/* Copyright (C) 2000-2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This file defines all numerical functions */ #ifdef __GNUC__ #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include "slave.h" // for wait_for_master_pos #include #include #include #include static void my_coll_agg_error(DTCollation &c1, DTCollation &c2, const char *fname) { my_error(ER_CANT_AGGREGATE_2COLLATIONS,MYF(0), c1.collation->name,c1.derivation_name(), c2.collation->name,c2.derivation_name(), fname); } static void my_coll_agg_error(DTCollation &c1, DTCollation &c2, DTCollation &c3, const char *fname) { my_error(ER_CANT_AGGREGATE_3COLLATIONS,MYF(0), c1.collation->name,c1.derivation_name(), c2.collation->name,c2.derivation_name(), c3.collation->name,c3.derivation_name(), fname); } static void my_coll_agg_error(Item** args, uint count, const char *fname) { if (count == 2) my_coll_agg_error(args[0]->collation, args[1]->collation, fname); else if (count == 3) my_coll_agg_error(args[0]->collation, args[1]->collation, args[2]->collation, fname); else my_error(ER_CANT_AGGREGATE_NCOLLATIONS,MYF(0),fname); } bool Item_func::agg_arg_collations(DTCollation &c, Item **av, uint count) { uint i; c.set(av[0]->collation); for (i= 1; i < count; i++) { if (c.aggregate(av[i]->collation)) { my_coll_agg_error(av, count, func_name()); return TRUE; } } return FALSE; } bool Item_func::agg_arg_collations_for_comparison(DTCollation &c, Item **av, uint count) { if (agg_arg_collations(c, av, count)) return TRUE; if (c.derivation == DERIVATION_NONE) { my_coll_agg_error(av, count, func_name()); return TRUE; } return FALSE; } /* return TRUE if item is a constant */ bool eval_const_cond(COND *cond) { return ((Item_func*) cond)->val_int() ? TRUE : FALSE; } void Item_func::set_arguments(List &list) { allowed_arg_cols= 1; arg_count=list.elements; if ((args=(Item**) sql_alloc(sizeof(Item*)*arg_count))) { uint i=0; List_iterator_fast li(list); Item *item; while ((item=li++)) { args[i++]= item; with_sum_func|=item->with_sum_func; } } list.empty(); // Fields are used } Item_func::Item_func(List &list) :allowed_arg_cols(1) { set_arguments(list); } Item_func::Item_func(THD *thd, Item_func &item) :Item_result_field(thd, item), allowed_arg_cols(item.allowed_arg_cols), arg_count(item.arg_count), used_tables_cache(item.used_tables_cache), not_null_tables_cache(item.not_null_tables_cache), const_item_cache(item.const_item_cache) { if (arg_count) { if (arg_count <=2) args= tmp_arg; else { if (!(args=(Item**) thd->alloc(sizeof(Item*)*arg_count))) return; } memcpy((char*) args, (char*) item.args, sizeof(Item*)*arg_count); } } /* Resolve references to table column for a function and it's argument SYNOPSIS: fix_fields() thd Thread object tables List of all open tables involved in the query ref Pointer to where this object is used. This reference is used if we want to replace this object with another one (for example in the summary functions). DESCRIPTION Call fix_fields() for all arguments to the function. The main intention is to allow all Item_field() objects to setup pointers to the table fields. Sets as a side effect the following class variables: maybe_null Set if any argument may return NULL with_sum_func Set if any of the arguments contains a sum function used_table_cache Set to union of the arguments used table str_value.charset If this is a string function, set this to the character set for the first argument. If any argument is binary, this is set to binary If for any item any of the defaults are wrong, then this can be fixed in the fix_length_and_dec() function that is called after this one or by writing a specialized fix_fields() for the item. RETURN VALUES 0 ok 1 Got error. Stored with my_error(). */ bool Item_func::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref) { Item **arg,**arg_end; #ifndef EMBEDDED_LIBRARY // Avoid compiler warning char buff[STACK_BUFF_ALLOC]; // Max argument in function #endif used_tables_cache= not_null_tables_cache= 0; const_item_cache=1; if (check_stack_overrun(thd, buff)) return 1; // Fatal error if flag is set! if (arg_count) { // Print purify happy for (arg=args, arg_end=args+arg_count; arg != arg_end ; arg++) { Item *item; /* We can't yet set item to *arg as fix_fields may change *arg */ if ((*arg)->fix_fields(thd, tables, arg) || (*arg)->check_cols(allowed_arg_cols)) return 1; /* purecov: inspected */ item= *arg; if (item->maybe_null) maybe_null=1; with_sum_func= with_sum_func || item->with_sum_func; used_tables_cache|= item->used_tables(); not_null_tables_cache|= item->not_null_tables(); const_item_cache&= item->const_item(); } } fix_length_and_dec(); if (thd->net.last_errno) // An error inside fix_length_and_dec occured return 1; fixed= 1; return 0; } bool Item_func::walk (Item_processor processor, byte *argument) { if (arg_count) { Item **arg,**arg_end; for (arg= args, arg_end= args+arg_count; arg != arg_end; arg++) { if ((*arg)->walk(processor, argument)) return 1; } } return (this->*processor)(argument); } void Item_func::split_sum_func(Item **ref_pointer_array, List &fields) { Item **arg, **arg_end; for (arg= args, arg_end= args+arg_count; arg != arg_end ; arg++) { Item *item=* arg; if (item->with_sum_func && item->type() != SUM_FUNC_ITEM) item->split_sum_func(ref_pointer_array, fields); else if (item->used_tables() || item->type() == SUM_FUNC_ITEM) { uint el= fields.elements; fields.push_front(item); ref_pointer_array[el]= item; *arg= new Item_ref(ref_pointer_array + el, 0, item->name); } } } void Item_func::update_used_tables() { used_tables_cache=0; const_item_cache=1; for (uint i=0 ; i < arg_count ; i++) { args[i]->update_used_tables(); used_tables_cache|=args[i]->used_tables(); const_item_cache&=args[i]->const_item(); } } table_map Item_func::used_tables() const { return used_tables_cache; } table_map Item_func::not_null_tables() const { return not_null_tables_cache; } void Item_func::print(String *str) { str->append(func_name()); str->append('('); print_args(str, 0); str->append(')'); } void Item_func::print_args(String *str, uint from) { for (uint i=from ; i < arg_count ; i++) { if (i != from) str->append(','); args[i]->print(str); } } void Item_func::print_op(String *str) { str->append('('); for (uint i=0 ; i < arg_count-1 ; i++) { args[i]->print(str); str->append(' '); str->append(func_name()); str->append(' '); } args[arg_count-1]->print(str); str->append(')'); } bool Item_func::eq(const Item *item, bool binary_cmp) const { /* Assume we don't have rtti */ if (this == item) return 1; if (item->type() != FUNC_ITEM) return 0; Item_func *item_func=(Item_func*) item; if (arg_count != item_func->arg_count || func_name() != item_func->func_name()) return 0; for (uint i=0; i < arg_count ; i++) if (!args[i]->eq(item_func->args[i], binary_cmp)) return 0; return 1; } Field *Item_func::tmp_table_field(TABLE *t_arg) { Field *res; LINT_INIT(res); switch (result_type()) { case INT_RESULT: if (max_length > 11) res= new Field_longlong(max_length, maybe_null, name, t_arg, unsigned_flag); else res= new Field_long(max_length, maybe_null, name, t_arg, unsigned_flag); break; case REAL_RESULT: res= new Field_double(max_length, maybe_null, name, t_arg, decimals); break; case STRING_RESULT: if (max_length > 255) res= new Field_blob(max_length, maybe_null, name, t_arg, collation.collation); else res= new Field_string(max_length, maybe_null, name, t_arg, collation.collation); break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } return res; } String *Item_real_func::val_str(String *str) { double nr=val(); if (null_value) return 0; /* purecov: inspected */ else str->set(nr,decimals,default_charset()); return str; } String *Item_num_func::val_str(String *str) { if (hybrid_type == INT_RESULT) { longlong nr=val_int(); if (null_value) return 0; /* purecov: inspected */ else if (!unsigned_flag) str->set(nr,default_charset()); else str->set((ulonglong) nr,default_charset()); } else { double nr=val(); if (null_value) return 0; /* purecov: inspected */ else str->set(nr,decimals,default_charset()); } return str; } void Item_func::fix_num_length_and_dec() { decimals=0; for (uint i=0 ; i < arg_count ; i++) set_if_bigger(decimals,args[i]->decimals); max_length=float_length(decimals); } Item *Item_func::get_tmp_table_item(THD *thd) { if (!with_sum_func && !const_item()) return new Item_field(result_field); return copy_or_same(thd); } String *Item_int_func::val_str(String *str) { longlong nr=val_int(); if (null_value) return 0; else if (!unsigned_flag) str->set(nr,default_charset()); else str->set((ulonglong) nr,default_charset()); return str; } /* Change from REAL_RESULT (default) to INT_RESULT if both arguments are integers */ void Item_num_op::find_num_type(void) { if (args[0]->result_type() == INT_RESULT && args[1]->result_type() == INT_RESULT) { hybrid_type=INT_RESULT; unsigned_flag=args[0]->unsigned_flag | args[1]->unsigned_flag; } } String *Item_num_op::val_str(String *str) { if (hybrid_type == INT_RESULT) { longlong nr=val_int(); if (null_value) return 0; /* purecov: inspected */ else if (!unsigned_flag) str->set(nr,default_charset()); else str->set((ulonglong) nr,default_charset()); } else { double nr=val(); if (null_value) return 0; /* purecov: inspected */ else str->set(nr,decimals,default_charset()); } return str; } void Item_func_signed::print(String *str) { str->append("cast(", 5); args[0]->print(str); str->append(" as signed)", 11); } void Item_func_unsigned::print(String *str) { str->append("cast(", 5); args[0]->print(str); str->append(" as unsigned)", 13); } double Item_func_plus::val() { double value=args[0]->val()+args[1]->val(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0.0; return value; } longlong Item_func_plus::val_int() { if (hybrid_type == INT_RESULT) { longlong value=args[0]->val_int()+args[1]->val_int(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0; return value; } return (longlong) Item_func_plus::val(); } /* The following function is here to allow the user to force subtraction of UNSIGNED BIGINT to return negative values. */ void Item_func_minus::fix_length_and_dec() { Item_num_op::fix_length_and_dec(); if (unsigned_flag && (current_thd->variables.sql_mode & MODE_NO_UNSIGNED_SUBTRACTION)) unsigned_flag=0; } double Item_func_minus::val() { double value=args[0]->val() - args[1]->val(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0.0; return value; } longlong Item_func_minus::val_int() { if (hybrid_type == INT_RESULT) { longlong value=args[0]->val_int() - args[1]->val_int(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0; return value; } return (longlong) Item_func_minus::val(); } double Item_func_mul::val() { double value=args[0]->val()*args[1]->val(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0.0; /* purecov: inspected */ return value; } longlong Item_func_mul::val_int() { if (hybrid_type == INT_RESULT) { longlong value=args[0]->val_int()*args[1]->val_int(); if ((null_value=args[0]->null_value || args[1]->null_value)) return 0; /* purecov: inspected */ return value; } return (longlong) Item_func_mul::val(); } double Item_func_div::val() { double value=args[0]->val(); double val2=args[1]->val(); if ((null_value= val2 == 0.0 || args[0]->null_value || args[1]->null_value)) return 0.0; return value/val2; } longlong Item_func_div::val_int() { if (hybrid_type == INT_RESULT) { longlong value=args[0]->val_int(); longlong val2=args[1]->val_int(); if ((null_value= val2 == 0 || args[0]->null_value || args[1]->null_value)) return 0; return value/val2; } return (longlong) Item_func_div::val(); } void Item_func_div::fix_length_and_dec() { decimals=max(args[0]->decimals,args[1]->decimals)+2; max_length=args[0]->max_length - args[0]->decimals + decimals; uint tmp=float_length(decimals); set_if_smaller(max_length,tmp); maybe_null=1; } /* Integer division */ longlong Item_func_int_div::val_int() { longlong value=args[0]->val_int(); longlong val2=args[1]->val_int(); if ((null_value= val2 == 0 || args[0]->null_value || args[1]->null_value)) return 0; return (unsigned_flag ? (ulonglong) value / (ulonglong) val2 : value / val2); } void Item_func_int_div::fix_length_and_dec() { find_num_type(); max_length=args[0]->max_length - args[0]->decimals; maybe_null=1; } double Item_func_mod::val() { double value= floor(args[0]->val()+0.5); double val2=floor(args[1]->val()+0.5); if ((null_value=val2 == 0.0 || args[0]->null_value || args[1]->null_value)) return 0.0; /* purecov: inspected */ return fmod(value,val2); } longlong Item_func_mod::val_int() { longlong value= args[0]->val_int(); longlong val2= args[1]->val_int(); if ((null_value=val2 == 0 || args[0]->null_value || args[1]->null_value)) return 0; /* purecov: inspected */ return value % val2; } void Item_func_mod::fix_length_and_dec() { max_length=args[1]->max_length; decimals=0; maybe_null=1; find_num_type(); } double Item_func_neg::val() { double value=args[0]->val(); null_value=args[0]->null_value; return -value; } longlong Item_func_neg::val_int() { longlong value=args[0]->val_int(); null_value=args[0]->null_value; return -value; } void Item_func_neg::fix_length_and_dec() { decimals=args[0]->decimals; max_length=args[0]->max_length; hybrid_type= REAL_RESULT; if (args[0]->result_type() == INT_RESULT) { /* If this is in integer context keep the context as integer (This is how multiplication and other integer functions works) We must however do a special case in the case where the argument is a unsigned bigint constant as in this case the only safe number to convert in integer context is 9223372036854775808. (This is needed because the lex parser doesn't anymore handle signed integers) */ if (args[0]->type() != INT_ITEM || ((ulonglong) ((Item_uint*) args[0])->value <= (ulonglong) LONGLONG_MIN)) hybrid_type= INT_RESULT; } } double Item_func_abs::val() { double value=args[0]->val(); null_value=args[0]->null_value; return fabs(value); } longlong Item_func_abs::val_int() { longlong value=args[0]->val_int(); null_value=args[0]->null_value; return value >= 0 ? value : -value; } void Item_func_abs::fix_length_and_dec() { decimals=args[0]->decimals; max_length=args[0]->max_length; hybrid_type= REAL_RESULT; if (args[0]->result_type() == INT_RESULT) { hybrid_type= INT_RESULT; unsigned_flag= 1; } } /* Gateway to natural LOG function */ double Item_func_ln::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || value <= 0.0))) return 0.0; return log(value); } /* Extended but so slower LOG function We have to check if all values are > zero and first one is not one as these are the cases then result is not a number. */ double Item_func_log::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || value <= 0.0))) return 0.0; if (arg_count == 2) { double value2= args[1]->val(); if ((null_value=(args[1]->null_value || value2 <= 0.0 || value == 1.0))) return 0.0; return log(value2) / log(value); } return log(value); } double Item_func_log2::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || value <= 0.0))) return 0.0; return log(value) / log(2.0); } double Item_func_log10::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || value <= 0.0))) return 0.0; /* purecov: inspected */ return log10(value); } double Item_func_exp::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0.0; /* purecov: inspected */ return exp(value); } double Item_func_sqrt::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || value < 0))) return 0.0; /* purecov: inspected */ return sqrt(value); } double Item_func_pow::val() { double value=args[0]->val(); double val2=args[1]->val(); if ((null_value=(args[0]->null_value || args[1]->null_value))) return 0.0; /* purecov: inspected */ return pow(value,val2); } // Trigonometric functions double Item_func_acos::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || (value < -1.0 || value > 1.0)))) return 0.0; return fix_result(acos(value)); } double Item_func_asin::val() { double value=args[0]->val(); if ((null_value=(args[0]->null_value || (value < -1.0 || value > 1.0)))) return 0.0; return fix_result(asin(value)); } double Item_func_atan::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0.0; if (arg_count == 2) { double val2= args[1]->val(); if ((null_value=args[1]->null_value)) return 0.0; return fix_result(atan2(value,val2)); } return fix_result(atan(value)); } double Item_func_cos::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0.0; return fix_result(cos(value)); } double Item_func_sin::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0.0; return fix_result(sin(value)); } double Item_func_tan::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0.0; return fix_result(tan(value)); } // Shift-functions, same as << and >> in C/C++ longlong Item_func_shift_left::val_int() { uint shift; ulonglong res= ((ulonglong) args[0]->val_int() << (shift=(uint) args[1]->val_int())); if (args[0]->null_value || args[1]->null_value) { null_value=1; return 0; } null_value=0; return (shift < sizeof(longlong)*8 ? (longlong) res : LL(0)); } longlong Item_func_shift_right::val_int() { uint shift; ulonglong res= (ulonglong) args[0]->val_int() >> (shift=(uint) args[1]->val_int()); if (args[0]->null_value || args[1]->null_value) { null_value=1; return 0; } null_value=0; return (shift < sizeof(longlong)*8 ? (longlong) res : LL(0)); } longlong Item_func_bit_neg::val_int() { ulonglong res= (ulonglong) args[0]->val_int(); if ((null_value=args[0]->null_value)) return 0; return ~res; } // Conversion functions void Item_func_integer::fix_length_and_dec() { max_length=args[0]->max_length - args[0]->decimals+1; uint tmp=float_length(decimals); set_if_smaller(max_length,tmp); decimals=0; } longlong Item_func_ceiling::val_int() { double value=args[0]->val(); null_value=args[0]->null_value; return (longlong) ceil(value); } longlong Item_func_floor::val_int() { double value=args[0]->val(); null_value=args[0]->null_value; return (longlong) floor(value); } void Item_func_round::fix_length_and_dec() { max_length=args[0]->max_length; decimals=args[0]->decimals; if (args[1]->const_item()) { int tmp=(int) args[1]->val_int(); if (tmp < 0) decimals=0; else decimals=tmp; } } double Item_func_round::val() { double value=args[0]->val(); int dec=(int) args[1]->val_int(); uint abs_dec=abs(dec); double tmp; /* tmp2 is here to avoid return the value with 80 bit precision This will fix that the test round(0.1,1) = round(0.1,1) is true */ volatile double tmp2; if ((null_value=args[0]->null_value || args[1]->null_value)) return 0.0; tmp=(abs_dec < array_elements(log_10) ? log_10[abs_dec] : pow(10.0,(double) abs_dec)); if (truncate) { if (value >= 0) tmp2= dec < 0 ? floor(value/tmp)*tmp : floor(value*tmp)/tmp; else tmp2= dec < 0 ? ceil(value/tmp)*tmp : ceil(value*tmp)/tmp; } else tmp2=dec < 0 ? rint(value/tmp)*tmp : rint(value*tmp)/tmp; return tmp2; } void Item_func_rand::fix_length_and_dec() { decimals=NOT_FIXED_DEC; max_length=float_length(decimals); if (arg_count) { // Only use argument once in query uint32 tmp= (uint32) (args[0]->val_int()); if ((rand= (struct rand_struct*) sql_alloc(sizeof(*rand)))) randominit(rand,(uint32) (tmp*0x10001L+55555555L), (uint32) (tmp*0x10000001L)); } else { THD *thd= current_thd; /* No need to send a Rand log event if seed was given eg: RAND(seed), as it will be replicated in the query as such. Save the seed only the first time RAND() is used in the query Once events are forwarded rather than recreated, the following can be skipped if inside the slave thread */ thd->rand_used=1; thd->rand_saved_seed1=thd->rand.seed1; thd->rand_saved_seed2=thd->rand.seed2; rand= &thd->rand; } } double Item_func_rand::val() { return my_rnd(rand); } longlong Item_func_sign::val_int() { double value=args[0]->val(); null_value=args[0]->null_value; return value < 0.0 ? -1 : (value > 0 ? 1 : 0); } double Item_func_units::val() { double value=args[0]->val(); if ((null_value=args[0]->null_value)) return 0; return value*mul+add; } void Item_func_min_max::fix_length_and_dec() { decimals=0; max_length=0; maybe_null=1; cmp_type=args[0]->result_type(); for (uint i=0 ; i < arg_count ; i++) { if (max_length < args[i]->max_length) max_length=args[i]->max_length; if (decimals < args[i]->decimals) decimals=args[i]->decimals; if (!args[i]->maybe_null) maybe_null=0; cmp_type=item_cmp_type(cmp_type,args[i]->result_type()); } if (cmp_type == STRING_RESULT) agg_arg_collations_for_comparison(collation, args, arg_count); } String *Item_func_min_max::val_str(String *str) { switch (cmp_type) { case INT_RESULT: { longlong nr=val_int(); if (null_value) return 0; else if (!unsigned_flag) str->set(nr,default_charset()); else str->set((ulonglong) nr,default_charset()); return str; } case REAL_RESULT: { double nr=val(); if (null_value) return 0; /* purecov: inspected */ else str->set(nr,decimals,default_charset()); return str; } case STRING_RESULT: { String *res; LINT_INIT(res); null_value=1; for (uint i=0; i < arg_count ; i++) { if (null_value) { res=args[i]->val_str(str); null_value=args[i]->null_value; } else { String *res2; res2= args[i]->val_str(res == str ? &tmp_value : str); if (res2) { int cmp= sortcmp(res,res2,collation.collation); if ((cmp_sign < 0 ? cmp : -cmp) < 0) res=res2; } } } res->set_charset(collation.collation); return res; } case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); return 0; } return 0; // Keep compiler happy } double Item_func_min_max::val() { double value=0.0; null_value=1; for (uint i=0; i < arg_count ; i++) { if (null_value) { value=args[i]->val(); null_value=args[i]->null_value; } else { double tmp=args[i]->val(); if (!args[i]->null_value && (tmp < value ? cmp_sign : -cmp_sign) > 0) value=tmp; } } return value; } longlong Item_func_min_max::val_int() { longlong value=0; null_value=1; for (uint i=0; i < arg_count ; i++) { if (null_value) { value=args[i]->val_int(); null_value=args[i]->null_value; } else { longlong tmp=args[i]->val_int(); if (!args[i]->null_value && (tmp < value ? cmp_sign : -cmp_sign) > 0) value=tmp; } } return value; } longlong Item_func_length::val_int() { String *res=args[0]->val_str(&value); if (!res) { null_value=1; return 0; /* purecov: inspected */ } null_value=0; return (longlong) res->length(); } longlong Item_func_char_length::val_int() { String *res=args[0]->val_str(&value); if (!res) { null_value=1; return 0; /* purecov: inspected */ } null_value=0; return (longlong) res->numchars(); } longlong Item_func_coercibility::val_int() { if (args[0]->null_value) { null_value= 1; return 0; } null_value= 0; return (longlong) args[0]->collation.derivation; } void Item_func_locate::fix_length_and_dec() { maybe_null=0; max_length=11; agg_arg_collations_for_comparison(cmp_collation, args, 2); } longlong Item_func_locate::val_int() { String *a=args[0]->val_str(&value1); String *b=args[1]->val_str(&value2); if (!a || !b) { null_value=1; return 0; /* purecov: inspected */ } null_value=0; uint start=0; uint start0=0; my_match_t match; if (arg_count == 3) { start0= start =(uint) args[2]->val_int()-1; start=a->charpos(start); if (start > a->length() || start+b->length() > a->length()) return 0; } if (!b->length()) // Found empty string at start return (longlong) (start+1); if (!cmp_collation.collation->coll->instr(cmp_collation.collation, a->ptr()+start, a->length()-start, b->ptr(), b->length(), &match, 1)) return 0; return (longlong) match.mblen + start0 + 1; } void Item_func_locate::print(String *str) { str->append("locate(", 7); args[1]->print(str); str->append(','); args[0]->print(str); if (arg_count == 3) { str->append(','); args[2]->print(str); } str->append(')'); } longlong Item_func_field::val_int() { if (cmp_type == STRING_RESULT) { String *field; if (!