/* Copyright (C) 2002 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "mysql_priv.h" #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation #endif #include "sp_head.h" #include "sp.h" #include "sp_pcontext.h" #include "sp_rcontext.h" #include "sp_cache.h" Item_result sp_map_result_type(enum enum_field_types type) { switch (type) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_INT24: return INT_RESULT; case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_NEWDECIMAL: return DECIMAL_RESULT; case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: return REAL_RESULT; default: return STRING_RESULT; } } /* SYNOPSIS sp_get_flags_for_command() DESCRIPTION Returns a combination of: * sp_head::MULTI_RESULTS: added if the 'cmd' is a command that might result in multiple result sets being sent back. * sp_head::CONTAINS_DYNAMIC_SQL: added if 'cmd' is one of PREPARE, EXECUTE, DEALLOCATE. */ uint sp_get_flags_for_command(LEX *lex) { uint flags; switch (lex->sql_command) { case SQLCOM_SELECT: if (lex->result) { flags= 0; /* This is a SELECT with INTO clause */ break; } /* fallthrough */ case SQLCOM_ANALYZE: case SQLCOM_CHECKSUM: case SQLCOM_HA_READ: case SQLCOM_SHOW_BINLOGS: case SQLCOM_SHOW_BINLOG_EVENTS: case SQLCOM_SHOW_CHARSETS: case SQLCOM_SHOW_COLLATIONS: case SQLCOM_SHOW_COLUMN_TYPES: case SQLCOM_SHOW_CREATE: case SQLCOM_SHOW_CREATE_DB: case SQLCOM_SHOW_CREATE_FUNC: case SQLCOM_SHOW_CREATE_PROC: case SQLCOM_SHOW_DATABASES: case SQLCOM_SHOW_ERRORS: case SQLCOM_SHOW_FIELDS: case SQLCOM_SHOW_GRANTS: case SQLCOM_SHOW_INNODB_STATUS: case SQLCOM_SHOW_KEYS: case SQLCOM_SHOW_LOGS: case SQLCOM_SHOW_MASTER_STAT: case SQLCOM_SHOW_MUTEX_STATUS: case SQLCOM_SHOW_NEW_MASTER: case SQLCOM_SHOW_OPEN_TABLES: case SQLCOM_SHOW_PRIVILEGES: case SQLCOM_SHOW_PROCESSLIST: case SQLCOM_SHOW_SLAVE_HOSTS: case SQLCOM_SHOW_SLAVE_STAT: case SQLCOM_SHOW_STATUS: case SQLCOM_SHOW_STATUS_FUNC: case SQLCOM_SHOW_STATUS_PROC: case SQLCOM_SHOW_STORAGE_ENGINES: case SQLCOM_SHOW_TABLES: case SQLCOM_SHOW_VARIABLES: case SQLCOM_SHOW_WARNS: flags= sp_head::MULTI_RESULTS; break; /* EXECUTE statement may return a result set, but doesn't have to. We can't, however, know it in advance, and therefore must add this statement here. This is ok, as is equivalent to a result-set statement within an IF condition. */ case SQLCOM_EXECUTE: flags= sp_head::MULTI_RESULTS | sp_head::CONTAINS_DYNAMIC_SQL; break; case SQLCOM_PREPARE: case SQLCOM_DEALLOCATE_PREPARE: flags= sp_head::CONTAINS_DYNAMIC_SQL; break; default: flags= 0; break; } return flags; } /* Prepare Item for execution (call of fix_fields) SYNOPSIS sp_prepare_func_item() thd thread handler it_addr pointer on item refernce RETURN NULL error prepared item */ static Item * sp_prepare_func_item(THD* thd, Item **it_addr) { Item *it= *it_addr; DBUG_ENTER("sp_prepare_func_item"); it_addr= it->this_item_addr(thd, it_addr); if (!it->fixed && (*it_addr)->fix_fields(thd, it_addr)) { DBUG_PRINT("info", ("fix_fields() failed")); DBUG_RETURN(NULL); } DBUG_RETURN(*it_addr); } /* Macro to switch arena in sp_eval_func_item */ #define CREATE_ON_CALLERS_ARENA(new_command, condition, backup_arena) \ do \ { \ if (condition) \ thd->set_n_backup_active_arena(thd->spcont->callers_arena, \ backup_arena); \ new_command; \ if (condition) \ thd->restore_active_arena(thd->spcont->callers_arena, \ backup_arena); \ } while(0) /* Evaluate an item and store it in the returned item SYNOPSIS sp_eval_func_item() name - current thread object it_addr - pointer to the item to evaluate type - type of the item we evaluating reuse - used if we would like to reuse existing item instead of allocation of the new one use_callers_arena - TRUE if we want to use caller's arena rather then current one. DESCRIPTION We use this function to evaluate result for stored functions and stored procedure parameters. It is also used to evaluate and (re) allocate variables. RETURN VALUES Evaluated item is returned */ Item * sp_eval_func_item(THD *thd, Item **it_addr, enum enum_field_types type, Item *reuse, bool use_callers_arena) { DBUG_ENTER("sp_eval_func_item"); Item *it= sp_prepare_func_item(thd, it_addr); uint rsize; Query_arena backup_arena; Item *old_item_next, *old_free_list, **p_free_list; DBUG_PRINT("info", ("type: %d", type)); if (!it) DBUG_RETURN(NULL); if (reuse) { old_item_next= reuse->next; p_free_list= use_callers_arena ? &thd->spcont->callers_arena->free_list : &thd->free_list; old_free_list= *p_free_list; } switch (sp_map_result_type(type)) { case INT_RESULT: { longlong i= it->val_int(); if (it->null_value) { DBUG_PRINT("info", ("INT_RESULT: null")); goto return_null_item; } DBUG_PRINT("info", ("INT_RESULT: %d", i)); CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_int(i), use_callers_arena, &backup_arena); break; } case REAL_RESULT: { double d= it->val_real(); uint8 decimals; uint32 max_length; if (it->null_value) { DBUG_PRINT("info", ("REAL_RESULT: null")); goto return_null_item; } /* There's some difference between Item::new_item() and the constructor; the former crashes, the latter works... weird. */ decimals= it->decimals; max_length= it->max_length; DBUG_PRINT("info", ("REAL_RESULT: %g", d)); CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_float(d), use_callers_arena, &backup_arena); it->decimals= decimals; it->max_length= max_length; break; } case DECIMAL_RESULT: { my_decimal value, *val= it->val_decimal(&value); if (it->null_value) goto return_null_item; CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_decimal(val), use_callers_arena, &backup_arena); #ifndef DBUG_OFF { char dbug_buff[DECIMAL_MAX_STR_LENGTH+1]; DBUG_PRINT("info", ("DECIMAL_RESULT: %s", dbug_decimal_as_string(dbug_buff, val))); } #endif break; } case STRING_RESULT: { char buffer[MAX_FIELD_WIDTH]; String tmp(buffer, sizeof(buffer), it->collation.collation); String *s= it->val_str(&tmp); if (type == MYSQL_TYPE_NULL || it->null_value) { DBUG_PRINT("info", ("STRING_RESULT: null")); goto return_null_item; } DBUG_PRINT("info",("STRING_RESULT: %.*s", s->length(), s->c_ptr_quick())); /* Reuse mechanism in sp_eval_func_item() is only employed for assignments to local variables and OUT/INOUT SP parameters repsesented by Item_splocal. Usually we have some expression, which needs to be calculated and stored into the local variable. However in the case if "it" equals to "reuse", there is no "calculation" step. So, no reason to employ reuse mechanism to save variable into itself. */ if (it == reuse) DBUG_RETURN(it); /* For some functions, 's' is now pointing to an argument of the function, which might be a local variable that is to be reused. In this case, new(reuse, &rsize) below will call the destructor and 's' ends up pointing to freed memory. A somewhat ugly fix is to simply copy the string to our local one (which is unused by most functions anyway), but only if 's' is pointing somewhere else than to 'tmp' or 'it->str_value'. */ if (reuse && s != &tmp && s != &it->str_value) { if (tmp.copy((const String)(*s))) DBUG_RETURN(NULL); s= &tmp; } CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_string(it->collation.collation), use_callers_arena, &backup_arena); /* We have to use special constructor and allocate string on system heap here. This is because usual Item_string constructor would allocate memory in the callers arena. This would lead to the memory leak in SP loops. See Bug #11333 "Stored Procedure: Memory blow up on repeated SELECT ... INTO query" for sample of such SP. TODO: Usage of the system heap gives significant overhead, however usual "reuse" mechanism does not work here, as Item_string has no max size. That is, if we have a loop, which has string variable with constantly increasing size, we would have to allocate new pieces of memory again and again on each iteration. In future we should probably reserve some area of memory for not-very-large strings and reuse it. But for large strings we would have to use system heap anyway. */ ((Item_string*) it)->set_str_with_copy(s->ptr(), s->length()); break; } case ROW_RESULT: default: DBUG_ASSERT(0); } goto end; return_null_item: CREATE_ON_CALLERS_ARENA(it= new(reuse, &rsize) Item_null(), use_callers_arena, &backup_arena); end: it->rsize= rsize; if (reuse && it == reuse) { /* The Item constructor registered itself in the arena free list, while the item slot is reused, so we have to restore the list. */ it->next= old_item_next; *p_free_list= old_free_list; } DBUG_RETURN(it); } /* * * sp_name * */ void sp_name::init_qname(THD *thd) { m_sroutines_key.length= m_db.length + m_name.length + 2; if (!