/* Copyright (c) 2003, 2016, Oracle and/or its affiliates. Copyright (c) 2011, 2016, MariaDB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** @file @brief This file defines all spatial functions */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include #include "sql_priv.h" /* It is necessary to include set_var.h instead of item.h because there are dependencies on include order for set_var.h and item.h. This will be resolved later. */ #include "sql_class.h" // THD, set_var.h: THD #include "set_var.h" #ifdef HAVE_SPATIAL #include Field *Item_geometry_func::tmp_table_field(TABLE *t_arg) { Field *result; if ((result= new Field_geom(max_length, maybe_null, name, t_arg->s, get_geometry_type()))) result->init(t_arg); return result; } void Item_geometry_func::fix_length_and_dec() { collation.set(&my_charset_bin); decimals=0; max_length= (uint32) 4294967295U; maybe_null= 1; } String *Item_func_geometry_from_text::val_str(String *str) { DBUG_ASSERT(fixed == 1); Geometry_buffer buffer; String arg_val; String *wkt= args[0]->val_str_ascii(&arg_val); if ((null_value= args[0]->null_value)) return 0; Gis_read_stream trs(wkt->charset(), wkt->ptr(), wkt->length()); uint32 srid= 0; if ((arg_count == 2) && !args[1]->null_value) srid= (uint32)args[1]->val_int(); str->set_charset(&my_charset_bin); if (str->reserve(SRID_SIZE, 512)) return 0; str->length(0); str->q_append(srid); if ((null_value= !Geometry::create_from_wkt(&buffer, &trs, str, 0))) return 0; return str; } String *Item_func_geometry_from_wkb::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *wkb; Geometry_buffer buffer; uint32 srid= 0; if (args[0]->field_type() == MYSQL_TYPE_GEOMETRY) { String *str_ret= args[0]->val_str(str); null_value= args[0]->null_value; return str_ret; } wkb= args[0]->val_str(&arg_val); if ((arg_count == 2) && !args[1]->null_value) srid= (uint32)args[1]->val_int(); str->set_charset(&my_charset_bin); if (str->reserve(SRID_SIZE, 512)) { null_value= TRUE; /* purecov: inspected */ return 0; /* purecov: inspected */ } str->length(0); str->q_append(srid); if ((null_value= (args[0]->null_value || !Geometry::create_from_wkb(&buffer, wkb->ptr(), wkb->length(), str)))) return 0; return str; } String *Item_func_as_wkt::val_str_ascii(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); Geometry_buffer buffer; Geometry *geom= NULL; const char *dummy; if ((null_value= (args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length()))))) return 0; str->length(0); str->set_charset(&my_charset_latin1); if ((null_value= geom->as_wkt(str, &dummy))) return 0; return str; } void Item_func_as_wkt::fix_length_and_dec() { collation.set(default_charset(), DERIVATION_COERCIBLE, MY_REPERTOIRE_ASCII); max_length=MAX_BLOB_WIDTH; maybe_null= 1; } String *Item_func_as_wkb::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); Geometry_buffer buffer; if ((null_value= (args[0]->null_value || !(Geometry::construct(&buffer, swkb->ptr(), swkb->length()))))) return 0; str->copy(swkb->ptr() + SRID_SIZE, swkb->length() - SRID_SIZE, &my_charset_bin); return str; } String *Item_func_geometry_type::val_str_ascii(String *str) { DBUG_ASSERT(fixed == 1); String *swkb= args[0]->val_str(str); Geometry_buffer buffer; Geometry *geom= NULL; if ((null_value= (args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length()))))) return 0; /* String will not move */ str->copy(geom->get_class_info()->m_name.str, geom->get_class_info()->m_name.length, &my_charset_latin1); return str; } Field::geometry_type Item_func_envelope::get_geometry_type() const { return Field::GEOM_POLYGON; } String *Item_func_envelope::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); Geometry_buffer buffer; Geometry *geom= NULL; uint32 srid; if ((null_value= args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())))) return 0; srid= uint4korr(swkb->ptr()); str->set_charset(&my_charset_bin); str->length(0); if (str->reserve(SRID_SIZE, 512)) return 0; str->q_append(srid); return (null_value= geom->envelope(str)) ? 0 : str; } Field::geometry_type Item_func_centroid::get_geometry_type() const { return Field::GEOM_POINT; } String *Item_func_centroid::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); Geometry_buffer buffer; Geometry *geom= NULL; uint32 srid; if ((null_value= args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())))) return 0; str->set_charset(&my_charset_bin); if (str->reserve(SRID_SIZE, 512)) return 0; str->length(0); srid= uint4korr(swkb->ptr()); str->q_append(srid); return (null_value= MY_TEST(geom->centroid(str))) ? 