/* Copyright (c) 2006, 2013, Oracle and/or its affiliates. Copyright (c) 2011, 2013, Monty Program Ab This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "mariadb.h" #include #include "rpl_utility.h" #include "log_event.h" #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) #include "rpl_rli.h" #include "sql_select.h" /** Calculate display length for MySQL56 temporal data types from their metadata. It contains fractional precision in the low 16-bit word. */ static uint32 max_display_length_for_temporal2_field(uint32 int_display_length, unsigned int metadata) { metadata&= 0x00ff; return int_display_length + metadata + (metadata ? 1 : 0); } /** Compute the maximum display length of a field. @param sql_type Type of the field @param metadata The metadata from the master for the field. @return Maximum length of the field in bytes. */ static uint32 max_display_length_for_field(enum_field_types sql_type, unsigned int metadata) { DBUG_PRINT("debug", ("sql_type: %d, metadata: 0x%x", sql_type, metadata)); DBUG_ASSERT(metadata >> 16 == 0); switch (sql_type) { case MYSQL_TYPE_NEWDECIMAL: return metadata >> 8; case MYSQL_TYPE_FLOAT: return 12; case MYSQL_TYPE_DOUBLE: return 22; case MYSQL_TYPE_SET: case MYSQL_TYPE_ENUM: return metadata & 0x00ff; case MYSQL_TYPE_STRING: { uchar type= metadata >> 8; if (type == MYSQL_TYPE_SET || type == MYSQL_TYPE_ENUM) return metadata & 0xff; else /* This is taken from Field_string::unpack. */ return (((metadata >> 4) & 0x300) ^ 0x300) + (metadata & 0x00ff); } case MYSQL_TYPE_YEAR: case MYSQL_TYPE_TINY: return 4; case MYSQL_TYPE_SHORT: return 6; case MYSQL_TYPE_INT24: return 9; case MYSQL_TYPE_LONG: return 11; #ifdef HAVE_LONG_LONG case MYSQL_TYPE_LONGLONG: return 20; #endif case MYSQL_TYPE_NULL: return 0; case MYSQL_TYPE_NEWDATE: return 3; case MYSQL_TYPE_DATE: return 3; case MYSQL_TYPE_TIME: return MIN_TIME_WIDTH; case MYSQL_TYPE_TIME2: return max_display_length_for_temporal2_field(MIN_TIME_WIDTH, metadata); case MYSQL_TYPE_TIMESTAMP: return MAX_DATETIME_WIDTH; case MYSQL_TYPE_TIMESTAMP2: return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, metadata); case MYSQL_TYPE_DATETIME: return MAX_DATETIME_WIDTH; case MYSQL_TYPE_DATETIME2: return max_display_length_for_temporal2_field(MAX_DATETIME_WIDTH, metadata); case MYSQL_TYPE_BIT: /* Decode the size of the bit field from the master. */ DBUG_ASSERT((metadata & 0xff) <= 7); return 8 * (metadata >> 8U) + (metadata & 0x00ff); case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: return metadata; case MYSQL_TYPE_VARCHAR_COMPRESSED: return metadata - 1; /* The actual length for these types does not really matter since they are used to calc_pack_length, which ignores the given length for these types. Since we want this to be accurate for other uses, we return the maximum size in bytes of these BLOBs. */ case MYSQL_TYPE_TINY_BLOB: return (uint32)my_set_bits(1 * 8); case MYSQL_TYPE_MEDIUM_BLOB: return (uint32)my_set_bits(3 * 8); case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: /* For the blob type, Field::real_type() lies and say that all blobs are of type MYSQL_TYPE_BLOB. In that case, we have to look at the length instead to decide what the max display size is. */ return (uint32)my_set_bits(metadata * 8); case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_GEOMETRY: return (uint32)my_set_bits(4 * 8); default: return ~(uint32) 0; } } /* Compare the pack lengths of a source field (on the master) and a target field (on the slave). @param field Target field. @param type Source field type. @param metadata Source field metadata. @retval -1 The length of the source field is smaller than the target field. @retval 0 The length of the source and target fields are the same. @retval 1 The length of the source field is greater than the target field. */ int compare_lengths(Field *field, enum_field_types source_type, uint16 metadata) { DBUG_ENTER("compare_lengths"); size_t