/* Copyright (C) 2002 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "mysql_priv.h" #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation #endif #include "sp_head.h" #include "sp.h" #include "sp_pcontext.h" #include "sp_rcontext.h" #include "sp_cache.h" Item_result sp_map_result_type(enum enum_field_types type) { switch (type) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_INT24: return INT_RESULT; case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_NEWDECIMAL: return DECIMAL_RESULT; case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: return REAL_RESULT; default: return STRING_RESULT; } } /* * Returns TRUE if the 'cmd' is a command that might result in * multiple result sets being sent back. * Note: This does not include SQLCOM_SELECT which is treated * separately in sql_yacc.yy. */ bool sp_multi_results_command(enum enum_sql_command cmd) { switch (cmd) { case SQLCOM_ANALYZE: case SQLCOM_CHECKSUM: case SQLCOM_HA_READ: case SQLCOM_SHOW_BINLOGS: case SQLCOM_SHOW_BINLOG_EVENTS: case SQLCOM_SHOW_CHARSETS: case SQLCOM_SHOW_COLLATIONS: case SQLCOM_SHOW_COLUMN_TYPES: case SQLCOM_SHOW_CREATE: case SQLCOM_SHOW_CREATE_DB: case SQLCOM_SHOW_CREATE_FUNC: case SQLCOM_SHOW_CREATE_PROC: case SQLCOM_SHOW_DATABASES: case SQLCOM_SHOW_ERRORS: case SQLCOM_SHOW_FIELDS: case SQLCOM_SHOW_GRANTS: case SQLCOM_SHOW_INNODB_STATUS: case SQLCOM_SHOW_KEYS: case SQLCOM_SHOW_LOGS: case SQLCOM_SHOW_MASTER_STAT: case SQLCOM_SHOW_MUTEX_STATUS: case SQLCOM_SHOW_NEW_MASTER: case SQLCOM_SHOW_OPEN_TABLES: case SQLCOM_SHOW_PRIVILEGES: case SQLCOM_SHOW_PROCESSLIST: case SQLCOM_SHOW_SLAVE_HOSTS: case SQLCOM_SHOW_SLAVE_STAT: case SQLCOM_SHOW_STATUS: case SQLCOM_SHOW_STATUS_FUNC: case SQLCOM_SHOW_STATUS_PROC: case SQLCOM_SHOW_STORAGE_ENGINES: case SQLCOM_SHOW_TABLES: case SQLCOM_SHOW_VARIABLES: case SQLCOM_SHOW_WARNS: return TRUE; default: return FALSE; } } /* Prepare Item for execution (call of fix_fields) SYNOPSIS sp_prepare_func_item() thd thread handler it_addr pointer on item refernce RETURN NULL error prepared item */ static Item * sp_prepare_func_item(THD* thd, Item **it_addr) { Item *it= *it_addr; DBUG_ENTER("sp_prepare_func_item"); it_addr= it->this_item_addr(thd, it_addr); if (!it->fixed && (*it_addr)->fix_fields(thd, 0, it_addr)) { DBUG_PRINT("info", ("fix_fields() failed")); DBUG_RETURN(NULL); } DBUG_RETURN(*it_addr); } /* Evaluate a (presumed) func item. Always returns an item, the parameter ** if nothing else. */ Item * sp_eval_func_item(THD *thd, Item **it_addr, enum enum_field_types type, Item *reuse) { DBUG_ENTER("sp_eval_func_item"); Item *it= sp_prepare_func_item(thd, it_addr); uint rsize; DBUG_PRINT("info", ("type: %d", type)); if (!it) { DBUG_RETURN(NULL); } /* QQ How do we do this? Is there some better way? */ if (type == MYSQL_TYPE_NULL) it= new(reuse, &rsize) Item_null(); else { switch (sp_map_result_type(type)) { case INT_RESULT: { longlong i= it->val_int(); if (it->null_value) { DBUG_PRINT("info", ("INT_RESULT: null")); it= new(reuse, &rsize) Item_null(); } else { DBUG_PRINT("info", ("INT_RESULT: %d", i)); it= new(reuse, &rsize) Item_int(i); } break; } case REAL_RESULT: { double d= it->val_real(); if (it->null_value) { DBUG_PRINT("info", ("REAL_RESULT: null")); it= new(reuse, &rsize) Item_null(); } else { /* There's some difference between Item::new_item() and the * constructor; the former crashes, the latter works... weird. */ uint8 decimals= it->decimals; uint32 max_length= it->max_length; DBUG_PRINT("info", ("REAL_RESULT: %g", d)); it= new(reuse, &rsize) Item_float(d); it->decimals= decimals; it->max_length= max_length; } break; } case DECIMAL_RESULT: { my_decimal value, *val= it->val_decimal(&value); if (it->null_value) it= new(reuse, &rsize) Item_null(); else it= new(reuse, &rsize) Item_decimal(val); #ifndef DBUG_OFF char dbug_buff[DECIMAL_MAX_STR_LENGTH+1]; DBUG_PRINT("info", ("DECIMAL_RESULT: %s", dbug_decimal_as_string(dbug_buff, val))); #endif break; } case STRING_RESULT: { char buffer[MAX_FIELD_WIDTH]; String tmp(buffer, sizeof(buffer), it->collation.collation); String *s= it->val_str(&tmp); if (it->null_value) { DBUG_PRINT("info", ("default result: null")); it= new(reuse, &rsize) Item_null(); } else { DBUG_PRINT("info",("default result: %*s", s->length(), s->c_ptr_quick())); it= new(reuse, &rsize) Item_string(thd->strmake(s->ptr(), s->length()), s->length(), it->collation.collation); } break; } case ROW_RESULT: default: DBUG_ASSERT(0); } } it->rsize= rsize; DBUG_RETURN(it); } /* * * sp_name * */ void sp_name::init_qname(THD *thd) { m_qname.length= m_db.length+m_name.length+1; m_qname.str= thd->alloc(m_qname.length+1); sprintf(m_qname.str, "%*s.%*s", m_db.length, (m_db.length ? m_db.str : ""), m_name.length, m_name.str); } sp_name * sp_name_current_db_new(THD *thd, LEX_STRING name) { sp_name *qname; if (! thd->db) qname= new sp_name(name); else { LEX_STRING db; db.length= strlen(thd->db); db.str= thd->strmake(thd->db, db.length); qname= new sp_name(db, name); } qname->init_qname(thd); return qname; } /* ------------------------------------------------------------------ */ /* * * sp_head * */ void * sp_head::operator new(size_t size) { DBUG_ENTER("sp_head::operator new"); MEM_ROOT own_root; sp_head *sp; init_alloc_root(&own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC); sp= (sp_head *) alloc_root(&own_root, size); sp->main_mem_root= own_root; DBUG_PRINT("info", ("mem_root 0x%lx", (ulong) &sp->mem_root)); DBUG_RETURN(sp); } void sp_head::operator delete(void *ptr, size_t size) { DBUG_ENTER("sp_head::operator delete"); MEM_ROOT own_root; sp_head *sp= (sp_head *) ptr; /* Make a copy of main_mem_root as free_root will free the sp */ own_root= sp->main_mem_root; DBUG_PRINT("info", ("mem_root 0x%lx moved to 0x%lx", (ulong) &sp->mem_root, (ulong) &own_root)); free_root(&own_root, MYF(0)); DBUG_VOID_RETURN; } sp_head::sp_head() :Query_arena(&main_mem_root, INITIALIZED_FOR_SP), m_returns_cs(NULL), m_has_return(FALSE), m_simple_case(FALSE), m_multi_results(FALSE), m_in_handler(FALSE) { extern byte * sp_table_key(const byte *ptr, uint *plen, my_bool first); extern byte *sp_lex_sp_key(const byte *ptr, uint *plen, my_bool first); DBUG_ENTER("sp_head::sp_head"); m_backpatch.empty(); m_lex.empty(); hash_init(&m_sptabs, system_charset_info, 0, 0, 0, sp_table_key, 0, 0); hash_init(&m_spfuns, system_charset_info, 0, 0, 0, sp_lex_sp_key, 0, 0); hash_init(&m_spprocs, system_charset_info, 0, 0, 0, sp_lex_sp_key, 0, 