/* Copyright (C) 2006 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Some general useful functions */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation #endif #include "mysql_priv.h" #ifdef WITH_PARTITION_STORAGE_ENGINE #include "ha_partition.h" partition_info *partition_info::get_clone() { if (!this) return 0; List_iterator part_it(partitions); partition_element *part; partition_info *clone= new partition_info(); if (!clone) { mem_alloc_error(sizeof(partition_info)); return NULL; } memcpy(clone, this, sizeof(partition_info)); clone->partitions.empty(); while ((part= (part_it++))) { List_iterator subpart_it(part->subpartitions); partition_element *subpart; partition_element *part_clone= new partition_element(); if (!part_clone) { mem_alloc_error(sizeof(partition_element)); return NULL; } memcpy(part_clone, part, sizeof(partition_element)); part_clone->subpartitions.empty(); while ((subpart= (subpart_it++))) { partition_element *subpart_clone= new partition_element(); if (!subpart_clone) { mem_alloc_error(sizeof(partition_element)); return NULL; } memcpy(subpart_clone, subpart, sizeof(partition_element)); part_clone->subpartitions.push_back(subpart_clone); } clone->partitions.push_back(part_clone); } return clone; } /* Create a memory area where default partition names are stored and fill it up with the names. SYNOPSIS create_default_partition_names() part_no Partition number for subparts no_parts Number of partitions start_no Starting partition number subpart Is it subpartitions RETURN VALUE A pointer to the memory area of the default partition names DESCRIPTION A support routine for the partition code where default values are generated. The external routine needing this code is check_partition_info */ #define MAX_PART_NAME_SIZE 8 char *partition_info::create_default_partition_names(uint part_no, uint no_parts, uint start_no) { char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE); char *move_ptr= ptr; uint i= 0; DBUG_ENTER("create_default_partition_names"); if (likely(ptr != 0)) { do { my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i))); move_ptr+=MAX_PART_NAME_SIZE; } while (++i < no_parts); } else { mem_alloc_error(no_parts*MAX_PART_NAME_SIZE); } DBUG_RETURN(ptr); } /* Create a unique name for the subpartition as part_name'sp''subpart_no' SYNOPSIS create_subpartition_name() subpart_no Number of subpartition part_name Name of partition RETURN VALUES >0 A reference to the created name string 0 Memory allocation error */ char *partition_info::create_subpartition_name(uint subpart_no, const char *part_name) { uint size_alloc= strlen(part_name) + MAX_PART_NAME_SIZE; char *ptr= sql_calloc(size_alloc); DBUG_ENTER("create_subpartition_name"); if (likely(ptr != NULL)) { my_sprintf(ptr, (ptr, "%ssp%u", part_name, subpart_no)); } else { mem_alloc_error(size_alloc); } DBUG_RETURN(ptr); } /* Set up all the default partitions not set-up by the user in the SQL statement. Also perform a number of checks that the user hasn't tried to use default values where no defaults exists. SYNOPSIS set_up_default_partitions() file A reference to a handler of the table info Create info start_no Starting partition number RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine only accepts HASH and KEY partitioning and thus there is no subpartitioning if this routine is successful. The external routine needing this code is check_partition_info */ bool partition_info::set_up_default_partitions(handler *file, HA_CREATE_INFO *info, uint start_no) { uint i; char *default_name; bool result= TRUE; DBUG_ENTER("partition_info::set_up_default_partitions"); if (part_type != HASH_PARTITION) { const char *error_string; if (part_type == RANGE_PARTITION) error_string= partition_keywords[PKW_RANGE].str; else error_string= partition_keywords[PKW_LIST].str; my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string); goto end; } if (no_parts == 0) no_parts= file->get_default_no_partitions(info); if (unlikely(no_parts > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if (unlikely((!