0 : str; } /* Spatial decomposition functions */ String *Item_func_spatial_decomp::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); Geometry_buffer buffer; Geometry *geom= NULL; uint32 srid; if ((null_value= (args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length()))))) return 0; srid= uint4korr(swkb->ptr()); str->set_charset(&my_charset_bin); if (str->reserve(SRID_SIZE, 512)) goto err; str->length(0); str->q_append(srid); switch (decomp_func) { case SP_STARTPOINT: if (geom->start_point(str)) goto err; break; case SP_ENDPOINT: if (geom->end_point(str)) goto err; break; case SP_EXTERIORRING: if (geom->exterior_ring(str)) goto err; break; default: goto err; } return str; err: null_value= 1; return 0; } String *Item_func_spatial_decomp_n::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_val; String *swkb= args[0]->val_str(&arg_val); long n= (long) args[1]->val_int(); Geometry_buffer buffer; Geometry *geom= NULL; uint32 srid; if ((null_value= (args[0]->null_value || args[1]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length()))))) return 0; str->set_charset(&my_charset_bin); if (str->reserve(SRID_SIZE, 512)) goto err; srid= uint4korr(swkb->ptr()); str->length(0); str->q_append(srid); switch (decomp_func_n) { case SP_POINTN: if (geom->point_n(n,str)) goto err; break; case SP_GEOMETRYN: if (geom->geometry_n(n,str)) goto err; break; case SP_INTERIORRINGN: if (geom->interior_ring_n(n,str)) goto err; break; default: goto err; } return str; err: null_value=1; return 0; } /* Functions to concatenate various spatial objects */ /* * Concatenate doubles into Point */ Field::geometry_type Item_func_point::get_geometry_type() const { return Field::GEOM_POINT; } String *Item_func_point::val_str(String *str) { DBUG_ASSERT(fixed == 1); double x= args[0]->val_real(); double y= args[1]->val_real(); uint32 srid= 0; if ((null_value= (args[0]->null_value || args[1]->null_value || str->realloc(4/*SRID*/ + 1 + 4 + SIZEOF_STORED_DOUBLE * 2)))) return 0; str->set_charset(&my_charset_bin); str->length(0); str->q_append(srid); str->q_append((char)Geometry::wkb_ndr); str->q_append((uint32)Geometry::wkb_point); str->q_append(x); str->q_append(y); return str; } /** Concatenates various items into various collections with checkings for valid wkb type of items. For example, MultiPoint can be a collection of Points only. coll_type contains wkb type of target collection. item_type contains a valid wkb type of items. In the case when coll_type is wkbGeometryCollection, we do not check wkb type of items, any is valid. */ String *Item_func_spatial_collection::val_str(String *str) { DBUG_ASSERT(fixed == 1); String arg_value; uint i; uint32 srid= 0; str->set_charset(&my_charset_bin); str->length(0); if (str->reserve(4/*SRID*/ + 1 + 4 + 4, 512)) goto err; str->q_append(srid); str->q_append((char) Geometry::wkb_ndr); str->q_append((uint32) coll_type); str->q_append((uint32) arg_count); for (i= 0; i < arg_count; ++i) { String *res= args[i]->val_str(&arg_value); uint32 len; if (args[i]->null_value || ((len= res->length()) < WKB_HEADER_SIZE)) goto err; if (coll_type == Geometry::wkb_geometrycollection) { /* In the case of GeometryCollection we don't need any checkings for item types, so just copy them into target collection */ if (str->append(res->ptr() + 4/*SRID*/, len - 4/*SRID*/, (uint32) 512)) goto err; } else { enum Geometry::wkbType wkb_type; const uint data_offset= 4/*SRID*/ + 1; if (res->length() < data_offset + sizeof(uint32)) goto err; const char *data= res->ptr() + data_offset; /* In the case of named collection we must check that items are of specific type, let's do this checking now */ wkb_type= (Geometry::wkbType) uint4korr(data); data+= 4; len-= 5 + 4/*SRID*/; if (wkb_type != item_type) goto err; switch (coll_type) { case Geometry::wkb_multipoint: case Geometry::wkb_multilinestring: case Geometry::wkb_multipolygon: if (len < WKB_HEADER_SIZE || str->append(data-WKB_HEADER_SIZE, len+WKB_HEADER_SIZE, 512)) goto err; break; case Geometry::wkb_linestring: if (len < POINT_DATA_SIZE || str->append(data, POINT_DATA_SIZE, 512)) goto err; break; case Geometry::wkb_polygon: { uint32 n_points; double x1, y1, x2, y2; const