0); DBUG_VOID_RETURN; } void sp_head::init(LEX *lex) { DBUG_ENTER("sp_head::init"); lex->spcont= m_pcont= new sp_pcontext(NULL); /* Altough trg_table_fields list is used only in triggers we init for all types of stored procedures to simplify reset_lex()/restore_lex() code. */ lex->trg_table_fields.empty(); my_init_dynamic_array(&m_instr, sizeof(sp_instr *), 16, 8); m_param_begin= m_param_end= m_body_begin= 0; m_qname.str= m_db.str= m_name.str= m_params.str= m_body.str= m_defstr.str= 0; m_qname.length= m_db.length= m_name.length= m_params.length= m_body.length= m_defstr.length= 0; m_returns_cs= NULL; DBUG_VOID_RETURN; } void sp_head::init_strings(THD *thd, LEX *lex, sp_name *name) { DBUG_ENTER("sp_head::init_strings"); uint n; /* Counter for nul trimming */ /* During parsing, we must use thd->mem_root */ MEM_ROOT *root= thd->mem_root; /* We have to copy strings to get them into the right memroot */ if (name) { m_db.length= name->m_db.length; if (name->m_db.length == 0) m_db.str= NULL; else m_db.str= strmake_root(root, name->m_db.str, name->m_db.length); m_name.length= name->m_name.length; m_name.str= strmake_root(root, name->m_name.str, name->m_name.length); if (name->m_qname.length == 0) name->init_qname(thd); m_qname.length= name->m_qname.length; m_qname.str= strmake_root(root, name->m_qname.str, m_qname.length); } else if (thd->db) { m_db.length= thd->db_length; m_db.str= strmake_root(root, thd->db, m_db.length); } if (m_param_begin && m_param_end) { m_params.length= m_param_end - m_param_begin; m_params.str= strmake_root(root, (char *)m_param_begin, m_params.length); } m_body.length= lex->ptr - m_body_begin; /* Trim nuls at the end */ n= 0; while (m_body.length && m_body_begin[m_body.length-1] == '\0') { m_body.length-= 1; n+= 1; } m_body.str= strmake_root(root, (char *)m_body_begin, m_body.length); m_defstr.length= lex->ptr - lex->buf; m_defstr.length-= n; m_defstr.str= strmake_root(root, (char *)lex->buf, m_defstr.length); DBUG_VOID_RETURN; } TYPELIB * sp_head::create_typelib(List *src) { TYPELIB *result= NULL; CHARSET_INFO *cs= m_returns_cs; DBUG_ENTER("sp_head::clone_typelib"); if (src->elements) { result= (TYPELIB*) alloc_root(mem_root, sizeof(TYPELIB)); result->count= src->elements; result->name= ""; if (!(result->type_names=(const char **) alloc_root(mem_root,(sizeof(char *)+sizeof(int))*(result->count+1)))) return 0; result->type_lengths= (unsigned int *)(result->type_names + result->count+1); List_iterator it(*src); String conv; for (uint i=0; i < result->count; i++) { uint32 dummy; uint length; String *tmp= it++; if (String::needs_conversion(tmp->length(), tmp->charset(), cs, &dummy)) { uint cnv_errs; conv.copy(tmp->ptr(), tmp->length(), tmp->charset(), cs, &cnv_errs); length= conv.length(); result->type_names[i]= (char*) strmake_root(mem_root, conv.ptr(), length); } else { length= tmp->length(); result->type_names[i]= strmake_root(mem_root, tmp->ptr(), length); } // Strip trailing spaces. length= cs->cset->lengthsp(cs, result->type_names[i], length); result->type_lengths[i]= length; ((uchar *)result->type_names[i])[length]= '\0'; } result->type_names[result->count]= 0; result->type_lengths[result->count]= 0; } return result; } int sp_head::create(THD *thd) { DBUG_ENTER("sp_head::create"); int ret; DBUG_PRINT("info", ("type: %d name: %s params: %s body: %s", m_type, m_name.str, m_params.str, m_body.str)); #ifndef DBUG_OFF optimize(); { String s; sp_instr *i; uint ip= 0; while ((i = get_instr(ip))) { char buf[8]; sprintf(buf, "%4u: ", ip); s.append(buf); i->print(&s); s.append('\n'); ip+= 1; } s.append('\0'); DBUG_PRINT("info", ("Code %s\n%s", m_qname.str, s.ptr())); } #endif if (m_type == TYPE_ENUM_FUNCTION) ret= sp_create_function(thd, this); else ret= sp_create_procedure(thd, this); DBUG_RETURN(ret); } sp_head::~sp_head() { destroy(); if (m_thd) restore_thd_mem_root(m_thd); } void sp_head::destroy() { sp_instr *i; LEX *lex; DBUG_ENTER("sp_head::destroy"); DBUG_PRINT("info", ("name: %s", m_name.str)); for (uint ip = 0 ; (i = get_instr(ip)) ; ip++) delete i; delete_dynamic(&m_instr); m_pcont->destroy(); free_items(); /* If we have non-empty LEX stack then we just came out of parser with error. Now we should delete all auxilary LEXes and restore original THD::lex (In this case sp_head::restore_thd_mem_root() was not called too, so m_thd points to the current thread context). It is safe to not update LEX::ptr because further query string parsing and execution will be stopped anyway. */ DBUG_ASSERT(m_lex.is_empty() || m_thd); while ((lex= (LEX *)m_lex.pop())) { delete m_thd->lex; m_thd->lex= lex; } hash_free(&m_sptabs); hash_free(&m_spfuns); hash_free(&m_spprocs); DBUG_VOID_RETURN; } /* * This is only used for result fields from functions (both during * fix_length_and_dec() and evaluation). * * Since the current mem_root during a will be freed and the result * field will be used by the caller, we have to put it in the caller's * or main mem_root. */ Field * sp_head::make_field(uint max_length, const char *name, TABLE *dummy) { Field *field; MEM_ROOT *tmp_mem_root; THD *thd; DBUG_ENTER("sp_head::make_field"); thd= current_thd; tmp_mem_root= thd->mem_root; if (thd->spcont && thd->spcont->callers_mem_root) thd->mem_root= thd->spcont->callers_mem_root; else thd->mem_root= &thd->main_mem_root; field= ::make_field((char *)0, !m_returns_len ? max_length : m_returns_len, (uchar *)"", 0, m_returns_pack, m_returns, m_returns_cs, (enum Field::geometry_type)0, Field::NONE, m_returns_typelib, name ? name : (const char *)m_name.str, dummy); thd->mem_root= tmp_mem_root; DBUG_RETURN(field); } int sp_head::execute(THD *thd) { DBUG_ENTER("sp_head::execute"); char olddb[128]; bool dbchanged; sp_rcontext *ctx; int ret= 0; uint ip= 0; Query_arena *old_arena; query_id_t old_query_id; TABLE *old_derived_tables; LEX *old_lex; Item_change_list old_change_list; String old_packet; /* Use some extra margin for possible SP recursion and functions */ if (check_stack_overrun(thd, 4*STACK_MIN_SIZE, olddb)) { DBUG_RETURN(-1); } dbchanged= FALSE; if (m_db.length && (ret= sp_use_new_db(thd, m_db.str, olddb, sizeof(olddb), 0, &dbchanged))) goto done; if ((ctx= thd->spcont)) ctx->clear_handler(); thd->query_error= 0; old_arena= thd->current_arena; /* We have to save/restore this info when we are changing call level to be able properly do close_thread_tables() in instructions. */ old_query_id= thd->query_id; old_derived_tables= thd->derived_tables; thd->derived_tables= 