const source_length= max_display_length_for_field(source_type, metadata); size_t const target_length= field->max_display_length(); DBUG_PRINT("debug", ("source_length: %lu, source_type: %u," " target_length: %lu, target_type: %u", (unsigned long) source_length, source_type, (unsigned long) target_length, field->real_type())); int result= source_length < target_length ? -1 : source_length > target_length; DBUG_PRINT("result", ("%d", result)); DBUG_RETURN(result); } #endif //MYSQL_CLIENT /********************************************************************* * table_def member definitions * *********************************************************************/ /* This function returns the field size in raw bytes based on the type and the encoded field data from the master's raw data. */ uint32 table_def::calc_field_size(uint col, uchar *master_data) const { uint32 length= 0; switch (type(col)) { case MYSQL_TYPE_NEWDECIMAL: length= my_decimal_get_binary_size(m_field_metadata[col] >> 8, m_field_metadata[col] & 0xff); break; case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: length= m_field_metadata[col]; break; /* The cases for SET and ENUM are include for completeness, however both are mapped to type MYSQL_TYPE_STRING and their real types are encoded in the field metadata. */ case MYSQL_TYPE_SET: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_STRING: { uchar type= m_field_metadata[col] >> 8U; if ((type == MYSQL_TYPE_SET) || (type == MYSQL_TYPE_ENUM)) length= m_field_metadata[col] & 0x00ff; else { /* We are reading the actual size from the master_data record because this field has the actual lengh stored in the first byte. */ length= (uint) *master_data + 1; DBUG_ASSERT(length != 0); } break; } case MYSQL_TYPE_YEAR: case MYSQL_TYPE_TINY: length= 1; break; case MYSQL_TYPE_SHORT: length= 2; break; case MYSQL_TYPE_INT24: length= 3; break; case MYSQL_TYPE_LONG: length= 4; break; #ifdef HAVE_LONG_LONG case MYSQL_TYPE_LONGLONG: length= 8; break; #endif case MYSQL_TYPE_NULL: length= 0; break; case MYSQL_TYPE_NEWDATE: length= 3; break; case MYSQL_TYPE_DATE: case MYSQL_TYPE_TIME: length= 3; break; case MYSQL_TYPE_TIME2: length= my_time_binary_length(m_field_metadata[col]); break; case MYSQL_TYPE_TIMESTAMP: length= 4; break; case MYSQL_TYPE_TIMESTAMP2: length= my_timestamp_binary_length(m_field_metadata[col]); break; case MYSQL_TYPE_DATETIME: length= 8; break; case MYSQL_TYPE_DATETIME2: length= my_datetime_binary_length(m_field_metadata[col]); break; case MYSQL_TYPE_BIT: { /* Decode the size of the bit field from the master. from_len is the length in bytes from the master from_bit_len is the number of extra bits stored in the master record If from_bit_len is not 0, add 1 to the length to account for accurate number of bytes needed. */ uint from_len= (m_field_metadata[col] >> 8U) & 0x00ff; uint from_bit_len= m_field_metadata[col] & 0x00ff; DBUG_ASSERT(from_bit_len <= 7); length= from_len + ((from_bit_len > 0) ? 1 : 0); break; } case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VARCHAR_COMPRESSED: { length= m_field_metadata[col] > 255 ? 2 : 1; // c&p of Field_varstring::data_length() length+= length == 1 ? (uint32) *master_data : uint2korr(master_data); break; } case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: case MYSQL_TYPE_GEOMETRY: { /* Compute the length of the data. We cannot use get_length() here since it is dependent on the specific table (and also checks the packlength using the internal 'table' pointer) and replication is using a fixed format for storing data in the binlog. */ switch (m_field_metadata[col]) { case 1: length= *master_data; break; case 2: length= uint2korr(master_data); break; case 3: length= uint3korr(master_data); break; case 4: length= uint4korr(master_data); break; default: DBUG_ASSERT(0); // Should not come here break; } length+= m_field_metadata[col]; break; } default: length= ~(uint32) 0; } return length; } #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) /** */ void show_sql_type(enum_field_types type, uint16 metadata, String *str, CHARSET_INFO *field_cs) { DBUG_ENTER("show_sql_type"); DBUG_PRINT("enter", ("type: %d, metadata: 0x%x", type, metadata)); switch (type) { case MYSQL_TYPE_TINY: str->set_ascii(STRING_WITH_LEN("tinyint")); break; case MYSQL_TYPE_SHORT: str->set_ascii(STRING_WITH_LEN("smallint")); break; case MYSQL_TYPE_LONG: str->set_ascii(STRING_WITH_LEN("int")); break; case MYSQL_TYPE_FLOAT: str->set_ascii(STRING_WITH_LEN("float")); break; case MYSQL_TYPE_DOUBLE: str->set_ascii(STRING_WITH_LEN("double")); break; case MYSQL_TYPE_NULL: str->set_ascii(STRING_WITH_LEN("null")); break; case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_TIMESTAMP2: str->set_ascii(STRING_WITH_LEN("timestamp")); break; case MYSQL_TYPE_LONGLONG: str->set_ascii(STRING_WITH_LEN("bigint")); break; case MYSQL_TYPE_INT24: str->set_ascii(STRING_WITH_LEN("mediumint")); break; case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_DATE: str->set_ascii(STRING_WITH_LEN("date")); break; case MYSQL_TYPE_TIME: case MYSQL_TYPE_TIME2: str->set_ascii(STRING_WITH_LEN("time")); break; case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_DATETIME2: str->set_ascii(STRING_WITH_LEN("datetime")); break; case MYSQL_TYPE_YEAR: str->set_ascii(STRING_WITH_LEN("year")); break; case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VARCHAR_COMPRESSED: { CHARSET_INFO *cs= str->charset(); uint32 length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "varchar(%u)%s", metadata, type == MYSQL_TYPE_VARCHAR_COMPRESSED ? " compressed" : ""); str->length(length); } break; case MYSQL_TYPE_BIT: { CHARSET_INFO *cs= str->charset(); int bit_length= 8 * (metadata >> 8) + (metadata & 0xFF); uint32 length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "bit(%d)", bit_length); str->length(length); } break; case MYSQL_TYPE_DECIMAL: { CHARSET_INFO *cs= str->charset(); uint32 length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "decimal(%d,?)/*old*/", metadata); str->length(length); } break; case MYSQL_TYPE_NEWDECIMAL: { CHARSET_INFO *cs= str->charset(); uint32 length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "decimal(%d,%d)", metadata >> 8, metadata & 0xff); str->length(length); } break; case MYSQL_TYPE_ENUM: str->set_ascii(STRING_WITH_LEN("enum")); break; case MYSQL_TYPE_SET: str->set_ascii(STRING_WITH_LEN("set")); break; case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: /* Field::real_type() lies regarding the actual type of a BLOB, so it is necessary to check the pack length to figure out what kind of blob it really is. */ switch (get_blob_type_from_length(metadata)) { case MYSQL_TYPE_TINY_BLOB: str->set_ascii(STRING_WITH_LEN("tinyblob")); break; case MYSQL_TYPE_MEDIUM_BLOB: str->set_ascii(STRING_WITH_LEN("mediumblob")); break; case MYSQL_TYPE_LONG_BLOB: str->set_ascii(STRING_WITH_LEN("longblob")); break; case MYSQL_TYPE_BLOB: str->set_ascii(STRING_WITH_LEN("blob")); break; default: DBUG_ASSERT(0); break; } if (type == MYSQL_TYPE_BLOB_COMPRESSED) str->append(STRING_WITH_LEN(" compressed")); break; case MYSQL_TYPE_STRING: { /* This is taken from Field_string::unpack. */ CHARSET_INFO *cs= str->charset(); uint bytes= (((metadata >> 4) & 0x300) ^ 0x300) + (metadata & 0x00ff); uint32 length= cs->cset->snprintf(cs, (char*) str->ptr(), str->alloced_length(), "char(%d)", bytes / field_cs->mbmaxlen); str->length(length); } break; case MYSQL_TYPE_GEOMETRY: str->set_ascii(STRING_WITH_LEN("geometry")); break; default: str->set_ascii(STRING_WITH_LEN("")); } DBUG_VOID_RETURN; } /** Check the order variable and print errors if the order is not acceptable according to the current settings. @param order The computed order of the conversion needed. @param rli The relay log info data structure: for error