsrep_thd_is_local(thd)) { wsrep_register_binlog_handler(thd, thd->in_multi_stmt_transaction_mode()); } #endif /* WITH_WSREP */ int error=0; THD_TRANS *trans= (thd->in_sub_stmt ? &thd->transaction.stmt : &thd->transaction.all); Ha_trx_info *ha_info= trans->ha_list; DBUG_ENTER("ha_savepoint"); for (; ha_info; ha_info= ha_info->next()) { int err; handlerton *ht= ha_info->ht(); DBUG_ASSERT(ht); if (! ht->savepoint_set) { my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), "SAVEPOINT"); error=1; break; } if ((err= ht->savepoint_set(ht, thd, (uchar *)(sv+1)+ht->savepoint_offset))) { // cannot happen my_error(ER_GET_ERRNO, MYF(0), err, hton_name(ht)->str); error=1; } status_var_increment(thd->status_var.ha_savepoint_count); } /* Remember the list of registered storage engines. All new engines are prepended to the beginning of the list. */ sv->ha_list= trans->ha_list; DBUG_RETURN(error); } int ha_release_savepoint(THD *thd, SAVEPOINT *sv) { int error=0; Ha_trx_info *ha_info= sv->ha_list; DBUG_ENTER("ha_release_savepoint"); for (; ha_info; ha_info= ha_info->next()) { int err; handlerton *ht= ha_info->ht(); /* Savepoint life time is enclosed into transaction life time. */ DBUG_ASSERT(ht); if (!ht->savepoint_release) continue; if ((err= ht->savepoint_release(ht, thd, (uchar *)(sv+1) + ht->savepoint_offset))) { // cannot happen my_error(ER_GET_ERRNO, MYF(0), err, hton_name(ht)->str); error=1; } } DBUG_RETURN(error); } static my_bool snapshot_handlerton(THD *thd, plugin_ref plugin, void *arg) { handlerton *hton= plugin_hton(plugin); if (hton->start_consistent_snapshot) { if (hton->start_consistent_snapshot(hton, thd)) return TRUE; *((bool *)arg)= false; } return FALSE; } int ha_start_consistent_snapshot(THD *thd) { bool err, warn= true; /* Holding the LOCK_commit_ordered mutex ensures that we get the same snapshot for all engines (including the binary log). This allows us among other things to do backups with START TRANSACTION WITH CONSISTENT SNAPSHOT and have a consistent binlog position. */ mysql_mutex_lock(&LOCK_commit_ordered); err= plugin_foreach(thd, snapshot_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &warn); mysql_mutex_unlock(&LOCK_commit_ordered); if (err) { ha_rollback_trans(thd, true); return 1; } /* Same idea as when one wants to CREATE TABLE in one engine which does not exist: */ if (warn) push_warning(thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "This MariaDB server does not support any " "consistent-read capable storage engine"); return 0; } static my_bool flush_handlerton(THD *thd, plugin_ref plugin, void *arg) { handlerton *hton= plugin_hton(plugin); return hton->flush_logs && hton->flush_logs(hton); } bool ha_flush_logs() { return plugin_foreach(NULL, flush_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, 0); } /** @brief make canonical filename @param[in] file table handler @param[in] path original path @param[out] tmp_path buffer for canonized path @details Lower case db name and table name path parts for non file based tables when lower_case_table_names is 2 (store as is, compare in lower case). Filesystem path prefix (mysql_data_home or tmpdir) is left intact. @note tmp_path may be left intact if no conversion was performed. @retval canonized path @todo This may be done more efficiently when table path gets built. Convert this function to something like ASSERT_CANONICAL_FILENAME. */ const char *get_canonical_filename(handler *file, const char *path, char *tmp_path) { uint i; if (lower_case_table_names != 2 || (file->ha_table_flags() & HA_FILE_BASED)) return path; for (i= 0; i <= mysql_tmpdir_list.max; i++) { if (is_prefix(path, mysql_tmpdir_list.list[i])) return path; } /* Ensure that table handler get path in lower case */ if (tmp_path != path) strmov(tmp_path, path); /* we only should turn into lowercase database/table part so start the process after homedirectory */ my_casedn_str(files_charset_info, tmp_path + mysql_data_home_len); return tmp_path; } /** delete a table in the engine @note ENOENT and HA_ERR_NO_SUCH_TABLE are not considered errors. The .frm file will be deleted only if we return 0. */ int ha_delete_table(THD *thd, handlerton *table_type, const char *path, const LEX_CSTRING *db, const LEX_CSTRING *alias, bool generate_warning) { handler *file; char tmp_path[FN_REFLEN]; int error; TABLE dummy_table; TABLE_SHARE dummy_share; DBUG_ENTER("ha_delete_table"); /* table_type is NULL in ALTER TABLE when renaming only .frm files */ if (table_type == NULL || table_type == view_pseudo_hton || ! (file=get_new_handler((TABLE_SHARE*)0, thd->mem_root, table_type))) DBUG_RETURN(0); bzero((char*) &dummy_table, sizeof(dummy_table)); bzero((char*) &dummy_share, sizeof(dummy_share)); dummy_table.s= &dummy_share; path= get_canonical_filename(file, path, tmp_path); if (unlikely((error= file->ha_delete_table(path)))) { /* it's not an error if the table doesn't exist in the engine. warn the user, but still report DROP being a success */ bool intercept= (error == ENOENT || error == HA_ERR_NO_SUCH_TABLE || error == HA_ERR_UNSUPPORTED); if ((!intercept || generate_warning) && ! thd->is_error()) { /* Fill up strucutures that print_error may need */ dummy_share.path.str= (char*) path; dummy_share.path.length= strlen(path); dummy_share.normalized_path= dummy_share.path; dummy_share.db= *db; dummy_share.table_name= *alias; dummy_table.alias.set(alias->str, alias->length, table_alias_charset); file->change_table_ptr(&dummy_table, &dummy_share); file->print_error(error, MYF(intercept ? ME_WARNING : 0)); } if (intercept) { thd->clear_error(); error= 0; } } delete file; DBUG_RETURN(error); } /**************************************************************************** ** General handler functions ****************************************************************************/ /** Clone a handler @param name name of new table instance @param mem_root Where 'this->ref' should be allocated. It can't be in this->table->mem_root as otherwise we will not be able to reclaim that memory when the clone handler object is destroyed. */ handler *handler::clone(const char *name, MEM_ROOT *mem_root) { handler *new_handler= get_new_handler(table->s, mem_root, ht); if (!new_handler) return NULL; if (new_handler->set_ha_share_ref(ha_share)) goto err; /* TODO: Implement a more efficient way to have more than one index open for the same table instance. The ha_open call is not cachable for clone. This is not critical as the engines already have the table open and should be able to use the original instance of the table. */ if (new_handler->ha_open(table, name, table->db_stat, HA_OPEN_IGNORE_IF_LOCKED, mem_root)) goto err; return new_handler; err: delete new_handler; return NULL; } LEX_CSTRING *handler::engine_name() { return hton_name(ht); } /* It is assumed that the value of the parameter 'ranges' can be only 0 or 1. If ranges == 1 then the function returns the cost of index only scan by index 'keyno' of one range containing 'rows' key entries. If ranges == 0 then the function returns only the cost of copying those key entries into the engine buffers. */ double handler::keyread_time(uint index, uint ranges, ha_rows rows) { DBUG_ASSERT(ranges == 0 || ranges == 1); size_t len= table->key_info[index].key_length + ref_length; if (index == table->s->primary_key && table->file->primary_key_is_clustered()) len= table->s->stored_rec_length; uint keys_per_block= (uint) (stats.block_size/2.0/len+1); ulonglong blocks= !rows ? 0 : (rows-1) / keys_per_block + 1; double cost= (double)rows*len/(stats.block_size+1)*IDX_BLOCK_COPY_COST; if (ranges) cost+= blocks; return cost; } THD *handler::ha_thd(void) const { DBUG_ASSERT(!table || !table->in_use || table->in_use == current_thd); return (table && table->in_use) ? table->in_use : current_thd; } void handler::unbind_psi() { /* Notify the instrumentation that this table is not owned by this thread any more. */ PSI_CALL_unbind_table(m_psi); } void handler::rebind_psi() { /* Notify the instrumentation that this table is now owned by this thread. */ m_psi= PSI_CALL_rebind_table(ha_table_share_psi(), this, m_psi); } PSI_table_share *handler::ha_table_share_psi() const { return table_share->m_psi; } /** @brief Open database-handler. IMPLEMENTATION Try O_RDONLY if cannot open as O_RDWR Don't wait for locks if not HA_OPEN_WAIT_IF_LOCKED is set */ int handler::ha_open(TABLE *table_arg, const char *name, int mode, uint test_if_locked, MEM_ROOT *mem_root, List *partitions_to_open) { int error; DBUG_ENTER("handler::ha_open"); DBUG_PRINT("enter", ("name: %s db_type: %d db_stat: %d mode: %d lock_test: %d", name, ht->db_type, table_arg->db_stat, mode, test_if_locked)); table= table_arg; DBUG_ASSERT(table->s == table_share); DBUG_ASSERT(m_lock_type == F_UNLCK); DBUG_PRINT("info", ("old m_lock_type: %d F_UNLCK %d", m_lock_type, F_UNLCK)); DBUG_ASSERT(alloc_root_inited(&table->mem_root)); set_partitions_to_open(partitions_to_open); if (unlikely((error=open(name,mode,test_if_locked)))) { if ((error == EACCES || error == EROFS) && mode == O_RDWR && (table->db_stat & HA_TRY_READ_ONLY)) { table->db_stat|=HA_READ_ONLY; error=open(name,O_RDONLY,test_if_locked); } } if (unlikely(error)) { my_errno= error; /* Safeguard */ DBUG_PRINT("error",("error: %d errno: %d",error,errno)); } else { DBUG_ASSERT(m_psi == NULL); DBUG_ASSERT(table_share != NULL); /* Do not call this for partitions handlers, since it may take too much resources. So only use the m_psi on table level, not for individual partitions. */ if (!(test_if_locked & HA_OPEN_NO_PSI_CALL)) { m_psi= PSI_CALL_open_table(ha_table_share_psi(), this); } if (table->s->db_options_in_use & HA_OPTION_READ_ONLY_DATA) table->db_stat|=HA_READ_ONLY; (void) extra(HA_EXTRA_NO_READCHECK); // Not needed in SQL /* Allocate ref in thd or on the table's mem_root */ if (!(ref= (uchar*) alloc_root(mem_root ? mem_root : &table->mem_root, ALIGN_SIZE(ref_length)*2))) { ha_close(); error=HA_ERR_OUT_OF_MEM; } else dup_ref=ref+ALIGN_SIZE(ref_length); cached_table_flags= table_flags(); } reset_statistics(); internal_tmp_table= MY_TEST(test_if_locked & HA_OPEN_INTERNAL_TABLE); DBUG_RETURN(error); } int handler::ha_close(void) { DBUG_ENTER("ha_close"); /* Increment global statistics for temporary tables. In_use is 0 for tables that was closed from the table cache. */ if (table->in_use) status_var_add(table->in_use->status_var.rows_tmp_read, rows_tmp_read); PSI_CALL_close_table(m_psi); m_psi= NULL; /* instrumentation handle, invalid after close_table() */ /* Detach from ANALYZE tracker */ tracker= NULL; DBUG_ASSERT(m_lock_type == F_UNLCK); DBUG_ASSERT(inited == NONE); DBUG_RETURN(close()); } int handler::ha_rnd_next(uchar *buf) { int result; DBUG_ENTER("handler::ha_rnd_next"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited == RND); do { TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, MAX_KEY, 0, { result= rnd_next(buf); }) if (result != HA_ERR_RECORD_DELETED) break; status_var_increment(table->in_use->status_var.ha_read_rnd_deleted_count); } while (!table->in_use->check_killed(1)); if (result == HA_ERR_RECORD_DELETED) result= HA_ERR_ABORTED_BY_USER; else { if (!result) { update_rows_read(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } increment_statistics(&SSV::ha_read_rnd_next_count); } table->status=result ? STATUS_NOT_FOUND: 0; DBUG_RETURN(result); } int handler::ha_rnd_pos(uchar *buf, uchar *pos) { int result; DBUG_ENTER("handler::ha_rnd_pos"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited == RND); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, MAX_KEY, 0, { result= rnd_pos(buf, pos); }) increment_statistics(&SSV::ha_read_rnd_count); if (result == HA_ERR_RECORD_DELETED) result= HA_ERR_KEY_NOT_FOUND; else if (!result) { update_rows_read(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; DBUG_RETURN(result); } int handler::ha_index_read_map(uchar *buf, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag) { int result; DBUG_ENTER("handler::ha_index_read_map"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_read_map(buf, key, keypart_map, find_flag); }) increment_statistics(&SSV::ha_read_key_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; DBUG_RETURN(result); } /* @note: Other index lookup/navigation functions require prior handler->index_init() call. This function is different, it requires that the scan is not initialized, and accepts "uint index" as an argument. */ int handler::ha_index_read_idx_map(uchar *buf, uint index, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag) { int result; DBUG_ASSERT(inited==NONE); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(end_range == NULL); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, index, 0, { result= index_read_idx_map(buf, index, key, keypart_map, find_flag); }) increment_statistics(&SSV::ha_read_key_count); if (!result) { update_rows_read(); index_rows_read[index]++; if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; return result; } int handler::ha_index_next(uchar * buf) { int result; DBUG_ENTER("handler::ha_index_next"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_next(buf); }) increment_statistics(&SSV::ha_read_next_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; DBUG_RETURN(result); } int handler::ha_index_prev(uchar * buf) { int result; DBUG_ENTER("handler::ha_index_prev"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_prev(buf); }) increment_statistics(&SSV::ha_read_prev_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; DBUG_RETURN(result); } int handler::ha_index_first(uchar * buf) { int result; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_first(buf); }) increment_statistics(&SSV::ha_read_first_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; return result; } int handler::ha_index_last(uchar * buf) { int result; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_last(buf); }) increment_statistics(&SSV::ha_read_last_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; return result; } int handler::ha_index_next_same(uchar *buf, const uchar *key, uint keylen) { int result; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ASSERT(inited==INDEX); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_FETCH_ROW, active_index, 0, { result= index_next_same(buf, key, keylen); }) increment_statistics(&SSV::ha_read_next_count); if (!result) { update_index_statistics(); if (table->vfield && buf == table->record[0]) table->update_virtual_fields(this, VCOL_UPDATE_FOR_READ); } table->status=result ? STATUS_NOT_FOUND: 0; return result; } bool handler::ha_was_semi_consistent_read() { bool result= was_semi_consistent_read(); if (result) increment_statistics(&SSV::ha_read_retry_count); return result; } /* Initialize handler for random reading, with error handling */ int handler::ha_rnd_init_with_error(bool scan) { int error; if (likely(!(error= ha_rnd_init(scan)))) return 0; table->file->print_error(error, MYF(0)); return error; } /** Read first row (only) from a table. Used for reading tables with only one row, either based on table statistics or if table is a SEQUENCE. This is never called for normal InnoDB tables, as these table types does not have HA_STATS_RECORDS_IS_EXACT set. */ int handler::read_first_row(uchar * buf, uint primary_key) { int error; DBUG_ENTER("handler::read_first_row"); /* If there is very few deleted rows in the table, find the first row by scanning the table. TODO remove the test for HA_READ_ORDER */ if (stats.deleted < 10 || primary_key >= MAX_KEY || !(index_flags(primary_key, 0, 0) & HA_READ_ORDER)) { if (likely(!(error= ha_rnd_init(1)))) { error= ha_rnd_next(buf); const int end_error= ha_rnd_end(); if (likely(!error)) error= end_error; } } else { /* Find the first row through the primary key */ if (likely(!