/* Copyright (c) 2006, 2015, Oracle and/or its affiliates. Copyright (c) 2010, 2015, MariaDB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* Some general useful functions */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation #endif #include "mariadb.h" #include #include #include "sql_priv.h" // Required to get server definitions for mysql/plugin.h right #include "sql_plugin.h" #include "sql_partition.h" // partition_info.h: LIST_PART_ENTRY // NOT_A_PARTITION_ID #include "partition_info.h" #include "sql_parse.h" #include "sql_acl.h" // *_ACL #include "sql_base.h" // fill_record #include "sql_statistics.h" // vers_stat_end #include "vers_utils.h" #include "lock.h" #ifdef WITH_PARTITION_STORAGE_ENGINE #include "ha_partition.h" partition_info *partition_info::get_clone(THD *thd) { MEM_ROOT *mem_root= thd->mem_root; DBUG_ENTER("partition_info::get_clone"); List_iterator part_it(partitions); partition_element *part; partition_info *clone= new (mem_root) partition_info(*this); if (!clone) { mem_alloc_error(sizeof(partition_info)); DBUG_RETURN(NULL); } memset(&(clone->read_partitions), 0, sizeof(clone->read_partitions)); memset(&(clone->lock_partitions), 0, sizeof(clone->lock_partitions)); clone->bitmaps_are_initialized= FALSE; clone->partitions.empty(); while ((part= (part_it++))) { List_iterator subpart_it(part->subpartitions); partition_element *subpart; partition_element *part_clone= new (mem_root) partition_element(); if (!part_clone) { mem_alloc_error(sizeof(partition_element)); DBUG_RETURN(NULL); } memcpy(part_clone, part, sizeof(partition_element)); part_clone->subpartitions.empty(); while ((subpart= (subpart_it++))) { partition_element *subpart_clone= new (mem_root) partition_element(); if (!subpart_clone) { mem_alloc_error(sizeof(partition_element)); DBUG_RETURN(NULL); } memcpy(subpart_clone, subpart, sizeof(partition_element)); part_clone->subpartitions.push_back(subpart_clone, mem_root); } clone->partitions.push_back(part_clone, mem_root); part_clone->list_val_list.empty(); List_iterator list_val_it(part->list_val_list); part_elem_value *new_val_arr= (part_elem_value *)alloc_root(mem_root, sizeof(part_elem_value) * part->list_val_list.elements); if (!new_val_arr) { mem_alloc_error(sizeof(part_elem_value) * part->list_val_list.elements); DBUG_RETURN(NULL); } p_column_list_val *new_colval_arr= (p_column_list_val*)alloc_root(mem_root, sizeof(p_column_list_val) * num_columns * part->list_val_list.elements); if (!new_colval_arr) { mem_alloc_error(sizeof(p_column_list_val) * num_columns * part->list_val_list.elements); DBUG_RETURN(NULL); } part_elem_value *val; while ((val= list_val_it++)) { part_elem_value *new_val= new_val_arr++; memcpy(new_val, val, sizeof(part_elem_value)); if (!val->null_value) { p_column_list_val *new_colval= new_colval_arr; new_colval_arr+= num_columns; memcpy(new_colval, val->col_val_array, sizeof(p_column_list_val) * num_columns); new_val->col_val_array= new_colval; } part_clone->list_val_list.push_back(new_val, mem_root); } } if (part_type == VERSIONING_PARTITION && vers_info) { // clone Vers_part_info; set now_part, hist_part clone->vers_info= new (mem_root) Vers_part_info(*vers_info); List_iterator it(clone->partitions); while ((part= it++)) { if (vers_info->now_part && part->id == vers_info->now_part->id) clone->vers_info->now_part= part; else if (vers_info->hist_part && part->id == vers_info->hist_part->id) clone->vers_info->hist_part= part; } // while ((part= it++)) } // if (part_type == VERSIONING_PARTITION ... DBUG_RETURN(clone); } /** Mark named [sub]partition to be used/locked. @param part_name Partition name to match. @param length Partition name length. @return Success if partition found @retval true Partition found @retval false Partition not found */ bool partition_info::add_named_partition(const char *part_name, uint length) { HASH *part_name_hash; PART_NAME_DEF *part_def; Partition_share *part_share; DBUG_ENTER("partition_info::add_named_partition"); DBUG_ASSERT(table && table->s && table->s->ha_share); part_share= static_cast((table->s->ha_share)); DBUG_ASSERT(part_share->partition_name_hash_initialized); part_name_hash= &part_share->partition_name_hash; DBUG_ASSERT(part_name_hash->records); part_def= (PART_NAME_DEF*) my_hash_search(part_name_hash, (const uchar*) part_name, length); if (!part_def) { my_error(ER_UNKNOWN_PARTITION, MYF(0), part_name, table->alias.c_ptr()); DBUG_RETURN(true); } if (part_def->is_subpart) { bitmap_set_bit(&read_partitions, part_def->part_id); } else { if (is_sub_partitioned()) { /* Mark all subpartitions in the partition */ uint j, start= part_def->part_id; uint end= start + num_subparts; for (j= start; j < end; j++) bitmap_set_bit(&read_partitions, j); } else bitmap_set_bit(&read_partitions, part_def->part_id); } DBUG_PRINT("info", ("Found partition %u is_subpart %d for name %s", part_def->part_id, part_def->is_subpart, part_name)); DBUG_RETURN(false); } /** Mark named [sub]partition to be used/locked. @param part_elem Partition element that matched. */ bool partition_info::set_named_partition_bitmap(const char *part_name, uint length) { DBUG_ENTER("partition_info::set_named_partition_bitmap"); bitmap_clear_all(&read_partitions); if (add_named_partition(part_name, length)) DBUG_RETURN(true); bitmap_copy(&lock_partitions, &read_partitions); DBUG_RETURN(false); } /** Prune away partitions not mentioned in the PARTITION () clause, if used. @param table_list Table list pointing to table to prune. @return Operation status @retval false Success @retval true Failure */ bool partition_info::set_read_partitions(List *partition_names) { DBUG_ENTER("partition_info::set_read_partitions"); if (!partition_names || !partition_names->elements) { DBUG_RETURN(true); } uint num_names= partition_names->elements; List_iterator partition_names_it(*partition_names); uint i= 0; /* TODO: When adding support for FK in partitioned tables, the referenced table must probably lock all partitions for read, and also write depending of ON DELETE/UPDATE. */ bitmap_clear_all(&read_partitions); /* No check for duplicate names or overlapping partitions/subpartitions. */ DBUG_PRINT("info", ("Searching through partition_name_hash")); do { char *part_name= partition_names_it++; if (add_named_partition(part_name, strlen(part_name))) DBUG_RETURN(true); } while (++i < num_names); DBUG_RETURN(false); } /** Prune away partitions not mentioned in the PARTITION () clause, if used. @param partition_names list of names of partitions. @return Operation status @retval true Failure @retval false Success */ bool partition_info::prune_partition_bitmaps(List *partition_names) { List_iterator partition_names_it(*(partition_names)); uint num_names= partition_names->elements; uint i= 0; DBUG_ENTER("partition_info::prune_partition_bitmaps"); if (num_names < 1) DBUG_RETURN(true); /* TODO: When adding support for FK in partitioned tables, the referenced table must probably lock all partitions for read, and also write depending of ON DELETE/UPDATE. */ bitmap_clear_all(&read_partitions); /* No check for duplicate names or overlapping partitions/subpartitions. */ DBUG_PRINT("info", ("Searching through partition_name_hash")); do { String *part_name_str= partition_names_it++; if (add_named_partition(part_name_str->c_ptr(), part_name_str->length())) DBUG_RETURN(true); } while (++i < num_names); DBUG_RETURN(false); } /** Set read/lock_partitions bitmap over non pruned partitions @param partition_names list of partition names to query @return Operation status @retval FALSE OK @retval TRUE Failed to allocate memory for bitmap or list of partitions did not match @note OK to call multiple times without the need for free_bitmaps. */ bool partition_info::set_partition_bitmaps(List *partition_names) { DBUG_ENTER("partition_info::set_partition_bitmaps"); DBUG_ASSERT(bitmaps_are_initialized); DBUG_ASSERT(table); if (!bitmaps_are_initialized) DBUG_RETURN(TRUE); if (partition_names && partition_names->elements) { if (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) { my_error(ER_PARTITION_CLAUSE_ON_NONPARTITIONED, MYF(0)); DBUG_RETURN(true); } if (prune_partition_bitmaps(partition_names)) DBUG_RETURN(TRUE); } else { bitmap_set_all(&read_partitions); DBUG_PRINT("info", ("Set all partitions")); } bitmap_copy(&lock_partitions, &read_partitions); DBUG_ASSERT(bitmap_get_first_set(&lock_partitions) != MY_BIT_NONE); DBUG_RETURN(FALSE); } /** Set read/lock_partitions bitmap over non pruned partitions @param table_list Possible TABLE_LIST which can contain list of partition names to query @return Operation status @retval FALSE OK @retval TRUE Failed to allocate memory for bitmap or list of partitions did not match @note OK to call multiple times without the need for free_bitmaps. */ bool partition_info::set_partition_bitmaps_from_table(TABLE_LIST *table_list) { List *partition_names= table_list ? NULL : table_list->partition_names; return set_partition_bitmaps(partition_names); } /* Create a memory area where default partition names are stored and fill it up with the names. SYNOPSIS create_default_partition_names() part_no Partition number for subparts num_parts Number of partitions start_no Starting partition number subpart Is it subpartitions RETURN VALUE A pointer to the memory area of the default partition names DESCRIPTION A support routine for the partition code where default values are generated. The external routine needing this code is check_partition_info */ #define MAX_PART_NAME_SIZE 8 char *partition_info::create_default_partition_names(THD *thd, uint part_no, uint num_parts_arg, uint start_no) { char *ptr= (char*) thd->calloc(num_parts_arg * MAX_PART_NAME_SIZE); char *move_ptr= ptr; uint i= 0; DBUG_ENTER("create_default_partition_names"); if (likely(ptr != 0)) { do { sprintf(move_ptr, "p%u", (start_no + i)); move_ptr+= MAX_PART_NAME_SIZE; } while (++i < num_parts_arg); } else { mem_alloc_error(num_parts_arg*MAX_PART_NAME_SIZE); } DBUG_RETURN(ptr); } /* Create a unique name for the subpartition as part_name'sp''subpart_no' SYNOPSIS create_default_subpartition_name() subpart_no Number of subpartition part_name Name of partition RETURN VALUES >0 A reference to the created name string 0 Memory allocation error */ char *partition_info::create_default_subpartition_name(THD *thd, uint subpart_no, const char *part_name) { uint size_alloc= strlen(part_name) + MAX_PART_NAME_SIZE; char *ptr= (char*) thd->calloc(size_alloc); DBUG_ENTER("create_default_subpartition_name"); if (likely(ptr != NULL)) { my_snprintf(ptr, size_alloc, "%ssp%u", part_name, subpart_no); } else { mem_alloc_error(size_alloc); } DBUG_RETURN(ptr); } /* Set up all the default partitions not set-up by the user in the SQL statement. Also perform a number of checks that the user hasn't tried to use default values where no defaults exists. SYNOPSIS set_up_default_partitions() file A reference to a handler of the table info Create info start_no Starting partition number RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine only accepts HASH and KEY partitioning and thus there is no subpartitioning if this routine is successful. The external routine needing this code is check_partition_info */ bool partition_info::set_up_default_partitions(THD *thd, handler *file, HA_CREATE_INFO *info, uint start_no) { uint i; char *default_name; bool result= TRUE; DBUG_ENTER("partition_info::set_up_default_partitions"); if (part_type != HASH_PARTITION) { const char *error_string; if (part_type == RANGE_PARTITION) error_string= "RANGE"; else error_string= "LIST"; my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string); goto end; } if ((num_parts == 0) && ((num_parts= file->get_default_no_partitions(info)) == 0)) { my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions"); goto end; } if (unlikely(num_parts > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if (unlikely((!