reporting. */ bool is_conversion_ok(int order, Relay_log_info *rli) { DBUG_ENTER("is_conversion_ok"); bool allow_non_lossy, allow_lossy; allow_non_lossy = slave_type_conversions_options & (1ULL << SLAVE_TYPE_CONVERSIONS_ALL_NON_LOSSY); allow_lossy= slave_type_conversions_options & (1ULL << SLAVE_TYPE_CONVERSIONS_ALL_LOSSY); DBUG_PRINT("enter", ("order: %d, flags:%s%s", order, allow_non_lossy ? " ALL_NON_LOSSY" : "", allow_lossy ? " ALL_LOSSY" : "")); if (order < 0 && !allow_non_lossy) { /* !!! Add error message saying that non-lossy conversions need to be allowed. */ DBUG_RETURN(false); } if (order > 0 && !allow_lossy) { /* !!! Add error message saying that lossy conversions need to be allowed. */ DBUG_RETURN(false); } DBUG_RETURN(true); } /** Can a type potentially be converted to another type? This function check if the types are convertible and what conversion is required. If conversion is not possible, and error is printed. If conversion is possible: - *order will be set to -1 if source type is smaller than target type and a non-lossy conversion can be required. This includes the case where the field types are different but types could actually be converted in either direction. - *order will be set to 0 if no conversion is required. - *order will be set to 1 if the source type is strictly larger than the target type and that conversion is potentially lossy. @param[in] field Target field @param[in] type Source field type @param[in] metadata Source field metadata @param[in] rli Relay log info (for error reporting) @param[in] mflags Flags from the table map event @param[out] order Order between source field and target field @return @c true if conversion is possible according to the current settings, @c false if conversion is not possible according to the current setting. */ static bool can_convert_field_to(Field *field, enum_field_types source_type, uint16 metadata, Relay_log_info *rli, uint16 mflags, int *order_var) { DBUG_ENTER("can_convert_field_to"); bool same_type; #ifndef DBUG_OFF char field_type_buf[MAX_FIELD_WIDTH]; String field_type(field_type_buf, sizeof(field_type_buf), &my_charset_latin1); field->sql_type(field_type); DBUG_PRINT("enter", ("field_type: %s, target_type: %d, source_type: %d, source_metadata: 0x%x", field_type.c_ptr_safe(), field->real_type(), source_type, metadata)); #endif /** @todo Implement Field_varstring_cmopressed::real_type() and Field_blob_compressed::real_type() properly. All occurencies of Field::real_type() have to be inspected and adjusted if needed. Until it is not ready we have to compare source_type against binlog_type() when replicating from or to compressed data types. @sa Comment for Field::binlog_type() */ if (source_type == MYSQL_TYPE_VARCHAR_COMPRESSED || source_type == MYSQL_TYPE_BLOB_COMPRESSED || field->binlog_type() == MYSQL_TYPE_VARCHAR_COMPRESSED || field->binlog_type() == MYSQL_TYPE_BLOB_COMPRESSED) same_type= field->binlog_type() == source_type; else same_type= field->real_type() == source_type; /* If the real type is the same, we need to check the metadata to decide if conversions are allowed. */ if (same_type) { if (metadata == 0) // Metadata can only be zero if no metadata was provided { /* If there is no metadata, we either have an old event where no metadata were supplied, or a type that does not require any metadata. In either case, conversion can be done but no conversion table is necessary. */ DBUG_PRINT("debug", ("Base types are identical, but there is no metadata")); *order_var= 0; DBUG_RETURN(true); } DBUG_PRINT("debug", ("Base types are identical, doing field size comparison")); if (field->compatible_field_size(metadata, rli, mflags, order_var)) DBUG_RETURN(is_conversion_ok(*order_var, rli)); else DBUG_RETURN(false); } else if ( /* Conversion from MariaDB TIMESTAMP(0), TIME(0), DATETIME(0) to the corresponding MySQL56 types is non-lossy. */ (metadata == 0 && ((field->real_type() == MYSQL_TYPE_TIMESTAMP2 && source_type == MYSQL_TYPE_TIMESTAMP) || (field->real_type() == MYSQL_TYPE_TIME2 && source_type == MYSQL_TYPE_TIME) || (field->real_type() == MYSQL_TYPE_DATETIME2 && source_type == MYSQL_TYPE_DATETIME))) || /* Conversion from MySQL56 TIMESTAMP(N), TIME(N), DATETIME(N) to the corresponding MariaDB or MySQL55 types is non-lossy. */ (metadata == field->decimals() && ((field->real_type() == MYSQL_TYPE_TIMESTAMP && source_type == MYSQL_TYPE_TIMESTAMP2) || (field->real_type() == MYSQL_TYPE_TIME && source_type == MYSQL_TYPE_TIME2) || (field->real_type() == MYSQL_TYPE_DATETIME && source_type == MYSQL_TYPE_DATETIME2)))) { /* TS-TODO: conversion from FSP1>FSP2. */ *order_var= -1; DBUG_RETURN(true); } else if (!slave_type_conversions_options) DBUG_RETURN(false); /* Here, from and to will always be different. Since the types are different, we cannot use the compatible_field_size() function, but have to rely on hard-coded max-sizes for fields. */ DBUG_PRINT("debug", ("Base types are different, checking conversion")); switch (source_type) // Source type (on master) { case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_NEWDECIMAL: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: switch (field->real_type()) { case MYSQL_TYPE_NEWDECIMAL: /* Then the other type is either FLOAT, DOUBLE, or old style DECIMAL, so we require lossy conversion. */ *order_var= 1; DBUG_RETURN(is_conversion_ok(*order_var, rli)); case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: { if (source_type == MYSQL_TYPE_NEWDECIMAL || source_type == MYSQL_TYPE_DECIMAL) *order_var = 1; // Always require lossy conversions else *order_var= compare_lengths(field, source_type, metadata); DBUG_ASSERT(*order_var != 0); DBUG_RETURN(is_conversion_ok(*order_var, rli)); } default: DBUG_RETURN(false); } break; /* The length comparison check will do the correct job of comparing the field lengths (in bytes) of two integer types. */ case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_INT24: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: switch (field->real_type()) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_INT24: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: *order_var= compare_lengths(field, source_type, metadata); DBUG_ASSERT(*order_var != 0); DBUG_RETURN(is_conversion_ok(*order_var, rli)); default: DBUG_RETURN(false); } break; /* Since source and target type is different, and it is not possible to convert bit types to anything else, this will return false. */ case MYSQL_TYPE_BIT: DBUG_RETURN(false); /* If all conversions are disabled, it is not allowed to convert between these types. Since the TEXT vs. BINARY is distinguished by the charset, and the charset is not replicated, we cannot currently distinguish between , e.g., TEXT and BLOB. */ case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VARCHAR_COMPRESSED: switch (field->real_type()) { case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VARCHAR_COMPRESSED: *order_var= compare_lengths(field, source_type, metadata); /* Here we know that the types are different, so if the order gives that they do not require any conversion, we still need to have non-lossy conversion enabled to allow conversion between different (string) types of the same length. */ if (*order_var == 0) *order_var= -1; DBUG_RETURN(is_conversion_ok(*order_var, rli)); default: DBUG_RETURN(false); } break; case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_DATE: case MYSQL_TYPE_TIME: case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_YEAR: case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_NULL: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: case MYSQL_TYPE_TIMESTAMP2: case MYSQL_TYPE_DATETIME2: case MYSQL_TYPE_TIME2: DBUG_RETURN(false); } DBUG_RETURN(false); // To keep GCC happy } /** Is the definition compatible with a table? This function will compare the master