(error= ha_index_init(primary_key, 0)))) { error= ha_index_first(buf); const int end_error= ha_index_end(); if (likely(!error)) error= end_error; } } DBUG_RETURN(error); } /** Generate the next auto-increment number based on increment and offset. computes the lowest number - strictly greater than "nr" - of the form: auto_increment_offset + N * auto_increment_increment If overflow happened then return MAX_ULONGLONG value as an indication of overflow. In most cases increment= offset= 1, in which case we get: @verbatim 1,2,3,4,5,... @endverbatim If increment=10 and offset=5 and previous number is 1, we get: @verbatim 1,5,15,25,35,... @endverbatim */ inline ulonglong compute_next_insert_id(ulonglong nr,struct system_variables *variables) { const ulonglong save_nr= nr; if (variables->auto_increment_increment == 1) nr= nr + 1; // optimization of the formula below else { /* Calculating the number of complete auto_increment_increment extents: */ nr= (nr + variables->auto_increment_increment - variables->auto_increment_offset) / (ulonglong) variables->auto_increment_increment; /* Adding an offset to the auto_increment_increment extent boundary: */ nr= nr * (ulonglong) variables->auto_increment_increment + variables->auto_increment_offset; } if (unlikely(nr <= save_nr)) return ULONGLONG_MAX; return nr; } void handler::adjust_next_insert_id_after_explicit_value(ulonglong nr) { /* If we have set THD::next_insert_id previously and plan to insert an explicitly-specified value larger than this, we need to increase THD::next_insert_id to be greater than the explicit value. */ if ((next_insert_id > 0) && (nr >= next_insert_id)) set_next_insert_id(compute_next_insert_id(nr, &table->in_use->variables)); } /** @brief Computes the largest number X: - smaller than or equal to "nr" - of the form: auto_increment_offset + N * auto_increment_increment where N>=0. SYNOPSIS prev_insert_id nr Number to "round down" variables variables struct containing auto_increment_increment and auto_increment_offset RETURN The number X if it exists, "nr" otherwise. */ inline ulonglong prev_insert_id(ulonglong nr, struct system_variables *variables) { if (unlikely(nr < variables->auto_increment_offset)) { /* There's nothing good we can do here. That is a pathological case, where the offset is larger than the column's max possible value, i.e. not even the first sequence value may be inserted. User will receive warning. */ DBUG_PRINT("info",("auto_increment: nr: %lu cannot honour " "auto_increment_offset: %lu", (ulong) nr, variables->auto_increment_offset)); return nr; } if (variables->auto_increment_increment == 1) return nr; // optimization of the formula below /* Calculating the number of complete auto_increment_increment extents: */ nr= (nr - variables->auto_increment_offset) / (ulonglong) variables->auto_increment_increment; /* Adding an offset to the auto_increment_increment extent boundary: */ return (nr * (ulonglong) variables->auto_increment_increment + variables->auto_increment_offset); } /** Update the auto_increment field if necessary. Updates columns with type NEXT_NUMBER if: - If column value is set to NULL (in which case auto_increment_field_not_null is 0) - If column is set to 0 and (sql_mode & MODE_NO_AUTO_VALUE_ON_ZERO) is not set. In the future we will only set NEXT_NUMBER fields if one sets them to NULL (or they are not included in the insert list). In those cases, we check if the currently reserved interval still has values we have not used. If yes, we pick the smallest one and use it. Otherwise: - If a list of intervals has been provided to the statement via SET INSERT_ID or via an Intvar_log_event (in a replication slave), we pick the first unused interval from this list, consider it as reserved. - Otherwise we set the column for the first row to the value next_insert_id(get_auto_increment(column))) which is usually max-used-column-value+1. We call get_auto_increment() for the first row in a multi-row statement. get_auto_increment() will tell us the interval of values it reserved for us. - In both cases, for the following rows we use those reserved values without calling the handler again (we just progress in the interval, computing each new value from the previous one). Until we have exhausted them, then we either take the next provided interval or call get_auto_increment() again to reserve a new interval. - In both cases, the reserved intervals are remembered in thd->auto_inc_intervals_in_cur_stmt_for_binlog if statement-based binlogging; the last reserved interval is remembered in auto_inc_interval_for_cur_row. The number of reserved intervals is remembered in auto_inc_intervals_count. It differs from the number of elements in thd->auto_inc_intervals_in_cur_stmt_for_binlog() because the latter list is cumulative over all statements forming one binlog event (when stored functions and triggers are used), and collapses two contiguous intervals in one (see its append() method). The idea is that generated auto_increment values are predictable and independent of the column values in the table. This is needed to be able to replicate into a table that already has rows with a higher auto-increment value than the one that is inserted. After we have already generated an auto-increment number and the user inserts a column with a higher value than the last used one, we will start counting from the inserted value. This function's "outputs" are: the table's auto_increment field is filled with a value, thd->next_insert_id is filled with the value to use for the next row, if a value was autogenerated for the current row it is stored in thd->insert_id_for_cur_row, if get_auto_increment() was called thd->auto_inc_interval_for_cur_row is modified, if that interval is not present in thd->auto_inc_intervals_in_cur_stmt_for_binlog it is added to this list. @todo Replace all references to "next number" or NEXT_NUMBER to "auto_increment", everywhere (see below: there is table->auto_increment_field_not_null, and there also exists table->next_number_field, it's not consistent). @retval 0 ok @retval HA_ERR_AUTOINC_READ_FAILED get_auto_increment() was called and returned ~(ulonglong) 0 @retval HA_ERR_AUTOINC_ERANGE storing value in field caused strict mode failure. */ #define AUTO_INC_DEFAULT_NB_ROWS 1 // Some prefer 1024 here #define AUTO_INC_DEFAULT_NB_MAX_BITS 16 #define AUTO_INC_DEFAULT_NB_MAX ((1 << AUTO_INC_DEFAULT_NB_MAX_BITS) - 1) int handler::update_auto_increment() { ulonglong nr, nb_reserved_values; bool append= FALSE; THD *thd= table->in_use; struct system_variables *variables= &thd->variables; int result=0, tmp; enum enum_check_fields save_count_cuted_fields; DBUG_ENTER("handler::update_auto_increment"); /* next_insert_id is a "cursor" into the reserved interval, it may go greater than the interval, but not smaller. */ DBUG_ASSERT(next_insert_id >= auto_inc_interval_for_cur_row.minimum()); if ((nr= table->next_number_field->val_int()) != 0 || (table->auto_increment_field_not_null && thd->variables.sql_mode & MODE_NO_AUTO_VALUE_ON_ZERO)) { /* Update next_insert_id if we had already generated a value in this statement (case of INSERT VALUES(null),(3763),(null): the last NULL needs to insert 3764, not the value of the first NULL plus 1). Ignore negative values. */ if ((longlong) nr > 0 || (table->next_number_field->flags & UNSIGNED_FLAG)) adjust_next_insert_id_after_explicit_value(nr); insert_id_for_cur_row= 0; // didn't generate anything DBUG_RETURN(0); } // ALTER TABLE ... ADD COLUMN ... AUTO_INCREMENT if (thd->lex->sql_command == SQLCOM_ALTER_TABLE) { if (table->versioned()) { Field *end= table->vers_end_field(); DBUG_ASSERT(end); bitmap_set_bit(table->read_set, end->field_index); if (!end->is_max()) { if (!table->next_number_field->real_maybe_null()) DBUG_RETURN(HA_ERR_UNSUPPORTED); table->next_number_field->set_null(); DBUG_RETURN(0); } } table->next_number_field->set_notnull(); } if ((nr= next_insert_id) >= auto_inc_interval_for_cur_row.maximum()) { /* next_insert_id is beyond what is reserved, so we reserve more. */ const Discrete_interval *forced= thd->auto_inc_intervals_forced.get_next(); if (forced != NULL) { nr= forced->minimum(); nb_reserved_values= forced->values(); } else { /* handler::estimation_rows_to_insert was set by handler::ha_start_bulk_insert(); if 0 it means "unknown". */ ulonglong nb_desired_values; /* If an estimation was given to the engine: - use it. - if we already reserved numbers, it means the estimation was not accurate, then we'll reserve 2*AUTO_INC_DEFAULT_NB_ROWS the 2nd time, twice that the 3rd time etc. If no estimation was given, use those increasing defaults from the start, starting from AUTO_INC_DEFAULT_NB_ROWS. Don't go beyond a max to not reserve "way too much" (because reservation means potentially losing unused values). Note that in prelocked mode no estimation is given. */ if ((auto_inc_intervals_count == 0) && (estimation_rows_to_insert > 0)) nb_desired_values= estimation_rows_to_insert; else if ((auto_inc_intervals_count == 0) && (thd->lex->many_values.elements > 0)) { /* For multi-row inserts, if the bulk inserts cannot be started, the handler::estimation_rows_to_insert will not be set. But we still want to reserve the autoinc values. */ nb_desired_values= thd->lex->many_values.elements; } else /* go with the increasing defaults */ { /* avoid overflow in formula, with this if() */ if (auto_inc_intervals_count <= AUTO_INC_DEFAULT_NB_MAX_BITS) { nb_desired_values= AUTO_INC_DEFAULT_NB_ROWS * (1 << auto_inc_intervals_count); set_if_smaller(nb_desired_values, AUTO_INC_DEFAULT_NB_MAX); } else nb_desired_values= AUTO_INC_DEFAULT_NB_MAX; } get_auto_increment(variables->auto_increment_offset, variables->auto_increment_increment, nb_desired_values, &nr, &nb_reserved_values); if (nr == ULONGLONG_MAX) DBUG_RETURN(HA_ERR_AUTOINC_READ_FAILED); // Mark failure /* That rounding below should not be needed when all engines actually respect offset and increment in get_auto_increment(). But they don't so we still do it. Wonder if for the not-first-in-index we should do it. Hope that this rounding didn't push us out of the interval; even if it did we cannot do anything about it (calling the engine again will not help as we inserted no row). */ nr= compute_next_insert_id(nr-1, variables); } if (table->s->next_number_keypart == 0) { /* We must defer the appending until "nr" has been possibly truncated */ append= TRUE; } else { /* For such auto_increment there is no notion of interval, just a singleton. The interval is not even stored in thd->auto_inc_interval_for_cur_row, so we are sure to call the engine for next row. */ DBUG_PRINT("info",("auto_increment: special not-first-in-index")); } } if (unlikely(nr == ULONGLONG_MAX)) DBUG_RETURN(HA_ERR_AUTOINC_ERANGE); DBUG_ASSERT(nr != 0); DBUG_PRINT("info",("auto_increment: %llu nb_reserved_values: %llu", nr, append ? nb_reserved_values : 0)); /* Store field without warning (Warning will be printed by insert) */ save_count_cuted_fields= thd->count_cuted_fields; thd->count_cuted_fields= CHECK_FIELD_IGNORE; tmp= table->next_number_field->store((longlong)nr, TRUE); thd->count_cuted_fields= save_count_cuted_fields; if (unlikely(tmp)) // Out of range value in store { /* First, test if the query was aborted due to strict mode constraints or new field value greater than maximum integer value: */ if (thd->killed == KILL_BAD_DATA || nr > table->next_number_field->get_max_int_value()) { /* It's better to return an error here than getting a confusing 'duplicate key error' later. */ result= HA_ERR_AUTOINC_ERANGE; } else { /* Field refused this value (overflow) and truncated it, use the result of the truncation (which is going to be inserted); however we try to decrease it to honour auto_increment_* variables. That will shift the left bound of the reserved interval, we don't bother shifting the right bound (anyway any other value from this interval will cause a duplicate key). */ nr= prev_insert_id(table->next_number_field->val_int(), variables); if (unlikely(table->next_number_field->store((longlong)nr, TRUE))) nr= table->next_number_field->val_int(); } } if (append) { auto_inc_interval_for_cur_row.replace(nr, nb_reserved_values, variables->auto_increment_increment); auto_inc_intervals_count++; /* Row-based replication does not need to store intervals in binlog */ if (((WSREP(thd) && wsrep_emulate_bin_log ) || mysql_bin_log.is_open()) && !thd->is_current_stmt_binlog_format_row()) thd->auto_inc_intervals_in_cur_stmt_for_binlog. append(auto_inc_interval_for_cur_row.minimum(), auto_inc_interval_for_cur_row.values(), variables->auto_increment_increment); } /* Record this autogenerated value. If the caller then succeeds to insert this value, it will call record_first_successful_insert_id_in_cur_stmt() which will set first_successful_insert_id_in_cur_stmt if it's not already set. */ insert_id_for_cur_row= nr; if (result) // overflow DBUG_RETURN(result); /* Set next insert id to point to next auto-increment value to be able to handle multi-row statements. */ set_next_insert_id(compute_next_insert_id(nr, variables)); DBUG_RETURN(0); } /** @brief MySQL signal that it changed the column bitmap USAGE This is for handlers that needs to setup their own column bitmaps. Normally the handler should set up their own column bitmaps in index_init() or rnd_init() and in any column_bitmaps_signal() call after this. The handler is allowd to do changes to the bitmap after a index_init or rnd_init() call is made as after this, MySQL will not use the bitmap for any program logic checking. */ void handler::column_bitmaps_signal() { DBUG_ENTER("column_bitmaps_signal"); if (table) DBUG_PRINT("info", ("read_set: %p write_set: %p", table->read_set, table->write_set)); DBUG_VOID_RETURN; } /** @brief Reserves an interval of auto_increment values from the handler. SYNOPSIS get_auto_increment() offset increment nb_desired_values how many values we want first_value (OUT) the first value reserved by the handler nb_reserved_values (OUT) how many values the handler reserved offset and increment means that we want values to be of the form offset + N * increment, where N>=0 is integer. If the function sets *first_value to ~(ulonglong)0 it means an error. If the function sets *nb_reserved_values to ULONGLONG_MAX it means it has reserved to "positive infinite". */ void handler::get_auto_increment(ulonglong offset, ulonglong increment, ulonglong nb_desired_values, ulonglong *first_value, ulonglong *nb_reserved_values) { ulonglong nr; int error; MY_BITMAP *old_read_set; bool rnd_inited= (inited == RND); if (rnd_inited && ha_rnd_end()) return; old_read_set= table->prepare_for_keyread(table->s->next_number_index); if (ha_index_init(table->s->next_number_index, 1)) { /* This should never happen, assert in debug, and fail in release build */ DBUG_ASSERT(0); (void) extra(HA_EXTRA_NO_KEYREAD); *first_value= ULONGLONG_MAX; if (rnd_inited && ha_rnd_init_with_error(0)) { //TODO: it would be nice to return here an error } return; } if (table->s->next_number_keypart == 0) { // Autoincrement at key-start error= ha_index_last(table->record[1]); /* MySQL implicitely assumes such method does locking (as MySQL decides to use nr+increment without checking again with the handler, in handler::update_auto_increment()), so reserves to infinite. */ *nb_reserved_values= ULONGLONG_MAX; } else { uchar key[MAX_KEY_LENGTH]; key_copy(key, table->record[0], table->key_info + table->s->next_number_index, table->s->next_number_key_offset); error= ha_index_read_map(table->record[1], key, make_prev_keypart_map(table->s-> next_number_keypart), HA_READ_PREFIX_LAST); /* MySQL needs to call us for next row: assume we are inserting ("a",null) here, we return 3, and next this statement will want to insert ("b",null): there is no reason why ("b",3+1) would be the good row to insert: maybe it already exists, maybe 3+1 is too large... */ *nb_reserved_values= 1; } if (unlikely(error)) { if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND) /* No entry found, that's fine */; else print_error(error, MYF(0)); nr= 1; } else nr= ((ulonglong) table->next_number_field-> val_int_offset(table->s->rec_buff_length)+1); ha_index_end(); table->restore_column_maps_after_keyread(old_read_set); *first_value= nr; if (rnd_inited && ha_rnd_init_with_error(0)) { //TODO: it would be nice to return here an error } return; } void handler::ha_release_auto_increment() { DBUG_ENTER("ha_release_auto_increment"); DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK || (!next_insert_id && !insert_id_for_cur_row)); release_auto_increment(); insert_id_for_cur_row= 0; auto_inc_interval_for_cur_row.replace(0, 0, 0); auto_inc_intervals_count= 0; if (next_insert_id > 0) { next_insert_id= 0; /* this statement used forced auto_increment values if there were some, wipe them away for other statements. */ table->in_use->auto_inc_intervals_forced.empty(); } DBUG_VOID_RETURN; } /** Construct and emit duplicate key error message using information from table's record buffer. @param table TABLE object which record buffer should be used as source for column values. @param key Key description. @param msg Error message template to which key value should be added. @param errflag Flags for my_error() call. @notes The error message is from ER_DUP_ENTRY_WITH_KEY_NAME but to keep things compatibly with old code, the error number is ER_DUP_ENTRY */ void print_keydup_error(TABLE *table, KEY *key, const char *msg, myf errflag) { /* Write the duplicated key in the error message */ char key_buff[MAX_KEY_LENGTH]; String str(key_buff,sizeof(key_buff),system_charset_info); if (key == NULL) { /* Key is unknown. Should only happen if storage engine reports wrong duplicate key number. */ my_printf_error(ER_DUP_ENTRY, msg, errflag, "", "*UNKNOWN*"); } else { if (key->algorithm == HA_KEY_ALG_LONG_HASH) setup_keyinfo_hash(key); /* Table is opened and defined at this point */ key_unpack(&str,table, key); uint max_length=MYSQL_ERRMSG_SIZE-(uint) strlen(msg); if (str.length() >= max_length) { str.length(max_length-4); str.append(STRING_WITH_LEN("...")); } my_printf_error(ER_DUP_ENTRY, msg, errflag, str.c_ptr_safe(), key->name.str); if (key->algorithm == HA_KEY_ALG_LONG_HASH) re_setup_keyinfo_hash(key); } } /** Construct and emit duplicate key error message using information from table's record buffer. @sa print_keydup_error(table, key, msg, errflag). */ void print_keydup_error(TABLE *table, KEY *key, myf errflag) { print_keydup_error(table, key, ER_THD(table->in_use, ER_DUP_ENTRY_WITH_KEY_NAME), errflag); } /** Print error that we got from handler function. @note In case of delete table it's only safe to use the following parts of the 'table' structure: - table->s->path - table->alias */ #define SET_FATAL_ERROR fatal_error=1 void handler::print_error(int error, myf errflag) { bool fatal_error= 0; DBUG_ENTER("handler::print_error"); DBUG_PRINT("enter",("error: %d",error)); if (ha_thd()->transaction_rollback_request) { /* Ensure this becomes a true error */ errflag&= ~(ME_WARNING | ME_NOTE); } int textno= -1; // impossible value switch (error) { case EACCES: textno=ER_OPEN_AS_READONLY; break; case EAGAIN: textno=ER_FILE_USED; break; case ENOENT: case ENOTDIR: case ELOOP: textno=ER_FILE_NOT_FOUND; break; case ENOSPC: case HA_ERR_DISK_FULL: textno= ER_DISK_FULL; SET_FATAL_ERROR; // Ensure error is logged break; case HA_ERR_KEY_NOT_FOUND: case HA_ERR_NO_ACTIVE_RECORD: case HA_ERR_RECORD_DELETED: case HA_ERR_END_OF_FILE: /* This errors is not not normally fatal (for example for reads). However if you get it during an update or delete, then its fatal. As the user is calling print_error() (which is not done on read), we assume something when wrong with the update or delete. */ SET_FATAL_ERROR; textno=ER_KEY_NOT_FOUND; break; case HA_ERR_ABORTED_BY_USER: { DBUG_ASSERT(ha_thd()->killed); ha_thd()->send_kill_message(); DBUG_VOID_RETURN; } case HA_ERR_WRONG_MRG_TABLE_DEF: textno=ER_WRONG_MRG_TABLE; break; case HA_ERR_FOUND_DUPP_KEY: { if (table) { uint key_nr=get_dup_key(error); if ((int) key_nr >= 0 && key_nr < table->s->keys) { print_keydup_error(table, &table->key_info[key_nr], errflag); DBUG_VOID_RETURN; } } textno=ER_DUP_KEY; break; } case HA_ERR_FOREIGN_DUPLICATE_KEY: { char rec_buf[MAX_KEY_LENGTH]; String rec(rec_buf, sizeof(rec_buf), system_charset_info); /* Table is opened and defined at this point */ /* Just print the subset of fields that are part of the first index, printing the whole row from there is not easy. */ key_unpack(&rec, table, &table->key_info[0]); char child_table_name[NAME_LEN + 1]; char child_key_name[NAME_LEN + 1]; if (get_foreign_dup_key(child_table_name, sizeof(child_table_name), child_key_name, sizeof(child_key_name))) { my_error(ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO, errflag, table_share->table_name.str, rec.c_ptr_safe(), child_table_name, child_key_name); } else { my_error(ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO, errflag, table_share->table_name.str, rec.c_ptr_safe()); } DBUG_VOID_RETURN; } case HA_ERR_NULL_IN_SPATIAL: my_error(ER_CANT_CREATE_GEOMETRY_OBJECT, errflag); DBUG_VOID_RETURN; case HA_ERR_FOUND_DUPP_UNIQUE: textno=ER_DUP_UNIQUE; break; case HA_ERR_RECORD_CHANGED: /* This is not fatal error when using HANDLER interface SET_FATAL_ERROR; */ textno=ER_CHECKREAD; break; case HA_ERR_CRASHED: SET_FATAL_ERROR; textno=ER_NOT_KEYFILE; break; case HA_ERR_WRONG_IN_RECORD: SET_FATAL_ERROR; textno= ER_CRASHED_ON_USAGE; break; case HA_ERR_CRASHED_ON_USAGE: SET_FATAL_ERROR; textno=ER_CRASHED_ON_USAGE; break; case HA_ERR_NOT_A_TABLE: textno= error; break; case HA_ERR_CRASHED_ON_REPAIR: SET_FATAL_ERROR; textno=ER_CRASHED_ON_REPAIR; break; case HA_ERR_OUT_OF_MEM: textno=ER_OUT_OF_RESOURCES; break; case HA_ERR_WRONG_COMMAND: my_error(ER_ILLEGAL_HA, MYF(0), table_type(), table_share->db.str, table_share->table_name.str); DBUG_VOID_RETURN; break; case HA_ERR_OLD_FILE: textno=ER_OLD_KEYFILE; break; case HA_ERR_UNSUPPORTED: textno=ER_UNSUPPORTED_EXTENSION; break; case HA_ERR_RECORD_FILE_FULL: { textno=ER_RECORD_FILE_FULL; /* Write the error message to error log */ errflag|= ME_ERROR_LOG; break; } case HA_ERR_INDEX_FILE_FULL: { textno=ER_INDEX_FILE_FULL; /* Write the error message to error log */ errflag|= ME_ERROR_LOG; break; } case HA_ERR_LOCK_WAIT_TIMEOUT: textno=ER_LOCK_WAIT_TIMEOUT; break; case HA_ERR_LOCK_TABLE_FULL: textno=ER_LOCK_TABLE_FULL; break; case HA_ERR_LOCK_DEADLOCK: { String str, full_err_msg(ER_DEFAULT(ER_LOCK_DEADLOCK), system_charset_info); get_error_message(error, &str); full_err_msg.append(str); my_printf_error(ER_LOCK_DEADLOCK, "%s", errflag, full_err_msg.c_ptr_safe()); DBUG_VOID_RETURN; } case HA_ERR_READ_ONLY_TRANSACTION: textno=ER_READ_ONLY_TRANSACTION; break; case HA_ERR_CANNOT_ADD_FOREIGN: textno=ER_CANNOT_ADD_FOREIGN; break; case HA_ERR_ROW_IS_REFERENCED: { String str; get_error_message(error, &str); my_printf_error(ER_ROW_IS_REFERENCED_2, ER(str.length() ? ER_ROW_IS_REFERENCED_2 : ER_ROW_IS_REFERENCED), errflag, str.c_ptr_safe()); DBUG_VOID_RETURN; } case HA_ERR_NO_REFERENCED_ROW: { String str; get_error_message(error, &str); my_printf_error(ER_NO_REFERENCED_ROW_2, ER(str.length() ? ER_NO_REFERENCED_ROW_2 : ER_NO_REFERENCED_ROW), errflag, str.c_ptr_safe()); DBUG_VOID_RETURN; } case HA_ERR_TABLE_DEF_CHANGED: textno=ER_TABLE_DEF_CHANGED; break; case HA_ERR_NO_SUCH_TABLE: my_error(ER_NO_SUCH_TABLE_IN_ENGINE, errflag, table_share->db.str, table_share->table_name.str); DBUG_VOID_RETURN; case HA_ERR_RBR_LOGGING_FAILED: textno= ER_BINLOG_ROW_LOGGING_FAILED; break; case HA_ERR_DROP_INDEX_FK: { const char *ptr= "???"; uint key_nr= get_dup_key(error); if ((int) key_nr >= 0) ptr= table->key_info[key_nr].name.str; my_error(ER_DROP_INDEX_FK, errflag, ptr); DBUG_VOID_RETURN; } case HA_ERR_TABLE_NEEDS_UPGRADE: textno= ER_TABLE_NEEDS_UPGRADE; my_error(ER_TABLE_NEEDS_UPGRADE, errflag, "TABLE", table_share->table_name.str); DBUG_VOID_RETURN; case HA_ERR_NO_PARTITION_FOUND: textno=ER_WRONG_PARTITION_NAME; break; case HA_ERR_TABLE_READONLY: textno= ER_OPEN_AS_READONLY; break; case HA_ERR_AUTOINC_READ_FAILED: textno= ER_AUTOINC_READ_FAILED; break; case HA_ERR_AUTOINC_ERANGE: textno= error; my_error(textno, errflag, table->next_number_field->field_name.str, table->in_use->get_stmt_da()->current_row_for_warning()); DBUG_VOID_RETURN; break; case HA_ERR_TOO_MANY_CONCURRENT_TRXS: textno= ER_TOO_MANY_CONCURRENT_TRXS; break; case HA_ERR_INDEX_COL_TOO_LONG: textno= ER_INDEX_COLUMN_TOO_LONG; break; case HA_ERR_NOT_IN_LOCK_PARTITIONS: textno=ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET; break; case HA_ERR_INDEX_CORRUPT: textno= ER_INDEX_CORRUPT; break; case HA_ERR_UNDO_REC_TOO_BIG: textno= ER_UNDO_RECORD_TOO_BIG; break; case HA_ERR_TABLE_IN_FK_CHECK: textno= ER_TABLE_IN_FK_CHECK; break; default: { /* The error was "unknown" to this function. Ask handler if it has got a message for this error */ bool temporary= FALSE; String str; temporary= get_error_message(error, &str); if (!str.is_empty()) { const char* engine= table_type(); if (temporary) my_error(ER_GET_TEMPORARY_ERRMSG, errflag, error, str.c_ptr(), engine); else { SET_FATAL_ERROR; my_error(ER_GET_ERRMSG, errflag, error, str.c_ptr(), engine); } } else my_error(ER_GET_ERRNO, errflag, error, table_type()); DBUG_VOID_RETURN; } } DBUG_ASSERT(textno > 0); if (unlikely(fatal_error)) { /* Ensure this becomes a true error */ errflag&= ~(ME_WARNING | ME_NOTE); if ((debug_assert_if_crashed_table || global_system_variables.log_warnings > 1)) { /* Log error to log before we crash or if extended warnings are requested */ errflag|= ME_ERROR_LOG; } } /* if we got an OS error from a file-based engine, specify a path of error */ if (error < HA_ERR_FIRST && bas_ext()[0]) { char buff[FN_REFLEN]; strxnmov(buff, sizeof(buff), table_share->normalized_path.str, bas_ext()[0], NULL); my_error(textno, errflag, buff, error); } else my_error(textno, errflag, table_share->table_name.str, error); DBUG_VOID_RETURN; } /** Return an error message specific to this handler. @param error error code previously returned by handler @param buf pointer to String where to add error message @return Returns true if this is a temporary error */ bool handler::get_error_message(int error, String* buf) { DBUG_EXECUTE_IF("external_lock_failure", buf->set_ascii(STRING_WITH_LEN("KABOOM!"));); return FALSE; } /** Check for incompatible collation changes. @retval HA_ADMIN_NEEDS_UPGRADE Table may have data requiring upgrade. @retval 0 No upgrade required. */ int handler::check_collation_compatibility() { ulong mysql_version= table->s->mysql_version; if (mysql_version < 50124) { KEY *key= table->key_info; KEY *key_end= key + table->s->keys; for (; key < key_end; key++) { KEY_PART_INFO *key_part= key->key_part; KEY_PART_INFO *key_part_end= key_part + key->user_defined_key_parts; for (; key_part < key_part_end; key_part++) { if (!key_part->fieldnr) continue; Field *field= table->field[key_part->fieldnr - 1]; uint cs_number= field->charset()->number; if ((mysql_version < 50048 && (cs_number == 11 || /* ascii_general_ci - bug #29499, bug #27562 */ cs_number == 41 || /* latin7_general_ci - bug #29461 */ cs_number == 42 || /* latin7_general_cs - bug #29461 */ cs_number == 20 || /* latin7_estonian_cs - bug #29461 */ cs_number == 21 || /* latin2_hungarian_ci - bug #29461 */ cs_number == 22 || /* koi8u_general_ci - bug #29461 */ cs_number == 23 || /* cp1251_ukrainian_ci - bug #29461 */ cs_number == 26)) || /* cp1250_general_ci - bug #29461 */ (mysql_version < 50124 && (cs_number == 33 || /* utf8mb3_general_ci - bug #27877 */ cs_number == 35))) /* ucs2_general_ci - bug #27877 */ return HA_ADMIN_NEEDS_UPGRADE; } } } return 0; } int handler::ha_check_for_upgrade(HA_CHECK_OPT *check_opt) { int error; KEY *keyinfo, *keyend; KEY_PART_INFO *keypart, *keypartend; if (table->s->incompatible_version) return HA_ADMIN_NEEDS_ALTER; if (!table->s->mysql_version) { /* check for blob-in-key error */ keyinfo= table->key_info; keyend= table->key_info + table->s->keys; for (; keyinfo < keyend; keyinfo++) { keypart= keyinfo->key_part; keypartend= keypart + keyinfo->user_defined_key_parts; for (; keypart < keypartend; keypart++) { if (!keypart->fieldnr) continue; Field *field= table->field[keypart->fieldnr-1]; if (field->type() == MYSQL_TYPE_BLOB) { if (check_opt->sql_flags & TT_FOR_UPGRADE) check_opt->flags= T_MEDIUM; return HA_ADMIN_NEEDS_CHECK; } } } } if (table->s->frm_version < FRM_VER_TRUE_VARCHAR) return HA_ADMIN_NEEDS_ALTER; if (unlikely((error= check_collation_compatibility()))) return error; return check_for_upgrade(check_opt); } int handler::check_old_types() { Field** field; if (!table->s->mysql_version) { /* check for bad DECIMAL field */ for (field= table->field; (*field); field++) { if ((*field)->type() == MYSQL_TYPE_NEWDECIMAL) { return HA_ADMIN_NEEDS_ALTER; } if ((*field)->type() == MYSQL_TYPE_VAR_STRING) { return HA_ADMIN_NEEDS_ALTER; } } } return 0; } static bool update_frm_version(TABLE *table) { char path[FN_REFLEN]; File file; int result= 1; DBUG_ENTER("update_frm_version"); /* No need to update frm version in case table was created or checked by server with the same version. This also ensures that we do not update frm version for temporary tables as this code doesn't support temporary tables. */ if (table->s->mysql_version == MYSQL_VERSION_ID) DBUG_RETURN(0); strxmov(path, table->s->normalized_path.str, reg_ext, NullS); if ((file= mysql_file_open(key_file_frm, path, O_RDWR|O_BINARY, MYF(MY_WME))) >= 0) { uchar version[4]; int4store(version, MYSQL_VERSION_ID); if ((result= (int)mysql_file_pwrite(file, (uchar*) version, 4, 51L, MYF(MY_WME+MY_NABP)))) goto err; table->s->mysql_version= MYSQL_VERSION_ID; } err: if (file >= 0) (void) mysql_file_close(file, MYF(MY_WME)); DBUG_RETURN(result); } /** @return key if error because of duplicated keys */ uint handler::get_dup_key(int error) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); DBUG_ENTER("handler::get_dup_key"); if (table->s->long_unique_table && table->file->errkey < table->s->keys) DBUG_RETURN(table->file->errkey); table->file->errkey = (uint) -1; if (error == HA_ERR_FOUND_DUPP_KEY || error == HA_ERR_FOREIGN_DUPLICATE_KEY || error == HA_ERR_FOUND_DUPP_UNIQUE || error == HA_ERR_NULL_IN_SPATIAL || error == HA_ERR_DROP_INDEX_FK) table->file->info(HA_STATUS_ERRKEY | HA_STATUS_NO_LOCK); DBUG_RETURN(table->file->errkey); } /** Delete all files with extension from bas_ext(). @param name Base name of table @note We assume that the handler may return more extensions than was actually used for the file. @retval 0 If we successfully deleted at least one file from base_ext and didn't get any other errors than ENOENT @retval !0 Error */ int handler::delete_table(const char *name) { int saved_error= 0; int error= 0; int enoent_or_zero; if (ht->discover_table) enoent_or_zero= 0; // the table may not exist in the engine, it's ok else enoent_or_zero= ENOENT; // the first file of bas_ext() *must* exist for (const char **ext=bas_ext(); *ext ; ext++) { if (mysql_file_delete_with_symlink(key_file_misc, name, *ext, 0)) { if (my_errno != ENOENT) { /* If error on the first existing file, return the error. Otherwise delete as much as possible. */ if (enoent_or_zero) return my_errno; saved_error= my_errno; } } else enoent_or_zero= 0; // No error for ENOENT error= enoent_or_zero; } return saved_error ? saved_error : error; } int handler::rename_table(const char * from, const char * to) { int error= 0; const char **ext, **start_ext; start_ext= bas_ext(); for (ext= start_ext; *ext ; ext++) { if (unlikely(rename_file_ext(from, to, *ext))) { if ((error=my_errno) != ENOENT) break; error= 0; } } if (unlikely(error)) { /* Try to revert the rename. Ignore errors. */ for (; ext >= start_ext; ext--) rename_file_ext(to, from, *ext); } return error; } void handler::drop_table(const char *name) { ha_close(); delete_table(name); } /** Performs checks upon the table. @param thd thread doing CHECK TABLE operation @param check_opt options from the parser @retval HA_ADMIN_OK Successful upgrade @retval HA_ADMIN_NEEDS_UPGRADE Table has structures requiring upgrade @retval HA_ADMIN_NEEDS_ALTER Table has structures requiring ALTER TABLE @retval HA_ADMIN_NOT_IMPLEMENTED */ int handler::ha_check(THD *thd, HA_CHECK_OPT *check_opt) { int error; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); if ((table->s->mysql_version >= MYSQL_VERSION_ID) && (check_opt->sql_flags & TT_FOR_UPGRADE)) return 0; if (table->s->mysql_version < MYSQL_VERSION_ID) { if (unlikely((error= check_old_types()))) return error; error= ha_check_for_upgrade(check_opt); if (unlikely(error && (error != HA_ADMIN_NEEDS_CHECK))) return error; if (unlikely(!error && (check_opt->sql_flags & TT_FOR_UPGRADE))) return 0; } if (unlikely((error= check(thd, check_opt)))) return error; /* Skip updating frm version if not main handler. */ if (table->file != this) return error; return update_frm_version(table); } /** A helper function to mark a transaction read-write, if it is started. */ void handler::mark_trx_read_write_internal() { Ha_trx_info *ha_info= &ha_thd()->ha_data[ht->slot].ha_info[0]; /* When a storage engine method is called, the transaction must have been started, unless it's a DDL call, for which the storage engine starts the transaction internally, and commits it internally, without registering in the ha_list. Unfortunately here we can't know know for sure if the engine has registered the transaction or not, so we must check. */ if (ha_info->is_started()) { DBUG_ASSERT(has_transaction_manager()); /* table_share can be NULL in ha_delete_table(). See implementation of standalone function ha_delete_table() in sql_base.cc. */ if (table_share == NULL || table_share->tmp_table == NO_TMP_TABLE) ha_info->set_trx_read_write(); } } /** Repair table: public interface. @sa handler::repair() */ int handler::ha_repair(THD* thd, HA_CHECK_OPT* check_opt) { int result; mark_trx_read_write(); result= repair(thd, check_opt); DBUG_ASSERT(result == HA_ADMIN_NOT_IMPLEMENTED || ha_table_flags() & HA_CAN_REPAIR); if (result == HA_ADMIN_OK) result= update_frm_version(table); return result; } /** Bulk update row: public interface. @sa handler::bulk_update_row() */ int handler::ha_bulk_update_row(const uchar *old_data, const uchar *new_data, ha_rows *dup_key_found) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return bulk_update_row(old_data, new_data, dup_key_found); } /** Delete all rows: public interface. @sa