(field=args[0]->val_str(&value))) return 0; // -1 if null ? for (uint i=1 ; i < arg_count ; i++) { String *tmp_value=args[i]->val_str(&tmp); if (tmp_value && !sortcmp(field,tmp_value,cmp_collation.collation)) return (longlong) (i); } } else if (cmp_type == INT_RESULT) { longlong val= args[0]->val_int(); for (uint i=1; i < arg_count ; i++) { if (val == args[i]->val_int()) return (longlong) (i); } } else { double val= args[0]->val(); for (uint i=1; i < arg_count ; i++) { if (val == args[i]->val()) return (longlong) (i); } } return 0; } void Item_func_field::fix_length_and_dec() { maybe_null=0; max_length=3; cmp_type= args[0]->result_type(); for (uint i=1; i < arg_count ; i++) cmp_type= item_cmp_type(cmp_type, args[i]->result_type()); if (cmp_type == STRING_RESULT) agg_arg_collations_for_comparison(cmp_collation, args, arg_count); } longlong Item_func_ascii::val_int() { String *res=args[0]->val_str(&value); if (!res) { null_value=1; return 0; } null_value=0; return (longlong) (res->length() ? (uchar) (*res)[0] : (uchar) 0); } longlong Item_func_ord::val_int() { String *res=args[0]->val_str(&value); if (!res) { null_value=1; return 0; } null_value=0; if (!res->length()) return 0; #ifdef USE_MB if (use_mb(res->charset())) { register const char *str=res->ptr(); register uint32 n=0, l=my_ismbchar(res->charset(),str,str+res->length()); if (!l) return (longlong)((uchar) *str); while (l--) n=(n<<8)|(uint32)((uchar) *str++); return (longlong) n; } #endif return (longlong) ((uchar) (*res)[0]); } /* Search after a string in a string of strings separated by ',' */ /* Returns number of found type >= 1 or 0 if not found */ /* This optimizes searching in enums to bit testing! */ void Item_func_find_in_set::fix_length_and_dec() { decimals=0; max_length=3; // 1-999 if (args[0]->const_item() && args[1]->type() == FIELD_ITEM) { Field *field= ((Item_field*) args[1])->field; if (field->real_type() == FIELD_TYPE_SET) { String *find=args[0]->val_str(&value); if (find) { enum_value= find_type(((Field_enum*) field)->typelib,find->ptr(), find->length(), 0); enum_bit=0; if (enum_value) enum_bit=LL(1) << (enum_value-1); } } } agg_arg_collations_for_comparison(cmp_collation, args, 2); } static const char separator=','; longlong Item_func_find_in_set::val_int() { if (enum_value) { ulonglong tmp=(ulonglong) args[1]->val_int(); if (!(null_value=args[1]->null_value || args[0]->null_value)) { if (tmp & enum_bit) return enum_value; } return 0L; } String *find=args[0]->val_str(&value); String *buffer=args[1]->val_str(&value2); if (!find || !buffer) { null_value=1; return 0; /* purecov: inspected */ } null_value=0; int diff; if ((diff=buffer->length() - find->length()) >= 0) { const char *f_pos=find->ptr(); const char *f_end=f_pos+find->length(); const char *str=buffer->ptr(); const char *end=str+diff+1; const char *real_end=str+buffer->length(); uint position=1; do { const char *pos= f_pos; while (pos != f_end) { if (my_toupper(cmp_collation.collation,*str) != my_toupper(cmp_collation.collation,*pos)) goto not_found; str++; pos++; } if (str == real_end || str[0] == separator) return (longlong) position; not_found: while (str < end && str[0] != separator) str++; position++; } while (++str <= end); } return 0; } longlong Item_func_bit_count::val_int() { ulonglong value= (ulonglong) args[0]->val_int(); if (args[0]->null_value) { null_value=1; /* purecov: inspected */ return 0; /* purecov: inspected */ } return (longlong) my_count_bits(value); } /**************************************************************************** ** Functions to handle dynamic loadable functions ** Original source by: Alexis Mikhailov ** Rewritten by monty. ****************************************************************************/ #ifdef HAVE_DLOPEN udf_handler::~udf_handler() { if (initialized) { if (u_d->func_deinit != NULL) { void (*deinit)(UDF_INIT *) = (void (*)(UDF_INIT*)) u_d->func_deinit; (*deinit)(&initid); } free_udf(u_d); } if (buffers) // Because of bug in ecc delete [] buffers; } bool udf_handler::fix_fields(THD *thd, TABLE_LIST *tables, Item_result_field *func, uint arg_count, Item **arguments) { #ifndef EMBEDDED_LIBRARY // Avoid compiler warning char buff[STACK_BUFF_ALLOC]; // Max argument in function #endif DBUG_ENTER("Item_udf_func::fix_fields"); if (check_stack_overrun(thd, buff)) DBUG_RETURN(1); // Fatal error flag is set! udf_func *tmp_udf=find_udf(u_d->name.str,(uint) u_d->name.length,1); if (!tmp_udf) { my_printf_error(ER_CANT_FIND_UDF,ER(ER_CANT_FIND_UDF),MYF(0),u_d->name.str, errno); DBUG_RETURN(1); } u_d=tmp_udf; args=arguments; /* Fix all arguments */ func->maybe_null=0; used_tables_cache=0; const_item_cache=1; if ((f_args.arg_count=arg_count)) { if (!(f_args.arg_type= (Item_result*) sql_alloc(f_args.arg_count*sizeof(Item_result)))) { free_udf(u_d); DBUG_RETURN(1); } uint i; Item **arg,**arg_end; for (i=0, arg=arguments, arg_end=arguments+arg_count; arg != arg_end ; arg++,i++) { Item *item= *arg; if (item->fix_fields(thd, tables, arg) || item->check_cols(1)) return 1; /* TODO: We should think about this. It is not always right way just to set an UDF result to return my_charset_bin if one argument has binary sorting order. The result collation should be calculated according to arguments derivations in some cases and should not in other cases. Moreover, some arguments can represent a numeric input which doesn't effect the result character set and collation. There is no a general rule for UDF. Everything depends on the particular user definted function. */ if (item->collation.collation->state & MY_CS_BINSORT) func->collation.set(&my_charset_bin); if (item->maybe_null) func->maybe_null=1; func->with_sum_func= func->with_sum_func || item->with_sum_func; used_tables_cache|=item->used_tables(); const_item_cache&=item->const_item(); f_args.arg_type[i]=item->result_type(); } if (!(buffers=new String[arg_count]) || !(f_args.args= (char**) sql_alloc(arg_count * sizeof(char *))) || !(f_args.lengths=(ulong*) sql_alloc(arg_count * sizeof(long))) || !(f_args.maybe_null=(char*) sql_alloc(arg_count * sizeof(char))) || !(num_buffer= (char*) sql_alloc(ALIGN_SIZE(sizeof(double))*arg_count))) { free_udf(u_d); DBUG_RETURN(1); } } func->fix_length_and_dec(); initid.max_length=func->max_length; initid.maybe_null=func->maybe_null; initid.const_item=const_item_cache; initid.decimals=func->decimals; initid.ptr=0; if (u_d->func_init) { char *to=num_buffer; for (uint i=0; i < arg_count; i++) { f_args.args[i]=0; f_args.lengths[i]=arguments[i]->max_length; f_args.maybe_null[i]=(char) arguments[i]->maybe_null; switch(arguments[i]->type()) { case Item::STRING_ITEM: // Constant string ! { String *res=arguments[i]->val_str((String *) 0); if (arguments[i]->null_value) continue; f_args.args[i]= (char*) res->ptr(); break; } case Item::INT_ITEM: *((longlong*) to) = arguments[i]->val_int(); if (!arguments[i]->null_value) { f_args.args[i]=to; to+= ALIGN_SIZE(sizeof(longlong)); } break; case Item::REAL_ITEM: *((double*) to) = arguments[i]->val(); if (!arguments[i]->null_value) { f_args.args[i]=to; to+= ALIGN_SIZE(sizeof(double)); } break; default: // Skip these break; } } thd->net.last_error[0]=0; my_bool (*init)(UDF_INIT *, UDF_ARGS *, char *)= (my_bool (*)(UDF_INIT *, UDF_ARGS *, char *)) u_d->func_init; if ((error=(uchar) init(&initid, &f_args, thd->net.last_error))) { my_printf_error(ER_CANT_INITIALIZE_UDF,ER(ER_CANT_INITIALIZE_UDF),MYF(0), u_d->name,thd->net.last_error); free_udf(u_d); DBUG_RETURN(1); } func->max_length=min(initid.max_length,MAX_BLOB_WIDTH); func->maybe_null=initid.maybe_null; const_item_cache=initid.const_item; func->decimals=min(initid.decimals,31); } initialized=1; if (error) { my_printf_error(ER_CANT_INITIALIZE_UDF,ER(ER_CANT_INITIALIZE_UDF),MYF(0), u_d->name, ER(ER_UNKNOWN_ERROR)); DBUG_RETURN(1); } DBUG_RETURN(0); } bool udf_handler::get_arguments() { if (error) return 1; // Got an error earlier char *to= num_buffer; uint str_count=0; for (uint i=0; i < f_args.arg_count; i++) { f_args.args[i]=0; switch (f_args.arg_type[i]) { case STRING_RESULT: { String *res=args[i]->val_str(&buffers[str_count++]); if (!