table with an existing table on the slave and see if they are compatible with respect to the current settings of @c SLAVE_TYPE_CONVERSIONS. If the tables are compatible and conversions are required, @c *tmp_table_var will be set to a virtual temporary table with field pointers for the fields that require conversions. This allow simple checking of whether a conversion are to be applied or not. If tables are compatible, but no conversions are necessary, @c *tmp_table_var will be set to NULL. @param rli_arg[in] Relay log info, for error reporting. @param table[in] Table to compare with @param tmp_table_var[out] Virtual temporary table for performing conversions, if necessary. @retval true Master table is compatible with slave table. @retval false Master table is not compatible with slave table. */ bool table_def::compatible_with(THD *thd, rpl_group_info *rgi, TABLE *table, TABLE **conv_table_var) const { /* We only check the initial columns for the tables. */ uint const cols_to_check= MY_MIN(table->s->fields, size()); Relay_log_info *rli= rgi->rli; TABLE *tmp_table= NULL; for (uint col= 0 ; col < cols_to_check ; ++col) { Field *const field= table->field[col]; int order; if (can_convert_field_to(field, type(col), field_metadata(col), rli, m_flags, &order)) { DBUG_PRINT("debug", ("Checking column %d -" " field '%s' can be converted - order: %d", col, field->field_name.str, order)); DBUG_ASSERT(order >= -1 && order <= 1); /* If order is not 0, a conversion is required, so we need to set up the conversion table. */ if (order != 0 && tmp_table == NULL) { /* This will create the full table with all fields. This is necessary to ge the correct field lengths for the record. */ tmp_table= create_conversion_table(thd, rgi, table); if (tmp_table == NULL) return false; /* Clear all fields up to, but not including, this column. */ for (unsigned int i= 0; i < col; ++i) tmp_table->field[i]= NULL; } if (order == 0 && tmp_table != NULL) tmp_table->field[col]= NULL; } else { DBUG_PRINT("debug", ("Checking column %d -" " field '%s' can not be converted", col, field->field_name.str)); DBUG_ASSERT(col < size() && col < table->s->fields); DBUG_ASSERT(table->s->db.str && table->s->table_name.str); DBUG_ASSERT(table->in_use); const char *db_name= table->s->db.str; const char *tbl_name= table->s->table_name.str; char source_buf[MAX_FIELD_WIDTH]; char target_buf[MAX_FIELD_WIDTH]; String source_type(source_buf, sizeof(source_buf), &my_charset_latin1); String target_type(target_buf, sizeof(target_buf), &my_charset_latin1); THD *thd= table->in_use; show_sql_type(type(col), field_metadata(col), &source_type, field->charset()); field->sql_type(target_type); rli->report(ERROR_LEVEL, ER_SLAVE_CONVERSION_FAILED, rgi->gtid_info(), ER_THD(thd, ER_SLAVE_CONVERSION_FAILED), col, db_name, tbl_name, source_type.c_ptr_safe(), target_type.c_ptr_safe()); return false; } } #ifndef DBUG_OFF if (tmp_table) { for (unsigned int col= 0; col < tmp_table->s->fields; ++col) if (tmp_table->field[col]) { char source_buf[MAX_FIELD_WIDTH]; char target_buf[MAX_FIELD_WIDTH]; String source_type(source_buf, sizeof(source_buf), &my_charset_latin1); String target_type(target_buf, sizeof(target_buf), &my_charset_latin1); tmp_table->field[col]->sql_type(source_type); table->field[col]->sql_type(target_type); DBUG_PRINT("debug", ("Field %s - conversion required." " Source type: '%s', Target type: '%s'", tmp_table->field[col]->field_name.str, source_type.c_ptr_safe(), target_type.c_ptr_safe())); } } #endif *conv_table_var= tmp_table; return true; } /** A wrapper to Virtual_tmp_table, to get access to its constructor, which is protected for safety purposes (against illegal use on stack). */ class Virtual_conversion_table: public Virtual_tmp_table { public: Virtual_conversion_table(THD *thd) :Virtual_tmp_table(thd) { } /** Add a new field into the virtual table. @param sql_type - The real_type of the field. @param metadata - The RBR binary log metadata for this field. @param target_field - The field from the target table, to get extra attributes from (e.g. typelib in case of ENUM). */ bool add(enum_field_types sql_type, uint16 metadata, const Field *target_field) { const Type_handler *handler= Type_handler::get_handler_by_real_type(sql_type); if (!handler) { sql_print_error("In RBR mode, Slave received unknown field type field %d " " for column Name: %s.