0; /* It is also more efficient to save/restore current thd->lex once when do it in each instruction */ old_lex= thd->lex; /* We should also save Item tree change list to avoid rollback something too early in the calling query. */ old_change_list= thd->change_list; thd->change_list.empty(); /* Cursors will use thd->packet, so they may corrupt data which was prepared for sending by upper level. OTOH cursors in the same routine can share this buffer safely so let use use routine-local packet instead of having own packet buffer for each cursor. It is probably safe to use same thd->convert_buff everywhere. */ old_packet.swap(thd->packet); do { sp_instr *i; uint hip; // Handler ip i = get_instr(ip); // Returns NULL when we're done. if (i == NULL) break; DBUG_PRINT("execute", ("Instruction %u", ip)); thd->set_time(); // Make current_time() et al work /* We have to set thd->current_arena before executing the instruction to store in the instruction free_list all new items, created during the first execution (for example expanding of '*' or the items made during other permanent subquery transformations). */ thd->current_arena= i; ret= i->execute(thd, &ip); if (i->free_list) cleanup_items(i->free_list); i->state= Query_arena::EXECUTED; // Check if an exception has occurred and a handler has been found // Note: We havo to check even if ret==0, since warnings (and some // errors don't return a non-zero value. // We also have to check even if thd->killed != 0, since some // errors return with this even when a handler has been found // (e.g. "bad data"). if (ctx) { uint hf; switch (ctx->found_handler(&hip, &hf)) { case SP_HANDLER_NONE: break; case SP_HANDLER_CONTINUE: ctx->save_variables(hf); ctx->push_hstack(ip); // Fall through default: ip= hip; ret= 0; ctx->clear_handler(); ctx->in_handler= TRUE; thd->clear_error(); thd->killed= THD::NOT_KILLED; continue; } } } while (ret == 0 && !thd->killed); /* Restore all saved */ old_packet.swap(thd->packet); DBUG_ASSERT(thd->change_list.is_empty()); thd->change_list= old_change_list; /* To avoid wiping out thd->change_list on old_change_list destruction */ old_change_list.empty(); thd->lex= old_lex; thd->query_id= old_query_id; DBUG_ASSERT(!thd->derived_tables); thd->derived_tables= old_derived_tables; thd->current_arena= old_arena; state= EXECUTED; done: DBUG_PRINT("info", ("ret=%d killed=%d query_error=%d", ret, thd->killed, thd->query_error)); if (thd->killed) ret= -1; /* If the DB has changed, the pointer has changed too, but the original thd->db will then have been freed */ if (dbchanged) { if (! thd->killed) ret= sp_change_db(thd, olddb, 0); } DBUG_RETURN(ret); } int sp_head::execute_function(THD *thd, Item **argp, uint argcount, Item **resp) { DBUG_ENTER("sp_head::execute_function"); DBUG_PRINT("info", ("function %s", m_name.str)); uint csize = m_pcont->max_pvars(); uint params = m_pcont->current_pvars(); uint hmax = m_pcont->max_handlers(); uint cmax = m_pcont->max_cursors(); sp_rcontext *octx = thd->spcont; sp_rcontext *nctx = NULL; uint i; int ret; MEM_ROOT call_mem_root; Query_arena call_arena(&call_mem_root, INITIALIZED_FOR_SP), backup_arena; if (argcount != params) { // Need to use my_printf_error here, or it will not terminate the // invoking query properly. my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "FUNCTION", m_qname.str, params, argcount); DBUG_RETURN(-1); } init_alloc_root(&call_mem_root, MEM_ROOT_BLOCK_SIZE, 0); thd->set_n_backup_item_arena(&call_arena, &backup_arena); // QQ Should have some error checking here? (types, etc...) nctx= new sp_rcontext(csize, hmax, cmax); nctx->callers_mem_root= backup_arena.mem_root; for (i= 0 ; i < argcount ; i++) { sp_pvar_t *pvar = m_pcont->find_pvar(i); Item *it= sp_eval_func_item(thd, argp++, pvar->type, NULL); if (it) nctx->push_item(it); else { DBUG_RETURN(-1); } } // The rest of the frame are local variables which are all IN. // Default all variables to null (those with default clauses will // be set by an set instruction). { Item_null *nit= NULL; // Re-use this, and only create if needed for (; i < csize ; i++) { if (! nit) nit= new Item_null(); nctx->push_item(nit); } } thd->spcont= nctx; ret= execute(thd); // Partially restore context now. // We still need the call mem root and free list for processing // of the result. thd->restore_backup_item_arena(&call_arena, &backup_arena); if (m_type == TYPE_ENUM_FUNCTION && ret == 0) { /* We need result only in function but not in trigger */ Item *it= nctx->get_result(); if (it) *resp= sp_eval_func_item(thd, &it, m_returns, NULL); else { my_error(ER_SP_NORETURNEND, MYF(0), m_name.str); ret= -1; } } nctx->pop_all_cursors(); // To avoid memory leaks after an error thd->spcont= octx; // Now get rid of the rest of the callee context call_arena.free_items(); free_root(&call_mem_root, MYF(0)); DBUG_RETURN(ret); } static Item_func_get_user_var * item_is_user_var(Item *it) { if (it->type() == Item::FUNC_ITEM) { Item_func *fi= static_cast(it); if (fi->functype() == Item_func::GUSERVAR_FUNC) return static_cast(fi); } return NULL; } int sp_head::execute_procedure(THD *thd, List *args) { DBUG_ENTER("sp_head::execute_procedure"); DBUG_PRINT("info", ("procedure %s", m_name.str)); int ret= 0; uint csize = m_pcont->max_pvars(); uint params = m_pcont->current_pvars(); uint hmax = m_pcont->max_handlers(); uint cmax = m_pcont->max_cursors(); sp_rcontext *octx = thd->spcont; sp_rcontext *nctx = NULL; my_bool tmp_octx = FALSE; // True if we have allocated a temporary octx MEM_ROOT call_mem_root; Query_arena call_arena(&call_mem_root, INITIALIZED_FOR_SP), backup_arena; if (args->elements != params) { my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE", m_qname.str, params, args->elements); DBUG_RETURN(-1); } init_alloc_root(&call_mem_root, MEM_ROOT_BLOCK_SIZE, 0); thd->set_n_backup_item_arena(&call_arena, &backup_arena); if (csize > 0 || hmax > 0 || cmax > 0) { Item_null *nit= NULL; // Re-use this, and only create if needed uint i; List_iterator li(*args); Item *it; nctx= new sp_rcontext(csize, hmax, cmax); if (! octx) { // Create a temporary old context octx= new sp_rcontext(csize, hmax, cmax); tmp_octx= TRUE; } // QQ: Should do type checking? for (i = 0 ; (it= li++) && i < params ; i++) { sp_pvar_t *pvar= m_pcont->find_pvar(i); if (pvar) { if (pvar->mode != sp_param_in) { if (!it->is_splocal() && !item_is_user_var(it)) { my_error(ER_SP_NOT_VAR_ARG, MYF(0), i+1, m_qname.str); ret= -1; break; } } if (pvar->mode == sp_param_out) { if (! nit) nit= new Item_null(); nctx->push_item(nit); // OUT } else { Item *it2= sp_eval_func_item(thd, li.ref(), pvar->type, NULL); if (it2) nctx->push_item(it2); // IN or INOUT else { ret= -1; // Eval failed break; } } } } // The rest of the frame are local variables which are all IN. // Default all variables to null (those with default clauses will // be set by an set instruction). for (; i < csize ; i++) { if (! nit) nit= new Item_null(); nctx->push_item(nit); } thd->spcont= nctx; } if (! ret) ret= execute(thd); // Partially restore context now. // We still need the call mem root and free list for processing // of out parameters. thd->restore_backup_item_arena(&call_arena, &backup_arena); if (!ret && csize > 0) { List_iterator li(*args); Item *it; // Copy back all OUT or INOUT values to the previous frame, or // set global user variables for (uint i = 0 ; (it= li++) && i < params ; i++) { sp_pvar_t *pvar= m_pcont->find_pvar(i); if (pvar->mode != sp_param_in) { if (it->is_splocal()) { // Have to copy the item to the caller's mem_root Item *copy; uint offset= static_cast(it)->get_offset(); Item *val= nctx->get_item(i); Item *orig= octx->get_item(offset); Item *o_item_next; Item *o_free_list= thd->free_list; LINT_INIT(o_item_next); if (orig) o_item_next= orig->next; copy= sp_eval_func_item(thd, &val, pvar->type, orig); // Copy if (!copy) { ret= -1; break; } if (copy != orig) octx->set_item(offset, copy); if (orig && copy == orig) { // A reused item slot, where the constructor put it in the // free_list, so we have to restore the list. thd->free_list= o_free_list; copy->next= o_item_next; } } else { Item_func_get_user_var *guv= item_is_user_var(it); if (guv) { Item *item= nctx->get_item(i); Item_func_set_user_var *suv; suv= new Item_func_set_user_var(guv->get_name(), item); /* we do not check suv->fixed, because it can't be fixed after creation */ suv->fix_fields(thd, NULL, &item); suv->fix_length_and_dec(); suv->check(); suv->update(); } } } } } if (tmp_octx) octx= NULL; if (nctx) nctx->pop_all_cursors(); // To avoid memory leaks after an error thd->spcont= octx; // Now get rid of the rest of the callee context call_arena.free_items(); thd->lex->unit.cleanup(); free_root(&call_mem_root, MYF(0)); DBUG_RETURN(ret); } // Reset lex during parsing, before we parse a sub statement. void sp_head::reset_lex(THD *thd) { DBUG_ENTER("sp_head::reset_lex"); LEX *sublex; LEX *oldlex= thd->lex; (void)m_lex.push_front(oldlex); thd->lex= sublex= new st_lex; /* Reset most stuff. The length arguments doesn't matter here. */ lex_start(thd, oldlex->buf, (ulong) (oldlex->end_of_query - oldlex->ptr)); /* We must reset ptr and end_of_query again */ sublex->ptr= oldlex->ptr; sublex->end_of_query= oldlex->end_of_query; sublex->tok_start= oldlex->tok_start; sublex->yylineno= oldlex->yylineno; /* And keep the SP stuff too */ sublex->sphead= oldlex->sphead; sublex->spcont= oldlex->spcont; /* And trigger related stuff too */ sublex->trg_chistics= oldlex->trg_chistics; sublex->trg_table_fields.empty(); sublex->sp_lex_in_use= FALSE; DBUG_VOID_RETURN; } // Restore lex during parsing, after we have parsed a sub statement. void sp_head::restore_lex(THD *thd) { DBUG_ENTER("sp_head::restore_lex"); LEX *sublex= thd->lex; LEX *oldlex= (LEX *)m_lex.pop(); init_stmt_after_parse(thd, sublex); if (! oldlex) return; // Nothing to restore // Update some state in the old one first oldlex->ptr= sublex->ptr; oldlex->next_state= sublex->next_state; oldlex->trg_table_fields.push_back(&sublex->trg_table_fields); /* Add routines which are used by statement to respective sets for this routine */ sp_merge_hash(&m_spfuns, &sublex->spfuns); sp_merge_hash(&m_spprocs, &sublex->spprocs); /* Merge tables used by this statement (but not by its functions or procedures) to multiset of tables used by this routine. */ merge_table_list(thd, sublex->query_tables, sublex); if (! sublex->sp_lex_in_use) delete sublex; thd->lex= oldlex; DBUG_VOID_RETURN; } void sp_head::push_backpatch(sp_instr *i, sp_label_t *lab) { bp_t *bp= (bp_t *)sql_alloc(sizeof(bp_t)); if (bp) { bp->lab= lab; bp->instr= i; (void)m_backpatch.push_front(bp); } } void sp_head::backpatch(sp_label_t *lab) { bp_t *bp; uint dest= instructions(); List_iterator_fast li(m_backpatch); while ((bp= li++)) { if (bp->lab == lab || (bp->lab->type == SP_LAB_REF && my_strcasecmp(system_charset_info, bp->lab->name, lab->name) == 0)) { if (bp->lab->type != SP_LAB_REF) bp->instr->backpatch(dest, lab->ctx); else { sp_label_t *dstlab= bp->lab->ctx->find_label(lab->name); if (dstlab) { bp->lab= lab; bp->instr->backpatch(dest, dstlab->ctx); } } } } } int sp_head::check_backpatch(THD *thd) { bp_t *bp; List_iterator_fast li(m_backpatch); while ((bp= li++)) { if (bp->lab->type == SP_LAB_REF) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "GOTO", bp->lab->name); return -1; } } return 0; } void sp_head::set_info(char *definer, uint definerlen, longlong created, longlong modified, st_sp_chistics *chistics, ulong sql_mode) { char *p= strchr(definer, '@'); uint len; if (! p) p= definer; // Weird... len= p-definer; m_definer_user.str= strmake_root(mem_root, definer, len); m_definer_user.length= len; len= definerlen-len-1; m_definer_host.str= strmake_root(mem_root, p+1, len); m_definer_host.length= len; m_created= created; m_modified= modified; m_chistics= (st_sp_chistics *) memdup_root(mem_root, (char*) chistics, sizeof(*chistics)); if (m_chistics->comment.length == 0) m_chistics->comment.str= 0; else m_chistics->comment.str= strmake_root(mem_root, m_chistics->comment.str, m_chistics->comment.length); m_sql_mode= sql_mode; } void sp_head::reset_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::reset_thd_mem_root"); m_thd_root= thd->mem_root; thd->mem_root= &main_mem_root; DBUG_PRINT("info", ("mem_root 0x%lx moved to thd mem root 0x%lx", (ulong) &mem_root, (ulong) &thd->mem_root)); free_list= thd->free_list; // Keep the old list thd->free_list= NULL; // Start a new one /* Copy the db, since substatements will point to it */ m_thd_db= thd->db; thd->db= thd->strmake(thd->db, thd->db_length); m_thd= thd; DBUG_VOID_RETURN; } void sp_head::restore_thd_mem_root(THD *thd) { DBUG_ENTER("sp_head::restore_thd_mem_root"); Item *flist= free_list; // The old list set_item_arena(thd); // Get new free_list and mem_root state= INITIALIZED_FOR_SP; DBUG_PRINT("info", ("mem_root 0x%lx returned from thd mem root 0x%lx", (ulong) &mem_root, (ulong) &thd->mem_root)); thd->free_list= flist; // Restore the old one thd->db= m_thd_db; // Restore the original db pointer thd->mem_root= m_thd_root; m_thd= NULL; DBUG_VOID_RETURN; } /* Check if a user has access right to a routine SYNOPSIS check_show_routine_access() thd Thread handler sp SP full_access Set to 1 if the user has SELECT right to the 'mysql.proc' able or is the owner of the routine RETURN 0 ok 1 error */ bool check_show_routine_access(THD *thd, sp_head *sp, bool *full_access) { TABLE_LIST tables; bzero((char*) &tables,sizeof(tables)); tables.db= (char*) "mysql"; tables.table_name= tables.alias= (char*) "proc"; *full_access= (!check_table_access(thd, SELECT_ACL, &tables, 1) || (!strcmp(sp->m_definer_user.str, thd->priv_user) && !strcmp(sp->m_definer_host.str, thd->priv_host))); if (!