(args[i]->null_value)) { f_args.args[i]= (char*) res->ptr(); f_args.lengths[i]= res->length(); break; } } case INT_RESULT: *((longlong*) to) = args[i]->val_int(); if (!args[i]->null_value) { f_args.args[i]=to; to+= ALIGN_SIZE(sizeof(longlong)); } break; case REAL_RESULT: *((double*) to) = args[i]->val(); if (!args[i]->null_value) { f_args.args[i]=to; to+= ALIGN_SIZE(sizeof(double)); } break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } } return 0; } /* This returns (String*) 0 in case of NULL values */ String *udf_handler::val_str(String *str,String *save_str) { uchar is_null=0; ulong res_length; if (get_arguments()) return 0; char * (*func)(UDF_INIT *, UDF_ARGS *, char *, ulong *, uchar *, uchar *)= (char* (*)(UDF_INIT *, UDF_ARGS *, char *, ulong *, uchar *, uchar *)) u_d->func; if ((res_length=str->alloced_length()) < MAX_FIELD_WIDTH) { // This happens VERY seldom if (str->alloc(MAX_FIELD_WIDTH)) { error=1; return 0; } } char *res=func(&initid, &f_args, (char*) str->ptr(), &res_length, &is_null, &error); if (is_null || !res || error) // The !res is for safety { return 0; } if (res == str->ptr()) { str->length(res_length); return str; } save_str->set(res, res_length, str->charset()); return save_str; } double Item_func_udf_float::val() { DBUG_ENTER("Item_func_udf_float::val"); DBUG_PRINT("info",("result_type: %d arg_count: %d", args[0]->result_type(), arg_count)); DBUG_RETURN(udf.val(&null_value)); } String *Item_func_udf_float::val_str(String *str) { double nr=val(); if (null_value) return 0; /* purecov: inspected */ else str->set(nr,decimals,default_charset()); return str; } longlong Item_func_udf_int::val_int() { DBUG_ENTER("Item_func_udf_int::val_int"); DBUG_PRINT("info",("result_type: %d arg_count: %d", args[0]->result_type(), arg_count)); DBUG_RETURN(udf.val_int(&null_value)); } String *Item_func_udf_int::val_str(String *str) { longlong nr=val_int(); if (null_value) return 0; else if (!unsigned_flag) str->set(nr,default_charset()); else str->set((ulonglong) nr,default_charset()); return str; } /* Default max_length is max argument length */ void Item_func_udf_str::fix_length_and_dec() { DBUG_ENTER("Item_func_udf_str::fix_length_and_dec"); max_length=0; for (uint i = 0; i < arg_count; i++) set_if_bigger(max_length,args[i]->max_length); DBUG_VOID_RETURN; } String *Item_func_udf_str::val_str(String *str) { String *res=udf.val_str(str,&str_value); null_value = !res; return res; } #else bool udf_handler::get_arguments() { return 0; } #endif /* HAVE_DLOPEN */ /* ** User level locks */ pthread_mutex_t LOCK_user_locks; static HASH hash_user_locks; class ULL { char *key; uint key_length; public: int count; bool locked; pthread_cond_t cond; pthread_t thread; ulong thread_id; ULL(const char *key_arg,uint length, ulong id) :key_length(length),count(1),locked(1), thread_id(id) { key=(char*) my_memdup((byte*) key_arg,length,MYF(0)); pthread_cond_init(&cond,NULL); if (key) { if (my_hash_insert(&hash_user_locks,(byte*) this)) { my_free((gptr) key,MYF(0)); key=0; } } } ~ULL() { if (key) { hash_delete(&hash_user_locks,(byte*) this); my_free((gptr) key,MYF(0)); } pthread_cond_destroy(&cond); } inline bool initialized() { return key != 0; } friend void item_user_lock_release(ULL *ull); friend char *ull_get_key(const ULL *ull,uint *length,my_bool not_used); }; char *ull_get_key(const ULL *ull,uint *length, my_bool not_used __attribute__((unused))) { *length=(uint) ull->key_length; return (char*) ull->key; } void item_user_lock_init(void) { pthread_mutex_init(&LOCK_user_locks,MY_MUTEX_INIT_SLOW); hash_init(&hash_user_locks,system_charset_info, 16,0,0,(hash_get_key) ull_get_key,NULL,0); } void item_user_lock_free(void) { hash_free(&hash_user_locks); pthread_mutex_destroy(&LOCK_user_locks); } void item_user_lock_release(ULL *ull) { ull->locked=0; if (mysql_bin_log.is_open()) { char buf[256]; const char *command="DO RELEASE_LOCK(\""; String tmp(buf,sizeof(buf), system_charset_info); tmp.copy(command, strlen(command), tmp.charset()); tmp.append(ull->key,ull->key_length); tmp.append("\")", 2); Query_log_event qev(current_thd, tmp.ptr(), tmp.length(),1); qev.error_code=0; // this query is always safe to run on slave mysql_bin_log.write(&qev); } if (--ull->count) pthread_cond_signal(&ull->cond); else delete ull; } /* Wait until we are at or past the given position in the master binlog on the slave */ longlong Item_master_pos_wait::val_int() { THD* thd = current_thd; String *log_name = args[0]->val_str(&value); int event_count= 0; null_value=0; if (thd->slave_thread || !log_name || !log_name->length()) { null_value = 1; return 0; } longlong pos = (ulong)args[1]->val_int(); longlong timeout = (arg_count==3) ? args[2]->val_int() : 0 ; #ifdef HAVE_REPLICATION LOCK_ACTIVE_MI; if ((event_count = active_mi->rli.wait_for_pos(thd, log_name, pos, timeout)) == -2) { null_value = 1; event_count=0; } UNLOCK_ACTIVE_MI; #endif return event_count; } #ifdef EXTRA_DEBUG void debug_sync_point(const char* lock_name, uint lock_timeout) { THD* thd=current_thd; ULL* ull; struct timespec abstime; int lock_name_len,error=0; lock_name_len=strlen(lock_name); pthread_mutex_lock(&LOCK_user_locks); if (thd->ull) { item_user_lock_release(thd->ull); thd->ull=0; } /* If the lock has not been aquired by some client, we do not want to create an entry for it, since we immediately release the lock. In this case, we will not be waiting, but rather, just waste CPU and memory on the whole deal */ if (!(ull= ((ULL*) hash_search(&hash_user_locks,lock_name, lock_name_len)))) { pthread_mutex_unlock(&LOCK_user_locks); return; } ull->count++; /* Structure is now initialized. Try to get the lock. Set up control struct to allow others to abort locks */ thd->proc_info="User lock"; thd->mysys_var->current_mutex= &LOCK_user_locks; thd->mysys_var->current_cond= &ull->cond; set_timespec(abstime,lock_timeout); while (!thd->killed && (error=pthread_cond_timedwait(&ull->cond,&LOCK_user_locks,&abstime)) != ETIME && error != ETIMEDOUT && ull->locked) ; if (ull->locked) { if (!--ull->count) delete ull; // Should never happen } else { ull->locked=1; ull->thread=thd->real_id; thd->ull=ull; } pthread_mutex_unlock(&LOCK_user_locks); pthread_mutex_lock(&thd->mysys_var->mutex); thd->proc_info=0; thd->mysys_var->current_mutex= 0; thd->mysys_var->current_cond= 0; pthread_mutex_unlock(&thd->mysys_var->mutex); pthread_mutex_lock(&LOCK_user_locks); if (thd->ull) { item_user_lock_release(thd->ull); thd->ull=0; } pthread_mutex_unlock(&LOCK_user_locks); } #endif /* Get a user level lock. If the thread has an old lock this is first released. Returns 1: Got lock Returns 0: Timeout Returns NULL: Error */ longlong Item_func_get_lock::val_int() { String *res=args[0]->val_str(&value); longlong timeout=args[1]->val_int(); struct timespec abstime; THD *thd=current_thd; ULL *ull; int error=0; pthread_mutex_lock(&LOCK_user_locks); if (!res || !res->length()) { pthread_mutex_unlock(&LOCK_user_locks); null_value=1; return 0; } null_value=0; if (thd->ull) { item_user_lock_release(thd->ull); thd->ull=0; } if (!