%s.%s.", (int) sql_type, target_field->table->s->db.str, target_field->table->s->table_name.str, target_field->field_name.str); return true; } Field *tmp= handler->make_conversion_table_field(this, metadata, target_field); if (!tmp) return true; Virtual_tmp_table::add(tmp); DBUG_PRINT("debug", ("sql_type: %d, target_field: '%s', max_length: %d, decimals: %d," " maybe_null: %d, unsigned_flag: %d, pack_length: %u", sql_type, target_field->field_name.str, tmp->field_length, tmp->decimals(), TRUE, tmp->flags, tmp->pack_length())); return false; } }; /** Create a conversion table. If the function is unable to create the conversion table, an error will be printed and NULL will be returned. @return Pointer to conversion table, or NULL if unable to create conversion table. */ TABLE *table_def::create_conversion_table(THD *thd, rpl_group_info *rgi, TABLE *target_table) const { DBUG_ENTER("table_def::create_conversion_table"); Virtual_conversion_table *conv_table; Relay_log_info *rli= rgi->rli; /* At slave, columns may differ. So we should create MY_MIN(columns@master, columns@slave) columns in the conversion table. */ uint const cols_to_create= MY_MIN(target_table->s->fields, size()); if (!(conv_table= new(thd) Virtual_conversion_table(thd)) || conv_table->init(cols_to_create)) goto err; for (uint col= 0 ; col < cols_to_create; ++col) { if (conv_table->add(type(col), field_metadata(col), target_table->field[col])) { DBUG_PRINT("debug", ("binlog_type: %d, metadata: %04X, target_field: '%s'" " make_conversion_table_field() failed", binlog_type(col), field_metadata(col), target_table->field[col]->field_name.str)); goto err; } } if (conv_table->open()) goto err; // Could not allocate record buffer? DBUG_RETURN(conv_table); err: if (conv_table) delete conv_table; rli->report(ERROR_LEVEL, ER_SLAVE_CANT_CREATE_CONVERSION, rgi->gtid_info(), ER_THD(thd, ER_SLAVE_CANT_CREATE_CONVERSION), target_table->s->db.str, target_table->s->table_name.str); DBUG_RETURN(NULL); } #endif /* MYSQL_CLIENT */ table_def::table_def(unsigned char *types, ulong size, uchar *field_metadata, int metadata_size, uchar *null_bitmap, uint16 flags) : m_size(size), m_type(0), m_field_metadata_size(metadata_size), m_field_metadata(0), m_null_bits(0), m_flags(flags), m_memory(NULL) { m_memory= (uchar *)my_multi_malloc(MYF(MY_WME), &m_type, size, &m_field_metadata, size * sizeof(uint16), &m_null_bits, (size + 7) / 8, NULL); bzero(m_field_metadata, size * sizeof(uint16)); if (m_type) memcpy(m_type, types, size); else m_size= 0; /* Extract the data from the table map into the field metadata array iff there is field metadata. The variable metadata_size will be 0 if we are replicating from an older version server since no field metadata was written to the table map. This can also happen if there were no fields in the master that needed extra metadata. */ if (m_size && metadata_size) { int index= 0; for (unsigned int i= 0; i < m_size; i++) { switch (binlog_type(i)) { case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_BLOB_COMPRESSED: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_DOUBLE: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_GEOMETRY: { /* These types store a single byte. */ m_field_metadata[i]= field_metadata[index]; index++; break; } case MYSQL_TYPE_SET: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_STRING: { uint16 x= field_metadata[index++] << 8U; // real_type x+= field_metadata[index++]; // pack