(m_sroutines_key.str= thd->alloc(m_sroutines_key.length + 1))) return; m_qname.length= m_sroutines_key.length - 1; m_qname.str= m_sroutines_key.str + 1; sprintf(m_qname.str, "%.*s.%.*s", m_db.length, (m_db.length ? m_db.str : ""), m_name.length, m_name.str); } sp_name * sp_name_current_db_new(THD *thd, LEX_STRING name) { sp_name *qname; if (! thd->db) qname= new sp_name(name); else { LEX_STRING db; db.length= strlen(thd->db); db.str= thd->strmake(thd->db, db.length); qname= new sp_name(db, name); } qname->init_qname(thd); return qname; } /* ------------------------------------------------------------------ */ /* * * sp_head * */ void * sp_head::operator new(size_t size) { DBUG_ENTER("sp_head::operator new"); MEM_ROOT own_root; sp_head *sp; init_alloc_root(&own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC); sp= (sp_head *) alloc_root(&own_root, size); sp->main_mem_root= own_root; DBUG_PRINT("info", ("mem_root 0x%lx", (ulong) &sp->mem_root)); DBUG_RETURN(sp); } void sp_head::operator delete(void *ptr, size_t size) { DBUG_ENTER("sp_head::operator delete"); MEM_ROOT own_root; sp_head *sp= (sp_head *) ptr; /* Make a copy of main_mem_root as free_root will free the sp */ own_root= sp->main_mem_root; DBUG_PRINT("info", ("mem_root 0x%lx moved to 0x%lx", (ulong) &sp->mem_root, (ulong) &own_root)); free_root(&own_root, MYF(0)); DBUG_VOID_RETURN; } sp_head::sp_head() :Query_arena(&main_mem_root, INITIALIZED_FOR_SP), m_flags(0), m_returns_cs(NULL) { extern byte * sp_table_key(const byte *ptr, uint *plen, my_bool first); DBUG_ENTER("sp_head::sp_head"); m_backpatch.empty(); m_lex.empty(); hash_init(&m_sptabs, system_charset_info, 0, 0, 0, sp_table_key, 0, 0); hash_init(&m_sroutines, system_charset_info, 0, 0, 0, sp_sroutine_key, 0, 0); DBUG_VOID_RETURN; } void sp_head::init(LEX *lex) { DBUG_ENTER("sp_head::init"); lex->spcont= m_pcont= new sp_pcontext(NULL); /* Altough trg_table_fields list is used only in triggers we init for all types of stored procedures to simplify reset_lex()/restore_lex() code. */ lex->trg_table_fields.empty(); my_init_dynamic_array(&m_instr, sizeof(sp_instr *), 16, 8); m_param_begin= m_param_end= m_body_begin= 0; m_qname.str= m_db.str= m_name.str= m_params.str= m_body.str= m_defstr.str= 0; m_qname.length= m_db.length= m_name.length= m_params.length= m_body.length= m_defstr.length= 0; m_returns_cs= NULL; DBUG_VOID_RETURN; } void sp_head::init_strings(THD *thd, LEX *lex, sp_name *name) { DBUG_ENTER("sp_head::init_strings"); uint n; /* Counter for nul trimming */ /* During parsing, we must use thd->mem_root */ MEM_ROOT *root= thd->mem_root; /* We have to copy strings to get them into the right memroot */ if (name) { m_db.length= name->m_db.length; if (name->m_db.length == 0) m_db.str= NULL; else m_db.str= strmake_root(root, name->m_db.str, name->m_db.length); m_name.length= name->m_name.length; m_name.str= strmake_root(root, name->m_name.str, name->m_name.length); if (name->m_qname.length == 0) name->init_qname(thd); m_qname.length= name->m_qname.length; m_qname.str= strmake_root(root, name->m_qname.str, m_qname.length); } else if (thd->db) { m_db.length= thd->db_length; m_db.str= strmake_root(root, thd->db, m_db.length); } if (m_param_begin && m_param_end) { m_params.length= m_param_end - m_param_begin; m_params.str= strmake_root(root, (char *)m_param_begin, m_params.length); } m_body.length= lex->ptr - m_body_begin; /* Trim nuls at the end */ n= 0; while (m_body.length && m_body_begin[m_body.length-1] == '\0') { m_body.length-= 1; n+= 1; } m_body.str= strmake_root(root, (char *)m_body_begin, m_body.length); m_defstr.length= lex->ptr - lex->buf; m_defstr.length-= n; m_defstr.str= strmake_root(root, (char *)lex->buf, m_defstr.length); DBUG_VOID_RETURN; } TYPELIB * sp_head::create_typelib(List *src) { TYPELIB *result= NULL; CHARSET_INFO *cs= m_returns_cs; DBUG_ENTER("sp_head::clone_typelib"); if (src->elements) { result= (TYPELIB*) alloc_root(mem_root, sizeof(TYPELIB)); result->count= src->elements; result->name= ""; if (!(result->type_names=(const char **) alloc_root(mem_root,(sizeof(char *)+sizeof(int))*(result->count+1)))) return 0; result->type_lengths= (unsigned int *)(result->type_names + result->count+1); List_iterator it(*src); String conv; for (uint i=0; i < result->count; i++) { uint32 dummy; uint length; String *tmp= it++; if (String::needs_conversion(tmp->length(), tmp->charset(), cs, &dummy)) { uint cnv_errs; conv.copy(tmp->ptr(), tmp->length(), tmp->charset(), cs, &cnv_errs); length= conv.length(); result->type_names[i]= (char*) strmake_root(mem_root, conv.ptr(), length); } else { length= tmp->length(); result->type_names[i]= strmake_root(mem_root, tmp->ptr(), length); } // Strip trailing spaces. length= cs->cset->lengthsp(cs, result->type_names[i], length); result->type_lengths[i]= length; ((uchar *)result->type_names[i])[length]= '\0'; } result->type_names[result->count]= 0; result->type_lengths[result->count]= 0; } return result; } int sp_head::create(THD *thd) { DBUG_ENTER("sp_head::create"); int ret; DBUG_PRINT("info", ("type: %d name: %s params: %s body: %s", m_type, m_name.str, m_params.str, m_body.str)); #ifndef DBUG_OFF optimize(); { String s; sp_instr *i; uint ip= 0; while ((i = get_instr(ip))) { char buf[8]; sprintf(buf, "%4u: ", ip); s.append(buf); i->print(&s); s.append('\n'); ip+= 1; } s.append('\0'); DBUG_PRINT("info", ("Code %s\n%s", m_qname.str, s.ptr())); } #endif if (m_type == TYPE_ENUM_FUNCTION) ret= sp_create_function(thd, this); else ret= sp_create_procedure(thd, this); DBUG_RETURN(ret); } sp_head::~sp_head() { destroy(); if (m_thd) restore_thd_mem_root(m_thd); } void sp_head::destroy() { sp_instr *i; LEX *lex; DBUG_ENTER("sp_head::destroy"); DBUG_PRINT("info", ("name: %s", m_name.str)); for (uint ip = 0 ; (i = get_instr(ip)) ; ip++) delete i; delete_dynamic(&m_instr); m_pcont->destroy(); free_items(); /* If we have non-empty LEX stack then we just came out of parser with error. Now we should delete all auxilary LEXes and restore original THD::lex (In this case sp_head::restore_thd_mem_root() was not called too, so m_thd points to the current thread context). It is safe to not update LEX::ptr because further query string parsing and execution will be stopped anyway. */ DBUG_ASSERT(m_lex.is_empty() || m_thd); while ((lex= (LEX *)m_lex.pop())) { delete m_thd->lex; m_thd->lex= lex; } hash_free(&m_sptabs); hash_free(&m_sroutines); DBUG_VOID_RETURN; } /* This is only used for result fields from functions (both during fix_length_and_dec() and evaluation). */ Field * sp_head::make_field(uint max_length, const char *name, TABLE *dummy) { Field *field; DBUG_ENTER("sp_head::make_field"); field= ::make_field((char *)0, !m_returns_len ? max_length : m_returns_len, (uchar *)"", 0, m_returns_pack, m_returns, m_returns_cs, m_geom_returns, Field::NONE, m_returns_typelib, name ? name : (const char *)m_name.str, dummy); DBUG_RETURN(field); } int cmp_splocal_locations(Item_splocal * const *a, Item_splocal * const *b) { return (int)((*a)->pos_in_query - (*b)->pos_in_query); } /* StoredRoutinesBinlogging Top-down overview: 1. Statements Statements that have is_update_query(stmt) == TRUE are written into the binary log verbatim. Examples: UPDATE tbl SET tbl.x = spfunc_w_side_effects() UPDATE tbl SET tbl.x=1 WHERE spfunc_w_side_effect_that_returns_false(tbl.y) Statements that have is_update_query(stmt) == FALSE (e.g. SELECTs) are not written into binary log. Instead we catch function calls the statement makes and write it into binary log separately (see #3). We actually can easily write SELECT statements into the binary log in the right order (we don't have issues with const tables being unlocked early because SELECTs that use FUNCTIONs unlock all tables at once) We don't do it because replication slave thread currently can't execute SELECT statements. Fixing this is on the TODO. 2. PROCEDURE calls CALL statements are not written into binary log. Instead * Any FUNCTION invocation (in SET, IF, WHILE, OPEN CURSOR and other SP instructions) is written into binlog separately. * Each statement executed in SP is binlogged separately, according to rules in #1, with the exception that we modify query string: we replace uses of SP local variables with NAME_CONST('spvar_name', ) calls. This substitution is done in subst_spvars(). 