(ull= ((ULL*) hash_search(&hash_user_locks,(byte*) res->ptr(), res->length())))) { ull=new ULL(res->ptr(),res->length(), thd->thread_id); if (!ull || !ull->initialized()) { delete ull; pthread_mutex_unlock(&LOCK_user_locks); null_value=1; // Probably out of memory return 0; } ull->thread=thd->real_id; thd->ull=ull; pthread_mutex_unlock(&LOCK_user_locks); return 1; // Got new lock } ull->count++; /* Structure is now initialized. Try to get the lock. Set up control struct to allow others to abort locks. */ thd->proc_info="User lock"; thd->mysys_var->current_mutex= &LOCK_user_locks; thd->mysys_var->current_cond= &ull->cond; set_timespec(abstime,timeout); while (!thd->killed && (error=pthread_cond_timedwait(&ull->cond,&LOCK_user_locks,&abstime)) != ETIME && error != ETIMEDOUT && error != EINVAL && ull->locked) ; if (thd->killed) error=EINTR; // Return NULL if (ull->locked) { if (!--ull->count) delete ull; // Should never happen if (error != ETIME && error != ETIMEDOUT) { error=1; null_value=1; // Return NULL } } else { ull->locked=1; ull->thread=thd->real_id; thd->ull=ull; error=0; } pthread_mutex_unlock(&LOCK_user_locks); pthread_mutex_lock(&thd->mysys_var->mutex); thd->proc_info=0; thd->mysys_var->current_mutex= 0; thd->mysys_var->current_cond= 0; pthread_mutex_unlock(&thd->mysys_var->mutex); return !error ? 1 : 0; } /* Release a user level lock. Return: 1 if lock released 0 if lock wasn't held (SQL) NULL if no such lock */ longlong Item_func_release_lock::val_int() { String *res=args[0]->val_str(&value); ULL *ull; longlong result; if (!res || !res->length()) { null_value=1; return 0; } null_value=0; result=0; pthread_mutex_lock(&LOCK_user_locks); if (!(ull= ((ULL*) hash_search(&hash_user_locks,(const byte*) res->ptr(), res->length())))) { null_value=1; } else { if (ull->locked && pthread_equal(pthread_self(),ull->thread)) { result=1; // Release is ok item_user_lock_release(ull); current_thd->ull=0; } } pthread_mutex_unlock(&LOCK_user_locks); return result; } longlong Item_func_set_last_insert_id::val_int() { longlong value=args[0]->val_int(); current_thd->insert_id(value); null_value=args[0]->null_value; return value; } /* This function is just used to test speed of different functions */ longlong Item_func_benchmark::val_int() { char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff), &my_charset_bin); THD *thd=current_thd; for (ulong loop=0 ; loop < loop_count && !thd->killed; loop++) { switch (args[0]->result_type()) { case REAL_RESULT: (void) args[0]->val(); break; case INT_RESULT: (void) args[0]->val_int(); break; case STRING_RESULT: (void) args[0]->val_str(&tmp); break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); return 0; } } return 0; } void Item_func_benchmark::print(String *str) { str->append("benchmark(", 10); char buffer[20]; // my_charset_bin is good enough for numbers String st(buffer, sizeof(buffer), &my_charset_bin); st.set((ulonglong)loop_count, &my_charset_bin); str->append(st); str->append(','); args[0]->print(str); str->append(')'); } #define extra_size sizeof(double) static user_var_entry *get_variable(HASH *hash, LEX_STRING &name, bool create_if_not_exists) { user_var_entry *entry; if (!(entry = (user_var_entry*) hash_search(hash, (byte*) name.str, name.length)) && create_if_not_exists) { uint size=ALIGN_SIZE(sizeof(user_var_entry))+name.length+1+extra_size; if (!hash_inited(hash)) return 0; if (!(entry = (user_var_entry*) my_malloc(size,MYF(MY_WME)))) return 0; entry->name.str=(char*) entry+ ALIGN_SIZE(sizeof(user_var_entry))+ extra_size; entry->name.length=name.length; entry->value=0; entry->length=0; entry->update_query_id=0; /* If we are here, we were called from a SET or a query which sets a variable. Imagine it is this: INSERT INTO t SELECT @a:=10, @a:=@a+1. Then when we have a Item_func_get_user_var (because of the @a+1) so we think we have to write the value of @a to the binlog. But before that, we have a Item_func_set_user_var to create @a (@a:=10), in this we mark the variable as "already logged" (line below) so that it won't be logged by Item_func_get_user_var (because that's not necessary). */ entry->used_query_id=current_thd->query_id; entry->type=STRING_RESULT; memcpy(entry->name.str, name.str, name.length+1); if (my_hash_insert(hash,(byte*) entry)) { my_free((char*) entry,MYF(0)); return 0; } } return entry; } /* When a user variable is updated (in a SET command or a query like SELECT @a:= ). */ bool Item_func_set_user_var::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref) { /* fix_fields will call Item_func_set_user_var::fix_length_and_dec */ if (Item_func::fix_fields(thd, tables, ref) || !(entry= get_variable(&thd->user_vars, name, 1))) return 1; /* Remember the last query which updated it, this way a query can later know if this variable is a constant item in the query (it is if update_query_id is different from query_id). */ entry->update_query_id= thd->query_id; cached_result_type= args[0]->result_type(); return 0; } void Item_func_set_user_var::fix_length_and_dec() { maybe_null=args[0]->maybe_null; max_length=args[0]->max_length; decimals=args[0]->decimals; } bool Item_func_set_user_var::update_hash(void *ptr, uint length, Item_result type, CHARSET_INFO *cs, Derivation dv) { if ((null_value=args[0]->null_value)) { char *pos= (char*) entry+ ALIGN_SIZE(sizeof(user_var_entry)); if (entry->value && entry->value != pos) my_free(entry->value,MYF(0)); entry->value=0; entry->length=0; entry->collation.set(cs, dv); } else { if (type == STRING_RESULT) length++; // Store strings with end \0 if (length <= extra_size) { /* Save value in value struct */ char *pos= (char*) entry+ ALIGN_SIZE(sizeof(user_var_entry)); if (entry->value != pos) { if (entry->value) my_free(entry->value,MYF(0)); entry->value=pos; } } else { /* Allocate variable */ if (entry->length != length) { char *pos= (char*) entry+ ALIGN_SIZE(sizeof(user_var_entry)); if (entry->value == pos) entry->value=0; if (!(entry->value=(char*) my_realloc(entry->value, length, MYF(MY_ALLOW_ZERO_PTR)))) goto err; } } if (type == STRING_RESULT) { length--; // Fix length change above entry->value[length]= 0; // Store end \0 } memcpy(entry->value,ptr,length); entry->length= length; entry->type=type; entry->collation.set(cs, dv); } return 0; err: current_thd->fatal_error(); // Probably end of memory null_value= 1; return 1; } /* Get the value of a variable as a double */ double user_var_entry::val(my_bool *null_value) { if ((*null_value= (value == 0))) return 0.0; switch (type) { case REAL_RESULT: return *(double*) value; case INT_RESULT: return (double) *(longlong*) value; case STRING_RESULT: return atof(value); // This is null terminated case ROW_RESULT: DBUG_ASSERT(1); // Impossible break; } return 0.0; // Impossible } /* Get the value of a variable as an integer */ longlong user_var_entry::val_int(my_bool *null_value) { if ((*null_value= (value == 0))) return LL(0); switch (type) { case REAL_RESULT: return (longlong) *(double*) value; case INT_RESULT: return *(longlong*) value; case STRING_RESULT: return strtoull(value,NULL,10); // String is null terminated case ROW_RESULT: DBUG_ASSERT(1); // Impossible break; } return LL(0); // Impossible } /* Get the value of a variable as a string */ String *user_var_entry::val_str(my_bool *null_value, String *str, uint decimals) { if ((*null_value= (value == 0))) return (String*) 0; switch (type) { case REAL_RESULT: str->set(*(double*) value, decimals, &my_charset_bin); break; case INT_RESULT: str->set(*(longlong*) value, &my_charset_bin); break; case STRING_RESULT: if (str->copy(value, length, collation.collation)) str= 0; // EOM error case ROW_RESULT: DBUG_ASSERT(1); // Impossible break; } return(str); } /* This functions is invoked on SET @variable or @variable:= expression. Evaluete (and check