handler::delete_all_rows() */ int handler::ha_delete_all_rows() { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return delete_all_rows(); } /** Truncate table: public interface. @sa handler::truncate() */ int handler::ha_truncate() { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return truncate(); } /** Reset auto increment: public interface. @sa handler::reset_auto_increment() */ int handler::ha_reset_auto_increment(ulonglong value) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return reset_auto_increment(value); } /** Optimize table: public interface. @sa handler::optimize() */ int handler::ha_optimize(THD* thd, HA_CHECK_OPT* check_opt) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return optimize(thd, check_opt); } /** Analyze table: public interface. @sa handler::analyze() */ int handler::ha_analyze(THD* thd, HA_CHECK_OPT* check_opt) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); mark_trx_read_write(); return analyze(thd, check_opt); } /** Check and repair table: public interface. @sa handler::check_and_repair() */ bool handler::ha_check_and_repair(THD *thd) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_UNLCK); mark_trx_read_write(); return check_and_repair(thd); } /** Disable indexes: public interface. @sa handler::disable_indexes() */ int handler::ha_disable_indexes(uint mode) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); mark_trx_read_write(); return disable_indexes(mode); } /** Enable indexes: public interface. @sa handler::enable_indexes() */ int handler::ha_enable_indexes(uint mode) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); mark_trx_read_write(); return enable_indexes(mode); } /** Discard or import tablespace: public interface. @sa handler::discard_or_import_tablespace() */ int handler::ha_discard_or_import_tablespace(my_bool discard) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); mark_trx_read_write(); return discard_or_import_tablespace(discard); } bool handler::ha_prepare_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info) { DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); mark_trx_read_write(); return prepare_inplace_alter_table(altered_table, ha_alter_info); } bool handler::ha_commit_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info, bool commit) { /* At this point we should have an exclusive metadata lock on the table. The exception is if we're about to roll back changes (commit= false). In this case, we might be rolling back after a failed lock upgrade, so we could be holding the same lock level as for inplace_alter_table(). */ DBUG_ASSERT(ha_thd()->mdl_context.is_lock_owner(MDL_key::TABLE, table->s->db.str, table->s->table_name.str, MDL_EXCLUSIVE) || !commit); return commit_inplace_alter_table(altered_table, ha_alter_info, commit); } /* Default implementation to support in-place alter table and old online add/drop index API */ enum_alter_inplace_result handler::check_if_supported_inplace_alter(TABLE *altered_table, Alter_inplace_info *ha_alter_info) { DBUG_ENTER("handler::check_if_supported_inplace_alter"); HA_CREATE_INFO *create_info= ha_alter_info->create_info; if (altered_table->versioned(VERS_TIMESTAMP)) DBUG_RETURN(HA_ALTER_INPLACE_NOT_SUPPORTED); alter_table_operations inplace_offline_operations= ALTER_COLUMN_TYPE_CHANGE_BY_ENGINE | ALTER_COLUMN_NAME | ALTER_RENAME_COLUMN | ALTER_CHANGE_COLUMN_DEFAULT | ALTER_COLUMN_DEFAULT | ALTER_COLUMN_OPTION | ALTER_CHANGE_CREATE_OPTION | ALTER_DROP_CHECK_CONSTRAINT | ALTER_PARTITIONED | ALTER_VIRTUAL_GCOL_EXPR | ALTER_RENAME; /* Is there at least one operation that requires copy algorithm? */ if (ha_alter_info->handler_flags & ~inplace_offline_operations) DBUG_RETURN(HA_ALTER_INPLACE_NOT_SUPPORTED); /* The following checks for changes related to ALTER_OPTIONS ALTER TABLE tbl_name CONVERT TO CHARACTER SET .. and ALTER TABLE table_name DEFAULT CHARSET = .. most likely change column charsets and so not supported in-place through old API. Changing of PACK_KEYS, MAX_ROWS and ROW_FORMAT options were not supported as in-place operations in old API either. */ if (create_info->used_fields & (HA_CREATE_USED_CHARSET | HA_CREATE_USED_DEFAULT_CHARSET | HA_CREATE_USED_PACK_KEYS | HA_CREATE_USED_CHECKSUM | HA_CREATE_USED_MAX_ROWS) || (table->s->row_type != create_info->row_type)) DBUG_RETURN(HA_ALTER_INPLACE_NOT_SUPPORTED); uint table_changes= (ha_alter_info->handler_flags & ALTER_COLUMN_TYPE_CHANGE_BY_ENGINE) ? IS_EQUAL_PACK_LENGTH : IS_EQUAL_YES; if (table->file->check_if_incompatible_data(create_info, table_changes) == COMPATIBLE_DATA_YES) DBUG_RETURN(HA_ALTER_INPLACE_NO_LOCK); DBUG_RETURN(HA_ALTER_INPLACE_NOT_SUPPORTED); } Alter_inplace_info::Alter_inplace_info(HA_CREATE_INFO *create_info_arg, Alter_info *alter_info_arg, KEY *key_info_arg, uint key_count_arg, partition_info *modified_part_info_arg, bool ignore_arg) : create_info(create_info_arg), alter_info(alter_info_arg), key_info_buffer(key_info_arg), key_count(key_count_arg), index_drop_count(0), index_drop_buffer(nullptr), index_add_count(0), index_add_buffer(nullptr), rename_keys(current_thd->mem_root), handler_ctx(nullptr), group_commit_ctx(nullptr), handler_flags(0), modified_part_info(modified_part_info_arg), ignore(ignore_arg), online(false), unsupported_reason(nullptr) {} void Alter_inplace_info::report_unsupported_error(const char *not_supported, const char *try_instead) const { if (unsupported_reason == NULL) my_error(ER_ALTER_OPERATION_NOT_SUPPORTED, MYF(0), not_supported, try_instead); else my_error(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON, MYF(0), not_supported, unsupported_reason, try_instead); } /** Rename table: public interface. @sa handler::rename_table() */ int handler::ha_rename_table(const char *from, const char *to) { DBUG_ASSERT(m_lock_type == F_UNLCK); mark_trx_read_write(); return rename_table(from, to); } /** Delete table: public interface. @sa handler::delete_table() */ int handler::ha_delete_table(const char *name) { mark_trx_read_write(); return delete_table(name); } /** Drop table in the engine: public interface. @sa handler::drop_table() The difference between this and delete_table() is that the table is open in drop_table(). */ void handler::ha_drop_table(const char *name) { DBUG_ASSERT(m_lock_type == F_UNLCK); mark_trx_read_write(); return drop_table(name); } /** Create a table in the engine: public interface. @sa handler::create() */ int handler::ha_create(const char *name, TABLE *form, HA_CREATE_INFO *info_arg) { DBUG_ASSERT(m_lock_type == F_UNLCK); mark_trx_read_write(); int error= create(name, form, info_arg); if (!error && !(info_arg->options & (HA_LEX_CREATE_TMP_TABLE | HA_CREATE_TMP_ALTER))) mysql_audit_create_table(form); return error; } /** Create handler files for CREATE TABLE: public interface. @sa handler::create_partitioning_metadata() */ int handler::ha_create_partitioning_metadata(const char *name, const char *old_name, int action_flag) { /* Normally this is done when unlocked, but in fast_alter_partition_table, it is done on an already locked handler when preparing to alter/rename partitions. */ DBUG_ASSERT(m_lock_type == F_UNLCK || (!old_name && strcmp(name, table_share->path.str))); mark_trx_read_write(); return create_partitioning_metadata(name, old_name, action_flag); } /** Change partitions: public interface. @sa handler::change_partitions() */ int handler::ha_change_partitions(HA_CREATE_INFO *create_info, const char *path, ulonglong * const copied, ulonglong * const deleted, const uchar *pack_frm_data, size_t pack_frm_len) { /* Must have at least RDLCK or be a TMP table. Read lock is needed to read from current partitions and write lock will be taken on new partitions. */ DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK); mark_trx_read_write(); return change_partitions(create_info, path, copied, deleted, pack_frm_data, pack_frm_len); } /** Drop partitions: public interface. @sa handler::drop_partitions() */ int handler::ha_drop_partitions(const char *path) { DBUG_ASSERT(!table->db_stat); mark_trx_read_write(); return drop_partitions(path); } /** Rename partitions: public interface. @sa handler::rename_partitions() */ int handler::ha_rename_partitions(const char *path) { DBUG_ASSERT(!table->db_stat); mark_trx_read_write(); return rename_partitions(path); } /** Tell the storage engine that it is allowed to "disable transaction" in the handler. It is a hint that ACID is not required - it was used in NDB for ALTER TABLE, for example, when data are copied to temporary table. A storage engine may treat this hint any way it likes. NDB for example started to commit every now and then automatically. This hint can be safely ignored. */ int ha_enable_transaction(THD *thd, bool on) { int error=0; DBUG_ENTER("ha_enable_transaction"); DBUG_PRINT("enter", ("on: %d", (int) on)); if ((thd->transaction.on= on)) { /* Now all storage engines should have transaction handling enabled. But some may have it enabled all the time - "disabling" transactions is an optimization hint that storage engine is free to ignore. So, let's commit an open transaction (if any) now. */ if (likely(!(error= ha_commit_trans(thd, 0)))) error= trans_commit_implicit(thd); } DBUG_RETURN(error); } int handler::index_next_same(uchar *buf, const uchar *key, uint keylen) { int error; DBUG_ENTER("handler::index_next_same"); if (!(error=index_next(buf))) { my_ptrdiff_t ptrdiff= buf - table->record[0]; uchar *UNINIT_VAR(save_record_0); KEY *UNINIT_VAR(key_info); KEY_PART_INFO *UNINIT_VAR(key_part); KEY_PART_INFO *UNINIT_VAR(key_part_end); /* key_cmp_if_same() compares table->record[0] against 'key'. In parts it uses table->record[0] directly, in parts it uses field objects with their local pointers into table->record[0]. If 'buf' is distinct from table->record[0], we need to move all record references. This is table->record[0] itself and the field pointers of the fields used in this key. */ if (ptrdiff) { save_record_0= table->record[0]; table->record[0]= buf; key_info= table->key_info + active_index; key_part= key_info->key_part; key_part_end= key_part + key_info->user_defined_key_parts; for (; key_part < key_part_end; key_part++) { DBUG_ASSERT(key_part->field); key_part->field->move_field_offset(ptrdiff); } } if (key_cmp_if_same(table, key, active_index, keylen)) { table->status=STATUS_NOT_FOUND; error=HA_ERR_END_OF_FILE; } /* Move back if necessary. */ if (ptrdiff) { table->record[0]= save_record_0; for (key_part= key_info->key_part; key_part < key_part_end; key_part++) key_part->field->move_field_offset(-ptrdiff); } } DBUG_PRINT("return",("%i", error)); DBUG_RETURN(error); } void handler::get_dynamic_partition_info(PARTITION_STATS *stat_info, uint part_id) { info(HA_STATUS_CONST | HA_STATUS_TIME | HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); stat_info->records= stats.records; stat_info->mean_rec_length= stats.mean_rec_length; stat_info->data_file_length= stats.data_file_length; stat_info->max_data_file_length= stats.max_data_file_length; stat_info->index_file_length= stats.index_file_length; stat_info->max_index_file_length=stats.max_index_file_length; stat_info->delete_length= stats.delete_length; stat_info->create_time= stats.create_time; stat_info->update_time= stats.update_time; stat_info->check_time= stats.check_time; stat_info->check_sum= stats.checksum; stat_info->check_sum_null= stats.checksum_null; } /* Updates the global table stats with the TABLE this handler represents */ void handler::update_global_table_stats() { TABLE_STATS * table_stats; status_var_add(table->in_use->status_var.rows_read, rows_read); DBUG_ASSERT(rows_tmp_read == 0); if (!table->in_use->userstat_running) { rows_read= rows_changed= 0; return; } if (rows_read + rows_changed == 0) return; // Nothing to update. DBUG_ASSERT(table->s); DBUG_ASSERT(table->s->table_cache_key.str); mysql_mutex_lock(&LOCK_global_table_stats); /* Gets the global table stats, creating one if necessary. */ if (!(table_stats= (TABLE_STATS*) my_hash_search(&global_table_stats, (uchar*) table->s->table_cache_key.str, table->s->table_cache_key.length))) { if (!(table_stats = ((TABLE_STATS*) my_malloc(sizeof(TABLE_STATS), MYF(MY_WME | MY_ZEROFILL))))) { /* Out of memory error already given */ goto end; } memcpy(table_stats->table, table->s->table_cache_key.str, table->s->table_cache_key.length); table_stats->table_name_length= (uint)table->s->table_cache_key.length; table_stats->engine_type= ht->db_type; /* No need to set variables to 0, as we use MY_ZEROFILL above */ if (my_hash_insert(&global_table_stats, (uchar*) table_stats)) { /* Out of memory error is already given */ my_free(table_stats); goto end; } } // Updates the global table stats. table_stats->rows_read+= rows_read; table_stats->rows_changed+= rows_changed; table_stats->rows_changed_x_indexes+= (rows_changed * (table->s->keys ? table->s->keys : 1)); rows_read= rows_changed= 0; end: mysql_mutex_unlock(&LOCK_global_table_stats); } /* Updates the global index stats with this handler's accumulated index reads. */ void handler::update_global_index_stats() { DBUG_ASSERT(table->s); if (!table->in_use->userstat_running) { /* Reset all index read values */ bzero(index_rows_read, sizeof(index_rows_read[0]) * table->s->keys); return; } for (uint index = 0; index < table->s->keys; index++) { if (index_rows_read[index]) { INDEX_STATS* index_stats; size_t key_length; KEY *key_info = &table->key_info[index]; // Rows were read using this DBUG_ASSERT(key_info->cache_name); if (!key_info->cache_name) continue; key_length= table->s->table_cache_key.length + key_info->name.length + 1; mysql_mutex_lock(&LOCK_global_index_stats); // Gets the global index stats, creating one if necessary. if (!(index_stats= (INDEX_STATS*) my_hash_search(&global_index_stats, key_info->cache_name, key_length))) { if (!(index_stats = ((INDEX_STATS*) my_malloc(sizeof(INDEX_STATS), MYF(MY_WME | MY_ZEROFILL))))) goto end; // Error is already given memcpy(index_stats->index, key_info->cache_name, key_length); index_stats->index_name_length= key_length; if (my_hash_insert(&global_index_stats, (uchar*) index_stats)) { my_free(index_stats); goto end; } } /* Updates the global index stats. */ index_stats->rows_read+= index_rows_read[index]; index_rows_read[index]= 0; end: mysql_mutex_unlock(&LOCK_global_index_stats); } } } static void flush_checksum(ha_checksum *row_crc, uchar **checksum_start, size_t *checksum_length) { if (*checksum_start) { *row_crc= my_checksum(*row_crc, *checksum_start, *checksum_length); *checksum_start= NULL; *checksum_length= 0; } } /* calculating table's checksum */ int handler::calculate_checksum() { int error; THD *thd=ha_thd(); DBUG_ASSERT(table->s->last_null_bit_pos < 8); uchar null_mask= table->s->last_null_bit_pos ? 256 - (1 << table->s->last_null_bit_pos) : 0; table->use_all_stored_columns(); stats.checksum= 0; if ((error= ha_rnd_init(1))) return error; for (;;) { if (thd->killed) return HA_ERR_ABORTED_BY_USER; ha_checksum row_crc= 0; error= ha_rnd_next(table->record[0]); if (error) break; if (table->s->null_bytes) { /* fix undefined null bits */ table->record[0][table->s->null_bytes-1] |= null_mask; if (!(table->s->db_create_options & HA_OPTION_PACK_RECORD)) table->record[0][0] |= 1; row_crc= my_checksum(row_crc, table->record[0], table->s->null_bytes); } uchar *checksum_start= NULL; size_t checksum_length= 0; for (uint i= 0; i < table->s->fields; i++ ) { Field *f= table->field[i]; if (! thd->variables.old_mode && f->is_real_null(0)) { flush_checksum(&row_crc, &checksum_start, &checksum_length); continue; } /* BLOB and VARCHAR have pointers in their field, we must convert to string; GEOMETRY is implemented on top of BLOB. BIT may store its data among NULL bits, convert as well. */ switch (f->type()) { case MYSQL_TYPE_BLOB: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_BIT: { flush_checksum(&row_crc, &checksum_start, &checksum_length); String tmp; f->val_str(&tmp); row_crc= my_checksum(row_crc, (uchar*) tmp.ptr(), tmp.length()); break; } default: if (!checksum_start) checksum_start= f->ptr; DBUG_ASSERT(checksum_start + checksum_length == f->ptr); checksum_length+= f->pack_length(); break; } } flush_checksum(&row_crc, &checksum_start, &checksum_length); stats.checksum+= row_crc; } ha_rnd_end(); return error == HA_ERR_END_OF_FILE ? 