(default_name= create_default_partition_names(thd, 0, num_parts, start_no))))) goto end; i= 0; do { partition_element *part_elem= new partition_element(); if (likely(part_elem != 0 && (!partitions.push_back(part_elem)))) { part_elem->engine_type= default_engine_type; part_elem->partition_name= default_name; default_name+=MAX_PART_NAME_SIZE; } else { mem_alloc_error(sizeof(partition_element)); goto end; } } while (++i < num_parts); result= FALSE; end: DBUG_RETURN(result); } /* Set up all the default subpartitions not set-up by the user in the SQL statement. Also perform a number of checks that the default partitioning becomes an allowed partitioning scheme. SYNOPSIS set_up_default_subpartitions() file A reference to a handler of the table info Create info RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine is only called for RANGE or LIST partitioning and those need to be specified so only subpartitions are specified. The external routine needing this code is check_partition_info */ bool partition_info::set_up_default_subpartitions(THD *thd, handler *file, HA_CREATE_INFO *info) { uint i, j; bool result= TRUE; partition_element *part_elem; List_iterator part_it(partitions); DBUG_ENTER("partition_info::set_up_default_subpartitions"); if (num_subparts == 0) num_subparts= file->get_default_no_partitions(info); if (unlikely((num_parts * num_subparts) > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } i= 0; do { part_elem= part_it++; j= 0; do { partition_element *subpart_elem= new partition_element(part_elem); if (likely(subpart_elem != 0 && (!part_elem->subpartitions.push_back(subpart_elem)))) { char *ptr= create_default_subpartition_name(thd, j, part_elem->partition_name); if (!ptr) goto end; subpart_elem->engine_type= default_engine_type; subpart_elem->partition_name= ptr; } else { mem_alloc_error(sizeof(partition_element)); goto end; } } while (++j < num_subparts); } while (++i < num_parts); result= FALSE; end: DBUG_RETURN(result); } /* Support routine for check_partition_info SYNOPSIS set_up_defaults_for_partitioning() file A reference to a handler of the table info Create info start_no Starting partition number RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION Set up defaults for partition or subpartition (cannot set-up for both, this will return an error. */ bool partition_info::set_up_defaults_for_partitioning(THD *thd, handler *file, HA_CREATE_INFO *info, uint start_no) { DBUG_ENTER("partition_info::set_up_defaults_for_partitioning"); if (!default_partitions_setup) { default_partitions_setup= TRUE; if (use_default_partitions) DBUG_RETURN(set_up_default_partitions(thd, file, info, start_no)); if (is_sub_partitioned() && use_default_subpartitions) DBUG_RETURN(set_up_default_subpartitions(thd, file, info)); } DBUG_RETURN(FALSE); } /* Support routine for check_partition_info SYNOPSIS find_duplicate_field no parameters RETURN VALUE Erroneus field name Error, there are two fields with same name NULL Ok, no field defined twice DESCRIPTION Check that the user haven't defined the same field twice in key or column list partitioning. */ const char* partition_info::find_duplicate_field() { const char *field_name_outer, *field_name_inner; List_iterator it_outer(part_field_list); uint num_fields= part_field_list.elements; uint i,j; DBUG_ENTER("partition_info::find_duplicate_field"); for (i= 0; i < num_fields; i++) { field_name_outer= it_outer++; List_iterator it_inner(part_field_list); for (j= 0; j < num_fields; j++) { field_name_inner= it_inner++; if (i >= j) continue; if (!(my_strcasecmp(system_charset_info, field_name_outer, field_name_inner))) { DBUG_RETURN(field_name_outer); } } } DBUG_RETURN(NULL); } /** @brief Get part_elem and part_id from partition name @param partition_name Name of partition to search for. @param file_name[out] Partition file name (part after table name, #P#[#SP#]), skipped if NULL. @param part_id[out] Id of found partition or NOT_A_PARTITION_ID. @retval Pointer to part_elem of [sub]partition, if not found NULL @note Since names of partitions AND subpartitions must be unique, this function searches both partitions and subpartitions and if name of a partition is given for a subpartitioned table, part_elem will be the partition, but part_id will be NOT_A_PARTITION_ID and file_name not set. */ partition_element *partition_info::get_part_elem(const char *partition_name, char *file_name, size_t file_name_size, uint32 *part_id) { List_iterator part_it(partitions); uint i= 0; DBUG_ENTER("partition_info::get_part_elem"); DBUG_ASSERT(part_id); *part_id= NOT_A_PARTITION_ID; do { partition_element *part_elem= part_it++; if (is_sub_partitioned()) { List_iterator sub_part_it(part_elem->subpartitions); uint j= 0; do { partition_element *sub_part_elem= sub_part_it++; if (!my_strcasecmp(system_charset_info, sub_part_elem->partition_name, partition_name)) { if (file_name) if (create_subpartition_name(file_name, file_name_size, "", part_elem->partition_name, partition_name, NORMAL_PART_NAME)) DBUG_RETURN(NULL); *part_id= j + (i * num_subparts); DBUG_RETURN(sub_part_elem); } } while (++j < num_subparts); /* Naming a partition (first level) on a subpartitioned table. */ if (!my_strcasecmp(system_charset_info, part_elem->partition_name, partition_name)) DBUG_RETURN(part_elem); } else if (!my_strcasecmp(system_charset_info, part_elem->partition_name, partition_name)) { if (file_name) if (create_partition_name(file_name, file_name_size, "", partition_name, NORMAL_PART_NAME, TRUE)) DBUG_RETURN(NULL); *part_id= i; DBUG_RETURN(part_elem); } } while (++i < num_parts); DBUG_RETURN(NULL); } /** Helper function to find_duplicate_name. */ static const char *get_part_name_from_elem(const char *name, size_t *length, my_bool not_used __attribute__((unused))) { *length= strlen(name); return name; } /* A support function to check partition names for duplication in a partitioned table SYNOPSIS find_duplicate_name() RETURN VALUES NULL Has unique part and subpart names !NULL Pointer to duplicated name DESCRIPTION Checks that the list of names in the partitions doesn't contain any duplicated names. */ char *partition_info::find_duplicate_name() { HASH partition_names; uint max_names; const uchar *curr_name= NULL; List_iterator parts_it(partitions); partition_element *p_elem; DBUG_ENTER("partition_info::find_duplicate_name"); /* TODO: If table->s->ha_part_data->partition_name_hash.elements is > 0, then we could just return NULL, but that has not been verified. And this only happens when in ALTER TABLE with full table copy. */ max_names= num_parts; if (is_sub_partitioned()) max_names+= num_parts * num_subparts; if (my_hash_init(&partition_names, system_charset_info, max_names, 0, 0, (my_hash_get_key) get_part_name_from_elem, 0, HASH_UNIQUE)) { DBUG_ASSERT(0); curr_name= (const uchar*) "Internal failure"; goto error; } while ((p_elem= (parts_it++))) { curr_name= (const uchar*) p_elem->partition_name; if (my_hash_insert(&partition_names, curr_name)) goto error; if (!p_elem->subpartitions.is_empty()) { List_iterator subparts_it(p_elem->subpartitions); partition_element *subp_elem; while ((subp_elem= (subparts_it++))) { curr_name= (const uchar*) subp_elem->partition_name; if (my_hash_insert(&partition_names, curr_name)) goto error; } } } my_hash_free(&partition_names); DBUG_RETURN(NULL); error: my_hash_free(&partition_names); DBUG_RETURN((char*) curr_name); } /* A support function to check if a partition element's name is unique SYNOPSIS has_unique_name() partition_element element to check RETURN VALUES TRUE Has unique name FALSE Doesn't */ bool partition_info::has_unique_name(partition_element *element) { DBUG_ENTER("partition_info::has_unique_name"); const char *name_to_check= element->partition_name; List_iterator parts_it(partitions); partition_element *el; while ((el= (parts_it++))) { if (!(my_strcasecmp(system_charset_info, el->partition_name, name_to_check)) && el != element) DBUG_RETURN(FALSE); if (!el->subpartitions.is_empty()) { partition_element *sub_el; List_iterator subparts_it(el->subpartitions); while ((sub_el= (subparts_it++))) { if (!