char *org_data= data; if (len < 4) goto err; n_points= uint4korr(data); data+= 4; if (n_points < 2 || len < 4 + n_points * POINT_DATA_SIZE) goto err; float8get(x1, data); data+= SIZEOF_STORED_DOUBLE; float8get(y1, data); data+= SIZEOF_STORED_DOUBLE; data+= (n_points - 2) * POINT_DATA_SIZE; float8get(x2, data); float8get(y2, data + SIZEOF_STORED_DOUBLE); if ((x1 != x2) || (y1 != y2) || str->append(org_data, len, 512)) goto err; } break; default: goto err; } } } if (str->length() > current_thd->variables.max_allowed_packet) { push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN, ER_WARN_ALLOWED_PACKET_OVERFLOWED, ER(ER_WARN_ALLOWED_PACKET_OVERFLOWED), func_name(), current_thd->variables.max_allowed_packet); goto err; } null_value = 0; return str; err: null_value= 1; return 0; } /* Functions for spatial relations */ const char *Item_func_spatial_mbr_rel::func_name() const { switch (spatial_rel) { case SP_CONTAINS_FUNC: return "mbrcontains"; case SP_WITHIN_FUNC: return "mbrwithin"; case SP_EQUALS_FUNC: return "mbrequals"; case SP_DISJOINT_FUNC: return "mbrdisjoint"; case SP_INTERSECTS_FUNC: return "mbrintersects"; case SP_TOUCHES_FUNC: return "mbrtouches"; case SP_CROSSES_FUNC: return "mbrcrosses"; case SP_OVERLAPS_FUNC: return "mbroverlaps"; default: DBUG_ASSERT(0); // Should never happened return "mbrsp_unknown"; } } longlong Item_func_spatial_mbr_rel::val_int() { DBUG_ASSERT(fixed == 1); String *res1= args[0]->val_str(&cmp.value1); String *res2= args[1]->val_str(&cmp.value2); Geometry_buffer buffer1, buffer2; Geometry *g1, *g2; MBR mbr1, mbr2; const char *dummy; if ((null_value= (args[0]->null_value || args[1]->null_value || !(g1= Geometry::construct(&buffer1, res1->ptr(), res1->length())) || !(g2= Geometry::construct(&buffer2, res2->ptr(), res2->length())) || g1->get_mbr(&mbr1, &dummy) || !mbr1.valid() || g2->get_mbr(&mbr2, &dummy) || !mbr2.valid()))) return 0; switch (spatial_rel) { case SP_CONTAINS_FUNC: return mbr1.contains(&mbr2); case SP_WITHIN_FUNC: return mbr1.within(&mbr2); case SP_EQUALS_FUNC: return mbr1.equals(&mbr2); case SP_DISJOINT_FUNC: return mbr1.disjoint(&mbr2); case SP_INTERSECTS_FUNC: return mbr1.intersects(&mbr2); case SP_TOUCHES_FUNC: return mbr1.touches(&mbr2); case SP_OVERLAPS_FUNC: return mbr1.overlaps(&mbr2); case SP_CROSSES_FUNC: return 0; default: break; } null_value=1; return 0; } Item_func_spatial_rel::Item_func_spatial_rel(Item *a,Item *b, enum Functype sp_rel) : Item_bool_func2(a,b), collector() { spatial_rel = sp_rel; } Item_func_spatial_rel::~Item_func_spatial_rel() { } const char *Item_func_spatial_rel::func_name() const { switch (spatial_rel) { case SP_CONTAINS_FUNC: return "st_contains"; case SP_WITHIN_FUNC: return "st_within"; case SP_EQUALS_FUNC: return "st_equals"; case SP_DISJOINT_FUNC: return "st_disjoint"; case SP_INTERSECTS_FUNC: return "st_intersects"; case SP_TOUCHES_FUNC: return "st_touches"; case SP_CROSSES_FUNC: return "st_crosses"; case SP_OVERLAPS_FUNC: return "st_overlaps"; default: DBUG_ASSERT(0); // Should never happened return "sp_unknown"; } } static double count_edge_t(const Gcalc_heap::Info *ea, const Gcalc_heap::Info *eb, const Gcalc_heap::Info *v, double &ex, double &ey, double &vx, double &vy, double &e_sqrlen) { ex= eb->node.shape.x - ea->node.shape.x; ey= eb->node.shape.y - ea->node.shape.y; vx= v->node.shape.x - ea->node.shape.x; vy= v->node.shape.y - ea->node.shape.y; e_sqrlen= ex * ex + ey * ey; return (ex * vx + ey * vy) / e_sqrlen; } static double distance_to_line(double ex, double ey, double vx, double vy, double e_sqrlen) { return fabs(vx * ey - vy * ex) / sqrt(e_sqrlen); } static double distance_points(const Gcalc_heap::Info *a, const Gcalc_heap::Info *b) { double x= a->node.shape.x - b->node.shape.x; double y= a->node.shape.y - b->node.shape.y; return sqrt(x * x + y * y); } #define GIS_ZERO 0.00000000001 longlong Item_func_spatial_rel::val_int() { DBUG_ENTER("Item_func_spatial_rel::val_int"); DBUG_ASSERT(fixed == 1); String *res1; String *res2; Geometry_buffer buffer1, buffer2; Geometry *g1, *g2; int result= 0; int mask= 0; uint shape_a, shape_b; MBR umbr, mbr1, mbr2; const char *c_end; res1= args[0]->val_str(&tmp_value1); res2= args[1]->val_str(&tmp_value2); Gcalc_operation_transporter trn(&func, &collector); if (func.reserve_op_buffer(1)) DBUG_RETURN(0); if ((null_value= (args[0]->null_value || args[1]->null_value || !