3. FUNCTION calls In sp_head::execute_function(), we check * If this function invocation is done from a statement that is written into the binary log. * If there were any attempts to write events to the binary log during function execution (grep for start_union_events and stop_union_events) If the answers are No and Yes, we write the function call into the binary log as "DO spfunc(, , ...)" 4. Miscellaneous issues. 4.1 User variables. When we call mysql_bin_log.write() for an SP statement, thd->user_var_events must hold set<{var_name, value}> pairs for all user variables used during the statement execution. This set is produced by tracking user variable reads during statement execution. Fo SPs, this has the following implications: 1) thd->user_var_events may contain events from several SP statements and needs to be valid after exection of these statements was finished. In order to achieve that, we * Allocate user_var_events array elements on appropriate mem_root (grep for user_var_events_alloc). * Use is_query_in_union() to determine if user_var_event is created. 2) We need to empty thd->user_var_events after we have wrote a function call. This is currently done by making reset_dynamic(&thd->user_var_events); calls in several different places. (TODO cosider moving this into mysql_bin_log.write() function) */ /* Replace thd->query{_length} with a string that one can write to the binlog. SYNOPSIS subst_spvars() thd Current thread. instr Instruction (we look for Item_splocal instances in instr->free_list) query_str Original query string DESCRIPTION The binlog-suitable string is produced by replacing references to SP local variables with NAME_CONST('sp_var_name', value) calls. RETURN 0 Ok, thd->query{_length} either has been appropriately replaced or there is no need for replacements. 1 Out of memory error. */ static bool subst_spvars(THD *thd, sp_instr *instr, LEX_STRING *query_str) { DBUG_ENTER("subst_spvars"); if (thd->prelocked_mode == NON_PRELOCKED && mysql_bin_log.is_open()) { Dynamic_array sp_vars_uses; char *pbuf, *cur, buffer[512]; String qbuf(buffer, sizeof(buffer), &my_charset_bin); int prev_pos, res; /* Find all instances of item_splocal used in this statement */ for (Item *item= instr->free_list; item; item= item->next) { if (item->is_splocal()) { Item_splocal *item_spl= (Item_splocal*)item; if (item_spl->pos_in_query) sp_vars_uses.append(item_spl); } } if (!sp_vars_uses.elements()) DBUG_RETURN(0); /* Sort SP var refs by their occurences in the query */ sp_vars_uses.sort(cmp_splocal_locations); /* Construct a statement string where SP local var refs are replaced with "NAME_CONST(name, value)" */ qbuf.length(0); cur= query_str->str; prev_pos= res= 0; for (Item_splocal **splocal= sp_vars_uses.front(); splocal < sp_vars_uses.back(); splocal++) { Item *val; (*splocal)->thd= thd; // fix_fields() is not yet done /* append the text between sp ref occurences */ res|= qbuf.append(cur + prev_pos, (*splocal)->pos_in_query - prev_pos); prev_pos= (*splocal)->pos_in_query + (*splocal)->m_name.length; /* append the spvar substitute */ res|= qbuf.append(" NAME_CONST('"); res|= qbuf.append((*splocal)->m_name.str, (*splocal)->m_name.length); res|= qbuf.append("',"); val= (*splocal)->this_item(); DBUG_PRINT("info", ("print %p", val)); val->print(&qbuf); res|= qbuf.append(')'); if (res) break; } res|= qbuf.append(cur + prev_pos, query_str->length - prev_pos); if (res) DBUG_RETURN(1); if (!(pbuf= thd->strmake(qbuf.ptr(), qbuf.length()))) DBUG_RETURN(1); thd->query= pbuf; thd->query_length= qbuf.length(); } DBUG_RETURN(0); } /* Execute the routine. The main instruction jump loop is there Assume the parameters already set. RETURN -1 on error */ int sp_head::execute(THD *thd) { DBUG_ENTER("sp_head::execute"); char olddb[128]; bool dbchanged; sp_rcontext *ctx; int ret= 0; uint ip= 0; ulong save_sql_mode; Query_arena *old_arena; /* per-instruction arena */ MEM_ROOT execute_mem_root; Query_arena execute_arena(&execute_mem_root, INITIALIZED_FOR_SP), backup_arena; query_id_t old_query_id; TABLE *old_derived_tables; LEX *old_lex; Item_change_list old_change_list; String old_packet; /* init per-instruction memroot */ init_alloc_root(&execute_mem_root, MEM_ROOT_BLOCK_SIZE, 0); /* Use some extra margin for possible SP recursion and functions */ if (check_stack_overrun(thd, 4*STACK_MIN_SIZE, olddb)) { DBUG_RETURN(-1); } if (m_flags & IS_INVOKED) { /* We have to disable recursion for stored routines since in many cases LEX structure and many Item's can't be used in reentrant way now. TODO: We can circumvent this problem by using separate sp_head instances for each recursive invocation. NOTE: Theoretically arguments of procedure can be evaluated before its invocation so there should be no problem with recursion. But since we perform cleanup for CALL statement as for any other statement only after its execution, its LEX structure is not reusable for recursive calls. Thus we have to prohibit recursion for stored procedures too. */ my_error(ER_SP_NO_RECURSION, MYF(0)); DBUG_RETURN(-1); } m_flags|= IS_INVOKED; dbchanged= FALSE; if (m_db.length && (ret= sp_use_new_db(thd, m_db.str, olddb, sizeof(olddb), 0, &dbchanged))) goto done; if ((ctx= thd->spcont)) ctx->clear_handler(); thd->query_error= 0; old_arena= thd->stmt_arena; /* We have to save/restore this info when we are changing call level to be able properly do close_thread_tables() in instructions. */ old_query_id= thd->query_id; old_derived_tables= thd->derived_tables; thd->derived_tables= 0; save_sql_mode= thd->variables.sql_mode; thd->variables.sql_mode= m_sql_mode; /* It is also more efficient to save/restore current thd->lex once when do it in each instruction */ old_lex= thd->lex; /* We should also save Item tree change list to avoid rollback something too early in the calling query. */ old_change_list= thd->change_list; thd->change_list.empty(); /* Cursors will use thd->packet, so they may corrupt data which was prepared for sending by upper level. OTOH cursors in the same routine can share this buffer safely so let use use routine-local packet instead of having own packet buffer for each cursor. It is probably safe to use same thd->convert_buff everywhere. */ old_packet.swap(thd->packet); /* Switch to per-instruction arena here. We can do it since we cleanup arena after every instruction. */ thd->set_n_backup_active_arena(&execute_arena, &backup_arena); /* Save callers arena in order to store instruction results and out parameters in it later during sp_eval_func_item() */ thd->spcont->callers_arena= &backup_arena; do { sp_instr *i; uint hip; // Handler ip i = get_instr(ip); // Returns NULL when we're done. if (i == NULL) break; DBUG_PRINT("execute", ("Instruction %u", ip)); /* Don't change NOW() in FUNCTION or TRIGGER */ if (!thd->in_sub_stmt) thd->set_time(); // Make current_time() et al work /* We have to set thd->stmt_arena before executing the instruction to store in the instruction free_list all new items, created during the first execution (for example expanding of '*' or the items made during other permanent subquery transformations). */ thd->stmt_arena= i; /* Will write this SP statement