*full_access) return check_some_routine_access(thd, sp->m_db.str, sp->m_name.str, sp->m_type == TYPE_ENUM_PROCEDURE); return 0; } int sp_head::show_create_procedure(THD *thd) { Protocol *protocol= thd->protocol; char buff[2048]; String buffer(buff, sizeof(buff), system_charset_info); int res; List field_list; ulong old_sql_mode; sys_var *sql_mode_var; byte *sql_mode_str; ulong sql_mode_len; bool full_access; DBUG_ENTER("sp_head::show_create_procedure"); DBUG_PRINT("info", ("procedure %s", m_name.str)); LINT_INIT(sql_mode_str); LINT_INIT(sql_mode_len); if (check_show_routine_access(thd, this, &full_access)) return 1; old_sql_mode= thd->variables.sql_mode; thd->variables.sql_mode= m_sql_mode; sql_mode_var= find_sys_var("SQL_MODE", 8); if (sql_mode_var) { sql_mode_str= sql_mode_var->value_ptr(thd, OPT_SESSION, 0); sql_mode_len= strlen((char*) sql_mode_str); } field_list.push_back(new Item_empty_string("Procedure", NAME_LEN)); if (sql_mode_var) field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len)); // 1024 is for not to confuse old clients field_list.push_back(new Item_empty_string("Create Procedure", max(buffer.length(), 1024))); if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) { res= 1; goto done; } protocol->prepare_for_resend(); protocol->store(m_name.str, m_name.length, system_charset_info); if (sql_mode_var) protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info); if (full_access) protocol->store(m_defstr.str, m_defstr.length, system_charset_info); res= protocol->write(); send_eof(thd); done: thd->variables.sql_mode= old_sql_mode; DBUG_RETURN(res); } /* Add instruction to SP SYNOPSIS sp_head::add_instr() instr Instruction */ void sp_head::add_instr(sp_instr *instr) { instr->free_list= m_thd->free_list; m_thd->free_list= 0; /* Memory root of every instruction is designated for permanent transformations (optimizations) made on the parsed tree during the first execution. It points to the memory root of the entire stored procedure, as their life span is equal. */ instr->mem_root= &main_mem_root; insert_dynamic(&m_instr, (gptr)&instr); } int sp_head::show_create_function(THD *thd) { Protocol *protocol= thd->protocol; char buff[2048]; String buffer(buff, sizeof(buff), system_charset_info); int res; List field_list; ulong old_sql_mode; sys_var *sql_mode_var; byte *sql_mode_str; ulong sql_mode_len; bool full_access; DBUG_ENTER("sp_head::show_create_function"); DBUG_PRINT("info", ("procedure %s", m_name.str)); LINT_INIT(sql_mode_str); LINT_INIT(sql_mode_len); if (check_show_routine_access(thd, this, &full_access)) return 1; old_sql_mode= thd->variables.sql_mode; thd->variables.sql_mode= m_sql_mode; sql_mode_var= find_sys_var("SQL_MODE", 8); if (sql_mode_var) { sql_mode_str= sql_mode_var->value_ptr(thd, OPT_SESSION, 0); sql_mode_len= strlen((char*) sql_mode_str); } field_list.push_back(new Item_empty_string("Function",NAME_LEN)); if (sql_mode_var) field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len)); field_list.push_back(new Item_empty_string("Create Function", max(buffer.length(),1024))); if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) { res= 1; goto done; } protocol->prepare_for_resend(); protocol->store(m_name.str, m_name.length, system_charset_info); if (sql_mode_var) protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info); if (full_access) protocol->store(m_defstr.str, m_defstr.length, system_charset_info); res= protocol->write(); send_eof(thd); done: thd->variables.sql_mode= old_sql_mode; DBUG_RETURN(res); } void sp_head::optimize() { List bp; sp_instr *i; uint src, dst; opt_mark(0); bp.empty(); src= dst= 0; while ((i= get_instr(src))) { if (! i->marked) { delete i; src+= 1; } else { if (src != dst) { sp_instr *ibp; List_iterator_fast li(bp); set_dynamic(&m_instr, (gptr)&i, dst); while ((ibp= li++)) { sp_instr_jump *ji= static_cast(ibp); if (ji->m_dest == src) ji->m_dest= dst; } } i->opt_move(dst, &bp); src+= 1; dst+= 1; } } m_instr.elements= dst; bp.empty(); } void sp_head::opt_mark(uint ip) { sp_instr *i; while ((i= get_instr(ip)) && !i->marked) ip= i->opt_mark(this); } // ------------------------------------------------------------------ /* Prepare LEX and thread for execution of instruction, if requested open and lock LEX's tables, execute instruction's core function, perform cleanup afterwards. SYNOPSIS reset_lex_and_exec_core() thd - thread context nextp - out - next instruction open_tables - if TRUE then check read access to tables in LEX's table list and open and lock them (used in instructions which need to calculate some expression and don't execute complete statement). sp_instr - instruction for which we prepare context, and which core function execute by calling its exec_core() method. NOTE We are not saving/restoring some parts of THD which may need this because we do this once for whole routine execution in sp_head::execute(). RETURN VALUE 0/non-0 - Success/Failure */ int sp_lex_keeper::reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables, sp_instr* instr) { int res= 0; DBUG_ASSERT(!thd->derived_tables); DBUG_ASSERT(thd->change_list.is_empty()); /* Use our own lex. We should not save old value since it is saved/restored in sp_head::execute() when we are entering/leaving routine. */ thd->lex= m_lex; VOID(pthread_mutex_lock(&LOCK_thread_count)); thd->query_id= next_query_id(); VOID(pthread_mutex_unlock(&LOCK_thread_count)); /* FIXME. Resetting statement (and using it) is not reentrant, thus recursive functions which try to use the same LEX twice will crash server. We should prevent such situations by tracking if LEX is already in use and throwing error about unallowed recursion if