/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Classes in mysql */ #ifdef USE_PRAGMA_INTERFACE #pragma interface /* gcc class implementation */ #endif #include "log.h" #include "rpl_rli.h" #include "rpl_tblmap.h" class Query_log_event; class Load_log_event; class Slave_log_event; class sp_rcontext; class sp_cache; class Rows_log_event; enum enum_enable_or_disable { LEAVE_AS_IS, ENABLE, DISABLE }; enum enum_ha_read_modes { RFIRST, RNEXT, RPREV, RLAST, RKEY, RNEXT_SAME }; enum enum_duplicates { DUP_ERROR, DUP_REPLACE, DUP_UPDATE }; enum enum_delay_key_write { DELAY_KEY_WRITE_NONE, DELAY_KEY_WRITE_ON, DELAY_KEY_WRITE_ALL }; enum enum_check_fields { CHECK_FIELD_IGNORE, CHECK_FIELD_WARN, CHECK_FIELD_ERROR_FOR_NULL }; enum enum_mark_columns { MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE}; extern char internal_table_name[2]; extern const char **errmesg; #define TC_LOG_PAGE_SIZE 8192 #define TC_LOG_MIN_SIZE (3*TC_LOG_PAGE_SIZE) #define TC_HEURISTIC_RECOVER_COMMIT 1 #define TC_HEURISTIC_RECOVER_ROLLBACK 2 extern uint tc_heuristic_recover; typedef struct st_user_var_events { user_var_entry *user_var_event; char *value; ulong length; Item_result type; uint charset_number; } BINLOG_USER_VAR_EVENT; #define RP_LOCK_LOG_IS_ALREADY_LOCKED 1 #define RP_FORCE_ROTATE 2 typedef struct st_copy_info { ha_rows records; ha_rows deleted; ha_rows updated; ha_rows copied; ha_rows error_count; enum enum_duplicates handle_duplicates; int escape_char, last_errno; bool ignore; /* for INSERT ... UPDATE */ List *update_fields; List *update_values; /* for VIEW ... WITH CHECK OPTION */ TABLE_LIST *view; } COPY_INFO; class key_part_spec :public Sql_alloc { public: const char *field_name; uint length; key_part_spec(const char *name,uint len=0) :field_name(name), length(len) {} bool operator==(const key_part_spec& other) const; }; class Alter_drop :public Sql_alloc { public: enum drop_type {KEY, COLUMN }; const char *name; enum drop_type type; Alter_drop(enum drop_type par_type,const char *par_name) :name(par_name), type(par_type) {} }; class Alter_column :public Sql_alloc { public: const char *name; Item *def; Alter_column(const char *par_name,Item *literal) :name(par_name), def(literal) {} }; class Key :public Sql_alloc { public: enum Keytype { PRIMARY, UNIQUE, MULTIPLE, FULLTEXT, SPATIAL, FOREIGN_KEY}; enum Keytype type; KEY_CREATE_INFO key_create_info; List columns; const char *name; bool generated; Key(enum Keytype type_par, const char *name_arg, KEY_CREATE_INFO *key_info_arg, bool generated_arg, List &cols) :type(type_par), key_create_info(*key_info_arg), columns(cols), name(name_arg), generated(generated_arg) {} ~Key() {} /* Equality comparison of keys (ignoring name) */ friend bool foreign_key_prefix(Key *a, Key *b); }; class Table_ident; class foreign_key: public Key { public: enum fk_match_opt { FK_MATCH_UNDEF, FK_MATCH_FULL, FK_MATCH_PARTIAL, FK_MATCH_SIMPLE}; enum fk_option { FK_OPTION_UNDEF, FK_OPTION_RESTRICT, FK_OPTION_CASCADE, FK_OPTION_SET_NULL, FK_OPTION_NO_ACTION, FK_OPTION_DEFAULT}; Table_ident *ref_table; List ref_columns; uint delete_opt, update_opt, match_opt; foreign_key(const char *name_arg, List &cols, Table_ident *table, List &ref_cols, uint delete_opt_arg, uint update_opt_arg, uint match_opt_arg) :Key(FOREIGN_KEY, name_arg, &default_key_create_info, 0, cols), ref_table(table), ref_columns(cols), delete_opt(delete_opt_arg), update_opt(update_opt_arg), match_opt(match_opt_arg) {} }; typedef struct st_mysql_lock { TABLE **table; uint table_count,lock_count; THR_LOCK_DATA **locks; } MYSQL_LOCK; class LEX_COLUMN : public Sql_alloc { public: String column; uint rights; LEX_COLUMN (const String& x,const uint& y ): column (x),rights (y) {} }; #include "sql_lex.h" /* Must be here */ class delayed_insert; class select_result; class Time_zone; #define THD_SENTRY_MAGIC 0xfeedd1ff #define THD_SENTRY_GONE 0xdeadbeef #define THD_CHECK_SENTRY(thd) DBUG_ASSERT(thd->dbug_sentry == THD_SENTRY_MAGIC) struct system_variables { ulonglong myisam_max_extra_sort_file_size; ulonglong myisam_max_sort_file_size; ha_rows select_limit; ha_rows max_join_size; ulong auto_increment_increment, auto_increment_offset; ulong bulk_insert_buff_size; ulong join_buff_size; ulong long_query_time; ulong max_allowed_packet; ulong max_error_count; ulong max_heap_table_size; ulong max_length_for_sort_data; ulong max_sort_length; ulong max_tmp_tables; ulong max_insert_delayed_threads; ulong multi_range_count; ulong myisam_repair_threads; ulong myisam_sort_buff_size; ulong myisam_stats_method; ulong net_buffer_length; ulong net_interactive_timeout; ulong net_read_timeout; ulong net_retry_count; ulong net_wait_timeout; ulong net_write_timeout; ulong optimizer_prune_level; ulong optimizer_search_depth; ulong preload_buff_size; ulong query_cache_type; ulong read_buff_size; ulong read_rnd_buff_size; ulong div_precincrement; ulong sortbuff_size; handlerton *table_type; ulong tmp_table_size; ulong tx_isolation; ulong completion_type; /* Determines which non-standard SQL behaviour should be enabled */ ulong sql_mode; ulong max_sp_recursion_depth; /* check of key presence in updatable view */ ulong updatable_views_with_limit; ulong default_week_format; ulong max_seeks_for_key; ulong range_alloc_block_size; ulong query_alloc_block_size; ulong query_prealloc_size; ulong trans_alloc_block_size; ulong trans_prealloc_size; ulong log_warnings; ulong group_concat_max_len; /* In slave thread we need to know in behalf of which thread the query is being run to replicate temp tables properly */ ulong pseudo_thread_id; my_bool low_priority_updates; my_bool new_mode; my_bool query_cache_wlock_invalidate; my_bool engine_condition_pushdown; my_bool innodb_table_locks; my_bool innodb_support_xa; my_bool ndb_force_send; my_bool ndb_use_copying_alter_table; my_bool ndb_use_exact_count; my_bool ndb_use_transactions; my_bool ndb_index_stat_enable; ulong ndb_autoincrement_prefetch_sz; ulong ndb_index_stat_cache_entries; ulong ndb_index_stat_update_freq; ulong binlog_format; // binlog format for this thd (see enum_binlog_format) my_bool old_alter_table; my_bool old_passwords; /* Only charset part of these variables is sensible */ CHARSET_INFO *character_set_filesystem; CHARSET_INFO *character_set_client; CHARSET_INFO *character_set_results; /* Both charset and collation parts of these variables are important */ CHARSET_INFO *collation_server; CHARSET_INFO *collation_database; CHARSET_INFO *collation_connection; /* Locale Support */ MY_LOCALE *lc_time_names; Time_zone *time_zone; /* DATE, DATETIME and TIME formats */ DATE_TIME_FORMAT *date_format; DATE_TIME_FORMAT *datetime_format; DATE_TIME_FORMAT *time_format; my_bool sysdate_is_now; }; /* per thread status