into binlog separately (TODO: consider changing the condition to "not inside event union") */ if (thd->prelocked_mode == NON_PRELOCKED) thd->user_var_events_alloc= thd->mem_root; ret= i->execute(thd, &ip); /* If this SP instruction have sent eof, it has caused no_send_error to be set. Clear it back to allow the next instruction to send error. (multi- statement execution code clears no_send_error between statements too) */ thd->net.no_send_error= 0; if (i->free_list) cleanup_items(i->free_list); i->state= Query_arena::EXECUTED; /* If we've set thd->user_var_events_alloc to mem_root of this SP statement, clean all the events allocated in it. */ if (thd->prelocked_mode == NON_PRELOCKED) { reset_dynamic(&thd->user_var_events); thd->user_var_events_alloc= NULL;//DEBUG } /* we should cleanup free_list and memroot, used by instruction */ thd->free_items(); free_root(&execute_mem_root, MYF(0)); /* Check if an exception has occurred and a handler has been found Note: We havo to check even if ret==0, since warnings (and some errors don't return a non-zero value. We also have to check even if thd->killed != 0, since some errors return with this even when a handler has been found (e.g. "bad data"). */ if (ctx) { uint hf; switch (ctx->found_handler(&hip, &hf)) { case SP_HANDLER_NONE: break; case SP_HANDLER_CONTINUE: thd->restore_active_arena(&execute_arena, &backup_arena); ctx->save_variables(hf); thd->set_n_backup_active_arena(&execute_arena, &backup_arena); ctx->push_hstack(ip); // Fall through default: ip= hip; ret= 0; ctx->clear_handler(); ctx->enter_handler(hip); thd->clear_error(); thd->killed= THD::NOT_KILLED; continue; } } } while (ret == 0 && !thd->killed); thd->restore_active_arena(&execute_arena, &backup_arena); /* Restore all saved */ old_packet.swap(thd->packet); DBUG_ASSERT(thd->change_list.is_empty()); thd->change_list= old_change_list; /* To avoid wiping out thd->change_list on old_change_list destruction */ old_change_list.empty(); thd->lex= old_lex; thd->query_id= old_query_id; DBUG_ASSERT(!thd->derived_tables); thd->derived_tables= old_derived_tables; thd->variables.sql_mode= save_sql_mode; thd->stmt_arena= old_arena; state= EXECUTED; done: DBUG_PRINT("info", ("ret=%d killed=%d query_error=%d", ret, thd->killed, thd->query_error)); if (thd->killed) ret= -1; /* If the DB has changed, the pointer has changed too, but the original thd->db will then have been freed */ if (dbchanged) { /* No access check when changing back to where we came from. (It would generate an error from mysql_change_db() when olddb=="") */ if (! thd->killed) ret= mysql_change_db(thd, olddb, 1); } m_flags&= ~IS_INVOKED; DBUG_RETURN(ret); } /* Execute a function: - evaluate parameters - call sp_head::execute - evaluate the return value SYNOPSIS sp_head::execute_function() thd Thread handle argp Passed arguments (these are items from containing statement?) argcount Number of passed arguments. We need to check if this is correct. resp OUT Put result item here (q: is it a constant Item always?) RETURN 0 on OK other on error */ int sp_head::execute_function(THD *thd, Item **argp, uint argcount, Item **resp) { Item **param_values; ulonglong binlog_save_options; bool need_binlog_call; DBUG_ENTER("sp_head::execute_function"); DBUG_PRINT("info", ("function %s", m_name.str)); uint csize = m_pcont->max_pvars(); uint params = m_pcont->current_pvars(); uint hmax = m_pcont->max_handlers(); uint cmax = m_pcont->max_cursors(); sp_rcontext *octx = thd->spcont; sp_rcontext *nctx = NULL; uint i; int ret= -1; // Assume error if (argcount != params) { /* Need to use my_error here, or it will not terminate the invoking query properly. */ my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "FUNCTION", m_qname.str, params, argcount); goto end; } if (!(param_values= (Item**)thd->alloc(sizeof(Item*)*argcount))) DBUG_RETURN(-1); // QQ Should have some error checking here? (types, etc...) if (!(nctx= new sp_rcontext(octx, csize, hmax, cmax))) goto end; for (i= 0 ; i < argcount ; i++) { sp_pvar_t *pvar = m_pcont->find_pvar(i); Item *it= sp_eval_func_item(thd, argp++, pvar->type, NULL, FALSE); param_values[i]= it; if (!it) goto end; // EOM error nctx->push_item(it); } /* The rest of the frame are local variables which are all IN. Push NULLs to get the right size (and make the reuse mechanism work) - the will be initialized by set instructions in each frame. */ for (; i < csize ; i++) nctx->push_item(NULL); thd->spcont= nctx; binlog_save_options= thd->options; need_binlog_call= mysql_bin_log.is_open() && (thd->options & OPTION_BIN_LOG); if (need_binlog_call) { reset_dynamic(&thd->user_var_events); mysql_bin_log.start_union_events(thd); } thd->options&= ~OPTION_BIN_LOG; ret= execute(thd); thd->options= binlog_save_options; if (need_binlog_call) mysql_bin_log.stop_union_events(thd); if (need_binlog_call && thd->binlog_evt_union.unioned_events) { char buf[256]; String bufstr(buf, sizeof(buf), &my_charset_bin); bufstr.length(0); bufstr.append("DO ", 3); append_identifier(thd, &bufstr, m_name.str, m_name.length); bufstr.append('('); for (uint i=0; i < argcount; i++) { if (i) bufstr.append(','); param_values[i]->print(&bufstr); } bufstr.append(')'); Query_log_event qinfo(thd, bufstr.ptr(), bufstr.length(), thd->binlog_evt_union.unioned_events_trans, FALSE); if (mysql_bin_log.write(&qinfo) && thd->binlog_evt_union.unioned_events_trans) { push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "Invoked ROUTINE modified a transactional table but MySQL " "failed to reflect this change in the binary log"); } reset_dynamic(&thd->user_var_events); } if (m_type == TYPE_ENUM_FUNCTION && ret == 0) { /* We need result only in function but not in trigger */ Item *it= nctx->get_result(); if (it) *resp= sp_eval_func_item(thd, &it, m_returns, NULL, FALSE); else { my_error(ER_SP_NORETURNEND, MYF(0), m_name.str); ret= -1; } } nctx->pop_all_cursors(); // To avoid memory leaks after an error delete nctx; // Doesn't do anything thd->spcont= octx; end: DBUG_RETURN(ret); } static Item_func_get_user_var *item_is_user_var(Item *it) { if (it->type() == Item::FUNC_ITEM) { Item_func *fi= static_cast(it); if (fi->functype() == Item_func::GUSERVAR_FUNC) return static_cast(fi); } return NULL; } /* Execute a procedure. SYNOPSIS sp_head::execute_procedure() thd Thread handle args List of values passed as arguments. DESCRIPTION The function does the following steps: - Set all parameters - call sp_head::execute - copy back values of INOUT and OUT parameters RETURN 0 Ok -1 Error */ int sp_head::execute_procedure(THD *thd, List *args) { int ret= 0; uint csize = m_pcont->max_pvars(); uint params = m_pcont->current_pvars(); uint hmax = m_pcont->max_handlers(); uint cmax = m_pcont->max_cursors(); sp_rcontext *save_spcont, *octx; sp_rcontext *nctx = NULL; DBUG_ENTER("sp_head::execute_procedure"); DBUG_PRINT("info", ("procedure %s", m_name.str)); if (args->elements != params) { my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE", m_qname.str, params, args->elements); DBUG_RETURN(-1); } save_spcont= octx= thd->spcont; if (! octx) { // Create a temporary old context if (!(octx= new sp_rcontext(octx, csize, hmax, cmax))) DBUG_RETURN(-1); thd->spcont= octx; /* set callers_arena to thd, for upper-level function to work */ thd->spcont->callers_arena= thd; } if (!(nctx= new sp_rcontext(octx, csize, hmax, cmax))) { thd->spcont= save_spcont; DBUG_RETURN(-1); } if (csize > 0 || hmax > 0 || cmax > 0) { Item_null *nit= NULL; // Re-use this, and only create if needed uint i; List_iterator li(*args); Item *it; /* Evaluate SP arguments (i.e. get the values passed as parameters) */ // QQ: Should do type checking? DBUG_PRINT("info",(" %.*s: eval args", m_name.length, m_name.str)); for (i = 0 ; (it= li++) && i < params ; i++) { sp_pvar_t *pvar= m_pcont->find_pvar(i); if (pvar) { if (pvar->mode != sp_param_in) { if (!it->is_splocal() && !item_is_user_var(it)) { my_error(ER_SP_NOT_VAR_ARG, MYF(0), i+1, m_qname.str); ret= -1; break; } } if (pvar->mode == sp_param_out) { if (! nit) { if (!