0 : error; } /**************************************************************************** ** Some general functions that isn't in the handler class ****************************************************************************/ /** Initiates table-file and calls appropriate database-creator. @retval 0 ok @retval 1 error */ int ha_create_table(THD *thd, const char *path, const char *db, const char *table_name, HA_CREATE_INFO *create_info, LEX_CUSTRING *frm) { int error= 1; TABLE table; char name_buff[FN_REFLEN]; const char *name; TABLE_SHARE share; bool temp_table __attribute__((unused)) = create_info->options & (HA_LEX_CREATE_TMP_TABLE | HA_CREATE_TMP_ALTER); DBUG_ENTER("ha_create_table"); init_tmp_table_share(thd, &share, db, 0, table_name, path); if (frm) { bool write_frm_now= !create_info->db_type->discover_table && !create_info->tmp_table(); share.frm_image= frm; // open an frm image if (share.init_from_binary_frm_image(thd, write_frm_now, frm->str, frm->length)) goto err; } else { // open an frm file share.db_plugin= ha_lock_engine(thd, create_info->db_type); if (open_table_def(thd, &share)) goto err; } share.m_psi= PSI_CALL_get_table_share(temp_table, &share); if (open_table_from_share(thd, &share, &empty_clex_str, 0, READ_ALL, 0, &table, true)) goto err; update_create_info_from_table(create_info, &table); name= get_canonical_filename(table.file, share.path.str, name_buff); error= table.file->ha_create(name, &table, create_info); if (unlikely(error)) { if (!thd->is_error()) my_error(ER_CANT_CREATE_TABLE, MYF(0), db, table_name, error); table.file->print_error(error, MYF(ME_WARNING)); PSI_CALL_drop_table_share(temp_table, share.db.str, (uint)share.db.length, share.table_name.str, (uint)share.table_name.length); } (void) closefrm(&table); err: free_table_share(&share); DBUG_RETURN(error != 0); } void st_ha_check_opt::init() { flags= sql_flags= 0; start_time= my_time(0); } /***************************************************************************** Key cache handling. This code is only relevant for ISAM/MyISAM tables key_cache->cache may be 0 only in the case where a key cache is not initialized or when we where not able to init the key cache in a previous call to ha_init_key_cache() (probably out of memory) *****************************************************************************/ /** Init a key cache if it has not been initied before. */ int ha_init_key_cache(const char *name, KEY_CACHE *key_cache, void *unused __attribute__((unused))) { DBUG_ENTER("ha_init_key_cache"); if (!key_cache->key_cache_inited) { mysql_mutex_lock(&LOCK_global_system_variables); size_t tmp_buff_size= (size_t) key_cache->param_buff_size; uint tmp_block_size= (uint) key_cache->param_block_size; uint division_limit= (uint)key_cache->param_division_limit; uint age_threshold= (uint)key_cache->param_age_threshold; uint partitions= (uint)key_cache->param_partitions; uint changed_blocks_hash_size= (uint)key_cache->changed_blocks_hash_size; mysql_mutex_unlock(&LOCK_global_system_variables); DBUG_RETURN(!init_key_cache(key_cache, tmp_block_size, tmp_buff_size, division_limit, age_threshold, changed_blocks_hash_size, partitions)); } DBUG_RETURN(0); } /** Resize key cache. */ int ha_resize_key_cache(KEY_CACHE *key_cache) { DBUG_ENTER("ha_resize_key_cache"); if (key_cache->key_cache_inited) { mysql_mutex_lock(&LOCK_global_system_variables); size_t tmp_buff_size= (size_t) key_cache->param_buff_size; long tmp_block_size= (long) key_cache->param_block_size; uint division_limit= (uint)key_cache->param_division_limit; uint age_threshold= (uint)key_cache->param_age_threshold; uint changed_blocks_hash_size= (uint)key_cache->changed_blocks_hash_size; mysql_mutex_unlock(&LOCK_global_system_variables); DBUG_RETURN(!resize_key_cache(key_cache, tmp_block_size, tmp_buff_size, division_limit, age_threshold, changed_blocks_hash_size)); } DBUG_RETURN(0); } /** Change parameters for key cache (like division_limit) */ int ha_change_key_cache_param(KEY_CACHE *key_cache) { DBUG_ENTER("ha_change_key_cache_param"); if (key_cache->key_cache_inited) { mysql_mutex_lock(&LOCK_global_system_variables); uint division_limit= (uint)key_cache->param_division_limit; uint age_threshold= (uint)key_cache->param_age_threshold; mysql_mutex_unlock(&LOCK_global_system_variables); change_key_cache_param(key_cache, division_limit, age_threshold); } DBUG_RETURN(0); } /** Repartition key cache */ int ha_repartition_key_cache(KEY_CACHE *key_cache) { DBUG_ENTER("ha_repartition_key_cache"); if (key_cache->key_cache_inited) { mysql_mutex_lock(&LOCK_global_system_variables); size_t tmp_buff_size= (size_t) key_cache->param_buff_size; long tmp_block_size= (long) key_cache->param_block_size; uint division_limit= (uint)key_cache->param_division_limit; uint age_threshold= (uint)key_cache->param_age_threshold; uint partitions= (uint)key_cache->param_partitions; uint changed_blocks_hash_size= (uint)key_cache->changed_blocks_hash_size; mysql_mutex_unlock(&LOCK_global_system_variables); DBUG_RETURN(!repartition_key_cache(key_cache, tmp_block_size, tmp_buff_size, division_limit, age_threshold, changed_blocks_hash_size, partitions)); } DBUG_RETURN(0); } /** Move all tables from one key cache to another one. */ int ha_change_key_cache(KEY_CACHE *old_key_cache, KEY_CACHE *new_key_cache) { mi_change_key_cache(old_key_cache, new_key_cache); return 0; } static my_bool discover_handlerton(THD *thd, plugin_ref plugin, void *arg) { TABLE_SHARE *share= (TABLE_SHARE *)arg; handlerton *hton= plugin_hton(plugin); if (hton->discover_table) { share->db_plugin= plugin; int error= hton->discover_table(hton, thd, share); if (error != HA_ERR_NO_SUCH_TABLE) { if (unlikely(error)) { if (!share->error) { share->error= OPEN_FRM_ERROR_ALREADY_ISSUED; plugin_unlock(0, share->db_plugin); } /* report an error, unless it is "generic" and a more specific one was already reported */ if (error != HA_ERR_GENERIC || !thd->is_error()) my_error(ER_GET_ERRNO, MYF(0), error, plugin_name(plugin)->str); share->db_plugin= 0; } else share->error= OPEN_FRM_OK; status_var_increment(thd->status_var.ha_discover_count); return TRUE; // abort the search } share->db_plugin= 0; } DBUG_ASSERT(share->error == OPEN_FRM_OPEN_ERROR); return FALSE; // continue with the next engine } int ha_discover_table(THD *thd, TABLE_SHARE *share) { DBUG_ENTER("ha_discover_table"); int found; DBUG_ASSERT(share->error == OPEN_FRM_OPEN_ERROR); // share is not OK yet if (!engines_with_discover) found= FALSE; else if (share->db_plugin) found= discover_handlerton(thd, share->db_plugin, share); else found= plugin_foreach(thd, discover_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, share); if (!found) open_table_error(share, OPEN_FRM_OPEN_ERROR, ENOENT); // not found DBUG_RETURN(share->error != OPEN_FRM_OK); } static my_bool file_ext_exists(char *path, size_t path_len, const char *ext) { strmake(path + path_len, ext, FN_REFLEN - path_len); return !access(path, F_OK); } struct st_discover_existence_args { char *path; size_t path_len; const char *db, *table_name; handlerton *hton; bool frm_exists; }; static my_bool discover_existence(THD *thd, plugin_ref plugin, void *arg) { st_discover_existence_args *args= (st_discover_existence_args*)arg; handlerton *ht= plugin_hton(plugin); if (!ht->discover_table_existence) return args->frm_exists; args->hton= ht; if (ht->discover_table_existence == ext_based_existence) return file_ext_exists(args->path, args->path_len, ht->tablefile_extensions[0]); return ht->discover_table_existence(ht, args->db, args->table_name); } class Table_exists_error_handler : public Internal_error_handler { public: Table_exists_error_handler() : m_handled_errors(0), m_unhandled_errors(0) {} bool handle_condition(THD *thd, uint sql_errno, const char* sqlstate, Sql_condition::enum_warning_level *level, const char* msg, Sql_condition ** cond_hdl) { *cond_hdl= NULL; if (sql_errno == ER_NO_SUCH_TABLE || sql_errno == ER_NO_SUCH_TABLE_IN_ENGINE || sql_errno == ER_WRONG_OBJECT) { m_handled_errors++; return TRUE; } if (*level == Sql_condition::WARN_LEVEL_ERROR) m_unhandled_errors++; return FALSE; } bool safely_trapped_errors() { return ((m_handled_errors > 0) && (m_unhandled_errors == 0)); } private: int m_handled_errors; int m_unhandled_errors; }; /** Check if a given table exists, without doing a full discover, if possible If the 'hton' is not NULL, it's set to the handlerton of the storage engine of this table, or to view_pseudo_hton if the frm belongs to a view. This function takes discovery correctly into account. If frm is found, it discovers the table to make sure it really exists in the engine. If no frm is found it discovers the table, in case it still exists in the engine. While it tries to cut corners (don't open .frm if no discovering engine is enabled, no full discovery if all discovering engines support discover_table_existence, etc), it still *may* be quite expensive and must be used sparingly. @retval true Table exists (even if the error occurred, like bad frm) @retval false Table does not exist (one can do CREATE TABLE table_name) @note if frm exists and the table in engine doesn't, *hton will be set, but the return value will be false. @note if frm file exists, but the table cannot be opened (engine not loaded, frm is invalid), the return value will be true, but *hton will be NULL. */ bool ha_table_exists(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *table_name, handlerton **hton, bool *is_sequence) { handlerton *dummy; bool dummy2; DBUG_ENTER("ha_table_exists"); if (hton) *hton= 0; else if (engines_with_discover) hton= &dummy; if (!is_sequence) is_sequence= &dummy2; *is_sequence= 0; TDC_element *element= tdc_lock_share(thd, db->str, table_name->str); if (element && element != MY_ERRPTR) { if (hton) *hton= element->share->db_type(); *is_sequence= element->share->table_type == TABLE_TYPE_SEQUENCE; tdc_unlock_share(element); DBUG_RETURN(TRUE); } char path[FN_REFLEN + 1]; size_t path_len = build_table_filename(path, sizeof(path) - 1, db->str, table_name->str, "", 0); st_discover_existence_args args= {path, path_len, db->str, table_name->str, 0, true}; if (file_ext_exists(path, path_len, reg_ext)) { bool exists= true; if (hton) { char engine_buf[NAME_CHAR_LEN + 1]; LEX_CSTRING engine= { engine_buf, 0 }; Table_type type; if ((type= dd_frm_type(thd, path, &engine, is_sequence)) == TABLE_TYPE_UNKNOWN) DBUG_RETURN(0); if (type != TABLE_TYPE_VIEW) { plugin_ref p= plugin_lock_by_name(thd, &engine, MYSQL_STORAGE_ENGINE_PLUGIN); *hton= p ? plugin_hton(p) : NULL; if (*hton) // verify that the table really exists exists= discover_existence(thd, p, &args); } else *hton= view_pseudo_hton; } DBUG_RETURN(exists); } args.frm_exists= false; if (plugin_foreach(thd, discover_existence, MYSQL_STORAGE_ENGINE_PLUGIN, &args)) { if (hton) *hton= args.hton; DBUG_RETURN(TRUE); } if (need_full_discover_for_existence) { TABLE_LIST table; uint flags = GTS_TABLE | GTS_VIEW; if (!hton) flags|= GTS_NOLOCK; Table_exists_error_handler no_such_table_handler; thd->push_internal_handler(&no_such_table_handler); table.init_one_table(db, table_name, 0, TL_READ); TABLE_SHARE *share= tdc_acquire_share(thd, &table, flags); thd->pop_internal_handler(); if (hton && share) { *hton= share->db_type(); tdc_release_share(share); } // the table doesn't exist if we've caught ER_NO_SUCH_TABLE and nothing else DBUG_RETURN(!no_such_table_handler.safely_trapped_errors()); } DBUG_RETURN(FALSE); } /** Discover all table names in a given database */ extern "C" { static int cmp_file_names(const void *a, const void *b) { CHARSET_INFO *cs= character_set_filesystem; char *aa= ((FILEINFO *)a)->name; char *bb= ((FILEINFO *)b)->name; return my_strnncoll(cs, (uchar*)aa, strlen(aa), (uchar*)bb, strlen(bb)); } static int cmp_table_names(LEX_CSTRING * const *a, LEX_CSTRING * const *b) { return my_strnncoll(&my_charset_bin, (uchar*)((*a)->str), (*a)->length, (uchar*)((*b)->str), (*b)->length); } #ifndef DBUG_OFF static int cmp_table_names_desc(LEX_CSTRING * const *a, LEX_CSTRING * const *b) { return -cmp_table_names(a, b); } #endif } Discovered_table_list::Discovered_table_list(THD *thd_arg, Dynamic_array *tables_arg, const LEX_CSTRING *wild_arg) : thd(thd_arg), with_temps(false), tables(tables_arg) { if (wild_arg->str && wild_arg->str[0]) { wild= wild_arg->str; wend= wild + wild_arg->length; } else wild= 0; } bool Discovered_table_list::add_table(const char *tname, size_t tlen) { /* TODO Check with_temps and filter out temp tables. Implement the check, when we'll have at least one affected engine (with custom discover_table_names() method, that calls add_table() directly). Note: avoid comparing the same name twice (here and in add_file). */ if (wild && my_wildcmp(table_alias_charset, tname, tname + tlen, wild, wend, wild_prefix, wild_one, wild_many)) return 0; LEX_CSTRING *name= thd->make_clex_string(tname, tlen); if (!name || tables->append(name)) return 1; return 0; } bool Discovered_table_list::add_file(const char *fname) { bool is_temp= strncmp(fname, STRING_WITH_LEN(tmp_file_prefix)) == 0; if (is_temp && !with_temps) return 0; char tname[SAFE_NAME_LEN + 1]; size_t tlen= filename_to_tablename(fname, tname, sizeof(tname), is_temp); return add_table(tname, tlen); } void Discovered_table_list::sort() { tables->sort(cmp_table_names); } #ifndef DBUG_OFF void Discovered_table_list::sort_desc() { tables->sort(cmp_table_names_desc); } #endif void Discovered_table_list::remove_duplicates() { LEX_CSTRING **src= tables->front(); LEX_CSTRING **dst= src; sort(); while (++dst <= tables->back()) { LEX_CSTRING *s= *src, *d= *dst; DBUG_ASSERT(strncmp(s->str, d->str, MY_MIN(s->length, d->length)) <= 0); if ((s->length != d->length || strncmp(s->str, d->str, d->length))) { src++; if (src != dst) *src= *dst; } } tables->elements(src - tables->front() + 1); } struct st_discover_names_args { LEX_CSTRING *db; MY_DIR *dirp; Discovered_table_list *result; uint possible_duplicates; }; static my_bool discover_names(THD *thd, plugin_ref plugin, void *arg) { st_discover_names_args *args= (st_discover_names_args *)arg; handlerton *ht= plugin_hton(plugin); if (ht->discover_table_names) { size_t old_elements= args->result->tables->elements(); if (ht->discover_table_names(ht, args->db, args->dirp, args->result)) return 1; /* hton_ext_based_table_discovery never discovers a table that has a corresponding .frm file; but custom engine discover methods might */ if (ht->discover_table_names != hton_ext_based_table_discovery) args->possible_duplicates+= (uint)(args->result->tables->elements() - old_elements); } return 0; } /** Return the list of tables @param thd @param db database to look into @param dirp list of files in this database (as returned by my_dir()) @param result the object to return the list of files in @param reusable if true, on return, 'dirp' will be a valid list of all non-table files. If false, discovery will work much faster, but it will leave 'dirp' corrupted and completely unusable, only good for my_dirend(). Normally, reusable=false for SHOW and INFORMATION_SCHEMA, and reusable=true for DROP DATABASE (as it needs to know and delete non-table files). */ int ha_discover_table_names(THD *thd, LEX_CSTRING *db, MY_DIR *dirp, Discovered_table_list *result, bool reusable) { int error; DBUG_ENTER("ha_discover_table_names"); if (engines_with_discover_file_names == 0 && !reusable) { st_discover_names_args args= {db, NULL, result, 0}; error= ext_table_discovery_simple(dirp, result) || plugin_foreach(thd, discover_names, MYSQL_STORAGE_ENGINE_PLUGIN, &args); if (args.possible_duplicates > 0) result->remove_duplicates(); } else { st_discover_names_args args= {db, dirp, result, 0}; /* extension_based_table_discovery relies on dirp being sorted */ my_qsort(dirp->dir_entry, dirp->number_of_files, sizeof(FILEINFO), cmp_file_names); error= extension_based_table_discovery(dirp, reg_ext, result) || plugin_foreach(thd, discover_names, MYSQL_STORAGE_ENGINE_PLUGIN, &args); if (args.possible_duplicates > 0) result->remove_duplicates(); } DBUG_RETURN(error); } /* int handler::pre_read_multi_range_first(KEY_MULTI_RANGE **found_range_p, KEY_MULTI_RANGE *ranges, uint range_count, bool sorted, HANDLER_BUFFER *buffer, bool use_parallel) { int result; DBUG_ENTER("handler::pre_read_multi_range_first"); result = pre_read_range_first(ranges->start_key.keypart_map ? &ranges->start_key : 0, ranges->end_key.keypart_map ? &ranges->end_key : 0, test(ranges->range_flag & EQ_RANGE), sorted, use_parallel); DBUG_RETURN(result); } */ /** Read first row between two ranges. Store ranges for future calls to read_range_next. @param start_key Start key. Is 0 if no min range @param end_key End key. Is 0 if no max range @param eq_range_arg Set to 1 if start_key == end_key @param sorted Set to 1 if result should be sorted per key @note Record is read into table->record[0] @retval 0 Found row @retval HA_ERR_END_OF_FILE No rows in range @retval \# Error code */ int handler::read_range_first(const key_range *start_key, const key_range *end_key, bool eq_range_arg, bool sorted) { int result; DBUG_ENTER("handler::read_range_first"); eq_range= eq_range_arg; set_end_range(end_key); range_key_part= table->key_info[active_index].key_part; if (!start_key) // Read first record result= ha_index_first(table->record[0]); else result= ha_index_read_map(table->record[0], start_key->key, start_key->keypart_map, start_key->flag); if (result) DBUG_RETURN((result == HA_ERR_KEY_NOT_FOUND) ? HA_ERR_END_OF_FILE : result); if (compare_key(end_range) <= 0) { DBUG_RETURN(0); } else { /* The last read row does not fall in the range. So request storage engine to release row lock if possible. */ unlock_row(); DBUG_RETURN(HA_ERR_END_OF_FILE); } } /** Read next row between two ranges. @note Record is read into table->record[0] @retval 0 Found row @retval HA_ERR_END_OF_FILE No rows in range @retval \# Error code */ int handler::read_range_next() { int result; DBUG_ENTER("handler::read_range_next"); if (eq_range) { /* We trust that index_next_same always gives a row in range */ DBUG_RETURN(ha_index_next_same(table->record[0], end_range->key, end_range->length)); } result= ha_index_next(table->record[0]); if (result) DBUG_RETURN(result); if (compare_key(end_range) <= 0) { DBUG_RETURN(0); } else { /* The last read row does not fall in the range. So request storage engine to release row lock if possible. */ unlock_row(); DBUG_RETURN(HA_ERR_END_OF_FILE); } } void handler::set_end_range(const key_range *end_key) { end_range= 0; if (end_key) { end_range= &save_end_range; save_end_range= *end_key; key_compare_result_on_equal= ((end_key->flag == HA_READ_BEFORE_KEY) ? 