needed. OTOH it is nice to allow recursion in cases when LEX is not really used (e.g. in mathematical functions), so such tracking should be implemented at the same time as ability not to store LEX for instruction if it is not really used. */ reinit_stmt_before_use(thd, m_lex); /* If requested check whenever we have access to tables in LEX's table list and open and lock them before executing instructtions core function. */ if (open_tables && (check_table_access(thd, SELECT_ACL, m_lex->query_tables, 0) || open_and_lock_tables(thd, m_lex->query_tables))) res= -1; if (!res) res= instr->exec_core(thd, nextp); m_lex->unit.cleanup(); thd->proc_info="closing tables"; close_thread_tables(thd); thd->rollback_item_tree_changes(); /* Unlike for PS we should not call Item's destructors for newly created items after execution of each instruction in stored routine. This is because SP often create Item (like Item_int, Item_string etc...) when they want to store some value in local variable, pass return value and etc... So their life time should be longer than one instruction. Probably we can call destructors for most of them then we are leaving routine. But this won't help much as they are allocated in main query MEM_ROOT anyway. So they all go to global thd->free_list. May be we can use some other MEM_ROOT for this purprose ??? What else should we do for cleanup ? cleanup_items() is called in sp_head::execute() */ return res; } // // sp_instr // int sp_instr::exec_core(THD *thd, uint *nextp) { DBUG_ASSERT(0); return 0; } // // sp_instr_stmt // int sp_instr_stmt::execute(THD *thd, uint *nextp) { char *query; uint32 query_length; DBUG_ENTER("sp_instr_stmt::execute"); DBUG_PRINT("info", ("command: %d", m_lex_keeper.sql_command())); int res; query= thd->query; query_length= thd->query_length; if (!(res= alloc_query(thd, m_query.str, m_query.length+1))) { if (query_cache_send_result_to_client(thd, thd->query, thd->query_length) <= 0) { res= m_lex_keeper.reset_lex_and_exec_core(thd, nextp, FALSE, this); query_cache_end_of_result(thd); } else *nextp= m_ip+1; thd->query= query; thd->query_length= query_length; } DBUG_RETURN(res); } void sp_instr_stmt::print(String *str) { str->reserve(12); str->append("stmt "); str->qs_append((uint)m_lex_keeper.sql_command()); } int sp_instr_stmt::exec_core(THD *thd, uint *nextp) { int res= mysql_execute_command(thd); *nextp= m_ip+1; return res; } // // sp_instr_set // int sp_instr_set::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_set::execute"); DBUG_PRINT("info", ("offset: %u", m_offset)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_set::exec_core(THD *thd, uint *nextp) { int res= thd->spcont->set_item_eval(thd, m_offset, &m_value, m_type); *nextp = m_ip+1; return res; } void sp_instr_set::print(String *str) { str->reserve(12); str->append("set "); str->qs_append(m_offset); str->append(' '); m_value->print(str); } // // sp_instr_set_trigger_field // int sp_instr_set_trigger_field::execute(THD *thd, uint *nextp) { int res= 0; DBUG_ENTER("sp_instr_set_trigger_field::execute"); /* QQ: Still unsure what should we return in case of error 1 or -1 ? */ if (!value->fixed && value->fix_fields(thd, 0, &value) || trigger_field->fix_fields(thd, 0, 0) || (value->save_in_field(trigger_field->field, 0) < 0)) res= -1; *nextp= m_ip + 1; DBUG_RETURN(res); } void sp_instr_set_trigger_field::print(String *str) { str->append("set ", 4); trigger_field->print(str); str->append(":=", 2); value->print(str); } // // sp_instr_jump // int sp_instr_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); *nextp= m_dest; DBUG_RETURN(0); } void sp_instr_jump::print(String *str) { str->reserve(12); str->append("jump "); str->qs_append(m_dest); } uint sp_instr_jump::opt_mark(sp_head *sp) { m_dest= opt_shortcut_jump(sp, this); if (m_dest != m_ip+1) /* Jumping to following instruction? */ marked= 1; m_optdest= sp->get_instr(m_dest); return m_dest; } uint sp_instr_jump::opt_shortcut_jump(sp_head *sp, sp_instr *start) { uint dest= m_dest; sp_instr *i; while ((i= sp->get_instr(dest))) { uint ndest; if (start == i || this == i) break; ndest= i->opt_shortcut_jump(sp, start); if (ndest == dest) break; dest= ndest; } return dest; } void sp_instr_jump::opt_move(uint dst, List *bp) { if (m_dest > m_ip) bp->push_back(this); // Forward else if (m_optdest) m_dest= m_optdest->m_ip; // Backward m_ip= dst; } // // sp_instr_jump_if // int sp_instr_jump_if::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump_if::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_jump_if::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_prepare_func_item(thd, &m_expr); if (!it) res= -1; else { res= 0; if (it->val_bool()) *nextp = m_dest; else *nextp = m_ip+1; } return res; } void sp_instr_jump_if::print(String *str) { str->reserve(12); str->append("jump_if "); str->qs_append(m_dest); str->append(' '); m_expr->print(str); } uint sp_instr_jump_if::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } // // sp_instr_jump_if_not // int sp_instr_jump_if_not::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_jump_if_not::execute"); DBUG_PRINT("info", ("destination: %u", m_dest)); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_jump_if_not::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_prepare_func_item(thd, &m_expr); if (! it) res= -1; else { res= 0; if (! it->val_bool()) *nextp = m_dest; else *nextp = m_ip+1; } return res; } void sp_instr_jump_if_not::print(String *str) { str->reserve(16); str->append("jump_if_not "); str->qs_append(m_dest); str->append(' '); m_expr->print(str); } uint sp_instr_jump_if_not::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } // // sp_instr_freturn // int sp_instr_freturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_freturn::execute"); DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this)); } int sp_instr_freturn::exec_core(THD *thd, uint *nextp) { Item *it; int res; it= sp_eval_func_item(thd, &m_value, m_type, NULL); if (! it) res= -1; else { res= 0; thd->spcont->set_result(it); } *nextp= UINT_MAX; return res; } void sp_instr_freturn::print(String *str) { str->reserve(12); str->append("freturn "); str->qs_append((uint)m_type); str->append(' '); m_value->print(str); } // // sp_instr_hpush_jump // int sp_instr_hpush_jump::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpush_jump::execute"); List_iterator_fast li(m_cond); sp_cond_type_t *p; while ((p= li++)) thd->spcont->push_handler(p, m_handler, m_type, m_frame); *nextp= m_dest; DBUG_RETURN(0); } void