(g1= Geometry::construct(&buffer1, res1->ptr(), res1->length())) || !(g2= Geometry::construct(&buffer2, res2->ptr(), res2->length())) || g1->get_mbr(&mbr1, &c_end) || !mbr1.valid() || g2->get_mbr(&mbr2, &c_end) || !mbr2.valid()))) goto exit; umbr= mbr1; umbr.add_mbr(&mbr2); collector.set_extent(umbr.xmin, umbr.xmax, umbr.ymin, umbr.ymax); mbr1.buffer(1e-5); switch (spatial_rel) { case SP_CONTAINS_FUNC: if (!mbr1.contains(&mbr2)) goto exit; mask= 1; func.add_operation(Gcalc_function::op_difference, 2); /* Mind the g2 goes first. */ null_value= g2->store_shapes(&trn) || g1->store_shapes(&trn); break; case SP_WITHIN_FUNC: mbr2.buffer(2e-5); if (!mbr1.within(&mbr2)) goto exit; mask= 1; func.add_operation(Gcalc_function::op_difference, 2); null_value= g1->store_shapes(&trn) || g2->store_shapes(&trn); break; case SP_EQUALS_FUNC: if (!mbr1.contains(&mbr2)) goto exit; mask= 1; func.add_operation(Gcalc_function::op_symdifference, 2); null_value= g1->store_shapes(&trn) || g2->store_shapes(&trn); break; case SP_DISJOINT_FUNC: mask= 1; func.add_operation(Gcalc_function::op_intersection, 2); null_value= g1->store_shapes(&trn) || g2->store_shapes(&trn); break; case SP_INTERSECTS_FUNC: if (!mbr1.intersects(&mbr2)) goto exit; func.add_operation(Gcalc_function::op_intersection, 2); null_value= g1->store_shapes(&trn) || g2->store_shapes(&trn); break; case SP_OVERLAPS_FUNC: case SP_CROSSES_FUNC: func.add_operation(Gcalc_function::op_intersection, 2); func.add_operation(Gcalc_function::v_find_t | Gcalc_function::op_intersection, 2); shape_a= func.get_next_expression_pos(); if ((null_value= g1->store_shapes(&trn))) break; shape_b= func.get_next_expression_pos(); if ((null_value= g2->store_shapes(&trn))) break; func.add_operation(Gcalc_function::v_find_t | Gcalc_function::op_intersection, 2); func.add_operation(Gcalc_function::v_find_t | Gcalc_function::op_difference, 2); func.repeat_expression(shape_a); func.repeat_expression(shape_b); func.add_operation(Gcalc_function::v_find_t | Gcalc_function::op_difference, 2); func.repeat_expression(shape_b); func.repeat_expression(shape_a); break; case SP_TOUCHES_FUNC: func.add_operation(Gcalc_function::op_intersection, 2); func.add_operation(Gcalc_function::v_find_f | Gcalc_function::op_not | Gcalc_function::op_intersection, 2); func.add_operation(Gcalc_function::op_internals, 1); shape_a= func.get_next_expression_pos(); if ((null_value= g1->store_shapes(&trn))) break; func.add_operation(Gcalc_function::op_internals, 1); shape_b= func.get_next_expression_pos(); if ((null_value= g2->store_shapes(&trn))) break; func.add_operation(Gcalc_function::v_find_t | Gcalc_function::op_intersection, 2); func.add_operation(Gcalc_function::op_border, 1); func.repeat_expression(shape_a); func.add_operation(Gcalc_function::op_border, 1); func.repeat_expression(shape_b); break; default: DBUG_ASSERT(FALSE); break; } if (null_value) goto exit; collector.prepare_operation(); scan_it.init(&collector); scan_it.killed= (int *) &(current_thd->killed); if (func.alloc_states()) goto exit; result= func.check_function(scan_it) ^ mask; exit: collector.reset(); func.reset(); scan_it.reset(); DBUG_RETURN(result); } Item_func_spatial_operation::~Item_func_spatial_operation() { } String *Item_func_spatial_operation::val_str(String *str_value) { DBUG_ENTER("Item_func_spatial_operation::val_str"); DBUG_ASSERT(fixed == 1); String *res1= args[0]->val_str(&tmp_value1); String *res2= args[1]->val_str(&tmp_value2); Geometry_buffer buffer1, buffer2; Geometry *g1, *g2; uint32 srid= 0; Gcalc_operation_transporter trn(&func, &collector); MBR mbr1, mbr2; const char *c_end; if (func.reserve_op_buffer(1)) DBUG_RETURN(0); func.add_operation(spatial_op, 2); if ((null_value= (args[0]->null_value || args[1]->null_value || !(g1= Geometry::construct(&buffer1, res1->ptr(), res1->length())) || !