(my_strcasecmp(system_charset_info, sub_el->partition_name, name_to_check)) && sub_el != element) DBUG_RETURN(FALSE); } } } DBUG_RETURN(TRUE); } bool partition_info::vers_init_info(THD * thd) { part_type= VERSIONING_PARTITION; list_of_part_fields= TRUE; column_list= TRUE; num_columns= 1; vers_info= new (thd->mem_root) Vers_part_info; if (!vers_info) { mem_alloc_error(sizeof(Vers_part_info)); return true; } return false; } bool partition_info::vers_set_interval(const INTERVAL & i) { if (i.neg || i.second_part) return true; DBUG_ASSERT(vers_info); // TODO: INTERVAL conversion to seconds leads to mismatch with calendar intervals (MONTH and YEAR) vers_info->interval= static_cast( i.second + i.minute * 60 + i.hour * 60 * 60 + i.day * 24 * 60 * 60 + i.month * 30 * 24 * 60 * 60 + i.year * 365 * 30 * 24 * 60 * 60); if (vers_info->interval == 0) return true; return false; } bool partition_info::vers_set_limit(ulonglong limit) { if (limit < 1) return true; DBUG_ASSERT(vers_info); vers_info->limit= limit; return false; } partition_element* partition_info::vers_part_rotate(THD * thd) { DBUG_ASSERT(table && table->s); DBUG_ASSERT(vers_info && vers_info->initialized()); if (table->s->hist_part_id >= vers_info->now_part->id - 1) { DBUG_ASSERT(table->s->hist_part_id == vers_info->now_part->id - 1); push_warning_printf(thd, thd->lex->sql_command == SQLCOM_ALTER_TABLE ? Sql_condition::WARN_LEVEL_NOTE : Sql_condition::WARN_LEVEL_WARN, WARN_VERS_PART_FULL, ER_THD(thd, WARN_VERS_PART_FULL), table->s->db.str, table->s->error_table_name(), vers_info->hist_part->partition_name); return vers_info->hist_part; } table->s->hist_part_id++; const char* old_part_name= vers_info->hist_part->partition_name; vers_hist_part(); push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE, WARN_VERS_PART_ROTATION, ER_THD(thd, WARN_VERS_PART_ROTATION), table->s->db.str, table->s->error_table_name(), old_part_name, vers_info->hist_part->partition_name); return vers_info->hist_part; } bool partition_info::vers_set_expression(THD *thd, partition_element *el, MYSQL_TIME& t) { curr_part_elem= el; init_column_part(thd); el->list_val_list.empty(); el->list_val_list.push_back(curr_list_val, thd->mem_root); for (uint i= 0; i < num_columns; ++i) { part_column_list_val *col_val= add_column_value(thd); if (el->type() == partition_element::CURRENT) { col_val->max_value= true; col_val->item_expression= NULL; col_val->column_value= NULL; col_val->part_info= this; col_val->fixed= 1; continue; } Item *item_expression= new (thd->mem_root) Item_datetime_literal(thd, &t); if (!item_expression) return true; /* We initialize col_val with bogus max value to make fix_partition_func() and check_range_constants() happy. Later in vers_setup_stats() it is initialized with real stat value if there will be any. */ /* FIXME: TIME_RESULT in col_val is expensive. It should be INT_RESULT (got to be fixed when InnoDB is supported). */ init_col_val(col_val, item_expression); DBUG_ASSERT(item_expression == el->get_col_val(i).item_expression); } // for (num_columns) return false; } bool partition_info::vers_setup_expression(THD * thd, uint32 alter_add) { DBUG_ASSERT(part_type == VERSIONING_PARTITION); if (!table->versioned(VERS_TIMESTAMP)) { my_error(ER_VERS_ENGINE_UNSUPPORTED, MYF(0), table->s->table_name.str); return true; } if (alter_add) { DBUG_ASSERT(partitions.elements > alter_add + 1); Vers_min_max_stats** old_array= table->s->stat_trx; table->s->stat_trx= static_cast( alloc_root(&table->s->mem_root, sizeof(void *) * (partitions.elements * num_columns + 1))); memcpy(table->s->stat_trx, old_array, sizeof(void *) * (partitions.elements - alter_add) * num_columns); table->s->stat_trx[partitions.elements * num_columns]= NULL; } else { /* Prepare part_field_list */ Field *row_end= table->vers_end_field(); part_field_list.push_back(row_end->field_name.str, thd->mem_root); DBUG_ASSERT(part_field_list.elements == num_columns); // needed in handle_list_of_fields() row_end->flags|= GET_FIXED_FIELDS_FLAG; } List_iterator it(partitions); partition_element *el; MYSQL_TIME t; memset(&t, 0, sizeof(t)); my_time_t ts= TIMESTAMP_MAX_VALUE - partitions.elements; uint32 id= 0; while ((el= it++)) { DBUG_ASSERT(el->type() != partition_element::CONVENTIONAL); ++ts; if (alter_add) { /* Non-empty historical partitions are left as is. */ if (el->type() == partition_element::HISTORY && !el->empty) { ++id; continue; } /* Newly added element is inserted before AS_OF_NOW. */ if (el->id == UINT_MAX32 || el->type() == partition_element::CURRENT) { DBUG_ASSERT(table && table->s); Vers_min_max_stats *stat_trx_end= new (&table->s->mem_root) Vers_min_max_stats(&table->s->vers_end_field()->field_name, table->s); table->s->stat_trx[id * num_columns + STAT_TRX_END]= stat_trx_end; el->id= id++; if (el->type() == partition_element::CURRENT) break; goto set_expression; } /* Existing element expression is recalculated. */ thd->variables.time_zone->gmt_sec_to_TIME(&t, ts); for (uint i= 0; i < num_columns; ++i) { part_column_list_val &col_val= el->get_col_val(i); static_cast(col_val.item_expression)->set_time(&t); col_val.fixed= 0; } ++id; continue; } set_expression: thd->variables.time_zone->gmt_sec_to_TIME(&t, ts); if (vers_set_expression(thd, el, t)) return true; } return false; } class Table_locker { THD *thd; TABLE &table; thr_lock_type saved_type; MYSQL_LOCK *saved_lock; enum_locked_tables_mode saved_mode; TABLE_LIST **saved_query_tables_own_last; TABLE_LIST table_list; bool locked; public: Table_locker(THD *_thd, TABLE &_table, thr_lock_type lock_type) : thd(_thd), table(_table), saved_type(table.reginfo.lock_type), saved_lock(_thd->lock), saved_mode(_thd->locked_tables_mode), saved_query_tables_own_last(_thd->lex->query_tables_own_last), table_list(_table, lock_type), locked(false) { table.reginfo.lock_type= lock_type; } bool lock() { DBUG_ASSERT(table.file); // FIXME: check consistency with table.reginfo.lock_type if (table.file->get_lock_type() != F_UNLCK || table.s->tmp_table) { return false; } thd->lock= NULL; thd->locked_tables_mode= LTM_NONE; thd->lex->query_tables_own_last= NULL; bool res= lock_tables(thd, &table_list, 1, 0); locked= !res; return res; } ~Table_locker() { if (locked) mysql_unlock_tables(thd, thd->lock); table.reginfo.lock_type= saved_type; thd->lock= saved_lock; thd->locked_tables_mode= saved_mode; thd->lex->query_tables_own_last= saved_query_tables_own_last; if (locked && !thd->in_sub_stmt) { ha_commit_trans(thd, false); ha_commit_trans(thd, true); } } }; // scan table for min/max row_end inline bool partition_info::vers_scan_min_max(THD *thd, partition_element *part) { uint32 sub_factor= num_subparts ? num_subparts : 1; uint32 part_id= part->id * sub_factor; uint32 part_id_end= part_id + sub_factor; DBUG_ASSERT(part->empty); DBUG_ASSERT(part->type() == partition_element::HISTORY); DBUG_ASSERT(table->s->stat_trx); Table_locker l(thd, *table, TL_READ); if (l.lock()) { my_error(ER_INTERNAL_ERROR, MYF(0), "min/max scan failed on lock_tables()"); return true; } for (; part_id < part_id_end; ++part_id) { handler *file= table->file->part_handler(part_id); // requires update_partition() for ha_innopart DBUG_ASSERT(file); table->default_column_bitmaps(); bitmap_set_bit(table->read_set, table->vers_end_field()->field_index); file->column_bitmaps_signal(); int rc= file->ha_rnd_init(true); if (!rc) { while ((rc= file->ha_rnd_next(table->record[0])) != HA_ERR_END_OF_FILE) { if (part->empty) part->empty= false; if (thd->killed) { file->ha_rnd_end(); file->update_partition(part_id); ha_commit_trans(thd, false); return true; } if (rc) { if (rc == HA_ERR_RECORD_DELETED) continue; break; } if (table->vers_end_field()->is_max()) { rc= HA_ERR_INTERNAL_ERROR; push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, WARN_VERS_PART_NON_HISTORICAL, ER_THD(thd, WARN_VERS_PART_NON_HISTORICAL), part->partition_name); break; } if (table->versioned(VERS_TRX_ID)) { uchar buf[8]; Field_timestampf fld(buf, NULL, 0, Field::NONE, &table->vers_end_field()->field_name, NULL, 6); if (!vers_trx_id_to_ts(thd, table->vers_end_field(), fld)) { vers_stat_trx(STAT_TRX_END, part).update_unguarded(&fld); } } else { vers_stat_trx(STAT_TRX_END, part).update_unguarded(table->vers_end_field()); } } file->ha_rnd_end(); } file->update_partition(part_id); if (rc != HA_ERR_END_OF_FILE) { // TODO: print rc code my_error(ER_INTERNAL_ERROR, MYF(0), "min/max scan failed in versioned partitions setup (see warnings)"); return true; } } return false; } void partition_info::vers_update_col_vals(THD *thd, partition_element *el0, partition_element *el1) { MYSQL_TIME t; memset(&t, 0, sizeof(t)); DBUG_ASSERT(table && table->s && table->s->stat_trx); DBUG_ASSERT(!el0 || el1->id == el0->id + 1); const uint idx= el1->id * num_columns; my_time_t ts; part_column_list_val *col_val; Item_datetime_literal *val_item; Vers_min_max_stats *stat_trx_x; for (uint i= 0; i < num_columns; ++i) { stat_trx_x= table->s->stat_trx[idx + i]; if (el0) { ts= stat_trx_x->min_time(); thd->variables.time_zone->gmt_sec_to_TIME(&t, ts); col_val= &el0->get_col_val(i); val_item= static_cast(col_val->item_expression); DBUG_ASSERT(val_item); if (*val_item > t) { val_item->set_time(&t); col_val->fixed= 0; } } col_val= &el1->get_col_val(i); if (!col_val->max_value) { ts= stat_trx_x->max_time() + 1; thd->variables.time_zone->gmt_sec_to_TIME(&t, ts); val_item= static_cast(col_val->item_expression); DBUG_ASSERT(val_item); if (*val_item < t) { val_item->set_time(&t); col_val->fixed= 0; } } } } // setup at open() phase (TABLE_SHARE is initialized) bool partition_info::vers_setup_stats(THD * thd, bool is_create_table_ind) { DBUG_ASSERT(part_type == VERSIONING_PARTITION); DBUG_ASSERT(vers_info && vers_info->initialized(false)); DBUG_ASSERT(table && table->s); bool error= false; TABLE_LIST tl(*table, TL_READ); MDL_auto_lock mdl_lock(thd, tl); if (mdl_lock.acquire_error()) return true; mysql_mutex_lock(&table->s->LOCK_rotation); if (table->s->busy_rotation) { table->s->vers_wait_rotation(); vers_hist_part(); } else { table->s->busy_rotation= true; mysql_mutex_unlock(&table->s->LOCK_rotation); DBUG_ASSERT(part_field_list.elements == num_columns); bool dont_stat= true; bool col_val_updated= false; // initialize stat_trx if (!table->s->stat_trx) { DBUG_ASSERT(partitions.elements > 1); table->s->stat_trx= static_cast( alloc_root(&table->s->mem_root, sizeof(void *) * (partitions.elements * num_columns + 1))); table->s->stat_trx[partitions.elements * num_columns]= NULL; dont_stat= false; } // build freelist, scan min/max, assign hist_part List_iterator it(partitions); partition_element *el= NULL, *prev; while ((prev= el, el= it++)) { if (el->type() == partition_element::HISTORY && dont_stat) { if (el->id == table->s->hist_part_id) { vers_info->hist_part= el; break; } continue; } { Vers_min_max_stats *stat_trx_end= new (&table->s->mem_root) Vers_min_max_stats(&table->s->vers_end_field()->field_name, table->s); table->s->stat_trx[el->id * num_columns + STAT_TRX_END]= stat_trx_end; } if (!is_create_table_ind) { if (el->type() == partition_element::CURRENT) { uchar buf[8]; Field_timestampf fld(buf, NULL, 0, Field::NONE, &table->vers_end_field()->field_name, NULL, 6); fld.set_max(); vers_stat_trx(STAT_TRX_END, el).update_unguarded(&fld); el->empty= false; } else if (vers_scan_min_max(thd, el)) { table->s->stat_trx= NULL; // may be a leak on endless table open error= true; break; } if (!el->empty) { vers_update_col_vals(thd, prev, el); col_val_updated= true; } } if (el->type() == partition_element::CURRENT) break; DBUG_ASSERT(el->type() == partition_element::HISTORY); if (vers_info->hist_part) { if (!el->empty) goto set_hist_part; } else { set_hist_part: vers_info->hist_part= el; continue; } } // while if (!error && !dont_stat) { if (col_val_updated) table->s->stat_serial++; table->s->hist_part_id= vers_info->hist_part->id; } mysql_mutex_lock(&table->s->LOCK_rotation); mysql_cond_broadcast(&table->s->COND_rotation); table->s->busy_rotation= false; } mysql_mutex_unlock(&table->s->LOCK_rotation); return