1 : (end_key->flag == HA_READ_AFTER_KEY) ? -1 : 0); } } /** Compare if found key (in row) is over max-value. @param range range to compare to row. May be 0 for no range @see also key.cc::key_cmp() @return The return value is SIGN(key_in_row - range_key): - 0 : Key is equal to range or 'range' == 0 (no range) - -1 : Key is less than range - 1 : Key is larger than range */ int handler::compare_key(key_range *range) { int cmp; if (!range || in_range_check_pushed_down) return 0; // No max range cmp= key_cmp(range_key_part, range->key, range->length); if (!cmp) cmp= key_compare_result_on_equal; return cmp; } /* Same as compare_key() but doesn't check have in_range_check_pushed_down. This is used by index condition pushdown implementation. */ int handler::compare_key2(key_range *range) const { int cmp; if (!range) return 0; // no max range cmp= key_cmp(range_key_part, range->key, range->length); if (!cmp) cmp= key_compare_result_on_equal; return cmp; } /** ICP callback - to be called by an engine to check the pushed condition */ extern "C" enum icp_result handler_index_cond_check(void* h_arg) { handler *h= (handler*)h_arg; THD *thd= h->table->in_use; enum icp_result res; enum thd_kill_levels abort_at= h->has_transactions() ? THD_ABORT_SOFTLY : THD_ABORT_ASAP; if (thd_kill_level(thd) > abort_at) return ICP_ABORTED_BY_USER; if (h->end_range && h->compare_key2(h->end_range) > 0) return ICP_OUT_OF_RANGE; h->increment_statistics(&SSV::ha_icp_attempts); if ((res= h->pushed_idx_cond->val_int()? ICP_MATCH : ICP_NO_MATCH) == ICP_MATCH) h->increment_statistics(&SSV::ha_icp_match); return res; } /** Rowid filter callback - to be called by an engine to check rowid / primary keys of the rows whose data is to be fetched against the used rowid filter */ extern "C" int handler_rowid_filter_check(void *h_arg) { handler *h= (handler*) h_arg; TABLE *tab= h->get_table(); h->position(tab->record[0]); return h->pushed_rowid_filter->check((char *) h->ref); } /** Callback function for an engine to check whether the used rowid filter has been already built */ extern "C" int handler_rowid_filter_is_active(void *h_arg) { if (!h_arg) return false; handler *h= (handler*) h_arg; return h->rowid_filter_is_active; } int handler::index_read_idx_map(uchar * buf, uint index, const uchar * key, key_part_map keypart_map, enum ha_rkey_function find_flag) { int error, UNINIT_VAR(error1); error= ha_index_init(index, 0); if (likely(!error)) { error= index_read_map(buf, key, keypart_map, find_flag); error1= ha_index_end(); } return error ? error : error1; } /** Returns a list of all known extensions. No mutexes, worst case race is a minor surplus memory allocation We have to recreate the extension map if mysqld is restarted (for example within libmysqld) @retval pointer pointer to TYPELIB structure */ static my_bool exts_handlerton(THD *unused, plugin_ref plugin, void *arg) { List *found_exts= (List *) arg; handlerton *hton= plugin_hton(plugin); List_iterator_fast it(*found_exts); const char **ext, *old_ext; for (ext= hton->tablefile_extensions; *ext; ext++) { while ((old_ext= it++)) { if (!strcmp(old_ext, *ext)) break; } if (!old_ext) found_exts->push_back((char *) *ext); it.rewind(); } return FALSE; } TYPELIB *ha_known_exts(void) { if (!known_extensions.type_names || mysys_usage_id != known_extensions_id) { List found_exts; const char **ext, *old_ext; known_extensions_id= mysys_usage_id; found_exts.push_back((char*) TRG_EXT); found_exts.push_back((char*) TRN_EXT); plugin_foreach(NULL, exts_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &found_exts); ext= (const char **) my_once_alloc(sizeof(char *)* (found_exts.elements+1), MYF(MY_WME | MY_FAE)); DBUG_ASSERT(ext != 0); known_extensions.count= found_exts.elements; known_extensions.type_names= ext; List_iterator_fast it(found_exts); while ((old_ext= it++)) *ext++= old_ext; *ext= 0; } return &known_extensions; } static bool stat_print(THD *thd, const char *type, size_t type_len, const char *file, size_t file_len, const char *status, size_t status_len) { Protocol *protocol= thd->protocol; protocol->prepare_for_resend(); protocol->store(type, type_len, system_charset_info); protocol->store(file, file_len, system_charset_info); protocol->store(status, status_len, system_charset_info); if (protocol->write()) return TRUE; return FALSE; } static my_bool showstat_handlerton(THD *thd, plugin_ref plugin, void *arg) { enum ha_stat_type stat= *(enum ha_stat_type *) arg; handlerton *hton= plugin_hton(plugin); if (hton->show_status && hton->show_status(hton, thd, stat_print, stat)) return TRUE; return FALSE; } bool ha_show_status(THD *thd, handlerton *db_type, enum ha_stat_type stat) { List field_list; Protocol *protocol= thd->protocol; MEM_ROOT *mem_root= thd->mem_root; bool result; field_list.push_back(new (mem_root) Item_empty_string(thd, "Type", 10), mem_root); field_list.push_back(new (mem_root) Item_empty_string(thd, "Name", FN_REFLEN), mem_root); field_list.push_back(new (mem_root) Item_empty_string(thd, "Status", 10), mem_root); if (protocol->send_result_set_metadata(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) return TRUE; if (db_type == NULL) { result= plugin_foreach(thd, showstat_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &stat); } else { result= db_type->show_status && db_type->show_status(db_type, thd, stat_print, stat) ? 1 : 0; } /* We also check thd->is_error() as Innodb may return 0 even if there was an error. */ if (likely(!result && !thd->is_error())) my_eof(thd); else if (!thd->is_error()) my_error(ER_GET_ERRNO, MYF(0), errno, hton_name(db_type)->str); return result; } /* Function to check if the conditions for row-based binlogging is correct for the table. A row in the given table should be replicated if: - It's not called by partition engine - Row-based replication is enabled in the current thread - The binlog is enabled - It is not a temporary table - The binary log is open - The database the table resides in shall be binlogged (binlog_*_db rules) - table is not mysql.event RETURN VALUE 0 No binary logging in row format 1 Row needs to be logged */ bool handler::check_table_binlog_row_based(bool binlog_row) { if (table->versioned(VERS_TRX_ID)) return false; if (unlikely((table->in_use->variables.sql_log_bin_off))) return 0; /* Called by partitioning engine */ #ifdef WITH_WSREP if (!table->in_use->variables.sql_log_bin && wsrep_thd_is_applying(table->in_use)) return 0; /* wsrep patch sets sql_log_bin to silence binlogging from high priority threads */ #endif /* WITH_WSREP */ if (unlikely((!check_table_binlog_row_based_done))) { check_table_binlog_row_based_done= 1; check_table_binlog_row_based_result= check_table_binlog_row_based_internal(binlog_row); } return check_table_binlog_row_based_result; } bool handler::check_table_binlog_row_based_internal(bool binlog_row) { THD *thd= table->in_use; return (table->s->can_do_row_logging && thd->is_current_stmt_binlog_format_row() && /* Wsrep partially enables binary logging if it have not been explicitly turned on. As a result we return 'true' if we are in wsrep binlog emulation mode and the current thread is not a wsrep applier or replayer thread. This decision is not affected by @@sql_log_bin as we want the events to make into the binlog cache only to filter them later before they make into binary log file. However, we do return 'false' if binary logging was temporarily turned off (see tmp_disable_binlog(A)). Otherwise, return 'true' if binary logging is on. */ IF_WSREP(((WSREP_EMULATE_BINLOG(thd) && wsrep_thd_is_local(thd)) || ((WSREP(thd) || (thd->variables.option_bits & OPTION_BIN_LOG)) && mysql_bin_log.is_open())), (thd->variables.option_bits & OPTION_BIN_LOG) && mysql_bin_log.is_open())); } /** @brief Write table maps for all (manually or automatically) locked tables to the binary log. Also, if binlog_annotate_row_events is ON, write Annotate_rows event before the first table map. SYNOPSIS write_locked_table_maps() thd Pointer to THD structure DESCRIPTION This function will generate and write table maps for all tables that are locked by the thread 'thd'. RETURN VALUE 0 All OK 1 Failed to write all table maps SEE ALSO THD::lock */ static int write_locked_table_maps(THD *thd) { DBUG_ENTER("write_locked_table_maps"); DBUG_PRINT("enter", ("thd:%p thd->lock:%p " "thd->extra_lock: %p", thd, thd->lock, thd->extra_lock)); DBUG_PRINT("debug", ("get_binlog_table_maps(): %d", thd->get_binlog_table_maps())); MYSQL_LOCK *locks[2]; locks[0]= thd->extra_lock; locks[1]= thd->lock; my_bool with_annotate= IF_WSREP(!wsrep_fragments_certified_for_stmt(thd), true) && thd->variables.binlog_annotate_row_events && thd->query() && thd->query_length(); for (uint i= 0 ; i < sizeof(locks)/sizeof(*locks) ; ++i ) { MYSQL_LOCK const *const lock= locks[i]; if (lock == NULL) continue; TABLE **const end_ptr= lock->table + lock->table_count; for (TABLE **table_ptr= lock->table ; table_ptr != end_ptr ; ++table_ptr) { TABLE *const table= *table_ptr; DBUG_PRINT("info", ("Checking table %s", table->s->table_name.str)); if (table->current_lock == F_WRLCK && table->file->check_table_binlog_row_based(0)) { /* We need to have a transactional behavior for SQLCOM_CREATE_TABLE (e.g. CREATE TABLE... SELECT * FROM TABLE) in order to keep a compatible behavior with the STMT based replication even when the table is not transactional. In other words, if the operation fails while executing the insert phase nothing is written to the binlog. Note that at this point, we check the type of a set of tables to create the table map events. In the function binlog_log_row(), which calls the current function, we check the type of the table of the current row. */ bool const has_trans= thd->lex->sql_command == SQLCOM_CREATE_TABLE || table->file->has_transactions(); int const error= thd->binlog_write_table_map(table, has_trans, &with_annotate); /* If an error occurs, it is the responsibility of the caller to roll back the transaction. */ if (unlikely(error)) DBUG_RETURN(1); } } } DBUG_RETURN(0); } static int binlog_log_row_internal(TABLE* table, const uchar *before_record, const uchar *after_record, Log_func *log_func) { bool error= 0; THD *const thd= table->in_use; /* If there are no table maps written to the binary log, this is the first row handled in this statement. In that case, we need to write table maps for all locked tables to the binary log. */ if (likely(!(error= ((thd->get_binlog_table_maps() == 0 && write_locked_table_maps(thd)))))) { /* We need to have a transactional behavior for SQLCOM_CREATE_TABLE (i.e. CREATE TABLE... SELECT * FROM TABLE) in order to keep a compatible behavior with the STMT based replication even when the table is not transactional. In other words, if the operation fails while executing the insert phase nothing is written to the binlog. */ bool const has_trans= thd->lex->sql_command == SQLCOM_CREATE_TABLE || table->file->has_transactions(); error= (*log_func)(thd, table, has_trans, before_record, after_record); } return error ? HA_ERR_RBR_LOGGING_FAILED : 0; } int binlog_log_row(TABLE* table, const uchar *before_record, const uchar *after_record, Log_func *log_func) { #ifdef WITH_WSREP THD *const thd= table->in_use; /* only InnoDB tables will be replicated through binlog emulation */ if ((WSREP_EMULATE_BINLOG(thd) && !(table->file->partition_ht()->flags & HTON_WSREP_REPLICATION)) || thd->wsrep_ignore_table == true) return 0; #endif if (!table->file->check_table_binlog_row_based(1)) return 0; return binlog_log_row_internal(table, before_record, after_record, log_func); } int handler::ha_external_lock(THD *thd, int lock_type) { int error; DBUG_ENTER("handler::ha_external_lock"); /* Whether this is lock or unlock, this should be true, and is to verify that if get_auto_increment() was called (thus may have reserved intervals or taken a table lock), ha_release_auto_increment() was too. */ DBUG_ASSERT(next_insert_id == 0); /* Consecutive calls for lock without unlocking in between is not allowed */ DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || ((lock_type != F_UNLCK && m_lock_type == F_UNLCK) || lock_type == F_UNLCK)); /* SQL HANDLER call locks/unlock while scanning (RND/INDEX). */ DBUG_ASSERT(inited == NONE || table->open_by_handler); if (MYSQL_HANDLER_RDLOCK_START_ENABLED() || MYSQL_HANDLER_WRLOCK_START_ENABLED() || MYSQL_HANDLER_UNLOCK_START_ENABLED()) { if (lock_type == F_RDLCK) { MYSQL_HANDLER_RDLOCK_START(table_share->db.str, table_share->table_name.str); } else if (lock_type == F_WRLCK) { MYSQL_HANDLER_WRLOCK_START(table_share->db.str, table_share->table_name.str); } else if (lock_type == F_UNLCK) { MYSQL_HANDLER_UNLOCK_START(table_share->db.str, table_share->table_name.str); } } /* We cache the table flags if the locking succeeded. Otherwise, we keep them as they were when they were fetched in ha_open(). */ MYSQL_TABLE_LOCK_WAIT(m_psi, PSI_TABLE_EXTERNAL_LOCK, lock_type, { error= external_lock(thd, lock_type); }) DBUG_EXECUTE_IF("external_lock_failure", error= HA_ERR_GENERIC;); if (likely(error == 0 || lock_type == F_UNLCK)) { m_lock_type= lock_type; cached_table_flags= table_flags(); if (table_share->tmp_table == NO_TMP_TABLE) mysql_audit_external_lock(thd, table_share, lock_type); } if (MYSQL_HANDLER_RDLOCK_DONE_ENABLED() || MYSQL_HANDLER_WRLOCK_DONE_ENABLED() || MYSQL_HANDLER_UNLOCK_DONE_ENABLED()) { if (lock_type == F_RDLCK) { MYSQL_HANDLER_RDLOCK_DONE(error); } else if (lock_type == F_WRLCK) { MYSQL_HANDLER_WRLOCK_DONE(error); } else if (lock_type == F_UNLCK) { MYSQL_HANDLER_UNLOCK_DONE(error); } } DBUG_RETURN(error); } /** @brief Check handler usage and reset state of file to after 'open' */ int handler::ha_reset() { DBUG_ENTER("ha_reset"); /* Check that we have called all proper deallocation functions */ DBUG_ASSERT((uchar*) table->def_read_set.bitmap + table->s->column_bitmap_size == (uchar*) table->def_write_set.bitmap); DBUG_ASSERT(bitmap_is_set_all(&table->s->all_set)); DBUG_ASSERT(!table->file->keyread_enabled()); /* ensure that ha_index_end / ha_rnd_end has been called */ DBUG_ASSERT(inited == NONE); /* reset the bitmaps to point to defaults */ table->default_column_bitmaps(); pushed_cond= NULL; tracker= NULL; mark_trx_read_write_done= 0; clear_cached_table_binlog_row_based_flag(); /* Reset information about pushed engine conditions */ cancel_pushed_idx_cond(); /* Reset information about pushed index conditions */ cancel_pushed_rowid_filter(); clear_top_table_fields(); DBUG_RETURN(reset()); } #ifdef WITH_WSREP static int wsrep_after_row(THD *thd) { DBUG_ENTER("wsrep_after_row"); /* enforce wsrep_max_ws_rows */ thd->wsrep_affected_rows++; if (wsrep_max_ws_rows && wsrep_thd_is_local(thd) && thd->wsrep_affected_rows > wsrep_max_ws_rows) { trans_rollback_stmt(thd) || trans_rollback(thd); my_message(ER_ERROR_DURING_COMMIT, "wsrep_max_ws_rows exceeded", MYF(0)); DBUG_RETURN(ER_ERROR_DURING_COMMIT); } else if (wsrep_after_row(thd, false)) { DBUG_RETURN(ER_LOCK_DEADLOCK); } DBUG_RETURN(0); } #endif /* WITH_WSREP */ static int check_duplicate_long_entry_key(TABLE *table, handler *h, const uchar *new_rec, uint key_no) { Field *hash_field; int result, error= 0; KEY *key_info= table->key_info + key_no; hash_field= key_info->key_part->field; uchar ptr[HA_HASH_KEY_LENGTH_WITH_NULL]; DBUG_ASSERT((key_info->flags & HA_NULL_PART_KEY && key_info->key_length == HA_HASH_KEY_LENGTH_WITH_NULL) || key_info->key_length == HA_HASH_KEY_LENGTH_WITHOUT_NULL); if (hash_field->is_real_null()) return 0; key_copy(ptr, new_rec, key_info, key_info->key_length, false); if (!table->check_unique_buf) table->check_unique_buf= (uchar *)alloc_root(&table->mem_root, table->s->reclength); result= h->ha_index_init(key_no, 0); if (result) return result; store_record(table, check_unique_buf); result= h->ha_index_read_map(table->record[0], ptr, HA_WHOLE_KEY, HA_READ_KEY_EXACT); if (!result) { bool is_same; Field * t_field; Item_func_hash * temp= (Item_func_hash *)hash_field->vcol_info->expr; Item ** arguments= temp->arguments(); uint arg_count= temp->argument_count(); do { my_ptrdiff_t diff= table->check_unique_buf - new_rec; is_same= true; for (uint j=0; is_same && j < arg_count; j++) { DBUG_ASSERT(arguments[j]->type() == Item::FIELD_ITEM || // this one for left(fld_name,length) arguments[j]->type() == Item::FUNC_ITEM); if (arguments[j]->type() == Item::FIELD_ITEM) { t_field= static_cast(arguments[j])->field; if (t_field->cmp_offset(diff)) is_same= false; } else { Item_func_left *fnc= static_cast(arguments[j]); DBUG_ASSERT(!my_strcasecmp(system_charset_info, "left", fnc->func_name())); DBUG_ASSERT(fnc->arguments()[0]->type() == Item::FIELD_ITEM); t_field= static_cast(fnc->arguments()[0])->field; uint length= (uint)fnc->arguments()[1]->val_int(); if (t_field->cmp_max(t_field->ptr, t_field->ptr + diff, length)) is_same= false; } } } while (!is_same && !