(default_name= create_default_partition_names(0, no_parts, start_no))))) goto end; i= 0; do { partition_element *part_elem= new partition_element(); if (likely(part_elem != 0 && (!partitions.push_back(part_elem)))) { part_elem->engine_type= default_engine_type; part_elem->partition_name= default_name; default_name+=MAX_PART_NAME_SIZE; } else { mem_alloc_error(sizeof(partition_element)); goto end; } } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* Set up all the default subpartitions not set-up by the user in the SQL statement. Also perform a number of checks that the default partitioning becomes an allowed partitioning scheme. SYNOPSIS set_up_default_subpartitions() file A reference to a handler of the table info Create info RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine is only called for RANGE or LIST partitioning and those need to be specified so only subpartitions are specified. The external routine needing this code is check_partition_info */ bool partition_info::set_up_default_subpartitions(handler *file, HA_CREATE_INFO *info) { uint i, j; char *default_name, *name_ptr; bool result= TRUE; partition_element *part_elem; List_iterator part_it(partitions); DBUG_ENTER("partition_info::set_up_default_subpartitions"); if (no_subparts == 0) no_subparts= file->get_default_no_partitions(info); if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } i= 0; do { part_elem= part_it++; j= 0; do { partition_element *subpart_elem= new partition_element(part_elem); if (likely(subpart_elem != 0 && (!part_elem->subpartitions.push_back(subpart_elem)))) { char *ptr= create_subpartition_name(j, part_elem->partition_name); if (!ptr) goto end; subpart_elem->engine_type= default_engine_type; subpart_elem->partition_name= ptr; } else { mem_alloc_error(sizeof(partition_element)); goto end; } } while (++j < no_subparts); } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* Support routine for check_partition_info SYNOPSIS set_up_defaults_for_partitioning() file A reference to a handler of the table info Create info start_no Starting partition number RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION Set up defaults for partition or subpartition (cannot set-up for both, this will return an error. */ bool partition_info::set_up_defaults_for_partitioning(handler *file, HA_CREATE_INFO *info, uint start_no) { DBUG_ENTER("partition_info::set_up_defaults_for_partitioning"); if (!default_partitions_setup) { default_partitions_setup= TRUE; if (use_default_partitions) DBUG_RETURN(set_up_default_partitions(file, info, start_no)); if (is_sub_partitioned() && use_default_subpartitions) DBUG_RETURN(set_up_default_subpartitions(file, info)); } DBUG_RETURN(FALSE); } /* A support function to check if a partition element's name is unique SYNOPSIS has_unique_name() partition_element element to check RETURN VALUES TRUE Has unique name FALSE Doesn't */ bool partition_info::has_unique_name(partition_element *element) { DBUG_ENTER("partition_info::has_unique_name"); const char *name_to_check= element->partition_name; List_iterator parts_it(partitions); partition_element *el; while ((el= (parts_it++))) { if (!(my_strcasecmp(system_charset_info, el->partition_name, name_to_check)) && el != element) DBUG_RETURN(FALSE); if (!el->subpartitions.is_empty()) { partition_element *sub_el; List_iterator subparts_it(el->subpartitions); while ((sub_el= (subparts_it++))) { if (!(my_strcasecmp(system_charset_info, sub_el->partition_name, name_to_check)) && sub_el != element) DBUG_RETURN(FALSE); } } } DBUG_RETURN(TRUE); } /* A support function to check partition names for duplication in a partitioned table SYNOPSIS has_unique_names() RETURN VALUES TRUE Has unique part and subpart names FALSE Doesn't DESCRIPTION Checks that the list of names in the partitions doesn't contain any duplicated names. */ char *partition_info::has_unique_names() { DBUG_ENTER("partition_info::has_unique_names"); List_iterator parts_it(partitions); partition_element *el; while ((el= (parts_it++))) { if (! has_unique_name(el)) DBUG_RETURN(el->partition_name); if (!el->subpartitions.is_empty()) { List_iterator subparts_it(el->subpartitions); partition_element *subel; while ((subel= (subparts_it++))) { if (! has_unique_name(subel)) DBUG_RETURN(subel->partition_name); } } } DBUG_RETURN(NULL); } /* Check that all partitions use the same storage engine. This is currently a limitation in this version. SYNOPSIS check_engine_mix() engine_array An array of engine identifiers no_parts Total number of partitions RETURN VALUE TRUE Error, mixed engines FALSE Ok, no mixed engines DESCRIPTION Current check verifies only that all handlers are the same. Later this check will be more sophisticated. */ bool partition_info::check_engine_mix(handlerton **engine_array, uint no_parts) { uint i= 0; DBUG_ENTER("partition_info::check_engine_mix"); do { if (engine_array[i] != engine_array[0]) { my_error(ER_MIX_HANDLER_ERROR, MYF(0)); DBUG_RETURN(TRUE); } } while (++i < no_parts); if (engine_array[0]->flags & HTON_NO_PARTITION) { my_error(ER_PARTITION_MERGE_ERROR, MYF(0)); DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } /* This routine allocates an array for all range constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that the range constants are defined in increasing order and that the expressions are constant integer expressions. SYNOPSIS check_range_constants() RETURN VALUE TRUE An error occurred during creation of range constants FALSE Successful creation of range constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for RANGE PARTITIONed tables. */ bool partition_info::check_range_constants() { partition_element* part_def; longlong current_largest; longlong part_range_value; bool first= TRUE; uint i; List_iterator it(partitions); bool result= TRUE; bool signed_flag= !part_expr->unsigned_flag; DBUG_ENTER("partition_info::check_range_constants"); DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts)); LINT_INIT(current_largest); part_result_type= INT_RESULT; range_int_array= (longlong*)sql_alloc(no_parts * sizeof(longlong)); if (unlikely(range_int_array == NULL)) { mem_alloc_error(no_parts * sizeof(longlong)); goto end; } i= 0; do { part_def= it++; if ((i != (no_parts - 1)) || !defined_max_value) { part_range_value= part_def->range_value; if (!signed_flag) part_range_value-= 0x8000000000000000ULL; } else part_range_value= LONGLONG_MAX; if (first) { current_largest= part_range_value; range_int_array[0]= part_range_value; first= FALSE; } else { if (likely(current_largest < part_range_value)) { current_largest= part_range_value; range_int_array[i]= part_range_value; } else { my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0)); goto end; } } } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* Support routines for check_list_constants used by qsort to sort the constant list expressions. One routine for unsigned and one for signed. SYNOPSIS list_part_cmp() a First list constant to compare with b Second list constant to compare with RETURN VALUE +1 a > b 0 a == b -1 a < b */ int partition_info::list_part_cmp(const void* a, const void* b) { longlong a1= ((LIST_PART_ENTRY*)a)->list_value; longlong b1= ((LIST_PART_ENTRY*)b)->list_value; if (a1 < b1) return -1; else if (a1 > b1) return +1; else return 0; } /* This routine allocates an array for all list constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that there are no duplicates among the list constants and that that the list expressions are constant integer expressions. SYNOPSIS check_list_constants() RETURN VALUE TRUE An error occurred during creation of list constants FALSE Successful creation of list constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for LIST PARTITIONed tables. */ bool partition_info::check_list_constants() { uint i; uint list_index= 0; part_elem_value *list_value; bool result= TRUE; longlong curr_value, prev_value, type_add, calc_value; partition_element* part_def; bool found_null= FALSE; List_iterator list_func_it(partitions); DBUG_ENTER("partition_info::check_list_constants"); part_result_type= INT_RESULT; no_list_values= 0; /* We begin by calculating the number of list values that have been defined in the first step. We use this number to allocate a properly sized array of structs to keep the partition id and the value to use in that partition. In the second traversal we assign them values in the struct array. Finally we sort the array of structs in order of values to enable a quick binary search for the proper value to discover the partition id. After sorting the array we check that there are no duplicates in the list. */ i= 0; do { part_def= list_func_it++; if (part_def->has_null_value) { if (found_null) { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); goto end; } has_null_value= TRUE; has_null_part_id= i; found_null= TRUE; } List_iterator list_val_it1(part_def->list_val_list); while (list_val_it1++) no_list_values++; } while (++i < no_parts); list_func_it.rewind(); list_array= (LIST_PART_ENTRY*)sql_alloc((no_list_values+1) * sizeof(LIST_PART_ENTRY)); if (unlikely(list_array == NULL)) { mem_alloc_error(no_list_values * sizeof(LIST_PART_ENTRY)); goto end; } i= 0; /* Fix to be able to reuse signed sort functions also for unsigned partition functions. */ type_add= (longlong)(part_expr->unsigned_flag ? 