variables */ typedef struct system_status_var { ulong bytes_received; ulong bytes_sent; ulong com_other; ulong com_stat[(uint) SQLCOM_END]; ulong created_tmp_disk_tables; ulong created_tmp_tables; ulong ha_commit_count; ulong ha_delete_count; ulong ha_read_first_count; ulong ha_read_last_count; ulong ha_read_key_count; ulong ha_read_next_count; ulong ha_read_prev_count; ulong ha_read_rnd_count; ulong ha_read_rnd_next_count; ulong ha_rollback_count; ulong ha_update_count; ulong ha_write_count; ulong ha_prepare_count; ulong ha_discover_count; ulong ha_savepoint_count; ulong ha_savepoint_rollback_count; /* KEY_CACHE parts. These are copies of the original */ ulong key_blocks_changed; ulong key_blocks_used; ulong key_cache_r_requests; ulong key_cache_read; ulong key_cache_w_requests; ulong key_cache_write; /* END OF KEY_CACHE parts */ ulong net_big_packet_count; ulong opened_tables; ulong opened_shares; ulong select_full_join_count; ulong select_full_range_join_count; ulong select_range_count; ulong select_range_check_count; ulong select_scan_count; ulong long_query_count; ulong filesort_merge_passes; ulong filesort_range_count; ulong filesort_rows; ulong filesort_scan_count; /* Prepared statements and binary protocol */ ulong com_stmt_prepare; ulong com_stmt_execute; ulong com_stmt_send_long_data; ulong com_stmt_fetch; ulong com_stmt_reset; ulong com_stmt_close; double last_query_cost; } STATUS_VAR; /* This is used for 'show status'. It must be updated to the last ulong variable in system_status_var */ #define last_system_status_var com_stmt_close #ifdef MYSQL_SERVER void free_tmp_table(THD *thd, TABLE *entry); /* The following macro is to make init of Query_arena simpler */ #ifndef DBUG_OFF #define INIT_ARENA_DBUG_INFO is_backup_arena= 0 #else #define INIT_ARENA_DBUG_INFO #endif class Query_arena { public: /* List of items created in the parser for this query. Every item puts itself to the list on creation (see Item::Item() for details)) */ Item *free_list; MEM_ROOT *mem_root; // Pointer to current memroot #ifndef DBUG_OFF bool is_backup_arena; /* True if this arena is used for backup. */ #endif enum enum_state { INITIALIZED= 0, INITIALIZED_FOR_SP= 1, PREPARED= 2, CONVENTIONAL_EXECUTION= 3, EXECUTED= 4, ERROR= -1 }; enum_state state; /* We build without RTTI, so dynamic_cast can't be used. */ enum Type { STATEMENT, PREPARED_STATEMENT, STORED_PROCEDURE }; Query_arena(MEM_ROOT *mem_root_arg, enum enum_state state_arg) : free_list(0), mem_root(mem_root_arg), state(state_arg) { INIT_ARENA_DBUG_INFO; } /* This constructor is used only when Query_arena is created as backup storage for another instance of Query_arena. */ Query_arena() { INIT_ARENA_DBUG_INFO; } virtual Type type() const; virtual ~Query_arena() {}; inline bool is_stmt_prepare() const { return state == INITIALIZED; } inline bool is_first_sp_execute() const { return state == INITIALIZED_FOR_SP; } inline bool is_stmt_prepare_or_first_sp_execute() const { return (int)state < (int)PREPARED; } inline bool is_first_stmt_execute() const { return state == PREPARED; } inline bool is_stmt_execute() const { return state == PREPARED || state == EXECUTED; } inline bool is_conventional() const { return state == CONVENTIONAL_EXECUTION; } inline gptr alloc(unsigned int size) { return alloc_root(mem_root,size); } inline gptr calloc(unsigned int size) { gptr ptr; if ((ptr=alloc_root(mem_root,size))) bzero((char*) ptr,size); return ptr; } inline char *strdup(const char *str) { return strdup_root(mem_root,str); } inline char *strmake(const char *str, uint size) { return strmake_root(mem_root,str,size); } inline char *memdup(const char *str, uint size) { return memdup_root(mem_root,str,size); } inline char *memdup_w_gap(const char *str, uint size, uint gap) { gptr ptr; if ((ptr=alloc_root(mem_root,size+gap))) memcpy(ptr,str,size); return ptr; } void set_query_arena(Query_arena *set); void free_items(); /* Close the active state associated with execution of this statement */ virtual void cleanup_stmt(); }; class Server_side_cursor; /* State of a single command executed against this connection. One connection can contain a lot of simultaneously running statements, some of which could be: - prepared, that is, contain placeholders, - opened as cursors. We maintain 1 to 1 relationship between statement and cursor - if user wants to create another cursor for his query, we create another statement for it. To perform some action with statement we reset THD part to the state of that statement, do the action, and then save back modified state from THD to the statement. It will be changed in near future, and Statement will be used explicitly. */ class Statement: public ilink, public Query_arena { Statement(const Statement &rhs); /* not implemented: */ Statement &operator=(const Statement &rhs); /* non-copyable */ public: /* FIXME: these must be protected */ MEM_ROOT main_mem_root; LEX main_lex; /* Uniquely identifies each statement object in thread scope; change during statement lifetime. FIXME: must be const */ ulong id; /* MARK_COLUMNS_NONE: Means mark_used_colums is not set and no indicator to handler of fields used is set MARK_COLUMNS_READ: Means a bit in read set is set to inform handler that the field is to be read. If field list contains duplicates, then thd->dup_field is set to point to the last found duplicate. MARK_COLUMNS_WRITE: Means a bit is set in write set to inform handler that it needs to update this field in write_row and update_row. */ enum enum_mark_columns mark_used_columns; LEX_STRING name; /* name for named prepared statements */ LEX *lex; // parse tree descriptor /* Points to the query associated with this statement. It's const, but we need to declare it char * because all table handlers are written in C and need to point to it. Note that (A) if we set query = NULL, we must at the same time set query_length = 0, and protect the whole operation with the LOCK_thread_count mutex. And (B) we are ONLY allowed to set query to a non-NULL value if its previous value is NULL. We do not need to protect operation (B) with any mutex. To avoid crashes in races, if we do not know that thd->query cannot change at the moment, one should print thd->query like this: (1) reserve the LOCK_thread_count mutex; (2) check if thd->query is NULL; (3) if not NULL, then print at most thd->query_length characters from it. We will see the query_length field as either 0, or the right value for it. Assuming that the write and read of an n-bit memory field in an n-bit computer is atomic, we can avoid races in the above way. This printing is needed at least in SHOW PROCESSLIST and SHOW INNODB STATUS. */ char *query; uint32 query_length; // current query length Server_side_cursor *cursor; public: /* This constructor is called for backup statements */ Statement() { clear_alloc_root(&main_mem_root); } Statement(enum enum_state state_arg, ulong id_arg, ulong alloc_block_size, ulong prealloc_size); virtual ~Statement(); /* Assign execution context (note: not all members) of given stmt to self */ void set_statement(Statement *stmt); void set_n_backup_statement(Statement *stmt, Statement *backup); void restore_backup_statement(Statement *stmt, Statement *backup); /* return class type */ virtual Type type() const; }; /* Container for all statements created/used in a connection. Statements in Statement_map have unique Statement::id (guaranteed by id assignment in Statement::Statement) Non-empty statement names are unique too: attempt to insert a new statement with duplicate name causes older statement to be deleted Statements are auto-deleted when they are removed from the map and when the map is deleted. */ class Statement_map { public: Statement_map(); int insert(THD *thd, Statement *statement); Statement *find_by_name(LEX_STRING *name) { Statement *stmt; stmt= (Statement*)hash_search(&names_hash, (byte*)name->str, name->length); return stmt; } Statement *find(ulong id) { if (last_found_statement == 0 || id != last_found_statement->id) { Statement *stmt; stmt= (Statement *) hash_search(&st_hash, (byte *) &id, sizeof(id)); if (stmt && stmt->name.str) return NULL; last_found_statement= stmt; } return last_found_statement; } /* Close all cursors of this connection that use tables of a storage engine that has transaction-specific state and therefore can not survive COMMIT or ROLLBACK. Currently all but MyISAM cursors are closed. */ void close_transient_cursors(); void erase(Statement *statement); /* Erase all statements (calls Statement destructor) */ void reset(); ~Statement_map(); private: HASH st_hash; HASH names_hash; I_List transient_cursor_list; Statement *last_found_statement; }; struct st_savepoint { struct st_savepoint *prev; char *name; uint length, nht; }; enum xa_states {XA_NOTR=0, XA_ACTIVE, XA_IDLE, XA_PREPARED}; extern const char *xa_state_names[]; typedef struct st_xid_state { /* For now, this is only used to catch duplicated external xids */ XID xid; // transaction identifier enum xa_states xa_state; // used by external XA only bool in_thd; } XID_STATE; extern pthread_mutex_t LOCK_xid_cache; extern HASH xid_cache; bool xid_cache_init(void); void xid_cache_free(void); XID_STATE *xid_cache_search(XID *xid); bool xid_cache_insert(XID *xid, enum xa_states xa_state); bool xid_cache_insert(XID_STATE *xid_state); void xid_cache_delete(XID_STATE *xid_state); class Security_context { public: Security_context() {} /* Remove gcc warning */ /* host - host of the client user - user of the client, set to NULL until the user has been read from the connection priv_user - The user privilege we are using. May be "" for anonymous user. ip - client IP */ char *host, *user, *priv_user, *ip; /* The host privilege we are using */ char priv_host[MAX_HOSTNAME]; /* points to host if host is available, otherwise points to ip */ const char *host_or_ip; ulong master_access; /* Global privileges from mysql.user */ ulong db_access; /* Privileges for current db */ void init(); void destroy(); void skip_grants(); inline char *priv_host_name() { return (*priv_host ? priv_host : (char *)"%"); } bool set_user(char *user_arg); }; /* A registry for item tree transformations performed during query optimization. We register only those changes which require a rollback to re-execute a prepared statement or stored procedure yet another time. */ struct Item_change_record; typedef I_List Item_change_list; /* Type of prelocked mode. See comment for THD::prelocked_mode for complete description. */ enum prelocked_mode_type {NON_PRELOCKED= 0, PRELOCKED= 1, PRELOCKED_UNDER_LOCK_TABLES= 2}; /* Class that holds information about tables which were opened and locked by the thread. It is also used to save/restore this information in push_open_tables_state()/pop_open_tables_state(). */ class Open_tables_state { public: /* open_tables - list of regular tables in use by this thread temporary_tables - list of temp tables in use by this thread handler_tables - list of tables that were opened with HANDLER OPEN and are still in use by this thread */ TABLE *open_tables, *temporary_tables, *handler_tables, *derived_tables; /* During a MySQL session, one can lock tables in two modes: automatic or manual. In automatic mode all necessary tables are locked just before statement execution, and all acquired locks are stored in 'lock' member. Unlocking takes place automatically as well, when the statement ends. Manual mode comes into play when a user issues a 'LOCK TABLES' statement. In this mode the user can only use the locked tables. Trying to use any other tables will give an error. The locked tables are stored in 'locked_tables' member. Manual locking is described in the 'LOCK_TABLES' chapter of the MySQL manual. See also lock_tables() for details. */ MYSQL_LOCK *lock; /* Tables that were locked with explicit or implicit LOCK TABLES. (Implicit LOCK TABLES happens when we are prelocking tables for execution of statement which uses stored routines. See description THD::prelocked_mode for more info.) */ MYSQL_LOCK *locked_tables; /* CREATE-SELECT keeps an extra lock for the table being created. This field is used to keep the extra lock available for lower level routines, which would otherwise miss that lock. */ MYSQL_LOCK *extra_lock; /* prelocked_mode_type enum and prelocked_mode member are used for indicating whenever "prelocked mode" is on, and what type of "prelocked mode" is it. Prelocked mode is used for execution of queries which explicitly or implicitly (via views or triggers) use functions, thus may need some additional tables (mentioned in query table list) for their execution. First open_tables() call for such query will analyse all functions used by it and add all additional tables to table its list. It will also mark this query as requiring prelocking. After that lock_tables() will issue implicit LOCK TABLES for the whole table list and change thd::prelocked_mode to non-0. All queries called in functions invoked by the main query will use prelocked tables. Non-0 prelocked_mode will also surpress mentioned analysys in those queries thus saving cycles. Prelocked mode will be turned off once close_thread_tables() for the main query will be called. Note: Since not all "tables" present in table list are really locked thd::prelocked_mode does not imply thd::locked_tables. */ prelocked_mode_type prelocked_mode; ulong version; uint current_tablenr; enum enum_flags { BACKUPS_AVAIL = (1U << 0) /* There are backups