(g2= Geometry::construct(&buffer2, res2->ptr(), res2->length())) || g1->get_mbr(&mbr1, &c_end) || !mbr1.valid() || g2->get_mbr(&mbr2, &c_end) || !mbr2.valid()))) { str_value= 0; goto exit; } mbr1.add_mbr(&mbr2); collector.set_extent(mbr1.xmin, mbr1.xmax, mbr1.ymin, mbr1.ymax); if ((null_value= g1->store_shapes(&trn) || g2->store_shapes(&trn))) { str_value= 0; goto exit; } collector.prepare_operation(); if (func.alloc_states()) goto exit; operation.init(&func); if (operation.count_all(&collector) || operation.get_result(&res_receiver)) goto exit; str_value->set_charset(&my_charset_bin); if (str_value->reserve(SRID_SIZE, 512)) goto exit; str_value->length(0); str_value->q_append(srid); if (Geometry::create_from_opresult(&buffer1, str_value, res_receiver)) goto exit; exit: collector.reset(); func.reset(); res_receiver.reset(); DBUG_RETURN(str_value); } const char *Item_func_spatial_operation::func_name() const { switch (spatial_op) { case Gcalc_function::op_intersection: return "st_intersection"; case Gcalc_function::op_difference: return "st_difference"; case Gcalc_function::op_union: return "st_union"; case Gcalc_function::op_symdifference: return "st_symdifference"; default: DBUG_ASSERT(0); // Should never happen return "sp_unknown"; } } static const int SINUSES_CALCULATED= 32; static double n_sinus[SINUSES_CALCULATED+1]= { 0, 0.04906767432741802, 0.0980171403295606, 0.1467304744553618, 0.1950903220161283, 0.2429801799032639, 0.2902846772544623, 0.3368898533922201, 0.3826834323650898, 0.4275550934302821, 0.4713967368259976, 0.5141027441932217, 0.5555702330196022, 0.5956993044924334, 0.6343932841636455, 0.6715589548470183, 0.7071067811865475, 0.7409511253549591, 0.773010453362737, 0.8032075314806448, 0.8314696123025452, 0.8577286100002721, 0.8819212643483549, 0.9039892931234433, 0.9238795325112867, 0.9415440651830208, 0.9569403357322089, 0.970031253194544, 0.9807852804032304, 0.989176509964781, 0.9951847266721968, 0.9987954562051724, 1 }; static void get_n_sincos(int n, double *sinus, double *cosinus) { DBUG_ASSERT(n > 0 && n < SINUSES_CALCULATED*2+1); if (n < (SINUSES_CALCULATED + 1)) { *sinus= n_sinus[n]; *cosinus= n_sinus[SINUSES_CALCULATED - n]; } else { n-= SINUSES_CALCULATED; *sinus= n_sinus[SINUSES_CALCULATED - n]; *cosinus= -n_sinus[n]; } } static int fill_half_circle(Gcalc_shape_transporter *trn, double x, double y, double ax, double ay) { double n_sin, n_cos; double x_n, y_n; for (int n = 1; n < (SINUSES_CALCULATED * 2 - 1); n++) { get_n_sincos(n, &n_sin, &n_cos); x_n= ax * n_cos - ay * n_sin; y_n= ax * n_sin + ay * n_cos; if (trn->add_point(x_n + x, y_n + y)) return 1; } return 0; } static int fill_gap(Gcalc_shape_transporter *trn, double x, double y, double ax, double ay, double bx, double by, double d, bool *empty_gap) { double ab= ax * bx + ay * by; double cosab= ab / (d * d) + GIS_ZERO; double n_sin, n_cos; double x_n, y_n; int n=1; *empty_gap= true; for (;;) { get_n_sincos(n++, &n_sin, &n_cos); if (n_cos <= cosab) break; *empty_gap= false; x_n= ax * n_cos - ay * n_sin; y_n= ax * n_sin + ay * n_cos; if (trn->add_point(x_n + x, y_n + y)) return 1; } return 0; } /* Calculates the vector (p2,p1) and negatively orthogonal to it with the length of d. The result is (ex,ey) - the vector, (px,py) - the orthogonal. */ static void calculate_perpendicular( double x1, double y1, double x2, double y2, double d, double *ex, double *ey, double *px, double *py) { double q; *ex= x1 - x2; *ey= y1 - y2; q= d / sqrt((*ex) * (*ex) + (*ey) * (*ey)); *px= (*ey) * q; *py= -(*ex) * q; } int Item_func_buffer::Transporter::single_point(double x, double y) { if (buffer_op == Gcalc_function::op_difference) { m_fn->add_operation(Gcalc_function::op_false, 0); return 0; } m_nshapes= 0; return add_point_buffer(x, y); } int Item_func_buffer::Transporter::add_edge_buffer( double x3, double y3, bool round_p1, bool round_p2) { Gcalc_operation_transporter trn(m_fn, m_heap); double e1_x, e1_y, e2_x, e2_y, p1_x, p1_y, p2_x, p2_y; double e1e2; double sin1, cos1; double x_n, y_n; bool empty_gap1, empty_gap2; ++m_nshapes; if (trn.start_simple_poly()) return 1; calculate_perpendicular(x1, y1, x2, y2, m_d, &e1_x, &e1_y, &p1_x, &p1_y); calculate_perpendicular(x3, y3, x2, y2, m_d, &e2_x, &e2_y, &p2_x, &p2_y); e1e2= e1_x * e2_y - e2_x * e1_y; sin1= n_sinus[1]; cos1= n_sinus[31]; if (e1e2 < 0) { empty_gap2= false; x_n= x2 + p2_x * cos1 - p2_y * sin1; y_n= y2 + p2_y * cos1 + p2_x * sin1; if (fill_gap(&trn, x2, y2, -p1_x,-p1_y, p2_x,p2_y, m_d, &empty_gap1) || trn.add_point(x2 + p2_x, y2 + p2_y) || trn.add_point(x_n, y_n)) return 1; } else { x_n= x2 - p2_x * cos1 - p2_y * sin1; y_n= y2 - p2_y * cos1 + p2_x * sin1; if (trn.add_point(x_n, y_n) || trn.add_point(x2 - p2_x, y2 - p2_y) || fill_gap(&trn, x2, y2, -p2_x, -p2_y, p1_x, p1_y, m_d, &empty_gap2)) return 1; empty_gap1= false; } if ((!empty_gap2 && trn.add_point(x2 + p1_x, y2 + p1_y)) || trn.add_point(x1 + p1_x, y1 + p1_y)) return 1; if (round_p1 && fill_half_circle(&trn, x1, y1, p1_x, p1_y)) return 1; if (trn.add_point(x1 - p1_x, y1 - p1_y) || (!empty_gap1 && trn.add_point(x2 - p1_x, y2 - p1_y))) return 1; return trn.complete_simple_poly(); } int Item_func_buffer::Transporter::add_last_edge_buffer() { Gcalc_operation_transporter trn(m_fn, m_heap); double e1_x, e1_y, p1_x, p1_y; ++m_nshapes; if (trn.start_simple_poly()) return 1; calculate_perpendicular(x1, y1, x2, y2, m_d, &e1_x, &e1_y, &p1_x, &p1_y); if (trn.add_point(x1 + p1_x, y1 + p1_y) || trn.add_point(x1 - p1_x, y1 - p1_y) || trn.add_point(x2 - p1_x, y2 - p1_y) || fill_half_circle(&trn, x2, y2, -p1_x, -p1_y) || trn.add_point(x2 + p1_x, y2 + p1_y)) return 1; return trn.complete_simple_poly(); } int Item_func_buffer::Transporter::add_point_buffer(double x, double y) { Gcalc_operation_transporter trn(m_fn, m_heap); m_nshapes++; if (trn.start_simple_poly()) return 1; if (trn.add_point(x - m_d, y) || fill_half_circle(&trn, x, y, -m_d, 0.0) || trn.add_point(x + m_d, y) || fill_half_circle(&trn, x, y, m_d, 0.0)) return 1; return trn.complete_simple_poly(); } int Item_func_buffer::Transporter::start_line() { if (buffer_op == Gcalc_function::op_difference) { if (m_fn->reserve_op_buffer(1)) return 1; m_fn->add_operation(Gcalc_function::op_false, 0); skip_line= TRUE; return 0; } m_nshapes= 0; if (m_fn->reserve_op_buffer(2)) return 1; last_shape_pos= m_fn->get_next_expression_pos(); m_fn->add_operation(buffer_op, 0); m_npoints= 0; int_start_line(); return 0; } int Item_func_buffer::Transporter::start_poly() { m_nshapes= 1; if (m_fn->reserve_op_buffer(2)) return 1; last_shape_pos= m_fn->get_next_expression_pos(); m_fn->add_operation(buffer_op, 0); return Gcalc_operation_transporter::start_poly(); } int Item_func_buffer::Transporter::complete_poly() { if (Gcalc_operation_transporter::complete_poly()) return 1; m_fn->add_operands_to_op(last_shape_pos, m_nshapes); return 0; } int Item_func_buffer::Transporter::start_ring() { m_npoints= 0; return Gcalc_operation_transporter::start_ring(); } int Item_func_buffer::Transporter::start_collection(int n_objects) { if (m_fn->reserve_op_buffer(1)) return 1; m_fn->add_operation(Gcalc_function::op_union, n_objects); return 0; } int Item_func_buffer::Transporter::add_point(double x, double y) { if (skip_line) return 0; if (m_npoints && x == x2 && y == y2) return 0; ++m_npoints; if (m_npoints == 1) { x00= x; y00= y; } else if (m_npoints == 2) { x01= x; y01= y; } else if (add_edge_buffer(x, y, (m_npoints == 3) && line_started(), false)) return 1; x1= x2; y1= y2; x2= x; y2= y; return line_started() ? 0 : Gcalc_operation_transporter::add_point(x, y); } int Item_func_buffer::Transporter::complete() { if (m_npoints) { if (m_npoints == 1) { if (add_point_buffer(x2, y2)) return 1; } else if (m_npoints == 2) { if (add_edge_buffer(x1, y1, true, true)) return 1; } else if (line_started()) { if (add_last_edge_buffer()) return 1; } else { if (x2 != x00 || y2 != y00) { if (add_edge_buffer(x00, y00, false, false)) return 1; x1= x2; y1= y2; x2= x00; y2= y00; } if (add_edge_buffer(x01, y01, false, false)) return 1; } } return 0; } int Item_func_buffer::Transporter::complete_line() { if (!skip_line) { if (complete()) return 1; int_complete_line(); m_fn->add_operands_to_op(last_shape_pos, m_nshapes); } skip_line= FALSE; return 0; } int Item_func_buffer::Transporter::complete_ring() { return complete() || Gcalc_operation_transporter::complete_ring(); } String *Item_func_buffer::val_str(String *str_value) { DBUG_ENTER("Item_func_buffer::val_str"); DBUG_ASSERT(fixed == 1); String *obj= args[0]->val_str(&tmp_value); double dist= args[1]->val_real(); Geometry_buffer buffer; Geometry *g; uint32 srid= 0; String *str_result= NULL; Transporter trn(&func, &collector, dist); MBR mbr; const char *c_end; null_value= 1; if (args[0]->null_value || args[1]->null_value || !