expression), store results. SYNOPSYS Item_func_set_user_var::check() NOTES For now it always return OK. All problem with value evalueting will be catched by thd->net.report_error check in sql_set_variables(). RETURN 0 - OK. */ bool Item_func_set_user_var::check() { DBUG_ENTER("Item_func_set_user_var::check"); switch (cached_result_type) { case REAL_RESULT: { save_result.vreal= args[0]->val(); break; } case INT_RESULT: { save_result.vint= args[0]->val_int(); break; } break; case STRING_RESULT: { save_result.vstr= args[0]->val_str(&value); break; } case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } DBUG_RETURN(0); } /* This functions is invoked on SET @variable or @variable:= expression. SYNOPSIS Item_func_set_user_var::update() NOTES We have to store the expression as such in the variable, independent of the value method used by the user RETURN 0 Ok 1 EOM Error */ bool Item_func_set_user_var::update() { bool res; DBUG_ENTER("Item_func_set_user_var::update"); LINT_INIT(res); switch (cached_result_type) { case REAL_RESULT: { res= update_hash((void*) &save_result.vreal,sizeof(save_result.vreal), REAL_RESULT, &my_charset_bin, DERIVATION_NONE); break; } case INT_RESULT: { res= update_hash((void*) &save_result.vint, sizeof(save_result.vint), INT_RESULT, &my_charset_bin, DERIVATION_NONE); break; } break; case STRING_RESULT: { if (!save_result.vstr) // Null value res= update_hash((void*) 0, 0, STRING_RESULT, &my_charset_bin, DERIVATION_NONE); else res= update_hash((void*) save_result.vstr->ptr(), save_result.vstr->length(), STRING_RESULT, save_result.vstr->charset(), args[0]->collation.derivation); break; } case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } DBUG_RETURN(res); } double Item_func_set_user_var::val() { check(); update(); // Store expression return entry->val(&null_value); } longlong Item_func_set_user_var::val_int() { check(); update(); // Store expression return entry->val_int(&null_value); } String *Item_func_set_user_var::val_str(String *str) { check(); update(); // Store expression return entry->val_str(&null_value, str, decimals); } void Item_func_set_user_var::print(String *str) { str->append("(@", 2); str->append(name.str, name.length); str->append(":=", 2); args[0]->print(str); str->append(')'); } String * Item_func_get_user_var::val_str(String *str) { DBUG_ENTER("Item_func_get_user_var::val_str"); if (!var_entry) return (String*) 0; // No such variable DBUG_RETURN(var_entry->val_str(&null_value, str, decimals)); } double Item_func_get_user_var::val() { if (!var_entry) return 0.0; // No such variable return (var_entry->val(&null_value)); } longlong Item_func_get_user_var::val_int() { if (!var_entry) return LL(0); // No such variable return (var_entry->val_int(&null_value)); } /* When a user variable is invoked from an update query (INSERT, UPDATE etc), stores this variable and its value in thd->user_var_events, so that it can be written to the binlog (will be written just before the query is written, see log.cc). */ void Item_func_get_user_var::fix_length_and_dec() { THD *thd=current_thd; BINLOG_USER_VAR_EVENT *user_var_event; maybe_null=1; decimals=NOT_FIXED_DEC; max_length=MAX_BLOB_WIDTH; if (!(var_entry= get_variable(&thd->user_vars, name, 0))) null_value= 1; if (!(opt_bin_log && is_update_query(thd->lex.sql_command))) return; if (!var_entry) { /* If the variable does not exist, it's NULL, but we want to create it so that it gets into the binlog (if it didn't, the slave could be influenced by a variable of the same name previously set by another thread). We create it like if it had been explicitely set with SET before. The 'new' mimicks what sql_yacc.yy does when 'SET @a=10;'. sql_set_variables() is what is called from 'case SQLCOM_SET_OPTION' in dispatch_command()). Instead of building a one-element list to pass to sql_set_variables(), we could instead manually call check() and update(); this would save memory and time; but calling sql_set_variables() makes one unique place to maintain (sql_set_variables()). */ List tmp_var_list; tmp_var_list.push_back(new set_var_user(new Item_func_set_user_var(name, new Item_null()))); /* Create the variable */ if (sql_set_variables(thd, &tmp_var_list)) goto err; if (!(var_entry= get_variable(&thd->user_vars, name, 0))) goto err; } /* If this variable was already stored in user_var_events by this query (because it's used in more than one place in the query), don't store it. */ else if (var_entry->used_query_id == thd->query_id) return; uint size; /* First we need to store value of var_entry, when the next situation appers: > set @a:=1; > insert into t1 values (@a), (@a:=@a+1), (@a:=@a+1); We have to write to binlog value @a= 1; */ size= ALIGN_SIZE(sizeof(BINLOG_USER_VAR_EVENT)) + var_entry->length; if (!(user_var_event= (BINLOG_USER_VAR_EVENT *) thd->alloc(size))) goto err; user_var_event->value= (char*) user_var_event + ALIGN_SIZE(sizeof(BINLOG_USER_VAR_EVENT)); user_var_event->user_var_event= var_entry; user_var_event->type= var_entry->type; user_var_event->charset_number= var_entry->collation.collation->number; if (!var_entry->value) { /* NULL value*/ user_var_event->length= 0; user_var_event->value= 0; } else { user_var_event->length= var_entry->length; memcpy(user_var_event->value, var_entry->value, var_entry->length); } /* Mark that this variable has been used by this query */ var_entry->used_query_id= thd->query_id; if (insert_dynamic(&thd->user_var_events, (gptr) &user_var_event)) goto err; return; err: thd->fatal_error(); return; } bool Item_func_get_user_var::const_item() const { return (!var_entry || current_thd->query_id != var_entry->update_query_id); } enum Item_result Item_func_get_user_var::result_type() const { user_var_entry *entry; if (!(entry = (user_var_entry*) hash_search(¤t_thd->user_vars, (byte*) name.str, name.length))) return STRING_RESULT; return entry->type; } void Item_func_get_user_var::print(String *str) { str->append("(@", 2); str->append(name.str,name.length); str->append(')'); } bool Item_func_get_user_var::eq(const Item *item, bool binary_cmp) const { /* Assume we don't have rtti */ if (this == item) return 1; // Same item is same. /* Check if other type is also a get_user_var() object */ if (item->type() != FUNC_ITEM || ((Item_func*) item)->func_name() != func_name()) return 0; Item_func_get_user_var *other=(Item_func_get_user_var*) item; return (name.length == other->name.length && !memcmp(name.str, other->name.str, name.length)); } longlong Item_func_inet_aton::val_int() { uint byte_result = 0; ulonglong result = 0; // We are ready for 64 bit addresses const char *p,* end; char c = '.'; // we mark c to indicate invalid IP in case length is 0 char buff[36]; String *s,tmp(buff,sizeof(buff),&my_charset_bin); if (!(s = args[0]->val_str(&tmp))) // If null value goto err; null_value=0; end= (p = s->ptr()) + s->length(); while (p < end) { c = *p++; int digit = (int) (c - '0'); // Assume ascii if (digit >= 0 && digit <= 9) { if ((byte_result = byte_result * 10 + digit) > 255) goto err; // Wrong address } else if (c == '.') { result= (result << 8) + (ulonglong) byte_result; byte_result = 0; } else goto err; // Invalid character } if (c != '.') // IP number can't end on '.' return (result << 8) + (ulonglong) byte_result; err: null_value=1; return 0; } void Item_func_match::init_search(bool no_order) { DBUG_ENTER("Item_func_match::init_search"); /* Check if init_search() has been called before */ if (ft_handler) DBUG_VOID_RETURN; if (key == NO_SUCH_KEY) { List fields; for (uint i=1; i < arg_count; i++) fields.push_back(args[i]); concat=new Item_func_concat_ws(new Item_string(" ",1, cmp_collation.collation), fields); } if (master) { join_key=master->join_key=join_key|master->join_key; master->init_search(no_order); ft_handler=master->ft_handler; join_key=master->join_key; DBUG_VOID_RETURN; } String *ft_tmp= 0; // MATCH ... AGAINST (NULL) is meaningless, but possible if (!