available */ }; /* Flags with information about the open tables state. */ uint state_flags; /* This constructor serves for creation of Open_tables_state instances which are used as backup storage. */ Open_tables_state() : state_flags(0U) { } Open_tables_state(ulong version_arg); void set_open_tables_state(Open_tables_state *state) { *this= *state; } void reset_open_tables_state() { open_tables= temporary_tables= handler_tables= derived_tables= 0; extra_lock= lock= locked_tables= 0; prelocked_mode= NON_PRELOCKED; state_flags= 0U; } }; /* class to save context when executing a function or trigger */ /* Defines used for Sub_statement_state::in_sub_stmt */ #define SUB_STMT_TRIGGER 1 #define SUB_STMT_FUNCTION 2 class Sub_statement_state { public: ulonglong options; ulonglong first_successful_insert_id_in_prev_stmt; ulonglong first_successful_insert_id_in_cur_stmt, insert_id_for_cur_row; Discrete_interval auto_inc_interval_for_cur_row; ulonglong limit_found_rows; ha_rows cuted_fields, sent_row_count, examined_row_count; ulong client_capabilities; uint in_sub_stmt; bool enable_slow_log; bool last_insert_id_used; my_bool no_send_ok; SAVEPOINT *savepoints; }; /* Flags for the THD::system_thread variable */ enum enum_thread_type { NON_SYSTEM_THREAD= 0, SYSTEM_THREAD_DELAYED_INSERT= 1, SYSTEM_THREAD_SLAVE_IO= 2, SYSTEM_THREAD_SLAVE_SQL= 4, SYSTEM_THREAD_NDBCLUSTER_BINLOG= 8, SYSTEM_THREAD_EVENT_SCHEDULER= 16, SYSTEM_THREAD_EVENT_WORKER= 32 }; /* For each client connection we create a separate thread with THD serving as a thread/connection descriptor */ class THD :public Statement, public Open_tables_state { public: /* Used to execute base64 coded binlog events in MySQL server */ RELAY_LOG_INFO* rli_fake; /* Constant for THD::where initialization in the beginning of every query. It's needed because we do not save/restore THD::where normally during primary (non subselect) query execution. */ static const char * const DEFAULT_WHERE; #ifdef EMBEDDED_LIBRARY struct st_mysql *mysql; unsigned long client_stmt_id; unsigned long client_param_count; struct st_mysql_bind *client_params; char *extra_data; ulong extra_length; struct st_mysql_data *cur_data; struct st_mysql_data *first_data; struct st_mysql_data **data_tail; void clear_data_list(); struct st_mysql_data *alloc_new_dataset(); #endif NET net; // client connection descriptor MEM_ROOT warn_root; // For warnings and errors Protocol *protocol; // Current protocol Protocol_simple protocol_simple; // Normal protocol Protocol_prep protocol_prep; // Binary protocol HASH user_vars; // hash for user variables String packet; // dynamic buffer for network I/O String convert_buffer; // buffer for charset conversions struct sockaddr_in remote; // client socket address struct rand_struct rand; // used for authentication struct system_variables variables; // Changeable local variables struct system_status_var status_var; // Per thread statistic vars struct system_status_var *initial_status_var; /* used by show status */ THR_LOCK_INFO lock_info; // Locking info of this thread THR_LOCK_OWNER main_lock_id; // To use for conventional queries THR_LOCK_OWNER *lock_id; // If not main_lock_id, points to // the lock_id of a cursor. pthread_mutex_t LOCK_delete; // Locked before thd is deleted /* all prepared statements and cursors of this connection */ Statement_map stmt_map; /* A pointer to the stack frame of handle_one_connection(), which is called first in the thread for handling a client */ char *thread_stack; /* db - currently selected database catalog - currently selected catalog WARNING: some members of THD (currently 'db', 'catalog' and 'query') are set and alloced by the slave SQL thread (for the THD of that thread); that thread is (and must remain, for now) the only responsible for freeing these 3 members. If you add members here, and you add code to set them in replication, don't forget to free_them_and_set_them_to_0 in replication properly. For details see the 'err:' label of the handle_slave_sql() in sql/slave.cc. */ char *db, *catalog; Security_context main_security_ctx; Security_context *security_ctx; /* remote (peer) port */ uint16 peer_port; /* Points to info-string that we show in SHOW PROCESSLIST You are supposed to update thd->proc_info only if you have coded a time-consuming piece that MySQL can get stuck in for a long time. */ const char *proc_info; ulong client_capabilities; /* What the client supports */ ulong max_client_packet_length; HASH handler_tables_hash; /* One thread can hold up to one named user-level lock. This variable points to a lock object if the lock is present. See item_func.cc and chapter 'Miscellaneous functions', for functions GET_LOCK, RELEASE_LOCK. */ User_level_lock *ull; #ifndef DBUG_OFF uint dbug_sentry; // watch out for memory corruption #endif struct st_my_thread_var *mysys_var; /* Type of current query: COM_STMT_PREPARE, COM_QUERY, etc. Set from first byte of the packet in do_command() */ enum enum_server_command command; uint32 server_id; uint32 file_id; // for LOAD DATA INFILE /* Used in error messages to tell user in what part of MySQL we found an error. E. g. when where= "having clause", if fix_fields() fails, user will know that the error was in having clause. */ const char *where; time_t start_time,time_after_lock,user_time; time_t connect_time,thr_create_time; // track down slow pthread_create thr_lock_type update_lock_default; delayed_insert *di; /* <> 0 if we are inside of trigger or stored function. */ uint in_sub_stmt; /* container for handler's private per-connection data */ void *ha_data[MAX_HA]; #ifndef MYSQL_CLIENT int binlog_setup_trx_data(); #ifdef HAVE_ROW_BASED_REPLICATION /* Public interface to write RBR events to the binlog */ int binlog_write_table_map(TABLE *table, bool is_transactional); int binlog_write_row(TABLE* table, bool is_transactional, MY_BITMAP const* cols, my_size_t colcnt, const byte *buf); int binlog_delete_row(TABLE* table, bool is_transactional, MY_BITMAP const* cols, my_size_t colcnt, const byte *buf); int binlog_update_row(TABLE* table, bool is_transactional, MY_BITMAP const* cols, my_size_t colcnt, const byte *old_data, const byte *new_data); void set_server_id(uint32 sid) { server_id = sid; } /* Member functions to handle pending event for row-level logging. */ template Rows_log_event* binlog_prepare_pending_rows_event(TABLE* table, uint32 serv_id, MY_BITMAP const* cols, my_size_t colcnt, my_size_t needed, bool is_transactional, RowsEventT* hint); Rows_log_event* binlog_get_pending_rows_event() const; void binlog_set_pending_rows_event(Rows_log_event* ev); my_size_t max_row_length_blob(TABLE* table, const byte *data) const; my_size_t max_row_length(TABLE* table, const byte *data) const { TABLE_SHARE *table_s= table->s; my_size_t length= table_s->reclength + 2 * table_s->fields; if (table_s->blob_fields == 0) return length; return (length+max_row_length_blob(table,data)); } my_size_t pack_row(TABLE* table, MY_BITMAP const* cols, byte *row_data, const byte *data) const; int binlog_flush_pending_rows_event(bool stmt_end); void binlog_delete_pending_rows_event(); private: uint binlog_table_maps; // Number of table maps currently in the binlog public: uint get_binlog_table_maps() const { return binlog_table_maps; } #endif /* HAVE_ROW_BASED_REPLICATION */ #endif /* MYSQL_CLIENT */ #ifndef MYSQL_CLIENT public: enum enum_binlog_query_type { /* The query can be logged row-based or statement-based */ ROW_QUERY_TYPE, /* The query has to be logged statement-based */ STMT_QUERY_TYPE, /* The query represents a change to a table in the "mysql" database and is currently mapped to ROW_QUERY_TYPE. */ MYSQL_QUERY_TYPE, QUERY_TYPE_COUNT }; int binlog_query(enum_binlog_query_type qtype, char const *query, ulong query_len, bool is_trans, bool suppress_use); #endif public: struct st_transactions { SAVEPOINT *savepoints; THD_TRANS all; // Trans since BEGIN WORK THD_TRANS stmt; // Trans for current statement bool on; // see ha_enable_transaction() XID xid; // transaction identifier enum xa_states xa_state; // used by external XA only XID_STATE xid_state; #ifdef HAVE_ROW_BASED_REPLICATION Rows_log_event *m_pending_rows_event; #endif /* Tables changed in transaction (that must be invalidated in query cache). List contain only transactional tables, that not invalidated in query cache (instead of full list of changed in transaction tables). */ CHANGED_TABLE_LIST* changed_tables; MEM_ROOT mem_root; // Transaction-life memory allocation pool void cleanup() { changed_tables= 0; savepoints= 0; #ifdef USING_TRANSACTIONS free_root(&mem_root,MYF(MY_KEEP_PREALLOC)); #endif } st_transactions() { #ifdef USING_TRANSACTIONS bzero((char*)this, sizeof(*this)); xid_state.xid.null(); init_sql_alloc(&mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0); #else xid_state.xa_state= XA_NOTR; #endif } } transaction; Field *dup_field; #ifndef __WIN__ sigset_t signals,block_signals; #endif #ifdef SIGNAL_WITH_VIO_CLOSE Vio* active_vio; #endif /* This is to track items changed during execution of a prepared statement/stored procedure. It's created by register_item_tree_change() in memory root of THD, and freed in rollback_item_tree_changes(). For conventional execution it's always empty. */ Item_change_list change_list; /* A permanent memory area of the statement. For conventional execution, the parsed tree and execution runtime reside in the same memory root. In this case stmt_arena points to THD. In case of a prepared statement or a stored procedure statement, thd->mem_root conventionally points to runtime memory, and thd->stmt_arena points to the memory of the PS/SP, where the parsed tree of the statement resides. Whenever you need to perform a permanent transformation of a parsed tree, you should allocate new memory in stmt_arena, to allow correct re-execution of PS/SP. Note: in the parser, stmt_arena == thd, even for PS/SP. */ Query_arena *stmt_arena; /* Tells if LAST_INSERT_ID(#) was called for the current statement */ bool arg_of_last_insert_id_function; /* ALL OVER THIS FILE, "insert_id" means "*automatically generated* value for insertion into an auto_increment column". */ /* This is the first autogenerated insert id which was *successfully* inserted by the previous statement (exactly, if the previous statement didn't successfully insert an autogenerated insert id, then it's the one of the statement before, etc). It can also be set by SET LAST_INSERT_ID=# or SELECT LAST_INSERT_ID(#). It is returned by LAST_INSERT_ID(). */ ulonglong first_successful_insert_id_in_prev_stmt; /* Variant of the above, used for storing in statement-based binlog. The difference is that the one above can change as the execution of a stored function progresses, while the one below is set once and then does not change (which is the value which statement-based binlog needs). */ ulonglong first_successful_insert_id_in_prev_stmt_for_binlog; /* This is the first autogenerated insert id which was *successfully* inserted by the current statement. It is maintained only to set first_successful_insert_id_in_prev_stmt when statement ends. */ ulonglong first_successful_insert_id_in_cur_stmt; /* We follow this logic: - when stmt starts, first_successful_insert_id_in_prev_stmt contains the first insert id successfully inserted by the previous stmt. - as stmt makes progress, handler::insert_id_for_cur_row changes; every time get_auto_increment() is called, auto_inc_intervals_for_binlog is augmented with the reserved interval (if statement-based binlogging). - at first successful insertion of an autogenerated value, first_successful_insert_id_in_cur_stmt is set to handler::insert_id_for_cur_row. - when stmt goes to binlog, auto_inc_intervals_for_binlog is binlogged if non-empty. - when stmt ends, first_successful_insert_id_in_prev_stmt is set to first_successful_insert_id_in_cur_stmt. */ /* stmt_depends_on_first_successful_insert_id_in_prev_stmt is set when LAST_INSERT_ID() is used by a statement. If it is set, first_successful_insert_id_in_prev_stmt_for_binlog will be stored in the statement-based binlog. This variable is CUMULATIVE along the execution of a stored function or trigger: if one substatement sets it to 1 it will stay 1 until the function/trigger ends, thus making sure that first_successful_insert_id_in_prev_stmt_for_binlog does not change anymore and is propagated to the caller for binlogging. */ bool stmt_depends_on_first_successful_insert_id_in_prev_stmt; /* List of auto_increment intervals reserved by the thread so far, for storage in the statement-based binlog. Note that its minimum is not first_successful_insert_id_in_cur_stmt: assuming a table with an autoinc column, and this happens: INSERT INTO ... VALUES(3); SET INSERT_ID=3; INSERT IGNORE ... VALUES (NULL); then the latter INSERT will insert no rows (first_successful_insert_id_in_cur_stmt == 0), but storing "INSERT_ID=3" in the binlog is still needed; the list's minimum will contain 3. */ Discrete_intervals_list auto_inc_intervals_in_cur_stmt_for_binlog; /* Used by replication and SET INSERT_ID */ Discrete_intervals_list auto_inc_intervals_forced; /* There is BUG#19630 where statement-based replication of stored functions/triggers with two auto_increment columns breaks. We however ensure that it works when there is 0 or 1 auto_increment column; our rules are a) on master, while executing a top statement involving substatements, first top- or sub- statement to generate auto_increment