(nit= new Item_null())) { ret= -1; break; } } nctx->push_item(nit); // OUT } else { Item *it2= sp_eval_func_item(thd, li.ref(), pvar->type, NULL, FALSE); if (!it2) { ret= -1; // Eval failed break; } nctx->push_item(it2); // IN or INOUT } } } /* Okay, got values for all arguments. Close tables that might be used by arguments evaluation. If arguments evaluation required prelocking mode, we'll leave it here. */ if (!thd->in_sub_stmt) close_thread_tables(thd, 0, 0); DBUG_PRINT("info",(" %.*s: eval args done", m_name.length, m_name.str)); /* The rest of the frame are local variables which are all IN. Push NULLs to get the right size (and make the reuse mechanism work) - the will be initialized by set instructions in each frame. */ for (; i < csize ; i++) nctx->push_item(NULL); } thd->spcont= nctx; if (! ret) ret= execute(thd); /* In the case when we weren't able to employ reuse mechanism for OUT/INOUT paranmeters, we should reallocate memory. This allocation should be done on the arena which will live through all execution of calling routine. */ thd->spcont->callers_arena= octx->callers_arena; if (!ret && csize > 0) { List_iterator li(*args); Item *it; /* Copy back all OUT or INOUT values to the previous frame, or set global user variables */ for (uint i = 0 ; (it= li++) && i < params ; i++) { sp_pvar_t *pvar= m_pcont->find_pvar(i); if (pvar->mode != sp_param_in) { if (it->is_splocal()) { // Have to copy the item to the caller's mem_root Item *copy; uint offset= static_cast(it)->get_offset(); Item *val= nctx->get_item(i); Item *orig= octx->get_item(offset); /* We might need to allocate new item if we weren't able to employ reuse mechanism. Then we should do it on the callers arena. */ copy= sp_eval_func_item(thd, &val, pvar->type, orig, TRUE); // Copy if (!copy) { ret= -1; break; } if (copy != orig) octx->set_item(offset, copy); } else { Item_func_get_user_var *guv= item_is_user_var(it); if (guv) { Item *item= nctx->get_item(i); Item_func_set_user_var *suv; suv= new Item_func_set_user_var(guv->get_name(), item); /* we do not check suv->fixed, because it can't be fixed after creation */ suv->fix_fields(thd, &item); suv->fix_length_and_dec(); suv->check(); suv->update(); } } } } } if (!save_spcont) delete octx; // Does nothing nctx->pop_all_cursors(); // To avoid memory leaks after an error delete nctx; // Does nothing thd->spcont= save_spcont; DBUG_RETURN(ret); } // Reset lex during parsing, before we parse a sub statement. void sp_head::reset_lex(THD *thd) { DBUG_ENTER("sp_head::reset_lex"); LEX *sublex; LEX *oldlex= thd->lex; my_lex_states state= oldlex->next_state; // Keep original next_state (void)m_lex.push_front(oldlex); thd->lex= sublex= new st_lex; /* Reset most stuff. The length arguments doesn't matter here. */ lex_start(thd, oldlex->buf, (ulong) (oldlex->end_of_query - oldlex->ptr)); /* * next_state is normally the same (0), but it happens that we swap lex in * "mid-sentence", so we must restore it. */ sublex->next_state= state; /* We must reset ptr and end_of_query again */ sublex->ptr= oldlex->ptr; sublex->end_of_query= oldlex->end_of_query; sublex->tok_start= oldlex->tok_start; sublex->yylineno= oldlex->yylineno; /* And keep the SP stuff too */ sublex->sphead= oldlex->sphead; sublex->spcont= oldlex->spcont; /* And trigger related stuff too */ sublex->trg_chistics= oldlex->trg_chistics; sublex->trg_table_fields.empty(); sublex->sp_lex_in_use= FALSE; DBUG_VOID_RETURN; } // Restore lex during parsing, after we have parsed a sub statement. void sp_head::restore_lex(THD *thd) { DBUG_ENTER("sp_head::restore_lex"); LEX *sublex= thd->lex; LEX *oldlex= (LEX *)m_lex.pop(); if (! oldlex) return; // Nothing to restore // Update some state in the old one first oldlex->ptr= sublex->ptr; oldlex->next_state= sublex->next_state; oldlex->trg_table_fields.push_back(&sublex->trg_table_fields); /* Add routines which are used by statement to respective set for this routine. */ sp_update_sp_used_routines(&m_sroutines, &sublex->sroutines); /* Merge tables used by this statement (but not by its functions or procedures) to multiset of tables used by this routine. */ merge_table_list(thd, sublex->query_tables, sublex); if (! sublex->sp_lex_in_use) delete sublex; thd->lex= oldlex; DBUG_VOID_RETURN; } void sp_head::push_backpatch(sp_instr *i, sp_label_t *lab) { bp_t *bp= (bp_t *)sql_alloc(sizeof(bp_t)); if (bp) { bp->lab= lab; bp->instr= i; (void)m_backpatch.push_front(bp); } } void sp_head::backpatch(sp_label_t *lab) { bp_t *bp; uint dest= instructions(); List_iterator_fast li(m_backpatch); while ((bp= li++)) { if (bp->lab == lab || (bp->lab->type == SP_LAB_REF && my_strcasecmp(system_charset_info, bp->lab->name, lab->name) == 0)) { if (bp->lab->type != SP_LAB_REF) bp->instr->backpatch(dest, lab->ctx); else { sp_label_t *dstlab= bp->lab->ctx->find_label(lab->name); if (dstlab) { bp->lab= lab; bp->instr->backpatch(dest, dstlab->ctx); } } } } } int sp_head::check_backpatch(THD *thd) { bp_t *bp; List_iterator_fast li(m_backpatch); while ((bp= li++)) { if (bp->lab->type == SP_LAB_REF) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "GOTO", bp->lab->name); return -1; } } return 0; } void sp_head::set_info(longlong created, longlong modified, st_sp_chistics *chistics, ulong sql_mode) { m_created= created; m_modified= modified; m_chistics= (st_sp_chistics *) memdup_root(mem_root, (char*) chistics, sizeof(*chistics)); if (m_chistics->comment.length == 0) m_chistics->comment.str= 0; else m_chistics->comment.str= strmake_root(mem_root, m_chistics->comment.str, m_chistics->comment.length); m_sql_mode= sql_mode; } void sp_head::set_definer(char *definer, uint definerlen) { char *p= strrchr(definer, '@'); if (!p) { m_definer_user.str= strmake_root(mem_root, "", 0); m_definer_user.length= 0; m_definer_host.str= strmake_root(mem_root, "", 0); m_definer_host.length= 0; } else { const uint user_name_len= p - definer; const uint host_name_len= definerlen - user_name_len - 1; m_definer_user.str= strmake_root(mem_root, definer, user_name_len); m_definer_user.length= user_name_len; m_definer_host.str= strmake_root(mem_root, p + 1, host_name_len); m_definer_host.length= host_name_len; } } void sp_head::reset_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::reset_thd_mem_root"); m_thd_root= thd->mem_root; thd->mem_root= &main_mem_root; DBUG_PRINT("info", ("mem_root 0x%lx moved to thd mem root 0x%lx", (ulong) &mem_root, (ulong) &thd->mem_root)); free_list= thd->free_list; // Keep the old list thd->free_list= NULL; // Start a new one /* Copy the db, since substatements will point to it */ m_thd_db= thd->db; thd->db= thd->strmake(thd->db, thd->db_length); m_thd= thd; DBUG_VOID_RETURN; } void sp_head::restore_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::restore_thd_mem_root"); Item *flist= free_list; // The old list set_query_arena(thd); // Get new free_list and mem_root state= INITIALIZED_FOR_SP; DBUG_PRINT("info", ("mem_root 0x%lx returned from thd mem root 0x%lx", (ulong) &mem_root, (ulong) &thd->mem_root)); thd->free_list= flist; // Restore the old one thd->db= m_thd_db; // Restore the original db pointer thd->mem_root= m_thd_root; m_thd= NULL; DBUG_VOID_RETURN; } /* Check if a user has access right to a routine SYNOPSIS check_show_routine_access() thd Thread handler sp SP full_access Set to 1 if the user has SELECT right to the 'mysql.proc' able or is the owner of the routine RETURN 0 ok 1 error */ bool check_show_routine_access(THD *thd, sp_head *sp, bool *full_access) { TABLE_LIST tables; bzero((char*) &tables,sizeof(tables)); tables.db= (char*) "mysql"; tables.table_name= tables.alias= (char*) "proc"; *full_access= (!check_table_access(thd, SELECT_ACL, &tables, 1) || (!strcmp(sp->m_definer_user.str, thd->security_ctx->priv_user) && !strcmp(sp->m_definer_host.str, thd->security_ctx->priv_host))); if (!