error; } /* Check that the partition/subpartition is setup to use the correct storage engine SYNOPSIS check_engine_condition() p_elem Partition element table_engine_set Have user specified engine on table level inout::engine_type Current engine used inout::first Is it first partition RETURN VALUE TRUE Failed check FALSE Ok DESCRIPTION Specified engine for table and partitions p0 and pn Must be correct both on CREATE and ALTER commands table p0 pn res (0 - OK, 1 - FAIL) - - - 0 - - x 1 - x - 1 - x x 0 x - - 0 x - x 0 x x - 0 x x x 0 i.e: - All subpartitions must use the same engine AND it must be the same as the partition. - All partitions must use the same engine AND it must be the same as the table. - if one does NOT specify an engine on the table level then one must either NOT specify any engine on any partition/subpartition OR for ALL partitions/subpartitions Note: When ALTER a table, the engines are already set for all levels (table, all partitions and subpartitions). So if one want to change the storage engine, one must specify it on the table level */ static bool check_engine_condition(partition_element *p_elem, bool table_engine_set, handlerton **engine_type, bool *first) { DBUG_ENTER("check_engine_condition"); DBUG_PRINT("enter", ("p_eng %s t_eng %s t_eng_set %u first %u state %u", ha_resolve_storage_engine_name(p_elem->engine_type), ha_resolve_storage_engine_name(*engine_type), table_engine_set, *first, p_elem->part_state)); if (*first && !table_engine_set) { *engine_type= p_elem->engine_type; DBUG_PRINT("info", ("setting table_engine = %s", ha_resolve_storage_engine_name(*engine_type))); } *first= FALSE; if ((table_engine_set && (p_elem->engine_type != (*engine_type) && p_elem->engine_type)) || (!table_engine_set && p_elem->engine_type != (*engine_type))) { DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } /* Check engine mix that it is correct Current limitation is that all partitions and subpartitions must use the same storage engine. SYNOPSIS check_engine_mix() inout::engine_type Current engine used table_engine_set Have user specified engine on table level RETURN VALUE TRUE Error, mixed engines FALSE Ok, no mixed engines DESCRIPTION Current check verifies only that all handlers are the same. Later this check will be more sophisticated. (specified partition handler ) specified table handler (MYISAM, MYISAM) - OK (MYISAM, -) - NOT OK (MYISAM, -) MYISAM OK (- , MYISAM) - NOT OK (- , -) MYISAM OK (-,-) - OK */ bool partition_info::check_engine_mix(handlerton *engine_type, bool table_engine_set) { handlerton *old_engine_type= engine_type; bool first= TRUE; uint n_parts= partitions.elements; DBUG_ENTER("partition_info::check_engine_mix"); DBUG_PRINT("info", ("in: engine_type = %s, table_engine_set = %u", ha_resolve_storage_engine_name(engine_type), table_engine_set)); if (n_parts) { List_iterator part_it(partitions); uint i= 0; do { partition_element *part_elem= part_it++; DBUG_PRINT("info", ("part = %d engine = %s table_engine_set %u", i, ha_resolve_storage_engine_name(part_elem->engine_type), table_engine_set)); if (is_sub_partitioned() && part_elem->subpartitions.elements) { uint n_subparts= part_elem->subpartitions.elements; uint j= 0; List_iterator sub_it(part_elem->subpartitions); do { partition_element *sub_elem= sub_it++; DBUG_PRINT("info", ("sub = %d engine = %s table_engie_set %u", j, ha_resolve_storage_engine_name(sub_elem->engine_type), table_engine_set)); if (check_engine_condition(sub_elem, table_engine_set, &engine_type, &first)) goto error; } while (++j < n_subparts); /* ensure that the partition also has correct engine */ if (check_engine_condition(part_elem, table_engine_set, &engine_type, &first)) goto error; } else if (check_engine_condition(part_elem, table_engine_set, &engine_type, &first)) goto error; } while (++i < n_parts); } DBUG_PRINT("info", ("engine_type = %s", ha_resolve_storage_engine_name(engine_type))); if (!engine_type) engine_type= old_engine_type; if (engine_type->flags & HTON_NO_PARTITION) { my_error(ER_PARTITION_MERGE_ERROR, MYF(0)); DBUG_RETURN(TRUE); } DBUG_PRINT("info", ("out: engine_type = %s", ha_resolve_storage_engine_name(engine_type))); DBUG_ASSERT(engine_type != partition_hton); DBUG_RETURN(FALSE); error: /* Mixed engines not yet supported but when supported it will need the partition handler */ DBUG_RETURN(TRUE); } /* This routine allocates an array for all range constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that the range constants are defined in increasing order and that the expressions are constant integer expressions. SYNOPSIS check_range_constants() thd Thread object RETURN VALUE TRUE An error occurred during creation of range constants FALSE Successful creation of range constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for RANGE PARTITIONed tables. */ bool partition_info::check_range_constants(THD *thd, bool alloc) { partition_element* part_def; bool first= TRUE; uint i; List_iterator it(partitions); int result= TRUE; DBUG_ENTER("partition_info::check_range_constants"); DBUG_PRINT("enter", ("RANGE with %d parts, column_list = %u", num_parts, column_list)); if (column_list) { part_column_list_val *loc_range_col_array; part_column_list_val *UNINIT_VAR(current_largest_col_val); uint num_column_values= part_field_list.elements; uint size_entries= sizeof(part_column_list_val) * num_column_values; if (alloc) { range_col_array= (part_column_list_val*) thd->calloc(num_parts * size_entries); if (unlikely(range_col_array == NULL)) { mem_alloc_error(num_parts * size_entries); goto end; } } loc_range_col_array= range_col_array; i= 0; do { part_def= it++; { List_iterator list_val_it(part_def->list_val_list); part_elem_value *range_val= list_val_it++; part_column_list_val *col_val= range_val->col_val_array; if (fix_column_value_functions(thd, range_val, i)) goto end; memcpy(loc_range_col_array, (const void*)col_val, size_entries); loc_range_col_array+= num_column_values; if (!first) { if (compare_column_values((const void*)current_largest_col_val, (const void*)col_val) >= 0) goto range_not_increasing_error; } current_largest_col_val= col_val; } first= FALSE; } while (++i < num_parts); } else { longlong UNINIT_VAR(current_largest); longlong part_range_value; bool signed_flag= !part_expr->unsigned_flag; if (alloc) { range_int_array= (longlong*) thd->alloc(num_parts * sizeof(longlong)); if (unlikely(range_int_array == NULL)) { mem_alloc_error(num_parts * sizeof(longlong)); goto end; } } i= 0; do { part_def= it++; if ((i != (num_parts - 1)) || !defined_max_value) { part_range_value= part_def->range_value; if (!signed_flag) part_range_value-= 0x8000000000000000ULL; } else part_range_value= LONGLONG_MAX; if (!first) { if (unlikely(current_largest > part_range_value) || (unlikely(current_largest == part_range_value) && (part_range_value < LONGLONG_MAX || i != (num_parts - 1) || !defined_max_value))) goto range_not_increasing_error; } range_int_array[i]= part_range_value; current_largest= part_range_value; first= FALSE; } while (++i < num_parts); } result= FALSE; end: DBUG_RETURN(result); range_not_increasing_error: my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0)); goto end; } /* Support routines for check_list_constants used by qsort to sort the constant list expressions. One routine for integers and one for column lists. SYNOPSIS list_part_cmp() a First list constant to compare with b Second list constant to compare with RETURN VALUE +1 a > b 0 a == b -1 a < b */ extern "C" int partition_info_list_part_cmp(const void* a, const void* b) { longlong a1= ((LIST_PART_ENTRY*)a)->list_value; longlong b1= ((LIST_PART_ENTRY*)b)->list_value; if (a1 < b1) return -1; else if (a1 > b1) return +1; else return 0; } int partition_info::list_part_cmp(const void* a, const void* b) { return partition_info_list_part_cmp(a, b); } /* Compare two lists of column values in RANGE/LIST partitioning SYNOPSIS compare_column_values() first First column list argument second Second column list argument RETURN VALUES 0 Equal -1 First argument is smaller +1 First argument is larger */ extern "C" int partition_info_compare_column_values(const void *first_arg, const void *second_arg) { const part_column_list_val *first= (part_column_list_val*)first_arg; const part_column_list_val *second= (part_column_list_val*)second_arg; partition_info *part_info= first->part_info; Field **field; for (field= part_info->part_field_array; *field; field++, first++, second++) { if (first->max_value || second->max_value) { if (first->max_value && second->max_value) return 0; if (second->max_value) return -1; else return +1; } if (first->null_value || second->null_value) { if (first->null_value && second->null_value) continue; if (second->null_value) return +1; else return -1; } int res= (*field)->cmp((const uchar*)first->column_value, (const uchar*)second->column_value); if (res) return res; } return 0; } int partition_info::compare_column_values(const void *first_arg, const void *second_arg) { return partition_info_compare_column_values(first_arg, second_arg); } /* This routine allocates an array for all list constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that there are no duplicates among the list constants and that that the list expressions are constant integer expressions. SYNOPSIS check_list_constants() thd Thread object RETURN VALUE TRUE An error occurred during creation of list constants FALSE Successful creation of list constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for LIST PARTITIONed tables. */ bool partition_info::check_list_constants(THD *thd) { uint i, size_entries, num_column_values; uint list_index= 0; part_elem_value *list_value; bool result= TRUE; longlong type_add, calc_value; void *curr_value; void *UNINIT_VAR(prev_value); partition_element* part_def; bool found_null= FALSE; qsort_cmp compare_func; void *ptr; List_iterator list_func_it(partitions); DBUG_ENTER("partition_info::check_list_constants"); DBUG_ASSERT(part_type == LIST_PARTITION); num_list_values= 0; /* We begin by calculating the number of list values that have been defined in the first step. We use this number to allocate a properly sized array of structs to keep the partition id and the value to use in that partition. In the second traversal we assign them values in the struct array. Finally we sort the array of structs in order of values to enable a quick binary search for the proper value to discover the partition id. After sorting the array we check that there are no duplicates in the list. */ i= 0; do { part_def= list_func_it++; if (part_def->has_null_value) { if (found_null) { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); goto end; } has_null_value= TRUE; has_null_part_id= i; found_null= TRUE; } num_list_values+= part_def->list_val_list.elements; } while (++i < num_parts); list_func_it.rewind(); num_column_values= part_field_list.elements; size_entries= column_list ? (num_column_values * sizeof(part_column_list_val)) : sizeof(LIST_PART_ENTRY); if (unlikely(!