0x8000000000000000ULL : 0ULL); do { part_def= list_func_it++; List_iterator list_val_it2(part_def->list_val_list); while ((list_value= list_val_it2++)) { calc_value= list_value->value - type_add; list_array[list_index].list_value= calc_value; list_array[list_index++].partition_id= i; } } while (++i < no_parts); if (fixed && no_list_values) { bool first= TRUE; qsort((void*)list_array, no_list_values, sizeof(LIST_PART_ENTRY), &list_part_cmp); i= prev_value= 0; //prev_value initialised to quiet compiler do { DBUG_ASSERT(i < no_list_values); curr_value= list_array[i].list_value; if (likely(first || prev_value != curr_value)) { prev_value= curr_value; first= FALSE; } else { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); goto end; } } while (++i < no_list_values); } result= FALSE; end: DBUG_RETURN(result); } /* This code is used early in the CREATE TABLE and ALTER TABLE process. SYNOPSIS check_partition_info() file A reference to a handler of the table info Create info engine_type Return value for used engine in partitions check_partition_function Should we check the partition function RETURN VALUE TRUE Error, something went wrong FALSE Ok, full partition data structures are now generated DESCRIPTION We will check that the partition info requested is possible to set-up in this version. This routine is an extension of the parser one could say. If defaults were used we will generate default data structures for all partitions. */ bool partition_info::check_partition_info(THD *thd, handlerton **eng_type, handler *file, HA_CREATE_INFO *info, bool check_partition_function) { handlerton **engine_array= NULL; uint part_count= 0; uint i, tot_partitions; bool result= TRUE; char *same_name; DBUG_ENTER("partition_info::check_partition_info"); if (check_partition_function) { int err= 0; if (part_type != HASH_PARTITION || !list_of_part_fields) { err= part_expr->walk(&Item::check_partition_func_processor, 0, NULL); if (!err && is_sub_partitioned() && !list_of_subpart_fields) err= subpart_expr->walk(&Item::check_partition_func_processor, 0, NULL); } if (err) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); goto end; } } if (unlikely(!is_sub_partitioned() && !(use_default_subpartitions && use_default_no_subpartitions))) { my_error(ER_SUBPARTITION_ERROR, MYF(0)); goto end; } if (unlikely(is_sub_partitioned() && (!(part_type == RANGE_PARTITION || part_type == LIST_PARTITION)))) { /* Only RANGE and LIST partitioning can be subpartitioned */ my_error(ER_SUBPARTITION_ERROR, MYF(0)); goto end; } if (unlikely(set_up_defaults_for_partitioning(file, info, (uint)0))) goto end; tot_partitions= get_tot_partitions(); if (unlikely(tot_partitions > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if ((same_name= has_unique_names())) { my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name); goto end; } engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *), MYF(MY_WME)); if (unlikely(!engine_array)) goto end; i= 0; { List_iterator part_it(partitions); do { partition_element *part_elem= part_it++; if (part_elem->engine_type == NULL) part_elem->engine_type= default_engine_type; if (!is_sub_partitioned()) { if (check_table_name(part_elem->partition_name, strlen(part_elem->partition_name))) { my_error(ER_WRONG_PARTITION_NAME, MYF(0)); goto end; } DBUG_PRINT("info", ("engine = %d", ha_legacy_type(part_elem->engine_type))); engine_array[part_count++]= part_elem->engine_type; } else { uint j= 0; List_iterator sub_it(part_elem->subpartitions); do { partition_element *sub_elem= sub_it++; if (check_table_name(sub_elem->partition_name, strlen(sub_elem->partition_name))) { my_error(ER_WRONG_PARTITION_NAME, MYF(0)); goto end; } if (sub_elem->engine_type == NULL) sub_elem->engine_type= default_engine_type; DBUG_PRINT("info", ("engine = %u", ha_legacy_type(sub_elem->engine_type))); engine_array[part_count++]= sub_elem->engine_type; } while (++j < no_subparts); } } while (++i < no_parts); } if (unlikely(partition_info::check_engine_mix(engine_array, part_count))) goto end; if (eng_type) *eng_type= (handlerton*)engine_array[0]; /* We need to check all constant expressions that they are of the correct type and that they are increasing for ranges and not overlapping for list constants. */ if (fixed) { if (unlikely((part_type == RANGE_PARTITION && check_range_constants()) || (part_type == LIST_PARTITION && check_list_constants()))) goto end; } result= FALSE; end: my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(result); } /* Print error for no partition found SYNOPSIS print_no_partition_found() table Table object RETURN VALUES */ void partition_info::print_no_partition_found(TABLE *table) { char buf[100]; char *buf_ptr= (char*)&buf; my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); if (part_expr->null_value) buf_ptr= (char*)"NULL"; else longlong2str(err_value, buf, part_expr->unsigned_flag ? 