*full_access) return check_some_routine_access(thd, sp->m_db.str, sp->m_name.str, sp->m_type == TYPE_ENUM_PROCEDURE); return 0; } int sp_head::show_create_procedure(THD *thd) { Protocol *protocol= thd->protocol; char buff[2048]; String buffer(buff, sizeof(buff), system_charset_info); int res; List field_list; byte *sql_mode_str; ulong sql_mode_len; bool full_access; DBUG_ENTER("sp_head::show_create_procedure"); DBUG_PRINT("info", ("procedure %s", m_name.str)); LINT_INIT(sql_mode_str); LINT_INIT(sql_mode_len); if (check_show_routine_access(thd, this, &full_access)) return 1; sql_mode_str= sys_var_thd_sql_mode::symbolic_mode_representation(thd, m_sql_mode, &sql_mode_len); field_list.push_back(new Item_empty_string("Procedure", NAME_LEN)); field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len)); // 1024 is for not to confuse old clients field_list.push_back(new Item_empty_string("Create Procedure", max(buffer.length(), 1024))); if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) { res= 1; goto done; } protocol->prepare_for_resend(); protocol->store(m_name.str, m_name.length, system_charset_info); protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info); if (full_access) protocol->store(m_defstr.str, m_defstr.length, system_charset_info); res= protocol->write(); send_eof(thd); done: DBUG_RETURN(res); } /* Add instruction to SP SYNOPSIS sp_head::add_instr() instr Instruction */ void sp_head::add_instr(sp_instr *instr) { instr->free_list= m_thd->free_list; m_thd->free_list= 0; /* Memory root of every instruction is designated for permanent transformations (optimizations) made on the parsed tree during the first execution. It points to the memory root of the entire stored procedure, as their life span is equal. */ instr->mem_root= &main_mem_root; insert_dynamic(&m_instr, (gptr)&instr); } int sp_head::show_create_function(THD *thd) { Protocol *protocol= thd->protocol; char buff[2048]; String buffer(buff, sizeof(buff), system_charset_info); int res; List field_list; byte *sql_mode_str; ulong sql_mode_len; bool full_access; DBUG_ENTER("sp_head::show_create_function"); DBUG_PRINT("info", ("procedure %s", m_name.str)); LINT_INIT(sql_mode_str); LINT_INIT(sql_mode_len); if (check_show_routine_access(thd, this, &full_access)) return 1; sql_mode_str= sys_var_thd_sql_mode::symbolic_mode_representation(thd, m_sql_mode, &sql_mode_len); field_list.push_back(new Item_empty_string("Function",NAME_LEN)); field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len)); field_list.push_back(new Item_empty_string("Create Function", max(buffer.length(),1024))); if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) { res= 1; goto done; } protocol->prepare_for_resend(); protocol->store(m_name.str, m_name.length, system_charset_info); protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info); if (full_access) protocol->store(m_defstr.str, m_defstr.length, system_charset_info); res= protocol->write(); send_eof(thd); done: DBUG_RETURN(res); } /* TODO: what does this do?? */ void sp_head::optimize() { List bp; sp_instr *i; uint src, dst; opt_mark(0); bp.empty(); src= dst= 0; while ((i= get_instr(src))) { if (! i->marked) { delete i; src+= 1; } else { if (src != dst) { sp_instr *ibp; List_iterator_fast li(bp); set_dynamic(&m_instr, (gptr)&i, dst); while ((ibp= li++)) { sp_instr_jump *ji= static_cast(ibp); if (ji->m_dest == src) ji->m_dest= dst; } } i->opt_move(dst, &bp); src+= 1; dst+= 1; } } m_instr.elements= dst; bp.empty(); } void sp_head::opt_mark(uint ip) { sp_instr *i; while ((i= get_instr(ip)) && !i->marked) ip= i->opt_mark(this); } /* Prepare LEX and thread for execution of instruction, if requested open and lock LEX's tables, execute instruction's core function, perform cleanup afterwards. SYNOPSIS reset_lex_and_exec_core() thd - thread context nextp - out - next instruction open_tables - if TRUE then check read access to tables in LEX's table list and open and lock them (used in instructions which need to calculate some expression and don't execute complete statement). sp_instr - instruction for which we prepare context, and which core function execute by calling its exec_core() method. NOTE We are not saving/restoring some parts of THD which may need this because we do this once for whole routine execution in sp_head::execute(). RETURN VALUE 0/non-0 - Success/Failure */ int sp_lex_keeper::reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables, sp_instr* instr) { int res= 0; DBUG_ASSERT(!thd->derived_tables); DBUG_ASSERT(thd->change_list.is_empty()); /* Use our own lex. We should not save old value since it is saved/restored in sp_head::execute() when we are entering/leaving routine. */ thd->lex= m_lex; VOID(pthread_mutex_lock(&LOCK_thread_count)); thd->query_id= next_query_id(); VOID(pthread_mutex_unlock(&LOCK_thread_count)); if (thd->prelocked_mode == NON_PRELOCKED) { /* This statement will enter/leave prelocked mode on its own. Entering prelocked mode changes table list and related members of LEX, so we'll need to restore them. */ if (lex_query_tables_own_last) { /* We've already entered/left prelocked mode with this statement. Attach the list of tables that need to be prelocked and mark m_lex as having such list attached. */ *lex_query_tables_own_last= prelocking_tables; m_lex->mark_as_requiring_prelocking(lex_query_tables_own_last); } } reinit_stmt_before_use(thd, m_lex); /* If requested check whenever we have access to tables in LEX's table list and open and lock them before executing instructtions core function. */ if (open_tables && (check_table_access(thd, SELECT_ACL, m_lex->query_tables, 0) || open_and_lock_tables(thd, m_lex->query_tables))) res= -1; if (!res) res= instr->exec_core(thd, nextp); m_lex->unit.cleanup(); thd->proc_info="closing tables"; close_thread_tables(thd); thd->proc_info= 0; if (m_lex->query_tables_own_last) { /* We've entered and left prelocking mode when executing statement stored in m_lex. m_lex->query_tables(->next_global)* list now has a 'tail' - a list of tables that are added for prelocking. (If this is the first execution, the 'tail' was added by open_tables(), otherwise we've attached it above in this function). Now we'll save the 'tail', and detach it. */ lex_query_tables_own_last= m_lex->query_tables_own_last; prelocking_tables= *lex_query_tables_own_last; *lex_query_tables_own_last= NULL; m_lex->mark_as_requiring_prelocking(NULL); } thd->rollback_item_tree_changes(); /* Unlike for PS we should not call Item's destructors for newly created items after execution of each instruction in stored routine. This is because SP often create Item (like Item_int, Item_string etc...) when they want to store some value in local variable, pass return value and etc... So their life time should be longer than one instruction. cleanup_items() is called in sp_head::execute() */ return res; } /* sp_instr class functions */ int sp_instr::exec_core(THD *thd, uint *nextp) { DBUG_ASSERT(0); return 0; } /* sp_instr_stmt class functions */ int sp_instr_stmt::execute(THD *thd, uint *nextp) { char *query; uint32 query_length; int res; DBUG_ENTER("sp_instr_stmt::execute"); DBUG_PRINT("info", ("command: %d", m_lex_keeper.sql_command())); query= thd->query; query_length= thd->query_length; if (!(res= alloc_query(thd, m_query.str, m_query.length+1)) && !