or field length m_field_metadata[i]= x; break; } case MYSQL_TYPE_BIT: { uint16 x= field_metadata[index++]; x = x + (field_metadata[index++] << 8U); m_field_metadata[i]= x; break; } case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VARCHAR_COMPRESSED: { /* These types store two bytes. */ char *ptr= (char *)&field_metadata[index]; m_field_metadata[i]= uint2korr(ptr); index= index + 2; break; } case MYSQL_TYPE_NEWDECIMAL: { uint16 x= field_metadata[index++] << 8U; // precision x+= field_metadata[index++]; // decimals m_field_metadata[i]= x; break; } case MYSQL_TYPE_TIME2: case MYSQL_TYPE_DATETIME2: case MYSQL_TYPE_TIMESTAMP2: m_field_metadata[i]= field_metadata[index++]; break; default: m_field_metadata[i]= 0; break; } } } if (m_size && null_bitmap) memcpy(m_null_bits, null_bitmap, (m_size + 7) / 8); } table_def::~table_def() { my_free(m_memory); #ifndef DBUG_OFF m_type= 0; m_size= 0; #endif } /** @param even_buf point to the buffer containing serialized event @param event_len length of the event accounting possible checksum alg @return TRUE if test fails FALSE as success */ bool event_checksum_test(uchar *event_buf, ulong event_len, enum enum_binlog_checksum_alg alg) { bool res= FALSE; uint16 flags= 0; // to store in FD's buffer flags orig value if (alg != BINLOG_CHECKSUM_ALG_OFF && alg != BINLOG_CHECKSUM_ALG_UNDEF) { ha_checksum incoming; ha_checksum computed; if (event_buf[EVENT_TYPE_OFFSET] == FORMAT_DESCRIPTION_EVENT) { #ifdef DBUG_ASSERT_EXISTS int8 fd_alg= event_buf[event_len - BINLOG_CHECKSUM_LEN - BINLOG_CHECKSUM_ALG_DESC_LEN]; #endif /* FD event is checksummed and therefore verified w/o the binlog-in-use flag */ flags= uint2korr(event_buf + FLAGS_OFFSET); if (flags & LOG_EVENT_BINLOG_IN_USE_F) event_buf[FLAGS_OFFSET] &= ~LOG_EVENT_BINLOG_IN_USE_F; /* The only algorithm currently is CRC32. Zero indicates the binlog file is checksum-free *except* the FD-event. */ DBUG_ASSERT(fd_alg == BINLOG_CHECKSUM_ALG_CRC32 || fd_alg == 0); DBUG_ASSERT(alg == BINLOG_CHECKSUM_ALG_CRC32); /* Complile time guard to watch over the max number of alg */ compile_time_assert(BINLOG_CHECKSUM_ALG_ENUM_END <= 0x80); } incoming= uint4korr(event_buf + event_len - BINLOG_CHECKSUM_LEN); /* checksum the event content without the checksum part itself */ computed= my_checksum(0, event_buf, event_len - BINLOG_CHECKSUM_LEN); if (flags != 0) { /* restoring the orig value of flags of FD */ DBUG_ASSERT(event_buf[EVENT_TYPE_OFFSET] == FORMAT_DESCRIPTION_EVENT); event_buf[FLAGS_OFFSET]= (uchar) flags; } res= DBUG_EVALUATE_IF("simulate_checksum_test_failure", TRUE, computed != incoming); } return res; } #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) Deferred_log_events::Deferred_log_events(Relay_log_info *rli) : last_added(NULL) { my_init_dynamic_array(&array, sizeof(Log_event *), 32, 16, MYF(0)); } Deferred_log_events::~Deferred_log_events() { delete_dynamic(&array); } int Deferred_log_events::add(Log_event *ev) { last_added= ev; insert_dynamic(&array, (uchar*) &ev); return 0; } bool Deferred_log_events::is_empty() { return array.elements == 0; } bool Deferred_log_events::execute(rpl_group_info *rgi) { bool res= false; DBUG_ENTER("Deferred_log_events::execute"); DBUG_ASSERT(rgi->deferred_events_collecting); rgi->deferred_events_collecting= false; for (uint i= 0; !res && i < array.elements; i++) { Log_event *ev= (* (Log_event **) dynamic_array_ptr(&array, i)); res= ev->apply_event(rgi); } rgi->deferred_events_collecting= true; DBUG_RETURN(res); } void Deferred_log_events::rewind() { /* Reset preceding Query log event events which execution was deferred because of slave side filtering. */ if (!is_empty()) { for (uint i= 0; i < array.elements; i++) { Log_event *ev= *(Log_event **) dynamic_array_ptr(&array, i); delete ev; } last_added= NULL; if (array.elements > array.max_element) freeze_size(&array); reset_dynamic(&array); } last_added= NULL; } #endif