(result= h->ha_index_next_same(table->record[0], ptr, key_info->key_length))); if (is_same) error= HA_ERR_FOUND_DUPP_KEY; goto exit; } if (result != HA_ERR_KEY_NOT_FOUND) error= result; exit: if (error == HA_ERR_FOUND_DUPP_KEY) { table->file->errkey= key_no; if (h->ha_table_flags() & HA_DUPLICATE_POS) { h->position(table->record[0]); memcpy(table->file->dup_ref, h->ref, h->ref_length); } } restore_record(table, check_unique_buf); h->ha_index_end(); return error; } /** @brief check whether inserted records breaks the unique constraint on long columns. @returns 0 if no duplicate else returns error */ static int check_duplicate_long_entries(TABLE *table, handler *h, const uchar *new_rec) { table->file->errkey= -1; int result; for (uint i= 0; i < table->s->keys; i++) { if (table->key_info[i].algorithm == HA_KEY_ALG_LONG_HASH && (result= check_duplicate_long_entry_key(table, h, new_rec, i))) return result; } return 0; } /** @brief check whether updated records breaks the unique constraint on long columns. In the case of update we just need to check the specic key reason for that is consider case create table t1(a blob , b blob , x blob , y blob ,unique(a,b) ,unique(x,y)) and update statement like this update t1 set a=23+a; in this case if we try to scan for whole keys in table then index scan on x_y will return 0 because data is same so in the case of update we take key as a parameter in normal insert key should be -1 @returns 0 if no duplicate else returns error */ static int check_duplicate_long_entries_update(TABLE *table, handler *h, uchar *new_rec) { Field *field; uint key_parts; int error= 0; KEY *keyinfo; KEY_PART_INFO *keypart; /* Here we are comparing whether new record and old record are same with respect to fields in hash_str */ uint reclength= (uint) (table->record[1] - table->record[0]); table->clone_handler_for_update(); for (uint i= 0; i < table->s->keys; i++) { keyinfo= table->key_info + i; if (keyinfo->algorithm == HA_KEY_ALG_LONG_HASH) { key_parts= fields_in_hash_keyinfo(keyinfo); keypart= keyinfo->key_part - key_parts; for (uint j= 0; j < key_parts; j++, keypart++) { field= keypart->field; /* Compare fields if they are different then check for duplicates*/ if(field->cmp_binary_offset(reclength)) { if((error= check_duplicate_long_entry_key(table, table->update_handler, new_rec, i))) goto exit; /* break because check_duplicate_long_entries_key will take care of remaining fields */ break; } } } } exit: return error; } int handler::ha_write_row(const uchar *buf) { int error; Log_func *log_func= Write_rows_log_event::binlog_row_logging_function; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); DBUG_ENTER("handler::ha_write_row"); DEBUG_SYNC_C("ha_write_row_start"); MYSQL_INSERT_ROW_START(table_share->db.str, table_share->table_name.str); mark_trx_read_write(); increment_statistics(&SSV::ha_write_count); if (table->s->long_unique_table) { if (this->inited == RND) table->clone_handler_for_update(); handler *h= table->update_handler ? table->update_handler : table->file; if ((error= check_duplicate_long_entries(table, h, buf))) DBUG_RETURN(error); } TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_WRITE_ROW, MAX_KEY, 0, { error= write_row(buf); }) MYSQL_INSERT_ROW_DONE(error); if (likely(!error) && !row_already_logged) { rows_changed++; error= binlog_log_row(table, 0, buf, log_func); #ifdef WITH_WSREP if (table_share->tmp_table == NO_TMP_TABLE && WSREP(ha_thd()) && (error= wsrep_after_row(ha_thd()))) { DBUG_RETURN(error); } #endif /* WITH_WSREP */ } DEBUG_SYNC_C("ha_write_row_end"); DBUG_RETURN(error); } int handler::ha_update_row(const uchar *old_data, const uchar *new_data) { int error; Log_func *log_func= Update_rows_log_event::binlog_row_logging_function; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); /* Some storage engines require that the new record is in record[0] (and the old record is in record[1]). */ DBUG_ASSERT(new_data == table->record[0]); DBUG_ASSERT(old_data == table->record[1]); MYSQL_UPDATE_ROW_START(table_share->db.str, table_share->table_name.str); mark_trx_read_write(); increment_statistics(&SSV::ha_update_count); if (table->s->long_unique_table && (error= check_duplicate_long_entries_update(table, table->file, (uchar *)new_data))) { return error; } TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_UPDATE_ROW, active_index, 0, { error= update_row(old_data, new_data);}) MYSQL_UPDATE_ROW_DONE(error); if (likely(!error) && !row_already_logged) { rows_changed++; error= binlog_log_row(table, old_data, new_data, log_func); #ifdef WITH_WSREP if (table_share->tmp_table == NO_TMP_TABLE && WSREP(ha_thd()) && (error= wsrep_after_row(ha_thd()))) { return error; } #endif /* WITH_WSREP */ } return error; } /* Update first row. Only used by sequence tables */ int handler::update_first_row(const uchar *new_data) { int error; if (likely(!(error= ha_rnd_init(1)))) { int end_error; if (likely(!(error= ha_rnd_next(table->record[1])))) { /* We have to do the memcmp as otherwise we may get error 169 from InnoDB */ if (memcmp(new_data, table->record[1], table->s->reclength)) error= update_row(table->record[1], new_data); } end_error= ha_rnd_end(); if (likely(!error)) error= end_error; /* Logging would be wrong if update_row works but ha_rnd_end fails */ DBUG_ASSERT(!end_error || error != 0); } return error; } int handler::ha_delete_row(const uchar *buf) { int error; Log_func *log_func= Delete_rows_log_event::binlog_row_logging_function; DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK); /* Normally table->record[0] is used, but sometimes table->record[1] is used. */ DBUG_ASSERT(buf == table->record[0] || buf == table->record[1]); MYSQL_DELETE_ROW_START(table_share->db.str, table_share->table_name.str); mark_trx_read_write(); increment_statistics(&SSV::ha_delete_count); TABLE_IO_WAIT(tracker, m_psi, PSI_TABLE_DELETE_ROW, active_index, 0, { error= delete_row(buf);}) MYSQL_DELETE_ROW_DONE(error); if (likely(!error)) { rows_changed++; error= binlog_log_row(table, buf, 0, log_func); #ifdef WITH_WSREP if (table_share->tmp_table == NO_TMP_TABLE && WSREP(ha_thd()) && (error= wsrep_after_row(ha_thd()))) { return error; } #endif /* WITH_WSREP */ } return error; } /** Execute a direct update request. A direct update request updates all qualified rows in a single operation, rather than one row at a time. In a Spider cluster the direct update operation is pushed down to the child levels of the cluster. Note that this can't be used in case of statment logging @param update_rows Number of updated rows. @retval 0 Success. @retval != 0 Failure. */ int handler::ha_direct_update_rows(ha_rows *update_rows) { int error; MYSQL_UPDATE_ROW_START(table_share->db.str, table_share->table_name.str); mark_trx_read_write(); error = direct_update_rows(update_rows); MYSQL_UPDATE_ROW_DONE(error); return error; } /** Execute a direct delete request. A direct delete request deletes all qualified rows in a single operation, rather than one row at a time. In a Spider cluster the direct delete operation is pushed down to the child levels of the cluster. @param delete_rows Number of deleted rows. @retval 0 Success. @retval != 0 Failure. */ int handler::ha_direct_delete_rows(ha_rows *delete_rows) { int error; /* Ensure we are not using binlog row */ DBUG_ASSERT(!table->in_use->is_current_stmt_binlog_format_row()); MYSQL_DELETE_ROW_START(table_share->db.str, table_share->table_name.str); mark_trx_read_write(); error = direct_delete_rows(delete_rows); MYSQL_DELETE_ROW_DONE(error); return error; } /** @brief use_hidden_primary_key() is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key */ void handler::use_hidden_primary_key() { /* fallback to use all columns in the table to identify row */ table->column_bitmaps_set(&table->s->all_set, table->write_set); } /** Get an initialized ha_share. @return Initialized ha_share @retval NULL ha_share is not yet initialized. @retval != NULL previous initialized ha_share. @note If not a temp table, then LOCK_ha_data must be held. */ Handler_share *handler::get_ha_share_ptr() { DBUG_ENTER("handler::get_ha_share_ptr"); DBUG_ASSERT(ha_share); DBUG_ASSERT(table_share); #ifndef DBUG_OFF if (table_share->tmp_table == NO_TMP_TABLE) mysql_mutex_assert_owner(&table_share->LOCK_ha_data); #endif DBUG_RETURN(*ha_share); } /** Set ha_share to be used by all instances of the same table/partition. @param ha_share Handler_share to be shared. @note If not a temp table, then LOCK_ha_data must be held. */ void handler::set_ha_share_ptr(Handler_share *arg_ha_share) { DBUG_ENTER("handler::set_ha_share_ptr"); DBUG_ASSERT(ha_share); #ifndef DBUG_OFF if (table_share->tmp_table == NO_TMP_TABLE) mysql_mutex_assert_owner(&table_share->LOCK_ha_data); #endif *ha_share= arg_ha_share; DBUG_VOID_RETURN; } /** Take a lock for protecting shared handler data. */ void handler::lock_shared_ha_data() { DBUG_ASSERT(table_share); if (table_share->tmp_table == NO_TMP_TABLE) mysql_mutex_lock(&table_share->LOCK_ha_data); } /** Release lock for protecting ha_share. */ void handler::unlock_shared_ha_data() { DBUG_ASSERT(table_share); if (table_share->tmp_table == NO_TMP_TABLE) mysql_mutex_unlock(&table_share->LOCK_ha_data); } /** @brief Dummy function which accept information about log files which is not need by handlers */ void signal_log_not_needed(struct handlerton, char *log_file) { DBUG_ENTER("signal_log_not_needed"); DBUG_PRINT("enter", ("logfile '%s'", log_file)); DBUG_VOID_RETURN; } void handler::set_lock_type(enum thr_lock_type lock) { table->reginfo.lock_type= lock; } #ifdef WITH_WSREP /** @details This function makes the storage engine to force the victim transaction to abort. Currently, only innodb has this functionality, but any SE implementing the wsrep API should provide this service to support multi-master operation. @note Aborting the transaction does NOT end it, it still has to be rolled back with hton->rollback(). @note It is safe to abort from one thread (bf_thd) the transaction, running in another thread (victim_thd), because InnoDB's lock_sys and trx_mutex guarantee the necessary protection. However, its not safe to access victim_thd->transaction, because it's not protected from concurrent accesses. And it's an overkill to take LOCK_plugin and iterate the whole installed_htons[] array every time. @param bf_thd brute force THD asking for the abort @param victim_thd victim THD to be aborted @return always 0 */ int ha_abort_transaction(THD *bf_thd, THD *victim_thd, my_bool signal) { DBUG_ENTER("ha_abort_transaction"); if (!WSREP(bf_thd) && !(bf_thd->variables.wsrep_OSU_method == WSREP_OSU_RSU && wsrep_thd_is_toi(bf_thd))) { DBUG_RETURN(0); } handlerton *hton= installed_htons[DB_TYPE_INNODB]; if (hton && hton->abort_transaction) { hton->abort_transaction(hton, bf_thd, victim_thd, signal); } else { WSREP_WARN("Cannot abort InnoDB transaction"); } DBUG_RETURN(0); } #endif /* WITH_WSREP */ #ifdef TRANS_LOG_MGM_EXAMPLE_CODE /* Example of transaction log management functions based on assumption that logs placed into a directory */ #include #include int example_of_iterator_using_for_logs_cleanup(handlerton *hton) { void *buffer; int res= 1; struct handler_iterator iterator; struct handler_log_file_data data; if (!hton->create_iterator) return 1; /* iterator creator is not supported */ if ((*hton->create_iterator)(hton, HA_TRANSACTLOG_ITERATOR, &iterator) != HA_ITERATOR_OK) { /* error during creation of log iterator or iterator is not supported */ return 1; } while((*iterator.next)(&iterator, (void*)&data) == 0) { printf("%s\n", data.filename.str); if (data.status == HA_LOG_STATUS_FREE && mysql_file_delete(INSTRUMENT_ME, data.filename.str, MYF(MY_WME))) goto err; } res= 0; err: (*iterator.destroy)(&iterator); return res; } /* Here we should get info from handler where it save logs but here is just example, so we use constant. IMHO FN_ROOTDIR ("/") is safe enough for example, because nobody has rights on it except root and it consist of directories only at lest for *nix (sorry, can't find windows-safe solution here, but it is only example). */ #define fl_dir FN_ROOTDIR /** @brief Dummy function to return log status should be replaced by function which really detect the log status and check that the file is a log of this handler. */ enum log_status fl_get_log_status(char *log) { MY_STAT stat_buff; if (mysql_file_stat(INSTRUMENT_ME, log, &stat_buff, MYF(0))) return HA_LOG_STATUS_INUSE; return HA_LOG_STATUS_NOSUCHLOG; } struct fl_buff { LEX_STRING *names; enum log_status *statuses; uint32 entries; uint32 current; }; int fl_log_iterator_next(struct handler_iterator *iterator, void *iterator_object) { struct fl_buff *buff= (struct fl_buff *)iterator->buffer; struct handler_log_file_data *data= (struct handler_log_file_data *) iterator_object; if (buff->current >= buff->entries) return 1; data->filename= buff->names[buff->current]; data->status= buff->statuses[buff->current]; buff->current++; return 0; } void fl_log_iterator_destroy(struct handler_iterator *iterator) { my_free(iterator->buffer); } /** @brief returns buffer, to be assigned in handler_iterator struct */ enum handler_create_iterator_result fl_log_iterator_buffer_init(struct handler_iterator *iterator) { MY_DIR *dirp; struct fl_buff *buff; char *name_ptr; uchar *ptr; FILEINFO *file; uint32 i; /* to be able to make my_free without crash in case of error */ iterator->buffer= 0; if (!(dirp = my_dir(fl_dir, MYF(MY_THREAD_SPECIFIC)))) { return HA_ITERATOR_ERROR; } if ((ptr= (uchar*)my_malloc(ALIGN_SIZE(sizeof(fl_buff)) + ((ALIGN_SIZE(sizeof(LEX_STRING)) + sizeof(enum log_status) + + FN_REFLEN + 1) * (uint) dirp->number_off_files), MYF(MY_THREAD_SPECIFIC))) == 0) { return HA_ITERATOR_ERROR; } buff= (struct fl_buff *)ptr; buff->entries= buff->current= 0; ptr= ptr + (ALIGN_SIZE(sizeof(fl_buff))); buff->names= (LEX_STRING*) (ptr); ptr= ptr + ((ALIGN_SIZE(sizeof(LEX_STRING)) * (uint) dirp->number_off_files)); buff->statuses= (enum log_status *)(ptr); name_ptr= (char *)(ptr + (sizeof(enum log_status) * (uint) dirp->number_off_files)); for (i=0 ; i < (uint) dirp->number_off_files ; i++) { enum log_status st; file= dirp->dir_entry + i; if ((file->name[0] == '.' && ((file->name[1] == '.' && file->name[2] == '\0') || file->name[1] == '\0'))) continue; if ((st= fl_get_log_status(file->name)) == HA_LOG_STATUS_NOSUCHLOG) continue; name_ptr= strxnmov(buff->names[buff->entries].str= name_ptr, FN_REFLEN, fl_dir, file->name, NullS); buff->names[buff->entries].length= (name_ptr - buff->names[buff->entries].str); buff->statuses[buff->entries]= st; buff->entries++; } iterator->buffer= buff; iterator->next= &fl_log_iterator_next; iterator->destroy= &fl_log_iterator_destroy; my_dirend(dirp); return HA_ITERATOR_OK; } /* An example of a iterator creator */ enum handler_create_iterator_result fl_create_iterator(enum handler_iterator_type type, struct handler_iterator *iterator) { switch(type) { case HA_TRANSACTLOG_ITERATOR: return fl_log_iterator_buffer_init(iterator); default: return HA_ITERATOR_UNSUPPORTED; } } #endif /*TRANS_LOG_MGM_EXAMPLE_CODE*/ bool HA_CREATE_INFO::check_conflicting_charset_declarations(CHARSET_INFO *cs) { if ((used_fields & HA_CREATE_USED_DEFAULT_CHARSET) && /* DEFAULT vs explicit, or explicit vs DEFAULT */ (((default_table_charset == NULL) != (cs == NULL)) || /* Two different explicit character sets */ (default_table_charset && cs && !my_charset_same(default_table_charset, cs)))) { my_error(ER_CONFLICTING_DECLARATIONS, MYF(0), "CHARACTER SET ", default_table_charset ? default_table_charset->csname : "DEFAULT", "CHARACTER SET ", cs ? cs->csname : "DEFAULT"); return true; } return false; } /* Remove all indexes for a given table from global index statistics */ static int del_global_index_stats_for_table(THD *thd, uchar* cache_key, size_t cache_key_length) { int res = 0; DBUG_ENTER("del_global_index_stats_for_table"); mysql_mutex_lock(&LOCK_global_index_stats); for (uint i= 0; i < global_index_stats.records;) { INDEX_STATS *index_stats = (INDEX_STATS*) my_hash_element(&global_index_stats, i); /* We search correct db\0table_name\0 string */ if (index_stats && index_stats->index_name_length >= cache_key_length && !memcmp(index_stats->index, cache_key, cache_key_length)) { res= my_hash_delete(&global_index_stats, (uchar*)index_stats); /* In our HASH implementation on deletion one elements is moved into a place where a deleted element was, and the last element is moved into the empty space. Thus we need to re-examine the current element, but we don't have to restart the search from the beginning. */ } else i++; } mysql_mutex_unlock(&LOCK_global_index_stats); DBUG_RETURN(res); } /* Remove a table from global table statistics */ int del_global_table_stat(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *table) { TABLE_STATS *table_stats; int res = 0; uchar *cache_key; size_t cache_key_length; DBUG_ENTER("del_global_table_stat"); cache_key_length= db->length + 1 + table->length + 1; if(!