sp_instr_hpush_jump::print(String *str) { str->reserve(32); str->append("hpush_jump "); str->qs_append(m_dest); str->append(" t="); str->qs_append(m_type); str->append(" f="); str->qs_append(m_frame); str->append(" h="); str->qs_append(m_handler); } uint sp_instr_hpush_jump::opt_mark(sp_head *sp) { sp_instr *i; marked= 1; if ((i= sp->get_instr(m_dest))) { m_dest= i->opt_shortcut_jump(sp, this); m_optdest= sp->get_instr(m_dest); } sp->opt_mark(m_dest); return m_ip+1; } // // sp_instr_hpop // int sp_instr_hpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hpop::execute"); thd->spcont->pop_handlers(m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_hpop::print(String *str) { str->reserve(12); str->append("hpop "); str->qs_append(m_count); } void sp_instr_hpop::backpatch(uint dest, sp_pcontext *dst_ctx) { m_count= m_ctx->diff_handlers(dst_ctx); } // // sp_instr_hreturn // int sp_instr_hreturn::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_hreturn::execute"); if (m_dest) *nextp= m_dest; else { thd->spcont->restore_variables(m_frame); *nextp= thd->spcont->pop_hstack(); } thd->spcont->in_handler= FALSE; DBUG_RETURN(0); } void sp_instr_hreturn::print(String *str) { str->reserve(16); str->append("hreturn "); str->qs_append(m_frame); if (m_dest) str->qs_append(m_dest); } uint sp_instr_hreturn::opt_mark(sp_head *sp) { if (m_dest) return sp_instr_jump::opt_mark(sp); else { marked= 1; return UINT_MAX; } } // // sp_instr_cpush // int sp_instr_cpush::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cpush::execute"); thd->spcont->push_cursor(&m_lex_keeper); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_cpush::print(String *str) { str->append("cpush"); } // // sp_instr_cpop // int sp_instr_cpop::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_cpop::execute"); thd->spcont->pop_cursors(m_count); *nextp= m_ip+1; DBUG_RETURN(0); } void sp_instr_cpop::print(String *str) { str->reserve(12); str->append("cpop "); str->qs_append(m_count); } void sp_instr_cpop::backpatch(uint dest, sp_pcontext *dst_ctx) { m_count= m_ctx->diff_cursors(dst_ctx); } // // sp_instr_copen // int sp_instr_copen::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_copen::execute"); if (! c) res= -1; else { sp_lex_keeper *lex_keeper= c->pre_open(thd); if (!lex_keeper) // cursor already open or OOM { res= -1; *nextp= m_ip+1; } else { res= lex_keeper->reset_lex_and_exec_core(thd, nextp, FALSE, this); /* Work around the fact that errors in selects are not returned properly (but instead converted into a warning), so if a condition handler caught, we have lost the result code. */ if (!res) { uint dummy1, dummy2; if (thd->spcont->found_handler(&dummy1, &dummy2)) res= -1; } c->post_open(thd, res ? FALSE : TRUE); } } DBUG_RETURN(res); } int sp_instr_copen::exec_core(THD *thd, uint *nextp) { int res= mysql_execute_command(thd); *nextp= m_ip+1; return res; } void sp_instr_copen::print(String *str) { str->reserve(12); str->append("copen "); str->qs_append(m_cursor); } // // sp_instr_cclose // int sp_instr_cclose::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_cclose::execute"); if (! c) res= -1; else res= c->close(thd); *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cclose::print(String *str) { str->reserve(12); str->append("cclose "); str->qs_append(m_cursor); } // // sp_instr_cfetch // int sp_instr_cfetch::execute(THD *thd, uint *nextp) { sp_cursor *c= thd->spcont->get_cursor(m_cursor); int res; DBUG_ENTER("sp_instr_cfetch::execute"); if (! c) res= -1; else res= c->fetch(thd, &m_varlist); *nextp= m_ip+1; DBUG_RETURN(res); } void sp_instr_cfetch::print(String *str) { List_iterator_fast li(m_varlist); sp_pvar_t *pv; str->reserve(12); str->append("cfetch "); str->qs_append(m_cursor); while ((pv= li++)) { str->reserve(8); str->append(' '); str->qs_append(pv->offset); } } // // sp_instr_error // int sp_instr_error::execute(THD *thd, uint *nextp) { DBUG_ENTER("sp_instr_error::execute"); my_message(m_errcode, ER(m_errcode), MYF(0)); *nextp= m_ip+1; DBUG_RETURN(-1); } void sp_instr_error::print(String *str) { str->reserve(12); str->append("error "); str->qs_append(m_errcode); } /* ------------------------------------------------------------------ */ // // Security context swapping // #ifndef NO_EMBEDDED_ACCESS_CHECKS void sp_change_security_context(THD *thd, sp_head *sp, st_sp_security_context *ctxp) { ctxp->changed= (sp->m_chistics->suid != SP_IS_NOT_SUID && (strcmp(sp->m_definer_user.str, thd->priv_user) || strcmp(sp->m_definer_host.str, thd->priv_host))); if (ctxp->changed) { ctxp->master_access= thd->master_access; ctxp->db_access= thd->db_access; ctxp->priv_user= thd->priv_user; strncpy(ctxp->priv_host, thd->priv_host, sizeof(ctxp->priv_host)); ctxp->user= thd->user; ctxp->host= thd->host; ctxp->ip= thd->ip; /* Change thise just to do the acl_getroot_no_password */ thd->user= sp->m_definer_user.str; thd->host= thd->ip = sp->m_definer_host.str; if (acl_getroot_no_password(thd)) { // Failed, run as invoker for now ctxp->changed= FALSE; thd->master_access= ctxp->master_access; thd->db_access= ctxp->db_access; thd->priv_user= ctxp->priv_user; strncpy(thd->priv_host, ctxp->priv_host, sizeof(thd->priv_host)); } /* Restore these immiediately */ thd->user= ctxp->user; thd->host= ctxp->host; thd->ip= ctxp->ip; } } void sp_restore_security_context(THD *thd, sp_head *sp, st_sp_security_context *ctxp) { if (ctxp->changed) { ctxp->changed= FALSE; thd->master_access= ctxp->master_access; thd->db_access= ctxp->db_access; thd->priv_user= ctxp->priv_user; strncpy(thd->priv_host, ctxp->priv_host, sizeof(thd->priv_host)); } } #endif /* NO_EMBEDDED_ACCESS_CHECKS */ /* Structure that represent all instances of one table in optimized multi-set of tables used by routine. */ typedef struct st_sp_table { LEX_STRING qname; /* Multi-set key: db_name\0table_name\0alias\0 */ uint db_length, table_name_length; bool temp; /* true if corresponds to a temporary table */ thr_lock_type lock_type; /* lock type used for prelocking */ uint lock_count; uint query_lock_count; } SP_TABLE; byte * sp_table_key(const byte *ptr, uint *plen, my_bool first) { SP_TABLE *tab= (SP_TABLE *)ptr; *plen= tab->qname.length; return (byte *)tab->qname.str; } /* Merge the list of tables used by some query into the multi-set of tables used by routine. SYNOPSIS merge_table_list() thd - thread context table - table list lex_for_tmp_check - LEX of the query for