(ptr= thd->calloc((num_list_values+1) * size_entries)))) goto end; if (column_list) { part_column_list_val *loc_list_col_array; loc_list_col_array= (part_column_list_val*)ptr; list_col_array= (part_column_list_val*)ptr; compare_func= partition_info_compare_column_values; i= 0; do { part_def= list_func_it++; if (part_def->max_value) { // DEFAULT is not a real value so let's exclude it from sorting. DBUG_ASSERT(num_list_values); num_list_values--; continue; } List_iterator list_val_it2(part_def->list_val_list); while ((list_value= list_val_it2++)) { part_column_list_val *col_val= list_value->col_val_array; if (unlikely(fix_column_value_functions(thd, list_value, i))) { DBUG_RETURN(TRUE); } memcpy(loc_list_col_array, (const void*)col_val, size_entries); loc_list_col_array+= num_column_values; } } while (++i < num_parts); } else { compare_func= partition_info_list_part_cmp; list_array= (LIST_PART_ENTRY*)ptr; i= 0; /* Fix to be able to reuse signed sort functions also for unsigned partition functions. */ type_add= (longlong)(part_expr->unsigned_flag ? 0x8000000000000000ULL : 0ULL); do { part_def= list_func_it++; if (part_def->max_value && part_type == LIST_PARTITION) { // DEFAULT is not a real value so let's exclude it from sorting. DBUG_ASSERT(num_list_values); num_list_values--; continue; } List_iterator list_val_it2(part_def->list_val_list); while ((list_value= list_val_it2++)) { calc_value= list_value->value - type_add; list_array[list_index].list_value= calc_value; list_array[list_index++].partition_id= i; } } while (++i < num_parts); } DBUG_ASSERT(fixed); if (num_list_values) { bool first= TRUE; /* list_array and list_col_array are unions, so this works for both variants of LIST partitioning. */ my_qsort((void*)list_array, num_list_values, size_entries, compare_func); i= 0; do { DBUG_ASSERT(i < num_list_values); curr_value= column_list ? (void*)&list_col_array[num_column_values * i] : (void*)&list_array[i]; if (likely(first || compare_func(curr_value, prev_value))) { prev_value= curr_value; first= FALSE; } else { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); goto end; } } while (++i < num_list_values); } result= FALSE; end: DBUG_RETURN(result); } /** Check if we allow DATA/INDEX DIRECTORY, if not warn and set them to NULL. @param thd THD also containing sql_mode (looks from MODE_NO_DIR_IN_CREATE). @param part_elem partition_element to check. */ static void warn_if_dir_in_part_elem(THD *thd, partition_element *part_elem) { if (thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE) { if (part_elem->data_file_name) push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, WARN_OPTION_IGNORED, ER_THD(thd, WARN_OPTION_IGNORED), "DATA DIRECTORY"); if (part_elem->index_file_name) push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, WARN_OPTION_IGNORED, ER_THD(thd, WARN_OPTION_IGNORED), "INDEX DIRECTORY"); part_elem->data_file_name= part_elem->index_file_name= NULL; } } /* This code is used early in the CREATE TABLE and ALTER TABLE process. SYNOPSIS check_partition_info() thd Thread object eng_type Return value for used engine in partitions file A reference to a handler of the table info Create info add_or_reorg_part Is it ALTER TABLE ADD/REORGANIZE command RETURN VALUE TRUE Error, something went wrong FALSE Ok, full partition data structures are now generated DESCRIPTION We will check that the partition info requested is possible to set-up in this version. This routine is an extension of the parser one could say. If defaults were used we will generate default data structures for all partitions. */ bool partition_info::check_partition_info(THD *thd, handlerton **eng_type, handler *file, HA_CREATE_INFO *info, partition_info *add_or_reorg_part) { handlerton *table_engine= default_engine_type; uint i, tot_partitions; bool result= TRUE, table_engine_set; const char *same_name; uint32 hist_parts= 0; uint32 now_parts= 0; DBUG_ENTER("partition_info::check_partition_info"); DBUG_ASSERT(default_engine_type != partition_hton); DBUG_PRINT("info", ("default table_engine = %s", ha_resolve_storage_engine_name(table_engine))); if (!add_or_reorg_part) { int err= 0; /* Check for partition expression. */ if (!list_of_part_fields) { DBUG_ASSERT(part_expr); err= part_expr->walk(&Item::check_partition_func_processor, 0, NULL); } /* Check for sub partition expression. */ if (!err && is_sub_partitioned() && !list_of_subpart_fields) { DBUG_ASSERT(subpart_expr); err= subpart_expr->walk(&Item::check_partition_func_processor, 0, NULL); } if (err) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); goto end; } if (thd->lex->sql_command == SQLCOM_CREATE_TABLE && fix_parser_data(thd)) goto end; } if (unlikely(!is_sub_partitioned() && !(use_default_subpartitions && use_default_num_subpartitions))) { my_error(ER_SUBPARTITION_ERROR, MYF(0)); goto end; } if (unlikely(is_sub_partitioned() && (!(part_type == RANGE_PARTITION || part_type == LIST_PARTITION || part_type == VERSIONING_PARTITION)))) { /* Only RANGE and LIST partitioning can be subpartitioned */ my_error(ER_SUBPARTITION_ERROR, MYF(0)); goto end; } if (unlikely(set_up_defaults_for_partitioning(thd, file, info, (uint)0))) goto end; if (!(tot_partitions= get_tot_partitions())) { my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions"); goto end; } if (unlikely(tot_partitions > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } /* if NOT specified ENGINE = : If Create, always use create_info->db_type else, use previous tables db_type either ALL or NONE partition should be set to default_engine_type when not table_engine_set Note: after a table is created its storage engines for the table and all partitions/subpartitions are set. So when ALTER it is already set on table level */ if (info && info->used_fields & HA_CREATE_USED_ENGINE) { table_engine_set= TRUE; table_engine= info->db_type; /* if partition_hton, use thd->lex->create_info */ if (table_engine == partition_hton) table_engine= thd->lex->create_info.db_type; DBUG_ASSERT(table_engine != partition_hton); DBUG_PRINT("info", ("Using table_engine = %s", ha_resolve_storage_engine_name(table_engine))); } else { table_engine_set= FALSE; if (thd->lex->sql_command != SQLCOM_CREATE_TABLE) { table_engine_set= TRUE; DBUG_PRINT("info", ("No create, table_engine = %s", ha_resolve_storage_engine_name(table_engine))); DBUG_ASSERT(table_engine && table_engine != partition_hton); } } if (part_field_list.elements > 0 && (same_name= find_duplicate_field())) { my_error(ER_SAME_NAME_PARTITION_FIELD, MYF(0), same_name); goto end; } if ((same_name= find_duplicate_name())) { my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name); goto end; } if (part_type == VERSIONING_PARTITION) { DBUG_ASSERT(vers_info); if (num_parts < 2 || !vers_info->now_part) { DBUG_ASSERT(info && info->alias); my_error(ER_VERS_WRONG_PARTS, MYF(0), info->alias); goto end; } DBUG_ASSERT(vers_info->initialized(false)); DBUG_ASSERT(num_parts == partitions.elements); } i= 0; { List_iterator part_it(partitions); uint num_parts_not_set= 0; uint prev_num_subparts_not_set= num_subparts + 1; do { partition_element *part_elem= part_it++; warn_if_dir_in_part_elem(thd, part_elem); if (!is_sub_partitioned()) { if (part_elem->engine_type == NULL) { num_parts_not_set++; part_elem->engine_type= default_engine_type; } if (check_table_name(part_elem->partition_name, strlen(part_elem->partition_name), FALSE)) { my_error(ER_WRONG_PARTITION_NAME, MYF(0)); goto end; } DBUG_PRINT("info", ("part = %d engine = %s", i, ha_resolve_storage_engine_name(part_elem->engine_type))); } else { uint j= 0; uint num_subparts_not_set= 0; List_iterator sub_it(part_elem->subpartitions); partition_element *sub_elem; do { sub_elem= sub_it++; warn_if_dir_in_part_elem(thd, sub_elem); if (check_table_name(sub_elem->partition_name, strlen(sub_elem->partition_name), FALSE)) { my_error(ER_WRONG_PARTITION_NAME, MYF(0)); goto end; } if (sub_elem->engine_type == NULL) { if (part_elem->engine_type != NULL) sub_elem->engine_type= part_elem->engine_type; else { sub_elem->engine_type= default_engine_type; num_subparts_not_set++; } } DBUG_PRINT("info", ("part = %d sub = %d engine = %s", i, j, ha_resolve_storage_engine_name(sub_elem->engine_type))); } while (++j < num_subparts); if (prev_num_subparts_not_set == (num_subparts + 1) && (num_subparts_not_set == 0 || num_subparts_not_set == num_subparts)) prev_num_subparts_not_set= num_subparts_not_set; if (!table_engine_set && prev_num_subparts_not_set != num_subparts_not_set) { DBUG_PRINT("info", ("num_subparts_not_set = %u num_subparts = %u", num_subparts_not_set, num_subparts)); my_error(ER_MIX_HANDLER_ERROR, MYF(0)); goto end; } if (part_elem->engine_type == NULL) { if (num_subparts_not_set == 0) part_elem->engine_type= sub_elem->engine_type; else { num_parts_not_set++; part_elem->engine_type= default_engine_type; } } } if (part_type == VERSIONING_PARTITION) { if (part_elem->type() == partition_element::HISTORY) { hist_parts++; } else { DBUG_ASSERT(part_elem->type() == partition_element::CURRENT); now_parts++; } } } while (++i < num_parts); if (!table_engine_set && num_parts_not_set != 0 && num_parts_not_set != num_parts) { DBUG_PRINT("info", ("num_parts_not_set = %u num_parts = %u", num_parts_not_set, num_subparts)); my_error(ER_MIX_HANDLER_ERROR, MYF(0)); goto end; } } if (unlikely(check_engine_mix(table_engine, table_engine_set))) { my_error(ER_MIX_HANDLER_ERROR, MYF(0)); goto end; } if (hist_parts > 1) { if (unlikely(vers_info->limit == 0 && vers_info->interval == 0)) { push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, WARN_VERS_PARAMETERS, ER_THD(thd, WARN_VERS_PARAMETERS), "no rotation condition for multiple HISTORY partitions."); } } if (unlikely(now_parts > 1)) { my_error(ER_VERS_WRONG_PARTS, MYF(0), info->alias); goto end; } DBUG_ASSERT(table_engine != partition_hton && default_engine_type == table_engine); if (eng_type) *eng_type= table_engine; /* We need to check all constant expressions that they are of the correct type and that they are increasing for ranges and not overlapping for list constants. */ if (add_or_reorg_part) { if (unlikely(part_type == VERSIONING_PARTITION && vers_setup_expression(thd, add_or_reorg_part->partitions.elements))) goto end; if (unlikely(((part_type == RANGE_PARTITION || part_type == VERSIONING_PARTITION) && check_range_constants(thd)) || (part_type == LIST_PARTITION && check_list_constants(thd)))) goto end; } result= FALSE; end: DBUG_RETURN(result); } /* Print error for no partition found SYNOPSIS print_no_partition_found() table Table object RETURN VALUES */ void partition_info::print_no_partition_found(TABLE *table_arg, myf errflag) { char buf[100]; char *buf_ptr= (char*)&buf; TABLE_LIST table_list; THD *thd= current_thd; bzero(&table_list, sizeof(table_list)); table_list.db= table_arg->s->db.str; table_list.table_name= table_arg->s->table_name.str; if (check_single_table_access(thd, SELECT_ACL, &table_list, TRUE)) { my_message(ER_NO_PARTITION_FOR_GIVEN_VALUE, ER_THD(thd, ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT), errflag); } else { if (column_list) buf_ptr= (char*)"from column_list"; else { my_bitmap_map *old_map= dbug_tmp_use_all_columns(table_arg, table_arg->read_set); if (part_expr->null_value) buf_ptr= (char*)"NULL"; else longlong10_to_str(err_value, buf, part_expr->unsigned_flag ? 