10 : -10); my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, MYF(0), buf_ptr); dbug_tmp_restore_column_map(table->read_set, old_map); } /* Set up buffers and arrays for fields requiring preparation SYNOPSIS set_up_charset_field_preps() RETURN VALUES TRUE Memory Allocation error FALSE Success DESCRIPTION Set up arrays and buffers for fields that require special care for calculation of partition id. This is used for string fields with variable length or string fields with fixed length that isn't using the binary collation. */ bool partition_info::set_up_charset_field_preps() { Field *field, **ptr; char **char_ptrs; unsigned i; bool found; size_t size; uint tot_fields= 0; uint tot_part_fields= 0; uint tot_subpart_fields= 0; DBUG_ENTER("set_up_charset_field_preps"); if (!(part_type == HASH_PARTITION && list_of_part_fields) && check_part_func_fields(part_field_array, FALSE)) { ptr= part_field_array; /* Set up arrays and buffers for those fields */ i= 0; while ((field= *(ptr++))) { if (field_is_partition_charset(field)) { tot_part_fields++; tot_fields++; } } size= tot_part_fields * sizeof(char*); if (!(char_ptrs= (char**)sql_calloc(size))) goto error; part_field_buffers= char_ptrs; if (!(char_ptrs= (char**)sql_calloc(size))) goto error; restore_part_field_ptrs= char_ptrs; size= (tot_part_fields + 1) * sizeof(Field*); if (!(char_ptrs= (char**)sql_alloc(size))) goto error; part_charset_field_array= (Field**)char_ptrs; ptr= part_field_array; i= 0; while ((field= *(ptr++))) { if (field_is_partition_charset(field)) { char *field_buf; CHARSET_INFO *cs= ((Field_str*)field)->charset(); size= field->pack_length(); if (!(field_buf= sql_calloc(size))) goto error; part_charset_field_array[i]= field; part_field_buffers[i++]= field_buf; } } part_charset_field_array[i]= NULL; } if (is_sub_partitioned() && list_of_subpart_fields && check_part_func_fields(subpart_field_array, FALSE)) { /* Set up arrays and buffers for those fields */ ptr= subpart_field_array; while ((field= *(ptr++))) { if (field_is_partition_charset(field)) tot_subpart_fields++; } size= tot_subpart_fields * sizeof(char*); if (!(char_ptrs= (char**)sql_calloc(size))) goto error; subpart_field_buffers= char_ptrs; if (!(char_ptrs= (char**)sql_calloc(size))) goto error; restore_subpart_field_ptrs= char_ptrs; size= (tot_subpart_fields + 1) * sizeof(Field*); if (!(char_ptrs= (char**)sql_alloc(size))) goto error; subpart_charset_field_array= (Field**)char_ptrs; i= 0; while ((field= *(ptr++))) { unsigned j= 0; Field *part_field; CHARSET_INFO *cs; char *field_buf; LINT_INIT(field_buf); if (!field_is_partition_charset(field)) continue; cs= ((Field_str*)field)->charset(); size= field->pack_length(); found= FALSE; for (j= 0; j < tot_part_fields; j++) { if (field == part_charset_field_array[i]) found= TRUE; } if (!found) { tot_fields++; if (!(field_buf= sql_calloc(size))) goto error; } subpart_field_buffers[i++]= field_buf; } if (!(char_ptrs= (char**)sql_calloc(size))) goto error; restore_subpart_field_ptrs= char_ptrs; } if (tot_fields) { Field *part_field, *subpart_field; uint j,k,l; size= tot_fields*sizeof(char**); if (!(char_ptrs= (char**)sql_calloc(size))) goto error; full_part_field_buffers= char_ptrs; if (!(char_ptrs= (char**)sql_calloc(size))) goto error; restore_full_part_field_ptrs= char_ptrs; size= (tot_fields + 1) * sizeof(char**); if (!(char_ptrs= (char**)sql_calloc(size))) goto error; full_part_charset_field_array= (Field**)char_ptrs; for (i= 0; i < tot_part_fields; i++) { full_part_charset_field_array[i]= part_charset_field_array[i]; full_part_field_buffers[i]= part_field_buffers[i]; } k= tot_part_fields; l= 0; for (i= 0; i < tot_subpart_fields; i++) { field= subpart_charset_field_array[i]; found= FALSE; for (j= 0; j < tot_part_fields; j++) { if (field == part_charset_field_array[i]) found= TRUE; } if (!found) { full_part_charset_field_array[l]= subpart_charset_field_array[k]; full_part_field_buffers[l]= subpart_field_buffers[k]; k++; l++; } } full_part_charset_field_array[tot_fields]= NULL; } DBUG_RETURN(FALSE); error: mem_alloc_error(size); DBUG_RETURN(TRUE); } #endif /* WITH_PARTITION_STORAGE_ENGINE */