(g= Geometry::construct(&buffer, obj->ptr(), obj->length())) || g->get_mbr(&mbr, &c_end)) goto mem_error; if (dist > 0.0) mbr.buffer(dist); else { /* This happens when dist is too far negative. */ if (mbr.xmax + dist < mbr.xmin || mbr.ymax + dist < mbr.ymin) goto return_empty_result; } collector.set_extent(mbr.xmin, mbr.xmax, mbr.ymin, mbr.ymax); /* If the distance given is 0, the Buffer function is in fact NOOP, so it's natural just to return the argument1. Besides, internal calculations here can't handle zero distance anyway. */ if (fabs(dist) < GIS_ZERO) { null_value= 0; str_result= obj; goto mem_error; } if (g->store_shapes(&trn)) goto mem_error; collector.prepare_operation(); if (func.alloc_states()) goto mem_error; operation.init(&func); operation.killed= (int *) &(current_thd->killed); if (operation.count_all(&collector) || operation.get_result(&res_receiver)) goto mem_error; return_empty_result: str_value->set_charset(&my_charset_bin); if (str_value->reserve(SRID_SIZE, 512)) goto mem_error; str_value->length(0); str_value->q_append(srid); if (Geometry::create_from_opresult(&buffer, str_value, res_receiver)) goto mem_error; null_value= 0; str_result= str_value; mem_error: collector.reset(); func.reset(); res_receiver.reset(); DBUG_RETURN(str_result); } longlong Item_func_isempty::val_int() { DBUG_ASSERT(fixed == 1); String tmp; String *swkb= args[0]->val_str(&tmp); Geometry_buffer buffer; null_value= args[0]->null_value || !(Geometry::construct(&buffer, swkb->ptr(), swkb->length())); return null_value ? 1 : 0; } longlong Item_func_issimple::val_int() { String *swkb= args[0]->val_str(&tmp); Geometry_buffer buffer; Gcalc_operation_transporter trn(&func, &collector); Geometry *g; int result= 1; const Gcalc_scan_iterator::event_point *ev; MBR mbr; const char *c_end; DBUG_ENTER("Item_func_issimple::val_int"); DBUG_ASSERT(fixed == 1); if ((null_value= (args[0]->null_value || !(g= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || g->get_mbr(&mbr, &c_end)))) DBUG_RETURN(0); collector.set_extent(mbr.xmin, mbr.xmax, mbr.ymin, mbr.ymax); if (g->get_class_info()->m_type_id == Geometry::wkb_point) DBUG_RETURN(1); if (g->store_shapes(&trn)) goto mem_error; collector.prepare_operation(); scan_it.init(&collector); while (scan_it.more_points()) { if (scan_it.step()) goto mem_error; ev= scan_it.get_events(); if (ev->simple_event()) continue; if ((ev->event == scev_thread || ev->event == scev_single_point) && !ev->get_next()) continue; if (ev->event == scev_two_threads && !ev->get_next()->get_next()) continue; result= 0; break; } collector.reset(); func.reset(); scan_it.reset(); DBUG_RETURN(result); mem_error: null_value= 1; DBUG_RETURN(0); } longlong Item_func_isclosed::val_int() { DBUG_ASSERT(fixed == 1); String tmp; String *swkb= args[0]->val_str(&tmp); Geometry_buffer buffer; Geometry *geom; int isclosed= 0; // In case of error null_value= (!swkb || args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->is_closed(&isclosed)); return (longlong) isclosed; } /* Numerical functions */ longlong Item_func_dimension::val_int() { DBUG_ASSERT(fixed == 1); uint32 dim= 0; // In case of error String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; const char *dummy; null_value= (!swkb || args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->dimension(&dim, &dummy)); return (longlong) dim; } longlong Item_func_numinteriorring::val_int() { DBUG_ASSERT(fixed == 1); uint32 num= 0; // In case of error String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->num_interior_ring(&num)); return (longlong) num; } longlong Item_func_numgeometries::val_int() { DBUG_ASSERT(fixed == 1); uint32 num= 0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->num_geometries(&num)); return (longlong) num; } longlong Item_func_numpoints::val_int() { DBUG_ASSERT(fixed == 1); uint32 num= 0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; null_value= (!swkb || args[0]->null_value || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->num_points(&num)); return (longlong) num; } double Item_func_x::val_real() { DBUG_ASSERT(fixed == 1); double res= 0.0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->get_x(&res)); return res; } double Item_func_y::val_real() { DBUG_ASSERT(fixed == 1); double res= 0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->get_y(&res)); return res; } double Item_func_area::val_real() { DBUG_ASSERT(fixed == 1); double res= 0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; const char *dummy; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->area(&res, &dummy)); return res; } double Item_func_glength::val_real() { DBUG_ASSERT(fixed == 1); double res= 0; // In case of errors String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; Geometry *geom; const char *end; null_value= (!swkb || !