10 : -10); dbug_tmp_restore_column_map(table_arg->read_set, old_map); } my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, errflag, buf_ptr); } } /* Set fields related to partition expression SYNOPSIS set_part_expr() start_token Start of partition function string item_ptr Pointer to item tree end_token End of partition function string is_subpart Subpartition indicator RETURN VALUES TRUE Memory allocation error FALSE Success */ bool partition_info::set_part_expr(THD *thd, char *start_token, Item *item_ptr, char *end_token, bool is_subpart) { size_t expr_len= end_token - start_token; char *func_string= (char*) thd->memdup(start_token, expr_len); if (!func_string) { mem_alloc_error(expr_len); return TRUE; } if (is_subpart) { list_of_subpart_fields= FALSE; subpart_expr= item_ptr; } else { list_of_part_fields= FALSE; part_expr= item_ptr; } return FALSE; } /* Check that partition fields and subpartition fields are not too long SYNOPSIS check_partition_field_length() RETURN VALUES TRUE Total length was too big FALSE Length is ok */ bool partition_info::check_partition_field_length() { uint store_length= 0; uint i; DBUG_ENTER("partition_info::check_partition_field_length"); for (i= 0; i < num_part_fields; i++) store_length+= get_partition_field_store_length(part_field_array[i]); if (store_length > MAX_KEY_LENGTH) DBUG_RETURN(TRUE); store_length= 0; for (i= 0; i < num_subpart_fields; i++) store_length+= get_partition_field_store_length(subpart_field_array[i]); if (store_length > MAX_KEY_LENGTH) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } /* Set up buffers and arrays for fields requiring preparation SYNOPSIS set_up_charset_field_preps() RETURN VALUES TRUE Memory Allocation error FALSE Success DESCRIPTION Set up arrays and buffers for fields that require special care for calculation of partition id. This is used for string fields with variable length or string fields with fixed length that isn't using the binary collation. */ bool partition_info::set_up_charset_field_preps(THD *thd) { Field *field, **ptr; uchar **char_ptrs; unsigned i; size_t size; uint tot_fields= 0; uint tot_part_fields= 0; uint tot_subpart_fields= 0; DBUG_ENTER("set_up_charset_field_preps"); if (!(part_type == HASH_PARTITION && list_of_part_fields) && check_part_func_fields(part_field_array, FALSE)) { ptr= part_field_array; /* Set up arrays and buffers for those fields */ while ((field= *(ptr++))) { if (field_is_partition_charset(field)) { tot_part_fields++; tot_fields++; } } size= tot_part_fields * sizeof(char*); if (!(char_ptrs= (uchar**)thd->calloc(size))) goto error; part_field_buffers= char_ptrs; if (!(char_ptrs= (uchar**)thd->calloc(size))) goto error; restore_part_field_ptrs= char_ptrs; size= (tot_part_fields + 1) * sizeof(Field*); if (!(char_ptrs= (uchar**)thd->alloc(size))) goto error; part_charset_field_array= (Field**)char_ptrs; ptr= part_field_array; i= 0; while ((field= *(ptr++))) { if (field_is_partition_charset(field)) { uchar *field_buf; size= field->pack_length(); if (!(field_buf= (uchar*) thd->calloc(size))) goto error; part_charset_field_array[i]= field; part_field_buffers[i++]= field_buf; } } part_charset_field_array[i]= NULL; } if (is_sub_partitioned() && !list_of_subpart_fields && check_part_func_fields(subpart_field_array, FALSE)) { /* Set up arrays and buffers for those fields */ ptr= subpart_field_array; while ((field= *(ptr++))) { if (field_is_partition_charset(field)) { tot_subpart_fields++; tot_fields++; } } size= tot_subpart_fields * sizeof(char*); if (!(char_ptrs= (uchar**) thd->calloc(size))) goto error; subpart_field_buffers= char_ptrs; if (!(char_ptrs= (uchar**) thd->calloc(size))) goto error; restore_subpart_field_ptrs= char_ptrs; size= (tot_subpart_fields + 1) * sizeof(Field*); if (!(char_ptrs= (uchar**) thd->alloc(size))) goto error; subpart_charset_field_array= (Field**)char_ptrs; ptr= subpart_field_array; i= 0; while ((field= *(ptr++))) { uchar *UNINIT_VAR(field_buf); if (!field_is_partition_charset(field)) continue; size= field->pack_length(); if (!(field_buf= (uchar*) thd->calloc(size))) goto error; subpart_charset_field_array[i]= field; subpart_field_buffers[i++]= field_buf; } subpart_charset_field_array[i]= NULL; } DBUG_RETURN(FALSE); error: mem_alloc_error(size); DBUG_RETURN(TRUE); } /* Check if path does not contain mysql data home directory for partition elements with data directory and index directory SYNOPSIS check_partition_dirs() part_info partition_info struct RETURN VALUES 0 ok 1 error */ bool check_partition_dirs(partition_info *part_info) { if (!part_info) return 0; partition_element *part_elem; List_iterator part_it(part_info->partitions); while ((part_elem= part_it++)) { if (part_elem->subpartitions.elements) { List_iterator sub_it(part_elem->subpartitions); partition_element *subpart_elem; while ((subpart_elem= sub_it++)) { if (error_if_data_home_dir(subpart_elem->data_file_name, "DATA DIRECTORY") || error_if_data_home_dir(subpart_elem->index_file_name, "INDEX DIRECTORY")) return 1; } } else { if (error_if_data_home_dir(part_elem->data_file_name, "DATA DIRECTORY") || error_if_data_home_dir(part_elem->index_file_name, "INDEX DIRECTORY")) return 1; } } return 0; } /** Check what kind of error to report @param use_subpart_expr Use the subpart_expr instead of part_expr @param part_str Name of partition to report error (or NULL) */ void partition_info::report_part_expr_error(bool use_subpart_expr) { Item *expr= part_expr; DBUG_ENTER("partition_info::report_part_expr_error"); if (use_subpart_expr) expr= subpart_expr; if (expr->type() == Item::FIELD_ITEM) { partition_type type= part_type; bool list_of_fields= list_of_part_fields; Item_field *item_field= (Item_field*) expr; /* The expression consists of a single field. It must be of integer type unless KEY or COLUMNS partitioning. */ if (use_subpart_expr) { type= subpart_type; list_of_fields= list_of_subpart_fields; } if (!column_list && item_field->field && item_field->field->result_type() != INT_RESULT && !(type == HASH_PARTITION && list_of_fields)) { my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0), item_field->name.str); DBUG_VOID_RETURN; } } if (use_subpart_expr) my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), "SUBPARTITION"); else my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), "PARTITION"); DBUG_VOID_RETURN; } /* Create a new column value in current list with maxvalue Called from parser SYNOPSIS add_max_value() RETURN TRUE Error FALSE Success */ int partition_info::add_max_value(THD *thd) { DBUG_ENTER("partition_info::add_max_value"); part_column_list_val *col_val; /* Makes for LIST COLUMNS 'num_columns' DEFAULT tuples, 1 tuple for RANGEs */ uint max_val= (num_columns && part_type == LIST_PARTITION) ? num_columns : 1; for (uint i= 0; i < max_val; i++) { if (!(col_val= add_column_value(thd))) { DBUG_RETURN(TRUE); } col_val->max_value= TRUE; } DBUG_RETURN(FALSE); } /* Create a new column value in current list Called from parser SYNOPSIS add_column_value() RETURN >0 A part_column_list_val object which have been inserted into its list 0 Memory allocation failure */ part_column_list_val *partition_info::add_column_value(THD *thd) { uint max_val= num_columns ? num_columns : MAX_REF_PARTS; DBUG_ENTER("add_column_value"); DBUG_PRINT("enter", ("num_columns = %u, curr_list_object %u, max_val = %u", num_columns, curr_list_object, max_val)); if (curr_list_object < max_val) { curr_list_val->added_items++; DBUG_RETURN(&curr_list_val->col_val_array[curr_list_object++]); } if (!num_columns && part_type == LIST_PARTITION) { /* We're trying to add more than MAX_REF_PARTS, this can happen in ALTER TABLE using List partitions where the first partition uses VALUES IN (1,2,3...,17) where the number of fields in the list is more than MAX_REF_PARTS, in this case we know that the number of columns must be 1 and we thus reorganize into the structure used for 1 column. After this we call ourselves recursively which should always succeed. */ if (!reorganize_into_single_field_col_val(thd)) { DBUG_RETURN(add_column_value(thd)); } DBUG_RETURN(NULL); } if (column_list) { my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0)); } else { if (part_type == RANGE_PARTITION) my_error(ER_TOO_MANY_VALUES_ERROR, MYF(0), "RANGE"); else my_error(ER_TOO_MANY_VALUES_ERROR, MYF(0), "LIST"); } DBUG_RETURN(NULL); } /* Initialise part_elem_value object at setting of a new object (Helper functions to functions called by parser) SYNOPSIS init_col_val col_val Column value object to be initialised item Item object representing column value RETURN VALUES TRUE Failure FALSE Success */ void partition_info::init_col_val(part_column_list_val *col_val, Item *item) { DBUG_ENTER("partition_info::init_col_val"); col_val->item_expression= item; col_val->null_value= item->null_value; if (item->result_type() == INT_RESULT) { /* This could be both column_list partitioning and function partitioning, but it doesn't hurt to set the function partitioning flags about unsignedness. */ curr_list_val->value= item->val_int(); curr_list_val->unsigned_flag= TRUE; if (!item->unsigned_flag && curr_list_val->value < 0) curr_list_val->unsigned_flag= FALSE; if (!curr_list_val->unsigned_flag) curr_part_elem->signed_flag= TRUE; } col_val->part_info= NULL; DBUG_VOID_RETURN; } /* Add a column value in VALUES LESS THAN or VALUES IN (Called from parser) SYNOPSIS add_column_list_value() lex Parser's lex object thd Thread object item Item object representing column value RETURN VALUES TRUE Failure FALSE Success */ bool partition_info::add_column_list_value(THD *thd, Item *item) { part_column_list_val *col_val; Name_resolution_context *context= &thd->lex->current_select->context; TABLE_LIST *save_list= context->table_list; const char *save_where= thd->where; DBUG_ENTER("partition_info::add_column_list_value"); if (part_type == LIST_PARTITION && num_columns == 1U) { if (init_column_part(thd)) { DBUG_RETURN(TRUE); } } context->table_list= 0; if (column_list) thd->where= "field list"; else thd->where= "partition function"; if (item->walk(&Item::check_partition_func_processor, 0, NULL)) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); DBUG_RETURN(TRUE); } if (item->fix_fields(thd, (Item**)0) || ((context->table_list= save_list), FALSE) || (!item->const_item())) { context->table_list= save_list; thd->where= save_where; my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); DBUG_RETURN(TRUE); } thd->where= save_where; if (!