values wins the exclusive right to see its values be written to binlog (the write will be done by the statement or its caller), and the losers won't see their values be written to binlog. b) on slave, while replicating a top statement involving substatements, first top- or sub- statement to need to read auto_increment values from the master's binlog wins the exclusive right to read them (so the losers won't read their values from binlog but instead generate on their own). a) implies that we mustn't backup/restore auto_inc_intervals_in_cur_stmt_for_binlog. b) implies that we mustn't backup/restore auto_inc_intervals_forced. If there are more than 1 auto_increment columns, then intervals for different columns may mix into the auto_inc_intervals_in_cur_stmt_for_binlog list, which is logically wrong, but there is no point in preventing this mixing by preventing intervals from the secondly inserted column to come into the list, as such prevention would be wrong too. What will happen in the case of INSERT INTO t1 (auto_inc) VALUES(NULL); where t1 has a trigger which inserts into an auto_inc column of t2, is that in binlog we'll store the interval of t1 and the interval of t2 (when we store intervals, soon), then in slave, t1 will use both intervals, t2 will use none; if t1 inserts the same number of rows as on master, normally the 2nd interval will not be used by t1, which is fine. t2's values will be wrong if t2's internal auto_increment counter is different from what it was on master (which is likely). In 5.1, in mixed binlogging mode, row-based binlogging is used for such cases where two auto_increment columns are inserted. */ inline void record_first_successful_insert_id_in_cur_stmt(ulonglong id) { if (first_successful_insert_id_in_cur_stmt == 0) first_successful_insert_id_in_cur_stmt= id; } inline ulonglong read_first_successful_insert_id_in_prev_stmt(void) { if (!stmt_depends_on_first_successful_insert_id_in_prev_stmt) { /* It's the first time we read it */ first_successful_insert_id_in_prev_stmt_for_binlog= first_successful_insert_id_in_prev_stmt; stmt_depends_on_first_successful_insert_id_in_prev_stmt= 1; } return first_successful_insert_id_in_prev_stmt; } /* Used by Intvar_log_event::exec_event() and by "SET INSERT_ID=#" (mysqlbinlog). We'll soon add a variant which can take many intervals in argument. */ inline void force_one_auto_inc_interval(ulonglong next_id) { auto_inc_intervals_forced.empty(); // in case of multiple SET INSERT_ID auto_inc_intervals_forced.append(next_id, ULONGLONG_MAX, 0); } ulonglong limit_found_rows; ulonglong options; /* Bitmap of states */ longlong row_count_func; /* For the ROW_COUNT() function */ ha_rows cuted_fields, sent_row_count, examined_row_count; /* The set of those tables whose fields are referenced in all subqueries of the query. TODO: possibly this it is incorrect to have used tables in THD because with more than one subquery, it is not clear what does the field mean. */ table_map used_tables; USER_CONN *user_connect; CHARSET_INFO *db_charset; /* FIXME: this, and some other variables like 'count_cuted_fields' maybe should be statement/cursor local, that is, moved to Statement class. With current implementation warnings produced in each prepared statement/cursor settle here. */ List warn_list; uint warn_count[(uint) MYSQL_ERROR::WARN_LEVEL_END]; uint total_warn_count; /* Id of current query. Statement can be reused to execute several queries query_id is global in context of the whole MySQL server. ID is automatically generated from mutex-protected counter. It's used in handler code for various purposes: to check which columns from table are necessary for this select, to check if it's necessary to update auto-updatable fields (like auto_increment and timestamp). */ query_id_t query_id, warn_id; ulong thread_id, col_access; #ifdef ERROR_INJECT_SUPPORT ulong error_inject_value; #endif /* Statement id is thread-wide. This counter is used to generate ids */ ulong statement_id_counter; ulong rand_saved_seed1, rand_saved_seed2; ulong row_count; // Row counter, mainly for errors and warnings long dbug_thread_id; pthread_t real_id; uint tmp_table, global_read_lock; uint server_status,open_options; enum enum_thread_type system_thread; uint db_length; uint select_number; //number of select (used for EXPLAIN) /* variables.transaction_isolation is reset to this after each commit */ enum_tx_isolation session_tx_isolation; enum_check_fields count_cuted_fields; DYNAMIC_ARRAY user_var_events; /* For user variables replication */ MEM_ROOT *user_var_events_alloc; /* Allocate above array elements here */ enum killed_state { NOT_KILLED=0, KILL_BAD_DATA=1, KILL_CONNECTION=ER_SERVER_SHUTDOWN, KILL_QUERY=ER_QUERY_INTERRUPTED }; killed_state volatile killed; /* scramble - random string sent to client on handshake */ char scramble[SCRAMBLE_LENGTH+1]; bool slave_thread, one_shot_set; /* tells if current statement should binlog row-based(1) or stmt-based(0) */ bool current_stmt_binlog_row_based; bool locked, some_tables_deleted; bool last_cuted_field; bool no_errors, password, is_fatal_error; bool query_start_used, rand_used, time_zone_used; /* for IS NULL => = last_insert_id() fix in remove_eq_conds() */ bool substitute_null_with_insert_id; bool in_lock_tables; bool query_error, bootstrap, cleanup_done; bool tmp_table_used; bool charset_is_system_charset, charset_is_collation_connection; bool charset_is_character_set_filesystem; bool enable_slow_log; /* enable slow log for current statement */ bool no_trans_update, abort_on_warning; bool got_warning; /* Set on call to push_warning() */ bool no_warnings_for_error; /* no warnings on call to my_error() */ /* set during loop of derived table processing */ bool derived_tables_processing; my_bool tablespace_op; /* This is TRUE in DISCARD/IMPORT TABLESPACE */ sp_rcontext *spcont; // SP runtime context sp_cache *sp_proc_cache; sp_cache *sp_func_cache; /* If we do a purge of binary logs, log index info of the threads that are currently reading it needs to be adjusted. To do that each thread that is using LOG_INFO needs to adjust the pointer to it */ LOG_INFO* current_linfo; NET* slave_net; // network connection from slave -> m. /* Used by the sys_var class to store temporary values */ union { my_bool my_bool_value; long long_value; ulong ulong_value; ulonglong ulonglong_value; } sys_var_tmp; struct { /* If true, mysql_bin_log::write(Log_event) call will not write events to binlog, and maintain 2 below variables instead (use mysql_bin_log.start_union_events to turn this on) */ bool do_union; /* If TRUE, at least one mysql_bin_log::write(Log_event) call has been made after last mysql_bin_log.start_union_events() call. */ bool