(geom= Geometry::construct(&buffer, swkb->ptr(), swkb->length())) || geom->geom_length(&res, &end)); return res; } longlong Item_func_srid::val_int() { DBUG_ASSERT(fixed == 1); String *swkb= args[0]->val_str(&value); Geometry_buffer buffer; null_value= (!swkb || !Geometry::construct(&buffer, swkb->ptr(), swkb->length())); if (null_value) return 0; return (longlong) (uint4korr(swkb->ptr())); } double Item_func_distance::val_real() { bool cur_point_edge; const Gcalc_scan_iterator::point *evpos; const Gcalc_heap::Info *cur_point, *dist_point; const Gcalc_scan_iterator::event_point *ev; double t, distance, cur_distance; double x1, x2, y1, y2; double ex, ey, vx, vy, e_sqrlen; uint obj2_si; Gcalc_operation_transporter trn(&func, &collector); DBUG_ENTER("Item_func_distance::val_real"); DBUG_ASSERT(fixed == 1); String *res1= args[0]->val_str(&tmp_value1); String *res2= args[1]->val_str(&tmp_value2); Geometry_buffer buffer1, buffer2; Geometry *g1, *g2; MBR mbr1, mbr2; const char *c_end; if ((null_value= (args[0]->null_value || args[1]->null_value || !(g1= Geometry::construct(&buffer1, res1->ptr(), res1->length())) || !(g2= Geometry::construct(&buffer2, res2->ptr(), res2->length())) || g1->get_mbr(&mbr1, &c_end) || g2->get_mbr(&mbr2, &c_end)))) goto mem_error; mbr1.add_mbr(&mbr2); collector.set_extent(mbr1.xmin, mbr1.xmax, mbr1.ymin, mbr1.ymax); if ((g1->get_class_info()->m_type_id == Geometry::wkb_point) && (g2->get_class_info()->m_type_id == Geometry::wkb_point)) { if (((Gis_point *) g1)->get_xy(&x1, &y1) || ((Gis_point *) g2)->get_xy(&x2, &y2)) goto mem_error; ex= x2 - x1; ey= y2 - y1; DBUG_RETURN(sqrt(ex * ex + ey * ey)); } if (func.reserve_op_buffer(1)) goto mem_error; func.add_operation(Gcalc_function::op_intersection, 2); if (g1->store_shapes(&trn)) goto mem_error; obj2_si= func.get_nshapes(); if (g2->store_shapes(&trn) || func.alloc_states()) goto mem_error; if (obj2_si == 0 || func.get_nshapes() == obj2_si) { distance= 0.0; null_value= 1; goto exit; } collector.prepare_operation(); scan_it.init(&collector); distance= DBL_MAX; while (scan_it.more_points()) { if (scan_it.step()) goto mem_error; evpos= scan_it.get_event_position(); ev= scan_it.get_events(); if (ev->simple_event()) { cur_point= ev->pi; goto count_distance; } /* handling intersection we only need to check if it's the intersecion of objects 1 and 2. In this case distance is 0 */ cur_point= NULL; /* having these events we need to check for possible intersection of objects scev_thread | scev_two_threads | scev_single_point */ func.clear_i_states(); for (Gcalc_point_iterator pit(&scan_it); pit.point() != evpos; ++pit) { gcalc_shape_info si= pit.point()->get_shape(); if ((func.get_shape_kind(si) == Gcalc_function::shape_polygon)) func.invert_i_state(si); } func.clear_b_states(); for (; ev; ev= ev->get_next()) { if (ev->event != scev_intersection) cur_point= ev->pi; func.set_b_state(ev->get_shape()); if (func.count()) { /* Point of one object is inside the other - intersection found */ distance= 0; goto exit; } } if (!cur_point) continue; count_distance: if (cur_point->node.shape.shape >= obj2_si) continue; cur_point_edge= !cur_point->is_bottom(); for (dist_point= collector.get_first(); dist_point; dist_point= dist_point->get_next()) { /* We only check vertices of object 2 */ if (dist_point->type != Gcalc_heap::nt_shape_node || dist_point->node.shape.shape < obj2_si) continue; /* if we have an edge to check */ if (dist_point->node.shape.left) { t= count_edge_t(dist_point, dist_point->node.shape.left, cur_point, ex, ey, vx, vy, e_sqrlen); if ((t>0.0) && (t<1.0)) { cur_distance= distance_to_line(ex, ey, vx, vy, e_sqrlen); if (distance > cur_distance) distance= cur_distance; } } if (cur_point_edge) { t= count_edge_t(cur_point, cur_point->node.shape.left, dist_point, ex, ey, vx, vy, e_sqrlen); if ((t>0.0) && (t<1.0)) { cur_distance= distance_to_line(ex, ey, vx, vy, e_sqrlen); if (distance > cur_distance) distance= cur_distance; } } cur_distance= distance_points(cur_point, dist_point); if (distance > cur_distance) distance= cur_distance; } } exit: collector.reset(); func.reset(); scan_it.reset(); DBUG_RETURN(distance); mem_error: null_value= 1; DBUG_RETURN(0); } #ifndef DBUG_OFF longlong Item_func_gis_debug::val_int() { /* For now this is just a stub. TODO: implement the internal GIS debuggign */ return 0; } #endif #endif /*HAVE_SPATIAL*/