(col_val= add_column_value(thd))) { DBUG_RETURN(TRUE); } init_col_val(col_val, item); DBUG_RETURN(FALSE); } /* Initialise part_info object for receiving a set of column values for a partition, called when parser reaches VALUES LESS THAN or VALUES IN. SYNOPSIS init_column_part() lex Parser's lex object RETURN VALUES TRUE Failure FALSE Success */ bool partition_info::init_column_part(THD *thd) { partition_element *p_elem= curr_part_elem; part_column_list_val *col_val_array; part_elem_value *list_val; uint loc_num_columns; DBUG_ENTER("partition_info::init_column_part"); if (!(list_val= (part_elem_value*) thd->calloc(sizeof(part_elem_value))) || p_elem->list_val_list.push_back(list_val, thd->mem_root)) { mem_alloc_error(sizeof(part_elem_value)); DBUG_RETURN(TRUE); } if (num_columns) loc_num_columns= num_columns; else loc_num_columns= MAX_REF_PARTS; if (!(col_val_array= (part_column_list_val*) thd->calloc(loc_num_columns * sizeof(part_column_list_val)))) { mem_alloc_error(loc_num_columns * sizeof(part_elem_value)); DBUG_RETURN(TRUE); } list_val->col_val_array= col_val_array; list_val->added_items= 0; curr_list_val= list_val; curr_list_object= 0; DBUG_RETURN(FALSE); } /* In the case of ALTER TABLE ADD/REORGANIZE PARTITION for LIST partitions we can specify list values as: VALUES IN (v1, v2,,,, v17) if we're using the first partitioning variant with a function or a column list partitioned table with one partition field. In this case the parser knows not the number of columns start with and allocates MAX_REF_PARTS in the array. If we try to allocate something beyond MAX_REF_PARTS we will call this function to reorganize into a structure with num_columns = 1. Also when the parser knows that we used LIST partitioning and we used a VALUES IN like above where number of values was smaller than MAX_REF_PARTS or equal, then we will reorganize after discovering this in the parser. SYNOPSIS reorganize_into_single_field_col_val() RETURN VALUES TRUE Failure FALSE Success */ int partition_info::reorganize_into_single_field_col_val(THD *thd) { part_column_list_val *col_val, *new_col_val; part_elem_value *val= curr_list_val; uint loc_num_columns= num_columns; uint i; DBUG_ENTER("partition_info::reorganize_into_single_field_col_val"); num_columns= 1; val->added_items= 1U; col_val= &val->col_val_array[0]; init_col_val(col_val, col_val->item_expression); for (i= 1; i < loc_num_columns; i++) { col_val= &val->col_val_array[i]; DBUG_ASSERT(part_type == LIST_PARTITION); if (init_column_part(thd)) { DBUG_RETURN(TRUE); } if (!(new_col_val= add_column_value(thd))) { DBUG_RETURN(TRUE); } memcpy(new_col_val, col_val, sizeof(*col_val)); init_col_val(new_col_val, col_val->item_expression); } curr_list_val= val; DBUG_RETURN(FALSE); } /* This function handles the case of function-based partitioning. It fixes some data structures created in the parser and puts them in the format required by the rest of the partitioning code. SYNOPSIS fix_partition_values() thd Thread object col_val Array of one value part_elem The partition instance part_id Id of partition instance RETURN VALUES TRUE Failure FALSE Success */ int partition_info::fix_partition_values(THD *thd, part_elem_value *val, partition_element *part_elem) { part_column_list_val *col_val= val->col_val_array; DBUG_ENTER("partition_info::fix_partition_values"); if (col_val->fixed) { DBUG_RETURN(FALSE); } Item *item_expr= col_val->item_expression; if ((val->null_value= item_expr->null_value)) { if (part_elem->has_null_value) { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); DBUG_RETURN(TRUE); } part_elem->has_null_value= TRUE; } else if (item_expr->result_type() != INT_RESULT) { my_error(ER_VALUES_IS_NOT_INT_TYPE_ERROR, MYF(0), part_elem->partition_name); DBUG_RETURN(TRUE); } if (part_type == RANGE_PARTITION) { if (part_elem->has_null_value) { my_error(ER_NULL_IN_VALUES_LESS_THAN, MYF(0)); DBUG_RETURN(TRUE); } part_elem->range_value= val->value; } col_val->fixed= 2; DBUG_RETURN(FALSE); } /* Get column item with a proper character set according to the field SYNOPSIS get_column_item() item Item object to start with field Field for which the item will be compared to RETURN VALUES NULL Error item Returned item */ Item* partition_info::get_column_item(Item *item, Field *field) { if (field->result_type() == STRING_RESULT && item->collation.collation != field->charset()) { if (!(item= convert_charset_partition_constant(item, field->charset()))) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); return NULL; } } return item; } /* Evaluate VALUES functions for column list values SYNOPSIS fix_column_value_functions() thd Thread object col_val List of column values part_id Partition id we are fixing RETURN VALUES TRUE Error FALSE Success DESCRIPTION Fix column VALUES and store in memory array adapted to the data type */ bool partition_info::fix_column_value_functions(THD *thd, part_elem_value *val, uint part_id) { uint n_columns= part_field_list.elements; bool result= FALSE; uint i; part_column_list_val *col_val= val->col_val_array; DBUG_ENTER("partition_info::fix_column_value_functions"); if (col_val->fixed > 1) { DBUG_RETURN(FALSE); } for (i= 0; i < n_columns; col_val++, i++) { Item *column_item= col_val->item_expression; Field *field= part_field_array[i]; col_val->part_info= this; col_val->partition_id= part_id; if (col_val->max_value) col_val->column_value= NULL; else { col_val->column_value= NULL; if (!col_val->null_value) { uchar *val_ptr; uint len= field->pack_length(); sql_mode_t save_sql_mode; bool save_got_warning; if (!(column_item= get_column_item(column_item, field))) { result= TRUE; goto end; } save_sql_mode= thd->variables.sql_mode; thd->variables.sql_mode= 0; save_got_warning= thd->got_warning; thd->got_warning= 0; if (column_item->save_in_field(field, TRUE) || thd->got_warning) { my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0)); result= TRUE; goto end; } thd->got_warning= save_got_warning; thd->variables.sql_mode= save_sql_mode; if (!(val_ptr= (uchar*) thd->memdup(field->ptr, len))) { mem_alloc_error(len); result= TRUE; goto end; } col_val->column_value= val_ptr; } } col_val->fixed= 2; } end: DBUG_RETURN(result); } bool partition_info::error_if_requires_values() const { switch (part_type) { case NOT_A_PARTITION: case HASH_PARTITION: case VERSIONING_PARTITION: break; case RANGE_PARTITION: my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "RANGE", "LESS THAN"); return true; case LIST_PARTITION: my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "LIST", "IN"); return true; } return false; } /** Fix partition data from parser. @details The parser generates generic data structures, we need to set them up as the rest of the code expects to find them. This is in reality part of the syntax check of the parser code. It is necessary to call this function in the case of a CREATE TABLE statement, in this case we do it early in the check_partition_info function. It is necessary to call this function for ALTER TABLE where we assign a completely new partition structure, in this case we do it in prep_alter_part_table after discovering that the partition structure is entirely redefined. It's necessary to call this method also for ALTER TABLE ADD/REORGANIZE of partitions, in this we call it in prep_alter_part_table after making some initial checks but before going deep to check the partition info, we also assign the column_list variable before calling this function here. Finally we also call it immediately after returning from parsing the partitioning text found in the frm file. This function mainly fixes the VALUES parts, these are handled differently whether or not we use column list partitioning. Since the parser doesn't know which we are using we need to set-up the old data structures after the parser is complete when we know if what type of partitioning the base table is using. For column lists we will handle this in the fix_column_value_function. For column lists it is sufficient to verify that the number of columns and number of elements are in synch with each other. So only partitioning using functions need to be set-up to their data structures. @param thd Thread object @return Operation status @retval TRUE Failure @retval FALSE Success */ bool partition_info::fix_parser_data(THD *thd) { List_iterator it(partitions); partition_element *part_elem; uint num_elements; uint i= 0, j, k; DBUG_ENTER("partition_info::fix_parser_data"); if (!