unioned_events; /* If TRUE, at least one mysql_bin_log::write(Log_event e), where e.cache_stmt == TRUE call has been made after last mysql_bin_log.start_union_events() call. */ bool unioned_events_trans; /* 'queries' (actually SP statements) that run under inside this binlog union have thd->query_id >= first_query_id. */ query_id_t first_query_id; } binlog_evt_union; #ifdef WITH_PARTITION_STORAGE_ENGINE partition_info *work_part_info; #endif THD(); ~THD(); void init(void); /* Initialize memory roots necessary for query processing and (!) pre-allocate memory for it. We can't do that in THD constructor because there are use cases (acl_init, delayed inserts, watcher threads, killing mysqld) where it's vital to not allocate excessive and not used memory. Note, that we still don't return error from init_for_queries(): if preallocation fails, we should notice that at the first call to alloc_root. */ void init_for_queries(); void change_user(void); void cleanup(void); void cleanup_after_query(); bool store_globals(); #ifdef SIGNAL_WITH_VIO_CLOSE inline void set_active_vio(Vio* vio) { pthread_mutex_lock(&LOCK_delete); active_vio = vio; pthread_mutex_unlock(&LOCK_delete); } inline void clear_active_vio() { pthread_mutex_lock(&LOCK_delete); active_vio = 0; pthread_mutex_unlock(&LOCK_delete); } void close_active_vio(); #endif void awake(THD::killed_state state_to_set); /* For enter_cond() / exit_cond() to work the mutex must be got before enter_cond(); this mutex is then released by exit_cond(). Usage must be: lock mutex; enter_cond(); your code; exit_cond(). */ inline const char* enter_cond(pthread_cond_t *cond, pthread_mutex_t* mutex, const char* msg) { const char* old_msg = proc_info; safe_mutex_assert_owner(mutex); mysys_var->current_mutex = mutex; mysys_var->current_cond = cond; proc_info = msg; return old_msg; } inline void exit_cond(const char* old_msg) { /* Putting the mutex unlock in exit_cond() ensures that mysys_var->current_mutex is always unlocked _before_ mysys_var->mutex is locked (if that would not be the case, you'll get a deadlock if someone does a THD::awake() on you). */ pthread_mutex_unlock(mysys_var->current_mutex); pthread_mutex_lock(&mysys_var->mutex); mysys_var->current_mutex = 0; mysys_var->current_cond = 0; proc_info = old_msg; pthread_mutex_unlock(&mysys_var->mutex); } inline time_t query_start() { query_start_used=1; return start_time; } inline void set_time() { if (user_time) start_time=time_after_lock=user_time; else time_after_lock=time(&start_time); } inline void end_time() { time(&start_time); } inline void set_time(time_t t) { time_after_lock=start_time=user_time=t; } inline void lock_time() { time(&time_after_lock); } inline ulonglong found_rows(void) { return limit_found_rows; } inline bool active_transaction() { #ifdef USING_TRANSACTIONS return server_status & SERVER_STATUS_IN_TRANS; #else return 0; #endif } inline bool fill_derived_tables() { return !stmt_arena->is_stmt_prepare() && !lex->only_view_structure(); } inline bool fill_information_schema_tables() { return !stmt_arena->is_stmt_prepare(); } inline gptr trans_alloc(unsigned int size) { return alloc_root(&transaction.mem_root,size); } bool convert_string(LEX_STRING *to, CHARSET_INFO *to_cs, const char *from, uint from_length, CHARSET_INFO *from_cs); bool convert_string(String *s, CHARSET_INFO *from_cs, CHARSET_INFO *to_cs); void add_changed_table(TABLE *table); void add_changed_table(const char *key, long key_length); CHANGED_TABLE_LIST * changed_table_dup(const char *key, long key_length); int send_explain_fields(select_result *result); #ifndef EMBEDDED_LIBRARY inline void clear_error() { net.last_error[0]= 0; net.last_errno= 0; net.report_error= 0; query_error= 0; } inline bool vio_ok() const { return net.vio != 0; } #else void clear_error(); inline bool vio_ok() const { return true; } #endif inline void fatal_error() { is_fatal_error= 1; net.report_error= 1; DBUG_PRINT("error",("Fatal error set")); } inline CHARSET_INFO *charset() { return variables.character_set_client; } void update_charset(); inline Query_arena *activate_stmt_arena_if_needed(Query_arena *backup) { /* Use the persistent arena if we are in a prepared statement or a stored procedure statement and we have not already changed to use this arena. */ if (!stmt_arena->is_conventional() && mem_root != stmt_arena->mem_root) { set_n_backup_active_arena(stmt_arena, backup); return stmt_arena; } return 0; } void change_item_tree(Item **place, Item *new_value) { /* TODO: check for OOM condition here */ if (!stmt_arena->is_conventional()) nocheck_register_item_tree_change(place, *place, mem_root); *place= new_value; } void nocheck_register_item_tree_change(Item **place, Item *old_value, MEM_ROOT *runtime_memroot); void rollback_item_tree_changes(); /* Cleanup statement parse state (parse tree, lex) and execution state after execution of a non-prepared SQL statement. */ void end_statement(); inline int killed_errno() const { return killed != KILL_BAD_DATA ? killed : 0; } inline void send_kill_message() const { int err= killed_errno(); if (err) my_message(err, ER(err), MYF(0)); } /* return TRUE if we will abort query if we make a warning now */ inline bool really_abort_on_warning() { return (abort_on_warning && (!no_trans_update || (variables.sql_mode & MODE_STRICT_ALL_TABLES))); } void set_status_var_init(); bool is_context_analysis_only() { return stmt_arena->is_stmt_prepare() || lex->view_prepare_mode; } void reset_n_backup_open_tables_state(Open_tables_state *backup); void restore_backup_open_tables_state(Open_tables_state *backup); void reset_sub_statement_state(Sub_statement_state *backup, uint new_state); void restore_sub_statement_state(Sub_statement_state *backup); void set_n_backup_active_arena(Query_arena *set, Query_arena *backup); void restore_active_arena(Query_arena *set, Query_arena *backup); inline void set_current_stmt_binlog_row_based_if_mixed() { #ifdef HAVE_ROW_BASED_REPLICATION /* If in a stored/function trigger, the caller should already have done the change. We test in_sub_stmt to prevent introducing bugs where people wouldn't ensure that, and would switch to row-based mode in the middle of executing a stored function/trigger (which is too late, see also reset_current_stmt_binlog_row_based()); this condition will make their tests fail and so force them to propagate the lex->binlog_row_based_if_mixed upwards to the caller. */ if ((variables.binlog_format == BINLOG_FORMAT_MIXED) && (in_sub_stmt == 0)) current_stmt_binlog_row_based= TRUE; #endif } inline void set_current_stmt_binlog_row_based() { #ifdef HAVE_ROW_BASED_REPLICATION current_stmt_binlog_row_based= TRUE; #endif } inline void clear_current_stmt_binlog_row_based() { #ifdef