(cache_key= (uchar *)my_malloc(cache_key_length, MYF(MY_WME | MY_ZEROFILL)))) { /* Out of memory error already given */ res = 1; goto end; } memcpy(cache_key, db->str, db->length); memcpy(cache_key + db->length + 1, table->str, table->length); res= del_global_index_stats_for_table(thd, cache_key, cache_key_length); mysql_mutex_lock(&LOCK_global_table_stats); if((table_stats= (TABLE_STATS*) my_hash_search(&global_table_stats, cache_key, cache_key_length))) res= my_hash_delete(&global_table_stats, (uchar*)table_stats); my_free(cache_key); mysql_mutex_unlock(&LOCK_global_table_stats); end: DBUG_RETURN(res); } /* Remove a index from global index statistics */ int del_global_index_stat(THD *thd, TABLE* table, KEY* key_info) { INDEX_STATS *index_stats; size_t key_length= table->s->table_cache_key.length + key_info->name.length + 1; int res = 0; DBUG_ENTER("del_global_index_stat"); mysql_mutex_lock(&LOCK_global_index_stats); if((index_stats= (INDEX_STATS*) my_hash_search(&global_index_stats, key_info->cache_name, key_length))) res= my_hash_delete(&global_index_stats, (uchar*)index_stats); mysql_mutex_unlock(&LOCK_global_index_stats); DBUG_RETURN(res); } /***************************************************************************** VERSIONING functions ******************************************************************************/ bool Vers_parse_info::is_start(const char *name) const { DBUG_ASSERT(name); return as_row.start && as_row.start.streq(name); } bool Vers_parse_info::is_end(const char *name) const { DBUG_ASSERT(name); return as_row.end && as_row.end.streq(name); } bool Vers_parse_info::is_start(const Create_field &f) const { return f.flags & VERS_SYS_START_FLAG; } bool Vers_parse_info::is_end(const Create_field &f) const { return f.flags & VERS_SYS_END_FLAG; } static Create_field *vers_init_sys_field(THD *thd, const char *field_name, int flags, bool integer) { Create_field *f= new (thd->mem_root) Create_field(); if (!f) return NULL; f->field_name.str= field_name; f->field_name.length= strlen(field_name); f->charset= system_charset_info; f->flags= flags | NOT_NULL_FLAG; if (integer) { DBUG_ASSERT(0); // Not implemented yet f->set_handler(&type_handler_vers_trx_id); f->length= MY_INT64_NUM_DECIMAL_DIGITS - 1; f->flags|= UNSIGNED_FLAG; } else { f->set_handler(&type_handler_timestamp2); f->length= MAX_DATETIME_PRECISION; } f->invisible= DBUG_EVALUATE_IF("sysvers_show", VISIBLE, INVISIBLE_SYSTEM); if (f->check(thd)) return NULL; return f; } static bool vers_create_sys_field(THD *thd, const char *field_name, Alter_info *alter_info, int flags) { Create_field *f= vers_init_sys_field(thd, field_name, flags, false); if (!f) return true; alter_info->flags|= ALTER_PARSER_ADD_COLUMN; alter_info->create_list.push_back(f); return false; } const Lex_ident Vers_parse_info::default_start= "row_start"; const Lex_ident Vers_parse_info::default_end= "row_end"; bool Vers_parse_info::fix_implicit(THD *thd, Alter_info *alter_info) { // If user specified some of these he must specify the others too. Do nothing. if (*this) return false; alter_info->flags|= ALTER_PARSER_ADD_COLUMN; period= start_end_t(default_start, default_end); as_row= period; if (vers_create_sys_field(thd, default_start, alter_info, VERS_SYS_START_FLAG) || vers_create_sys_field(thd, default_end, alter_info, VERS_SYS_END_FLAG)) { return true; } return false; } bool Table_scope_and_contents_source_st::vers_fix_system_fields( THD *thd, Alter_info *alter_info, const TABLE_LIST &create_table) { DBUG_ASSERT(!(alter_info->flags & ALTER_DROP_SYSTEM_VERSIONING)); DBUG_EXECUTE_IF("sysvers_force", if (!tmp_table()) { alter_info->flags|= ALTER_ADD_SYSTEM_VERSIONING; options|= HA_VERSIONED_TABLE; }); if (!vers_info.need_check(alter_info)) return false; if (!vers_info.versioned_fields && vers_info.unversioned_fields && !(alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING)) { // All is correct but this table is not versioned. options&= ~HA_VERSIONED_TABLE; return false; } if (!(alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING) && vers_info) { my_error(ER_MISSING, MYF(0), create_table.table_name.str, "WITH SYSTEM VERSIONING"); return true; } List_iterator it(alter_info->create_list); while (Create_field *f= it++) { if ((f->versioning == Column_definition::VERSIONING_NOT_SET && !(alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING)) || f->versioning == Column_definition::WITHOUT_VERSIONING) { f->flags|= VERS_UPDATE_UNVERSIONED_FLAG; } } // while (Create_field *f= it++) if (vers_info.fix_implicit(thd, alter_info)) return true; return false; } bool Table_scope_and_contents_source_st::vers_check_system_fields( THD *thd, Alter_info *alter_info, const Lex_table_name &table_name, const Lex_table_name &db, int select_count) { if (!(options & HA_VERSIONED_TABLE)) return false; if (!(alter_info->flags & ALTER_DROP_SYSTEM_VERSIONING)) { uint versioned_fields= 0; uint fieldnr= 0; List_iterator field_it(alter_info->create_list); while (Create_field *f= field_it++) { /* The field from the CREATE part can be duplicated in the SELECT part of CREATE...SELECT. In that case double counts should be avoided. select_create::create_table_from_items just pushes the fields back into the create_list, without additional manipulations, so the fields from SELECT go last there. */ bool is_dup= false; if (fieldnr >= alter_info->create_list.elements - select_count) { List_iterator dup_it(alter_info->create_list); for (Create_field *dup= dup_it++; !is_dup && dup != f; dup= dup_it++) is_dup= my_strcasecmp(default_charset_info, dup->field_name.str, f->field_name.str) == 0; } if (!(f->flags & VERS_UPDATE_UNVERSIONED_FLAG) && !is_dup) versioned_fields++; fieldnr++; } if (versioned_fields == VERSIONING_FIELDS) { my_error(ER_VERS_TABLE_MUST_HAVE_COLUMNS, MYF(0), table_name.str); return true; } } if (!(alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING)) return false; bool can_native= ha_check_storage_engine_flag(db_type, HTON_NATIVE_SYS_VERSIONING) || db_type->db_type == DB_TYPE_PARTITION_DB; return vers_info.check_sys_fields(table_name, db, alter_info, can_native); } bool Vers_parse_info::fix_alter_info(THD *thd, Alter_info *alter_info, HA_CREATE_INFO *create_info, TABLE *table) { TABLE_SHARE *share= table->s; const char *table_name= share->table_name.str; if (!need_check(alter_info) && !share->versioned) return false; if (DBUG_EVALUATE_IF("sysvers_force", 0, share->tmp_table)) { my_error(ER_VERS_NOT_SUPPORTED, MYF(0), "CREATE TEMPORARY TABLE"); return true; } if (alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING && table->versioned()) { my_error(ER_VERS_ALREADY_VERSIONED, MYF(0), table_name); return true; } if (alter_info->flags & ALTER_DROP_SYSTEM_VERSIONING) { if (!share->versioned) { my_error(ER_VERS_NOT_VERSIONED, MYF(0), table_name); return true; } #ifdef WITH_PARTITION_STORAGE_ENGINE if (table->part_info && table->part_info->part_type == VERSIONING_PARTITION) { my_error(ER_DROP_VERSIONING_SYSTEM_TIME_PARTITION, MYF(0), table_name); return true; } #endif return false; } { List_iterator_fast it(alter_info->create_list); while (Create_field *f= it++) { if (f->change.length && f->flags & VERS_SYSTEM_FIELD) { my_error(ER_VERS_ALTER_SYSTEM_FIELD, MYF(0), f->field_name.str); return true; } } } if ((alter_info->flags & ALTER_DROP_PERIOD || versioned_fields || unversioned_fields) && !share->versioned) { my_error(ER_VERS_NOT_VERSIONED, MYF(0), table_name); return true; } if (share->versioned) { if (alter_info->flags & ALTER_ADD_PERIOD) { my_error(ER_VERS_ALREADY_VERSIONED, MYF(0), table_name); return true; } // copy info from existing table create_info->options|= HA_VERSIONED_TABLE; DBUG_ASSERT(share->vers_start_field()); DBUG_ASSERT(share->vers_end_field()); Lex_ident start(share->vers_start_field()->field_name); Lex_ident end(share->vers_end_field()->field_name); DBUG_ASSERT(start.str); DBUG_ASSERT(end.str); as_row= start_end_t(start, end); period= as_row; if (alter_info->create_list.elements) { List_iterator_fast it(alter_info->create_list); while (Create_field *f= it++) { if (f->versioning == Column_definition::WITHOUT_VERSIONING) f->flags|= VERS_UPDATE_UNVERSIONED_FLAG; if (f->change.str && (start.streq(f->change) || end.streq(f->change))) { my_error(ER_VERS_ALTER_SYSTEM_FIELD, MYF(0), f->change.str); return true; } } } return false; } return fix_implicit(thd, alter_info); } bool Vers_parse_info::fix_create_like(Alter_info &alter_info, HA_CREATE_INFO &create_info, TABLE_LIST &src_table, TABLE_LIST &table) { List_iterator it(alter_info.create_list); Create_field *f, *f_start=NULL, *f_end= NULL; DBUG_ASSERT(alter_info.create_list.elements > 2); if (create_info.tmp_table()) { int remove= 2; while (remove && (f= it++)) { if (f->flags & VERS_SYSTEM_FIELD) { it.remove(); remove--; } } DBUG_ASSERT(remove == 0); push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "System versioning is stripped from temporary `%s.%s`", table.db.str, table.table_name.str); return false; } while ((f= it++)) { if (f->flags & VERS_SYS_START_FLAG) { f_start= f; if (f_end) break; } else if (f->flags & VERS_SYS_END_FLAG) { f_end= f; if (f_start) break; } } if (!f_start || !f_end) { my_error(ER_MISSING, MYF(0), src_table.table_name.str, f_start ? "AS ROW END" : "AS ROW START"); return true; } as_row= start_end_t(f_start->field_name, f_end->field_name); period= as_row; create_info.options|= HA_VERSIONED_TABLE; return false; } bool Vers_parse_info::need_check(const Alter_info *alter_info) const { return versioned_fields || unversioned_fields || alter_info->flags & ALTER_ADD_PERIOD || alter_info->flags & ALTER_DROP_PERIOD || alter_info->flags & ALTER_ADD_SYSTEM_VERSIONING || alter_info->flags & ALTER_DROP_SYSTEM_VERSIONING || *this; } bool Vers_parse_info::check_conditions(const Lex_table_name &table_name, const Lex_table_name &db) const { if (!as_row.start || !as_row.end) { my_error(ER_MISSING, MYF(0), table_name.str, as_row.start ? "AS ROW END" : "AS ROW START"); return true; } if (!period.start || !period.end) { my_error(ER_MISSING, MYF(0), table_name.str, "PERIOD FOR SYSTEM_TIME"); return true; } if (!as_row.start.streq(period.start) || !as_row.end.streq(period.end)) { my_error(ER_VERS_PERIOD_COLUMNS, MYF(0), as_row.start.str, as_row.end.str); return true; } if (db.streq(MYSQL_SCHEMA_NAME)) { my_error(ER_VERS_DB_NOT_SUPPORTED, MYF(0), MYSQL_SCHEMA_NAME.str); return true; } return false; } static bool is_versioning_timestamp(const Create_field *f) { return f->type_handler() == &type_handler_timestamp2 && f->length == MAX_DATETIME_FULL_WIDTH; } static bool is_some_bigint(const Create_field *f) { return f->type_handler() == &type_handler_slonglong || f->type_handler() == &type_handler_ulonglong || f->type_handler() == &type_handler_vers_trx_id; } static bool is_versioning_bigint(const Create_field *f) { return is_some_bigint(f) && f->flags & UNSIGNED_FLAG && f->length == MY_INT64_NUM_DECIMAL_DIGITS - 1; } static bool require_timestamp(const Create_field *f, Lex_table_name table_name) { my_error(ER_VERS_FIELD_WRONG_TYPE, MYF(0), f->field_name.str, "TIMESTAMP(6)", table_name.str); return true; } static bool require_bigint(const Create_field *f, Lex_table_name table_name) { my_error(ER_VERS_FIELD_WRONG_TYPE, MYF(0), f->field_name.str, "BIGINT(20) UNSIGNED", table_name.str); return true; } bool Vers_parse_info::check_sys_fields(const Lex_table_name &table_name, const Lex_table_name &db, Alter_info *alter_info, bool can_native) const { if (check_conditions(table_name, db)) return true; const Create_field *row_start= NULL; const Create_field *row_end= NULL; List_iterator it(alter_info->create_list); while (Create_field *f= it++) { if (!row_start && f->flags & VERS_SYS_START_FLAG) row_start= f; else if (!row_end && f->flags & VERS_SYS_END_FLAG) row_end= f; } const bool expect_timestamp= !can_native || !is_some_bigint(row_start) || !is_some_bigint(row_end); if (expect_timestamp) { if (!is_versioning_timestamp(row_start)) return require_timestamp(row_start, table_name); if (!is_versioning_timestamp(row_end)) return require_timestamp(row_end, table_name); } else { if (!is_versioning_bigint(row_start)) return require_bigint(row_start, table_name); if (!is_versioning_bigint(row_end)) return require_bigint(row_end, table_name); } if (is_versioning_bigint(row_start) && is_versioning_bigint(row_end) && !TR_table::use_transaction_registry) { my_error(ER_VERS_TRT_IS_DISABLED, MYF(0)); return true; } return false; } bool Table_period_info::check_field(const Create_field* f, const Lex_ident& f_name) const { bool res= false; if (!f) { my_error(ER_BAD_FIELD_ERROR, MYF(0), f_name.str, name.str); res= true; } else if (f->type_handler()->mysql_timestamp_type() != MYSQL_TIMESTAMP_DATE && f->type_handler()->mysql_timestamp_type() != MYSQL_TIMESTAMP_DATETIME) { my_error(ER_WRONG_FIELD_SPEC, MYF(0), f->field_name.str); res= true; } else if (f->vcol_info || f->flags & VERS_SYSTEM_FIELD) { my_error(ER_PERIOD_FIELD_WRONG_ATTRIBUTES, MYF(0), f->field_name.str, "GENERATED ALWAYS AS"); } return res; } bool Table_scope_and_contents_source_st::check_fields( THD *thd, Alter_info *alter_info, const Lex_table_name &table_name, const Lex_table_name &db, int select_count) { return vers_check_system_fields(thd, alter_info, table_name, db, select_count) || check_period_fields(thd, alter_info); } bool Table_scope_and_contents_source_st::check_period_fields( THD *thd, Alter_info *alter_info) { if (!period_info.name) return false; if (tmp_table()) { my_error(ER_PERIOD_TEMPORARY_NOT_ALLOWED, MYF(0)); return true; } Table_period_info::start_end_t &period= period_info.period; const Create_field *row_start= NULL; const Create_field *row_end= NULL; List_iterator it(alter_info->create_list); while (const Create_field *f= it++) { if (period.start.streq(f->field_name)) row_start= f; else if (period.end.streq(f->field_name)) row_end= f; if (period_info.name.streq(f->field_name)) { my_error(ER_DUP_FIELDNAME, MYF(0), f->field_name.str); return true; } } bool res= period_info.check_field(row_start, period.start.str) || period_info.check_field(row_end, period.end.str); if (res) return true; if (row_start->type_handler() != row_end->type_handler() || row_start->length != row_end->length) { my_error(ER_PERIOD_TYPES_MISMATCH, MYF(0), period_info.name.str); res= true; } return res; } bool Table_scope_and_contents_source_st::fix_create_fields(THD *thd, Alter_info *alter_info, const TABLE_LIST &create_table) { return vers_fix_system_fields(thd, alter_info, create_table) || fix_period_fields(thd, alter_info); } bool Table_scope_and_contents_source_st::fix_period_fields(THD *thd, Alter_info *alter_info) { if (!period_info.name) return false; Table_period_info::start_end_t &period= period_info.period; List_iterator it(alter_info->create_list); while (Create_field *f= it++) { if (period.start.streq(f->field_name) || period.end.streq(f->field_name)) { f->period= &period_info; f->flags|= NOT_NULL_FLAG; } } return false; }