which we are merging table list. NOTE This method will use LEX provided to check whenever we are creating temporary table and mark it as such in target multi-set. RETURN VALUE TRUE - Success FALSE - Error */ bool sp_head::merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check) { SP_TABLE *tab; if (lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE && lex_for_tmp_check->drop_temporary) return TRUE; for (uint i= 0 ; i < m_sptabs.records ; i++) { tab= (SP_TABLE *)hash_element(&m_sptabs, i); tab->query_lock_count= 0; } for (; table ; table= table->next_global) if (!table->derived && !table->schema_table) { char tname[(NAME_LEN + 1) * 3]; // db\0table\0alias\0 uint tlen, alen; tlen= table->db_length; memcpy(tname, table->db, tlen); tname[tlen++]= '\0'; memcpy(tname+tlen, table->table_name, table->table_name_length); tlen+= table->table_name_length; tname[tlen++]= '\0'; alen= strlen(table->alias); memcpy(tname+tlen, table->alias, alen); tlen+= alen; tname[tlen]= '\0'; /* It is safe to store pointer to table list elements in hash, since they are supposed to have the same lifetime. */ if ((tab= (SP_TABLE *)hash_search(&m_sptabs, (byte *)tname, tlen))) { if (tab->lock_type < table->lock_type) tab->lock_type= table->lock_type; // Use the table with the highest lock type tab->query_lock_count++; if (tab->query_lock_count > tab->lock_count) tab->lock_count++; } else { if (!(tab= (SP_TABLE *)thd->calloc(sizeof(SP_TABLE)))) return FALSE; tab->qname.length= tlen; tab->qname.str= (char*) thd->memdup(tname, tab->qname.length + 1); if (!tab->qname.str) return FALSE; if (lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE && lex_for_tmp_check->query_tables == table && lex_for_tmp_check->create_info.options & HA_LEX_CREATE_TMP_TABLE) tab->temp= TRUE; tab->table_name_length= table->table_name_length; tab->db_length= table->db_length; tab->lock_type= table->lock_type; tab->lock_count= tab->query_lock_count= 1; my_hash_insert(&m_sptabs, (byte *)tab); } } return TRUE; } /* Add tables used by routine to the table list. SYNOPSIS add_used_tables_to_table_list() thd - thread context query_tables_last_ptr - (in/out) pointer the next_global member of last element of the list where tables will be added (or to its root). DESCRIPTION Converts multi-set of tables used by this routine to table list and adds this list to the end of table list specified by 'query_tables_last_ptr'. Elements of list will be allocated in PS memroot, so this list will be persistent between PS executions. RETURN VALUE TRUE - if some elements were added, FALSE - otherwise. */ bool sp_head::add_used_tables_to_table_list(THD *thd, TABLE_LIST ***query_tables_last_ptr) { uint i; Query_arena *arena, backup; bool result= FALSE; DBUG_ENTER("sp_head::add_used_tables_to_table_list"); /* Use persistent arena for table list allocation to be PS friendly. */ arena= thd->change_arena_if_needed(&backup); for (i=0 ; i < m_sptabs.records ; i++) { char *tab_buff; TABLE_LIST *table; SP_TABLE *stab= (SP_TABLE *)hash_element(&m_sptabs, i); if (stab->temp) continue; if (!(tab_buff= (char *)thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST)) * stab->lock_count))) DBUG_RETURN(FALSE); for (uint j= 0; j < stab->lock_count; j++) { table= (TABLE_LIST *)tab_buff; /* It's enough to just copy the pointers as the data will not change during the lifetime of the SP. If the SP is used by PS, we assume that the PS will be invalidated if the functions is deleted or changed. */ table->db= stab->qname.str; table->db_length= stab->db_length; table->table_name= table->db + table->db_length + 1; table->table_name_length= stab->table_name_length; table->alias= table->table_name + table->table_name_length + 1; table->lock_type= stab->lock_type; table->cacheable_table= 1; table->prelocking_placeholder= 1; /* Everyting else should be zeroed */ **query_tables_last_ptr= table; table->prev_global= *query_tables_last_ptr; *query_tables_last_ptr= &table->next_global; tab_buff+= ALIGN_SIZE(sizeof(TABLE_LIST)); result= TRUE; } } if (arena) thd->restore_backup_item_arena(arena, &backup); DBUG_RETURN(result); } /* * Simple function for adding an explicetly named (systems) table to * the global table list, e.g. "mysql", "proc". * */ TABLE_LIST * sp_add_to_query_tables(THD *thd, LEX *lex, const char *db, const char *name, thr_lock_type locktype) { TABLE_LIST *table; if (!(table= (TABLE_LIST *)thd->calloc(sizeof(TABLE_LIST)))) { my_error(ER_OUTOFMEMORY, MYF(0), sizeof(TABLE_LIST)); return NULL; } table->db_length= strlen(db); table->db= thd->strmake(db, table->db_length); table->table_name_length= strlen(name); table->table_name= thd->strmake(name, table->table_name_length); table->alias= thd->strdup(name); table->lock_type= locktype; table->select_lex= lex->current_select; // QQ? table->cacheable_table= 1; lex->add_to_query_tables(table); return table; } /* Auxilary function for adding tables used by routines used in query to table lists. SYNOPSIS sp_add_sp_tables_to_table_list_aux() thd - thread context lex - LEX to which table list tables will be added func_hash - routines for which tables should be added func_cache- SP cache in which this routines should be looked up NOTE See sp_add_sp_tables_to_table_list() for more info. RETURN VALUE TRUE - some tables were added FALSE - no tables were added. */ static bool sp_add_sp_tables_to_table_list_aux(THD *thd, LEX *lex, HASH *func_hash, sp_cache **func_cache) { uint i; bool result= FALSE; for (i= 0 ; i < func_hash->records ; i++) { sp_head *sp; LEX_STRING *ls= (LEX_STRING *)hash_element(func_hash, i); sp_name name(*ls); name.m_qname= *ls; if ((sp= sp_cache_lookup(func_cache, &name))) result|= sp->add_used_tables_to_table_list(thd, &lex->query_tables_last); } return result; } /* Add tables used by routines used in query to table list. SYNOPSIS sp_add_sp_tables_to_table_list() thd - thread context lex - LEX to which table list tables will be added func_lex - LEX for which functions we get tables (useful for adding tables used by view routines) NOTE Elements of list will be allocated in PS memroot, so this list will be persistent between PS execetutions. RETURN VALUE TRUE - some tables were added FALSE - no tables were added. */ bool sp_add_sp_tables_to_table_list(THD *thd, LEX *lex, LEX *func_lex) { return (sp_add_sp_tables_to_table_list_aux(thd, lex, &func_lex->spfuns, &thd->sp_func_cache) | sp_add_sp_tables_to_table_list_aux(thd, lex, &func_lex->spprocs, &thd->sp_proc_cache)); }