(res=subst_spvars(thd, this, &m_query))) { /* (the order of query cache and subst_spvars calls is irrelevant because queries with SP vars can't be cached) */ if (query_cache_send_result_to_client(thd, thd->query, thd->query_length) <= 0) { res= m_lex_keeper.reset_lex_and_exec_core(thd, nextp, FALSE, this); query_cache_end_of_result(thd); } else *nextp= m_ip+1; thd->query= query; thd->query_length= query_length; } DBUG_RETURN(res); } void sp_instr_stmt::print(String *str) { str->reserve(12); str->append("stmt "); str->qs_append((uint)m_lex_keeper.sql_command()); } int sp_instr_stmt::exec_core(THD *thd, uint *nextp) { int res= mysql_execute_command(thd); *nextp= m_ip+1; return res; } /* sp_instr_set class functions */ int sp_instr_set::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set::execute"); DBUG_PRINT("info", ("offset: %u", m_offset)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_set::exec_core(THD *thd, uint *nextp) { int res= thd->spcont->set_item_eval(thd, m_offset, &m_value, m_type); *nextp = m_ip+1; return res; } void sp_instr_set::print(String *str) { str->reserve(12); str->append("set "); str->qs_append(m_offset); str->append(' '); m_value->print(str); } /* sp_instr_set_trigger_field class functions */ int sp_instr_set_trigger_field::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set_trigger_field::execute"); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_set_trigger_field::exec_core(THD *thd, uint *nextp) { int res= 0; Item *it= sp_prepare_func_item(thd, &value); if (!it || !trigger_field->fixed && trigger_field->fix_fields(thd, 0) || (it->save_in_field(trigger_field->field, 0) < 0)) res= -1; *nextp = m_ip+1; return res; } void sp_instr_set_trigger_field::print(String *str) { str->append("set ", 4); trigger_field->print(str); str->append(":=", 2); value->print(str); } /* sp_instr_jump class functions */ int sp_instr_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); *nextp= m_dest; DBUG_RETURN(0); } void sp_instr_jump::print(String *str) { str->reserve(12); str->append("jump "); str->qs_append(m_dest); } uint sp_instr_jump::opt_mark(sp_head *sp) { m_dest= opt_shortcut_jump(sp, this); if (m_dest != m_ip+1) /* Jumping to following instruction? */ marked= 1; m_optdest= sp->get_instr(m_dest); return m_dest; } uint sp_instr_jump::opt_shortcut_jump(sp_head *sp, sp_instr *start) { uint dest= m_dest; sp_instr *i; while ((i= sp->get_instr(dest))) { uint ndest; if (start == i || this == i) break; ndest= i->opt_shortcut_jump(sp, start); if (ndest == dest) break; dest= ndest; } return dest; } void sp_instr_jump::opt_move(uint dst, List *bp) { if (m_dest > m_ip) bp->push_back(this); // Forward else if (m_optdest) m_dest= m_optdest->m_ip; // Backward m_ip= dst; } /* sp_instr_jump_if class functions */ int sp_instr_jump_if::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump_if::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_jump_if::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_prepare_func_item(thd, &m_expr); if (!it) res= -1; else { res= 0; if (it->val_bool()) *nextp = m_dest; else *nextp = m_ip+1; } return res; } void sp_instr_jump_if::print(String *str) { str->reserve(12); str->append("jump_if "); str->qs_append(m_dest); str->append(' '); m_expr->print(str); } uint sp_instr_jump_if::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } /* sp_instr_jump_if_not class functions */ int sp_instr_jump_if_not::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump_if_not::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_jump_if_not::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_prepare_func_item(thd, &m_expr); if (! it) res= -1; else { res= 0; if (! it->val_bool()) *nextp = m_dest; else *nextp = m_ip+1; } return res; } void sp_instr_jump_if_not::print(String *str) { str->reserve(16); str->append("jump_if_not "); str->qs_append(m_dest); str->append(' '); m_expr->print(str); } uint sp_instr_jump_if_not::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } /* sp_instr_freturn class functions */ int sp_instr_freturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_freturn::execute"); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_freturn::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_eval_func_item(thd, &m_value, m_type, NULL, TRUE); if (! it) res= -1; else { res= 0; thd->spcont->set_result(it); } *nextp= UINT_MAX; return res; } void sp_instr_freturn::print(String *str) { str->reserve(12); str->append("freturn "); str->qs_append((uint)m_type); str->append(' '); m_value->print(str); } /* sp_instr_hpush_jump class functions */ int sp_instr_hpush_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpush_jump::execute"); List_iterator_fast li(m_cond); sp_cond_type_t *p; while ((p= li++)) thd->spcont->push_handler(p, m_ip+1, m_type, m_frame); *nextp= m_dest; DBUG_RETURN(0); } void sp_instr_hpush_jump::print(String *str) { str->reserve(32); str->append("hpush_jump "); str->qs_append(m_dest); str->append(" t="); str->qs_append(m_type); str->append(" f="); str->qs_append(m_frame); str->append(" h="); str->qs_append(m_ip+1); } uint sp_instr_hpush_jump::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } /* sp_instr_hpop class functions */ int sp_instr_hpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpop::execute"); thd->spcont->pop_handlers(m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_hpop::print(String *str) { str->reserve(12); str->append("hpop "); str->qs_append(m_count); } void sp_instr_hpop::backpatch(uint dest, sp_pcontext *dst_ctx) { m_count= m_ctx->diff_handlers(dst_ctx); } /* sp_instr_hreturn class functions */ int sp_instr_hreturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hreturn::execute"); if (m_dest) *nextp= m_dest; else { thd->spcont->restore_variables(m_frame); *nextp= thd->spcont->pop_hstack(); } thd->spcont->exit_handler(); DBUG_RETURN(0); } void sp_instr_hreturn::print(String *str) { str->reserve(16); str->append("hreturn "); str->qs_append(m_frame); if (m_dest) { str->append(' '); str->qs_append(m_dest); } } uint sp_instr_hreturn::opt_mark(sp_head *sp) { if (m_dest) return sp_instr_jump::opt_mark(sp); else { marked= 1; return UINT_MAX; } } /* sp_instr_cpush class functions */ int sp_instr_cpush::execute(THD *thd, uint *nextp) { Query_arena backup_arena; DBUG_ENTER("sp_instr_cpush::execute"); /* We should create cursors in the callers arena, as it could be (and usually is) used in several instructions. */ thd->set_n_backup_active_arena(thd->spcont->callers_arena, &backup_arena); thd->spcont->push_cursor(&m_lex_keeper, this); thd->restore_active_arena(thd->spcont->callers_arena, &backup_arena); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_cpush::print(String *str) { str->append("cpush"); } /* sp_instr_cpop class functions */ int sp_instr_cpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cpop::execute"); thd->spcont->pop_cursors(m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_cpop::print(String *str) { str->reserve(12); str->append("cpop "); str->qs_append(m_count); } void sp_instr_cpop::backpatch(uint dest, sp_pcontext *dst_ctx) { m_count= m_ctx->diff_cursors(dst_ctx); } /* sp_instr_copen class functions */ int sp_instr_copen::execute(THD *thd, uint *nextp) { /* We don't store a pointer to the cursor in the instruction to be able to reuse the same instruction among different threads in future. */ sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_copen::execute"); if (! c) res= -1; else { sp_lex_keeper *lex_keeper= c->get_lex_keeper(); Query_arena *old_arena= thd->stmt_arena; /* Get the Query_arena from the cpush instruction, which contains the free_list of the query, so new items (if any) are stored in the right free_list, and we can cleanup after each open. */ thd->stmt_arena= c->get_instr(); res= lex_keeper->reset_lex_and_exec_core(thd, nextp, FALSE, this); /* Cleanup the query's items */ if (thd->stmt_arena->free_list) cleanup_items(thd->stmt_arena->free_list); thd->stmt_arena= old_arena; /* Work around the fact that errors in selects are not returned properly (but instead converted into a warning), so if a condition handler caught, we have lost the result code. */ if (!res) { uint dummy1, dummy2; if (thd->spcont->found_handler(&dummy1, &dummy2)) res= -1; } /* TODO: Assert here that we either have an error or a cursor */ } DBUG_RETURN(res); } int sp_instr_copen::exec_core(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res= c->open(thd); *nextp= m_ip+1; return res; } void sp_instr_copen::print(String *str) { str->reserve(12); str->append("copen "); str->qs_append(m_cursor); } /* sp_instr_cclose class functions */ int sp_instr_cclose::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_cclose::execute"); if (! c) res= -1; else res= c->close(thd); *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cclose::print(String *str) { str->reserve(12); str->append("cclose "); str->qs_append(m_cursor); } /* sp_instr_cfetch class functions */ int sp_instr_cfetch::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; Query_arena backup_arena; DBUG_ENTER("sp_instr_cfetch::execute"); res= c ? c->fetch(thd, &m_varlist) : -1; *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cfetch::print(String *str) { List_iterator_fast li(m_varlist); sp_pvar_t *pv; str->reserve(12); str->append("cfetch "); str->qs_append(m_cursor); while ((pv= li++)) { str->reserve(8); str->append(' '); str->qs_append(pv->offset); } } /* sp_instr_error class functions */ int sp_instr_error::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_error::execute"); my_message(m_errcode, ER(m_errcode), MYF(0)); *nextp= m_ip+1; DBUG_RETURN(-1); } void sp_instr_error::print(String *str) { str->reserve(12); str->append("error "); str->qs_append(m_errcode); } /* ------------------------------------------------------------------ */ /* Security context swapping */ #ifndef NO_EMBEDDED_ACCESS_CHECKS bool sp_change_security_context(THD *thd, sp_head *sp, Security_context **backup) { *backup= 0; if (sp->m_chistics->suid != SP_IS_NOT_SUID && (strcmp(sp->m_definer_user.str, thd->security_ctx->priv_user) || my_strcasecmp(system_charset_info, sp->m_definer_host.str, thd->security_ctx->priv_host))) { if (acl_getroot_no_password(&sp->m_security_ctx, sp->m_definer_user.str, sp->m_definer_host.str, sp->m_definer_host.str, sp->m_db.str)) { #ifdef NOT_YET_REPLICATION_SAFE /* Until we don't properly replicate information about stored routine definer with stored routine creation statement all stored routines on slave are created under ''@'' definer. Therefore we won't be able to run any routine which was replicated from master on slave server if we emit error here. This will cause big problems for users who use slave for fail-over. So until we fully implement WL#2897 "Complete definer support in the stored routines" we run suid stored routines for which we were unable to find definer under invoker security context. */ my_error(ER_NO_SUCH_USER, MYF(0), sp->m_definer_user.str, sp->m_definer_host.str); return TRUE; #else return FALSE; #endif } *backup= thd->security_ctx; thd->security_ctx= &sp->m_security_ctx; } return FALSE; } void sp_restore_security_context(THD *thd, Security_context *backup) { if (backup) thd->security_ctx= backup; } #endif /* NO_EMBEDDED_ACCESS_CHECKS */ /* Structure that represent all instances of one table in optimized multi-set of tables used by routine. */ typedef struct st_sp_table { LEX_STRING qname; /* Multi-set key: db_name\0table_name\0alias\0 */ uint db_length, table_name_length; bool temp; /* true if corresponds to a temporary table */ thr_lock_type lock_type; /* lock type used for prelocking */ uint lock_count; uint query_lock_count; } SP_TABLE; byte * sp_table_key(const byte *ptr, uint *plen, my_bool first) { SP_TABLE *tab= (SP_TABLE *)ptr; *plen= tab->qname.length; return (byte *)tab->qname.str; } /* Merge the list of tables used by some query into the multi-set of tables used by routine. SYNOPSIS merge_table_list() thd - thread context table - table list lex_for_tmp_check - LEX of the query for which we are merging table list. NOTE This method will use LEX provided to check whenever we are creating temporary table and mark it as such in target multi-set. RETURN VALUE TRUE - Success FALSE - Error */ bool sp_head::merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check) { SP_TABLE *tab; if (lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE && lex_for_tmp_check->drop_temporary) return TRUE; for (uint i= 0 ; i < m_sptabs.records ; i++) { tab= (SP_TABLE *)hash_element(&m_sptabs, i); tab->query_lock_count= 0; } for (; table ; table= table->next_global) if (!table->derived && !table->schema_table) { char tname[(NAME_LEN + 1) * 3]; // db\0table\0alias\0 uint tlen, alen; tlen= table->db_length; memcpy(tname, table->db, tlen); tname[tlen++]= '\0'; memcpy(tname+tlen, table->table_name, table->table_name_length); tlen+= table->table_name_length; tname[tlen++]= '\0'; alen= strlen(table->alias); memcpy(tname+tlen, table->alias, alen); tlen+= alen; tname[tlen]= '\0'; /* It is safe to store pointer to table list elements in hash, since they are supposed to have the same lifetime. */ if ((tab= (SP_TABLE *)hash_search(&m_sptabs, (byte *)tname, tlen))) { if (tab->lock_type < table->lock_type) tab->lock_type= table->lock_type; // Use the table with the highest lock type tab->query_lock_count++; if (tab->query_lock_count > tab->lock_count) tab->lock_count++; } else { if (!(tab= (SP_TABLE *)thd->calloc(sizeof(SP_TABLE)))) return FALSE; tab->qname.length= tlen; tab->qname.str= (char*) thd->memdup(tname, tab->qname.length + 1); if (!tab->qname.str) return FALSE; if (lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE && lex_for_tmp_check->query_tables == table && lex_for_tmp_check->create_info.options & HA_LEX_CREATE_TMP_TABLE) tab->temp= TRUE; tab->table_name_length= table->table_name_length; tab->db_length= table->db_length; tab->lock_type= table->lock_type; tab->lock_count= tab->query_lock_count= 1; my_hash_insert(&m_sptabs, (byte *)tab); } } return TRUE; } /* Add tables used by routine to the table list. SYNOPSIS add_used_tables_to_table_list() thd - thread context query_tables_last_ptr - (in/out) pointer the next_global member of last element of the list where tables will be added (or to its root). DESCRIPTION Converts multi-set of tables used by this routine to table list and adds this list to the end of table list specified by 'query_tables_last_ptr'. Elements of list will be allocated in PS memroot, so this list will be persistent between PS executions. RETURN VALUE TRUE - if some elements were added, FALSE - otherwise. */ bool sp_head::add_used_tables_to_table_list(THD *thd, TABLE_LIST ***query_tables_last_ptr) { uint i; Query_arena *arena, backup; bool result= FALSE; DBUG_ENTER("sp_head::add_used_tables_to_table_list"); /* Use persistent arena for table list allocation to be PS friendly. */ arena= thd->activate_stmt_arena_if_needed(&backup); for (i=0 ; i < m_sptabs.records ; i++) { char *tab_buff; TABLE_LIST *table; SP_TABLE *stab= (SP_TABLE *)hash_element(&m_sptabs, i); if (stab->temp) continue; if (!(tab_buff= (char *)thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST)) * stab->lock_count))) DBUG_RETURN(FALSE); for (uint j= 0; j < stab->lock_count; j++) { table= (TABLE_LIST *)tab_buff; /* It's enough to just copy the pointers as the data will not change during the lifetime of the SP. If the SP is used by PS, we assume that the PS will be invalidated if the functions is deleted or changed. */ table->db= stab->qname.str; table->db_length= stab->db_length; table->table_name= table->db + table->db_length + 1; table->table_name_length= stab->table_name_length; table->alias= table->table_name + table->table_name_length + 1; table->lock_type= stab->lock_type; table->cacheable_table= 1; table->prelocking_placeholder= 1; /* Everyting else should be zeroed */ **query_tables_last_ptr= table; table->prev_global= *query_tables_last_ptr; *query_tables_last_ptr= &table->next_global; tab_buff+= ALIGN_SIZE(sizeof(TABLE_LIST)); result= TRUE; } } if (arena) thd->restore_active_arena(arena, &backup); DBUG_RETURN(result); } /* Simple function for adding an explicetly named (systems) table to the global table list, e.g. "mysql", "proc". */ TABLE_LIST * sp_add_to_query_tables(THD *thd, LEX *lex, const char *db, const char *name, thr_lock_type locktype) { TABLE_LIST *table; if (!(table= (TABLE_LIST *)thd->calloc(sizeof(TABLE_LIST)))) { my_error(ER_OUTOFMEMORY, MYF(0), sizeof(TABLE_LIST)); return NULL; } table->db_length= strlen(db); table->db= thd->strmake(db, table->db_length); table->table_name_length= strlen(name); table->table_name= thd->strmake(name, table->table_name_length); table->alias= thd->strdup(name); table->lock_type= locktype; table->select_lex= lex->current_select; // QQ? table->cacheable_table= 1; lex->add_to_query_tables(table); return table; }