#ifndef SQL_ARRAY_INCLUDED #define SQL_ARRAY_INCLUDED /* Copyright (c) 2003, 2005-2007 MySQL AB, 2009 Sun Microsystems, Inc. Use is subject to license terms. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include /** A wrapper class which provides array bounds checking. We do *not* own the array, we simply have a pointer to the first element, and a length. @remark We want the compiler-generated versions of: - the copy CTOR (memberwise initialization) - the assignment operator (memberwise assignment) @param Element_type The type of the elements of the container. */ template class Bounds_checked_array { public: Bounds_checked_array() : m_array(NULL), m_size(0) {} Bounds_checked_array(Element_type *el, size_t size) : m_array(el), m_size(size) {} void reset() { m_array= NULL; m_size= 0; } void reset(Element_type *array, size_t size) { m_array= array; m_size= size; } /** Set a new bound on the array. Does not resize the underlying array, so the new size must be smaller than or equal to the current size. */ void resize(size_t new_size) { DBUG_ASSERT(new_size <= m_size); m_size= new_size; } Element_type &operator[](size_t n) { DBUG_ASSERT(n < m_size); return m_array[n]; } const Element_type &operator[](size_t n) const { DBUG_ASSERT(n < m_size); return m_array[n]; } size_t element_size() const { return sizeof(Element_type); } size_t size() const { return m_size; } bool is_null() const { return m_array == NULL; } void pop_front() { DBUG_ASSERT(m_size > 0); m_array+= 1; m_size-= 1; } Element_type *array() const { return m_array; } private: Element_type *m_array; size_t m_size; }; /* A typesafe wrapper around DYNAMIC_ARRAY */ template class Dynamic_array { DYNAMIC_ARRAY array; public: Dynamic_array(uint prealloc=16, uint increment=16) { my_init_dynamic_array(&array, sizeof(Elem), prealloc, increment, MYF(MY_THREAD_SPECIFIC)); } Elem& at(int idx) { return *(((Elem*)array.buffer) + idx); } Elem *front() { return (Elem*)array.buffer; } Elem *back() { return ((Elem*)array.buffer) + array.elements; } bool append(Elem &el) { return (insert_dynamic(&array, (uchar*)&el)); } int elements() { return array.elements; } ~Dynamic_array() { delete_dynamic(&array); } typedef int (*CMP_FUNC)(const Elem *el1, const Elem *el2); void sort(CMP_FUNC cmp_func) { my_qsort(array.buffer, array.elements, sizeof(Elem), (qsort_cmp)cmp_func); } }; /* Array of pointers to Elem that uses memory from MEM_ROOT MEM_ROOT has no realloc() so this is supposed to be used for cases when reallocations are rare. */ template class Array { enum {alloc_increment = 16}; Elem **buffer; uint n_elements, max_element; public: Array(MEM_ROOT *mem_root, uint prealloc=16) { buffer= (Elem**)alloc_root(mem_root, prealloc * sizeof(Elem**)); max_element = buffer? prealloc : 0; n_elements= 0; } Elem& at(int idx) { return *(((Elem*)buffer) + idx); } Elem **front() { return buffer; } Elem **back() { return buffer + n_elements; } bool append(MEM_ROOT *mem_root, Elem *el) { if (n_elements == max_element) { Elem **newbuf; if (!(newbuf= (Elem**)alloc_root(mem_root, (n_elements + alloc_increment)* sizeof(Elem**)))) { return FALSE; } memcpy(newbuf, buffer, n_elements*sizeof(Elem*)); buffer= newbuf; } buffer[n_elements++]= el; return FALSE; } int elements() { return n_elements; } void clear() { n_elements= 0; } typedef int (*CMP_FUNC)(Elem * const *el1, Elem *const *el2); void sort(CMP_FUNC cmp_func) { my_qsort(buffer, n_elements, sizeof(Elem*), (qsort_cmp)cmp_func); } }; #endif /* SQL_ARRAY_INCLUDED */