(part_type == RANGE_PARTITION || part_type == LIST_PARTITION)) { if (part_type == HASH_PARTITION && list_of_part_fields) { /* KEY partitioning, check ALGORITHM = N. Should not pass the parser! */ if (key_algorithm > KEY_ALGORITHM_55) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); DBUG_RETURN(true); } /* If not set, use DEFAULT = 2 for CREATE and ALTER! */ if ((thd_sql_command(thd) == SQLCOM_CREATE_TABLE || thd_sql_command(thd) == SQLCOM_ALTER_TABLE) && key_algorithm == KEY_ALGORITHM_NONE) key_algorithm= KEY_ALGORITHM_55; } DBUG_RETURN(FALSE); } if (is_sub_partitioned() && list_of_subpart_fields) { /* KEY subpartitioning, check ALGORITHM = N. Should not pass the parser! */ if (key_algorithm > KEY_ALGORITHM_55) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); DBUG_RETURN(true); } /* If not set, use DEFAULT = 2 for CREATE and ALTER! */ if ((thd_sql_command(thd) == SQLCOM_CREATE_TABLE || thd_sql_command(thd) == SQLCOM_ALTER_TABLE) && key_algorithm == KEY_ALGORITHM_NONE) key_algorithm= KEY_ALGORITHM_55; } defined_max_value= FALSE; // in case it already set (CREATE TABLE LIKE) do { part_elem= it++; List_iterator list_val_it(part_elem->list_val_list); num_elements= part_elem->list_val_list.elements; if (!num_elements && error_if_requires_values()) DBUG_RETURN(true); DBUG_ASSERT(part_type == RANGE_PARTITION ? num_elements == 1U : TRUE); for (j= 0; j < num_elements; j++) { part_elem_value *val= list_val_it++; if (val->added_items != (column_list ? num_columns : 1)) { my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0)); DBUG_RETURN(TRUE); } /* Check the last MAX_VALUE for range partitions and DEFAULT value for LIST partitions. Both values are marked with defined_max_value and default_partition_id. This is a max_value/default is max_value is set and this is a normal RANGE (no column list) or if it's a LIST partition: PARTITION p3 VALUES LESS THAN MAXVALUE or PARTITION p3 VALUES DEFAULT */ if (val->added_items && val->col_val_array[0].max_value && (!column_list || part_type == LIST_PARTITION)) { DBUG_ASSERT(part_type == RANGE_PARTITION || part_type == LIST_PARTITION); if (defined_max_value) { my_error((part_type == RANGE_PARTITION) ? ER_PARTITION_MAXVALUE_ERROR : ER_PARTITION_DEFAULT_ERROR, MYF(0)); DBUG_RETURN(TRUE); } /* For RANGE PARTITION MAX_VALUE must be last */ if (i != (num_parts - 1) && part_type != LIST_PARTITION) { my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0)); DBUG_RETURN(TRUE); } defined_max_value= TRUE; default_partition_id= i; part_elem->max_value= TRUE; part_elem->range_value= LONGLONG_MAX; continue; } if (column_list) { for (k= 0; k < num_columns; k++) { part_column_list_val *col_val= &val->col_val_array[k]; if (col_val->null_value && part_type == RANGE_PARTITION) { my_error(ER_NULL_IN_VALUES_LESS_THAN, MYF(0)); DBUG_RETURN(TRUE); } } } else { if (fix_partition_values(thd, val, part_elem)) DBUG_RETURN(TRUE); if (val->null_value) { /* Null values aren't required in the value part, they are kept per partition instance, only LIST partitions have NULL values. */ list_val_it.remove(); } } } } while (++i < num_parts); DBUG_RETURN(FALSE); } /** helper function to compare strings that can also be a NULL pointer. @param a char pointer (can be NULL). @param b char pointer (can be NULL). @return false if equal @retval true strings differs @retval false strings is equal */ static bool strcmp_null(const char *a, const char *b) { if (!a && !b) return false; if (a && b && !strcmp(a, b)) return false; return true; } /** Check if the new part_info has the same partitioning. @param new_part_info New partition definition to compare with. @return True if not considered to have changed the partitioning. @retval true Allowed change (only .frm change, compatible distribution). @retval false Different partitioning, will need redistribution of rows. @note Currently only used to allow changing from non-set key_algorithm to a specified key_algorithm, to avoid rebuild when upgrading from 5.1 of such partitioned tables using numeric colums in the partitioning expression. For more info see bug#14521864. Does not check if columns etc has changed, i.e. only for alter_info->flags == ALTER_PARTITION. */ bool partition_info::has_same_partitioning(partition_info *new_part_info) { DBUG_ENTER("partition_info::has_same_partitioning"); DBUG_ASSERT(part_field_array && part_field_array[0]); /* Only consider pre 5.5.3 .frm's to have same partitioning as a new one with KEY ALGORITHM = 1 (). */ if (part_field_array[0]->table->s->mysql_version >= 50503) DBUG_RETURN(false); if (!new_part_info || part_type != new_part_info->part_type || num_parts != new_part_info->num_parts || use_default_partitions != new_part_info->use_default_partitions || new_part_info->is_sub_partitioned() != is_sub_partitioned()) DBUG_RETURN(false); if (part_type != HASH_PARTITION) { /* RANGE or LIST partitioning, check if KEY subpartitioned. Also COLUMNS partitioning was added in 5.5, so treat that as different. */ if (!is_sub_partitioned() || !new_part_info->is_sub_partitioned() || column_list || new_part_info->column_list || !list_of_subpart_fields || !new_part_info->list_of_subpart_fields || new_part_info->num_subparts != num_subparts || new_part_info->subpart_field_list.elements != subpart_field_list.elements || new_part_info->use_default_subpartitions != use_default_subpartitions) DBUG_RETURN(false); } else { /* Check if KEY partitioned. */ if (!new_part_info->list_of_part_fields || !list_of_part_fields || new_part_info->part_field_list.elements != part_field_list.elements) DBUG_RETURN(false); } /* Check that it will use the same fields in KEY (fields) list. */ List_iterator old_field_name_it(part_field_list); List_iterator new_field_name_it(new_part_info->part_field_list); const char *old_name, *new_name; while ((old_name= old_field_name_it++)) { new_name= new_field_name_it++; if (!new_name || my_strcasecmp(system_charset_info, new_name, old_name)) DBUG_RETURN(false); } if (is_sub_partitioned()) { /* Check that it will use the same fields in KEY subpart fields list. */ List_iterator old_field_name_it(subpart_field_list); List_iterator new_field_name_it(new_part_info->subpart_field_list); const char *old_name, *new_name; while ((old_name= old_field_name_it++)) { new_name= new_field_name_it++; if (!new_name || my_strcasecmp(system_charset_info, new_name, old_name)) DBUG_RETURN(false); } } if (!use_default_partitions) { /* Loop over partitions/subpartition to verify that they are the same, including state and name. */ List_iterator part_it(partitions); List_iterator new_part_it(new_part_info->partitions); uint i= 0; do { partition_element *part_elem= part_it++; partition_element *new_part_elem= new_part_it++; /* The following must match: partition_name, tablespace_name, data_file_name, index_file_name, engine_type, part_max_rows, part_min_rows, nodegroup_id. (max_value, signed_flag, has_null_value only on partition level, RANGE/LIST) The following can differ: - part_comment part_state must be PART_NORMAL! */ if (!part_elem || !new_part_elem || strcmp(part_elem->partition_name, new_part_elem->partition_name) || part_elem->part_state != PART_NORMAL || new_part_elem->part_state != PART_NORMAL || part_elem->max_value != new_part_elem->max_value || part_elem->signed_flag != new_part_elem->signed_flag || part_elem->has_null_value != new_part_elem->has_null_value) DBUG_RETURN(false); /* new_part_elem may not have engine_type set! */ if (new_part_elem->engine_type && part_elem->engine_type != new_part_elem->engine_type) DBUG_RETURN(false); if (is_sub_partitioned()) { /* Check that both old and new partition has the same definition (VALUES IN/VALUES LESS THAN) (No COLUMNS partitioning, see above) */ if (part_type == LIST_PARTITION) { List_iterator list_vals(part_elem->list_val_list); List_iterator new_list_vals(new_part_elem->list_val_list); part_elem_value *val; part_elem_value *new_val; while ((val= list_vals++)) { new_val= new_list_vals++; if (!new_val) DBUG_RETURN(false); if ((!val->null_value && !new_val->null_value) && val->value != new_val->value) DBUG_RETURN(false); } if (new_list_vals++) DBUG_RETURN(false); } else { DBUG_ASSERT(part_type == RANGE_PARTITION); if (new_part_elem->range_value != part_elem->range_value) DBUG_RETURN(false); } if (!use_default_subpartitions) { List_iterator sub_part_it(part_elem->subpartitions); List_iterator new_sub_part_it(new_part_elem->subpartitions); uint j= 0; do { partition_element *sub_part_elem= sub_part_it++; partition_element *new_sub_part_elem= new_sub_part_it++; /* new_part_elem may not have engine_type set! */ if (new_sub_part_elem->engine_type && sub_part_elem->engine_type != new_sub_part_elem->engine_type) DBUG_RETURN(false); if (strcmp(sub_part_elem->partition_name, new_sub_part_elem->partition_name) || sub_part_elem->part_state != PART_NORMAL || new_sub_part_elem->part_state != PART_NORMAL || sub_part_elem->part_min_rows != new_sub_part_elem->part_min_rows || sub_part_elem->part_max_rows != new_sub_part_elem->part_max_rows || sub_part_elem->nodegroup_id != new_sub_part_elem->nodegroup_id) DBUG_RETURN(false); if (strcmp_null(sub_part_elem->data_file_name, new_sub_part_elem->data_file_name) || strcmp_null(sub_part_elem->index_file_name, new_sub_part_elem->index_file_name) || strcmp_null(sub_part_elem->tablespace_name, new_sub_part_elem->tablespace_name)) DBUG_RETURN(false); } while (++j < num_subparts); } } else { if (part_elem->part_min_rows != new_part_elem->part_min_rows || part_elem->part_max_rows != new_part_elem->part_max_rows || part_elem->nodegroup_id != new_part_elem->nodegroup_id) DBUG_RETURN(false); if (strcmp_null(part_elem->data_file_name, new_part_elem->data_file_name) || strcmp_null(part_elem->index_file_name, new_part_elem->index_file_name) || strcmp_null(part_elem->tablespace_name, new_part_elem->tablespace_name)) DBUG_RETURN(false); } } while (++i < num_parts); } /* Only if key_algorithm was not specified before and it is now set, consider this as nothing was changed, and allow change without rebuild! */ if (key_algorithm != partition_info::KEY_ALGORITHM_NONE || new_part_info->key_algorithm == partition_info::KEY_ALGORITHM_NONE) DBUG_RETURN(false); DBUG_RETURN(true); } bool partition_info::vers_trx_id_to_ts(THD* thd, Field* in_trx_id, Field_timestamp& out_ts) { DBUG_ASSERT(table); handlerton *hton= plugin_hton(table->s->db_plugin); DBUG_ASSERT(hton); ulonglong trx_id= in_trx_id->val_int(); TR_table trt(thd); bool found= trt.query(trx_id); if (!found) { push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, WARN_VERS_TRX_MISSING, ER_THD(thd, WARN_VERS_TRX_MISSING), trx_id); return true; } MYSQL_TIME ts; trt[TR_table::FLD_COMMIT_TS]->get_date(&ts, 0); out_ts.store_time_dec(&ts, 6); return false; } void partition_info::print_debug(const char *str, uint *value) { DBUG_ENTER("print_debug"); if (value) DBUG_PRINT("info", ("parser: %s, val = %u", str, *value)); else DBUG_PRINT("info", ("parser: %s", str)); DBUG_VOID_RETURN; } #else /* WITH_PARTITION_STORAGE_ENGINE */ /* For builds without partitioning we need to define these functions since we they are called from the parser. The parser cannot remove code parts using ifdef, but the code parts cannot be called so we simply need to add empty functions to make the linker happy. */ part_column_list_val *partition_info::add_column_value(THD *thd) { return NULL; } bool partition_info::set_part_expr(THD *thd, char *start_token, Item *item_ptr, char *end_token, bool is_subpart) { (void)start_token; (void)item_ptr; (void)end_token; (void)is_subpart; return FALSE; } int partition_info::reorganize_into_single_field_col_val(THD *thd) { return 0; } bool partition_info::init_column_part(THD *thd) { return FALSE; } bool partition_info::add_column_list_value(THD *thd, Item *item) { return FALSE; } int partition_info::add_max_value(THD *thd) { return 0; } void partition_info::print_debug(const char *str, uint *value) { } bool check_partition_dirs(partition_info *part_info) { return 0; } #endif /* WITH_PARTITION_STORAGE_ENGINE */