(ft_tmp=key_item()->val_str(&value))) { ft_tmp= &value; value.set("",0,cmp_collation.collation); } if (ft_tmp->charset() != cmp_collation.collation) { search_value.copy(ft_tmp->ptr(), ft_tmp->length(), ft_tmp->charset(), cmp_collation.collation); ft_tmp= &search_value; } if (join_key && !no_order) flags|=FT_SORTED; ft_handler=table->file->ft_init_ext(flags, key, (byte*) ft_tmp->ptr(), ft_tmp->length()); if (join_key) table->file->ft_handler=ft_handler; DBUG_VOID_RETURN; } bool Item_func_match::fix_fields(THD *thd, TABLE_LIST *tlist, Item **ref) { Item *item; maybe_null=1; join_key=0; /* const_item is assumed in quite a bit of places, so it would be difficult to remove; If it would ever to be removed, this should include modifications to find_best and auto_close as complement to auto_init code above. */ if (Item_func::fix_fields(thd, tlist, ref) || !args[0]->const_item()) { my_error(ER_WRONG_ARGUMENTS,MYF(0),"AGAINST"); return 1; } const_item_cache=0; for (uint i=1 ; i < arg_count ; i++) { item=args[i]; if (item->type() == Item::REF_ITEM) args[i]= item= *((Item_ref *)item)->ref; if (item->type() != Item::FIELD_ITEM) key=NO_SUCH_KEY; used_tables_cache|=item->used_tables(); } /* check that all columns come from the same table */ if (my_count_bits(used_tables_cache) != 1) key=NO_SUCH_KEY; if (key == NO_SUCH_KEY && !(flags & FT_BOOL)) { my_error(ER_WRONG_ARGUMENTS,MYF(0),"MATCH"); return 1; } table=((Item_field *)item)->field->table; table->fulltext_searched=1; return agg_arg_collations_for_comparison(cmp_collation, args+1, arg_count-1); } bool Item_func_match::fix_index() { Item_field *item; uint ft_to_key[MAX_KEY], ft_cnt[MAX_KEY], fts=0, keynr; uint max_cnt=0, mkeys=0, i; if (key == NO_SUCH_KEY) return 0; for (keynr=0 ; keynr < table->keys ; keynr++) { if ((table->key_info[keynr].flags & HA_FULLTEXT) && (table->keys_in_use_for_query.is_set(keynr))) { ft_to_key[fts]=keynr; ft_cnt[fts]=0; fts++; } } if (!fts) goto err; for (i=1; i < arg_count; i++) { item=(Item_field*)args[i]; for (keynr=0 ; keynr < fts ; keynr++) { KEY *ft_key=&table->key_info[ft_to_key[keynr]]; uint key_parts=ft_key->key_parts; for (uint part=0 ; part < key_parts ; part++) { if (item->field->eq(ft_key->key_part[part].field)) ft_cnt[keynr]++; } } } for (keynr=0 ; keynr < fts ; keynr++) { if (ft_cnt[keynr] > max_cnt) { mkeys=0; max_cnt=ft_cnt[mkeys]=ft_cnt[keynr]; ft_to_key[mkeys]=ft_to_key[keynr]; continue; } if (max_cnt && ft_cnt[keynr] == max_cnt) { mkeys++; ft_cnt[mkeys]=ft_cnt[keynr]; ft_to_key[mkeys]=ft_to_key[keynr]; continue; } } for (keynr=0 ; keynr <= mkeys ; keynr++) { // partial keys doesn't work if (max_cnt < arg_count-1 || max_cnt < table->key_info[ft_to_key[keynr]].key_parts) continue; key=ft_to_key[keynr]; return 0; } err: if (flags & FT_BOOL) { key=NO_SUCH_KEY; return 0; } my_error(ER_FT_MATCHING_KEY_NOT_FOUND,MYF(0)); return 1; } bool Item_func_match::eq(const Item *item, bool binary_cmp) const { if (item->type() != FUNC_ITEM || ((Item_func*)item)->functype() != FT_FUNC || flags != ((Item_func_match*)item)->flags) return 0; Item_func_match *ifm=(Item_func_match*) item; if (key == ifm->key && table == ifm->table && key_item()->eq(ifm->key_item(), binary_cmp)) return 1; return 0; } double Item_func_match::val() { DBUG_ENTER("Item_func_match::val"); if (ft_handler == NULL) DBUG_RETURN(-1.0); if (table->null_row) /* NULL row from an outer join */ return 0.0; if (join_key) { if (table->file->ft_handler) DBUG_RETURN(ft_handler->please->get_relevance(ft_handler)); join_key=0; } if (key == NO_SUCH_KEY) { String *a= concat->val_str(&value); if ((null_value= (a == 0))) DBUG_RETURN(0); DBUG_RETURN(ft_handler->please->find_relevance(ft_handler, (byte *)a->ptr(), a->length())); } else DBUG_RETURN(ft_handler->please->find_relevance(ft_handler, table->record[0], 0)); } void Item_func_match::print(String *str) { str->append("(match ", 7); print_args(str, 1); str->append(" against (", 10); args[0]->print(str); if (flags & FT_BOOL) str->append(" in boolean mode", 16); else if (flags & FT_EXPAND) str->append(" with query expansion", 21); str->append("))", 2); } longlong Item_func_bit_xor::val_int() { ulonglong arg1= (ulonglong) args[0]->val_int(); ulonglong arg2= (ulonglong) args[1]->val_int(); if ((null_value= (args[0]->null_value || args[1]->null_value))) return 0; return (longlong) (arg1 ^ arg2); } /*************************************************************************** System variables ****************************************************************************/ /* Return value of an system variable base[.name] as a constant item SYNOPSIS get_system_var() thd Thread handler var_type global / session name Name of base or system variable component Component. NOTES If component.str = 0 then the variable name is in 'name' RETURN 0 error # constant item */ Item *get_system_var(THD *thd, enum_var_type var_type, LEX_STRING name, LEX_STRING component) { if (component.str == 0 && !my_strcasecmp(system_charset_info, name.str, "VERSION")) return new Item_string("@@VERSION", server_version, (uint) strlen(server_version), system_charset_info); Item *item; sys_var *var; char buff[MAX_SYS_VAR_LENGTH*2+4+8], *pos; LEX_STRING *base_name, *component_name; if (component.str) { base_name= &component; component_name= &name; } else { base_name= &name; component_name= &component; // Empty string } if (!(var= find_sys_var(base_name->str, base_name->length))) return 0; if (component.str) { if (!var->is_struct()) { net_printf(thd, ER_VARIABLE_IS_NOT_STRUCT, base_name->str); return 0; } } if (!(item=var->item(thd, var_type, component_name))) return 0; // Impossible thd->lex.uncacheable(UNCACHEABLE_SIDEEFFECT); buff[0]='@'; buff[1]='@'; pos=buff+2; if (var_type == OPT_SESSION) pos=strmov(pos,"session."); else if (var_type == OPT_GLOBAL) pos=strmov(pos,"global."); set_if_smaller(component_name->length, MAX_SYS_VAR_LENGTH); set_if_smaller(base_name->length, MAX_SYS_VAR_LENGTH); if (component_name->str) { memcpy(pos, component_name->str, component_name->length); pos+= component_name->length; *pos++= '.'; } memcpy(pos, base_name->str, base_name->length); pos+= base_name->length; // set_name() will allocate the name item->set_name(buff,(uint) (pos-buff), system_charset_info); return item; } Item *get_system_var(THD *thd, enum_var_type var_type, const char *var_name, uint length, const char *item_name) { Item *item; sys_var *var; LEX_STRING null_lex_string; null_lex_string.str= 0; var= find_sys_var(var_name, length); DBUG_ASSERT(var != 0); if (!(item=var->item(thd, var_type, &null_lex_string))) return 0; // Impossible thd->lex.uncacheable(UNCACHEABLE_SIDEEFFECT); item->set_name(item_name, 0, system_charset_info); // Will use original name return item; } /* Check a user level lock. SYNOPSIS: val_int() RETURN VALUES 1 Available 0 Already taken NULL Error */ longlong Item_func_is_free_lock::val_int() { String *res=args[0]->val_str(&value); THD *thd=current_thd; ULL *ull; null_value=0; if (!res || !res->length()) { null_value=1; return 0; } pthread_mutex_lock(&LOCK_user_locks); ull= (ULL*) hash_search(&hash_user_locks,(byte*) res->ptr(), res->length()); pthread_mutex_unlock(&LOCK_user_locks); if (!ull || !ull->locked) return 1; return 0; } longlong Item_func_is_used_lock::val_int() { String *res=args[0]->val_str(&value); THD *thd=current_thd; ULL *ull; null_value=1; if (!res || !res->length()) return 0; pthread_mutex_lock(&LOCK_user_locks); ull= (ULL*) hash_search(&hash_user_locks,(byte*) res->ptr(), res->length()); pthread_mutex_unlock(&LOCK_user_locks); if (!ull || !ull->locked) return 0; null_value=0; return ull->thread_id; }