HAVE_ROW_BASED_REPLICATION current_stmt_binlog_row_based= FALSE; #endif } inline void reset_current_stmt_binlog_row_based() { #ifdef HAVE_ROW_BASED_REPLICATION /* If there are temporary tables, don't reset back to statement-based. Indeed it could be that: CREATE TEMPORARY TABLE t SELECT UUID(); # row-based # and row-based does not store updates to temp tables # in the binlog. INSERT INTO u SELECT * FROM t; # stmt-based and then the INSERT will fail as data inserted into t was not logged. So we continue with row-based until the temp table is dropped. If we are in a stored function or trigger, we mustn't reset in the middle of its execution (as the binary logging way of a stored function or trigger is decided when it starts executing, depending for example on the caller (for a stored function: if caller is SELECT or INSERT/UPDATE/DELETE...). */ if ((temporary_tables == NULL) && (in_sub_stmt == 0)) { current_stmt_binlog_row_based= test(variables.binlog_format == BINLOG_FORMAT_ROW); } #else current_stmt_binlog_row_based= FALSE; #endif } /* Initialize the current database from a NULL-terminated string with length If we run out of memory, we free the current database and return TRUE. This way the user will notice the error as there will be no current database selected (in addition to the error message set by malloc). */ bool set_db(const char *new_db, uint new_db_len) { /* Do not reallocate memory if current chunk is big enough. */ if (db && new_db && db_length >= new_db_len) memcpy(db, new_db, new_db_len+1); else { x_free(db); db= new_db ? my_strndup(new_db, new_db_len, MYF(MY_WME)) : NULL; } db_length= db ? new_db_len : 0; return new_db && !db; } void reset_db(char *new_db, uint new_db_len) { db= new_db; db_length= new_db_len; } /* Copy the current database to the argument. Use the current arena to allocate memory for a deep copy: current database may be freed after a statement is parsed but before it's executed. */ bool copy_db_to(char **p_db, uint *p_db_length) { if (db == NULL) { my_message(ER_NO_DB_ERROR, ER(ER_NO_DB_ERROR), MYF(0)); return TRUE; } *p_db= strmake(db, db_length); if (p_db_length) *p_db_length= db_length; return FALSE; } }; #define tmp_disable_binlog(A) \ {ulonglong tmp_disable_binlog__save_options= (A)->options; \ (A)->options&= ~OPTION_BIN_LOG #define reenable_binlog(A) (A)->options= tmp_disable_binlog__save_options;} /* Used to hold information about file and file structure in exchainge via non-DB file (...INTO OUTFILE..., ...LOAD DATA...) XXX: We never call destructor for objects of this class. */ class sql_exchange :public Sql_alloc { public: char *file_name; String *field_term,*enclosed,*line_term,*line_start,*escaped; bool opt_enclosed; bool dumpfile; ulong skip_lines; sql_exchange(char *name,bool dumpfile_flag); }; #include "log_event.h" /* This is used to get result from a select */ class JOIN; class select_result :public Sql_alloc { protected: THD *thd; SELECT_LEX_UNIT *unit; public: select_result(); virtual ~select_result() {}; virtual int prepare(List &list, SELECT_LEX_UNIT *u) { unit= u; return 0; } virtual int prepare2(void) { return 0; } /* Because of peculiarities of prepared statements protocol we need to know number of columns in the result set (if there is a result set) apart from sending columns metadata. */ virtual uint field_count(List &fields) const { return fields.elements; } virtual bool send_fields(List &list, uint flags)=0; virtual bool send_data(List &items)=0; virtual bool initialize_tables (JOIN *join=0) { return 0; } virtual void send_error(uint errcode,const char *err); virtual bool send_eof()=0; virtual bool simple_select() { return 0; } virtual void abort() {} /* Cleanup instance of this class for next execution of a prepared statement/stored procedure. */ virtual void cleanup(); void set_thd(THD *thd_arg) { thd= thd_arg; } #ifdef EMBEDDED_LIBRARY virtual void begin_dataset() {} #else void begin_dataset() {} #endif }; /* Base class for select_result descendands which intercept and transform result set rows. As the rows are not sent to the client, sending of result set metadata should be suppressed as well. */ class select_result_interceptor: public select_result { public: select_result_interceptor() {} /* Remove gcc warning */ uint field_count(List &fields) const { return 0; } bool send_fields(List &fields, uint flag) { return FALSE; } }; class select_send :public select_result { int status; public: select_send() :status(0) {} bool send_fields(List &list, uint flags); bool send_data(List &items); bool send_eof(); bool simple_select() { return 1; } void abort(); }; class select_to_file :public select_result_interceptor { protected: sql_exchange *exchange; File file; IO_CACHE cache; ha_rows row_count; char path[FN_REFLEN]; public: select_to_file(sql_exchange *ex) :exchange(ex), file(-1),row_count(0L) { path[0]=0; } ~select_to_file(); void send_error(uint errcode,const char *err); bool send_eof(); void cleanup(); }; class select_export :public select_to_file { uint field_term_length; int field_sep_char,escape_char,line_sep_char; bool fixed_row_size; public: select_export(sql_exchange *ex) :select_to_file(ex) {} ~select_export(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); }; class select_dump :public select_to_file { public: select_dump(sql_exchange *ex) :select_to_file(ex) {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); }; class select_insert :public select_result_interceptor { public: TABLE_LIST *table_list; TABLE *table; List *fields; ulonglong autoinc_value_of_last_inserted_row; // autogenerated or not COPY_INFO info; bool insert_into_view; select_insert(TABLE_LIST *table_list_par, TABLE *table_par, List *fields_par, List *update_fields, List *update_values, enum_duplicates duplic, bool ignore); ~select_insert(); int prepare(List &list, SELECT_LEX_UNIT *u); int prepare2(void); bool send_data(List &items); virtual void store_values(List &values); virtual bool can_rollback_data() { return 0; } void send_error(uint errcode,const char *err); bool send_eof(); /* not implemented: select_insert is never re-used in prepared statements */ void cleanup(); }; class select_create: public select_insert { ORDER *group; TABLE_LIST *create_table; List *extra_fields; List *keys; HA_CREATE_INFO *create_info; Field **field; public: select_create (TABLE_LIST *table, HA_CREATE_INFO *create_info_par, List &fields_par, List &keys_par, List &select_fields,enum_duplicates duplic, bool ignore) :select_insert (NULL, NULL, &select_fields, 0, 0, duplic, ignore), create_table(table), extra_fields(&fields_par),keys(&keys_par), create_info(create_info_par) {} int prepare(List &list, SELECT_LEX_UNIT *u); void binlog_show_create_table(TABLE **tables, uint count); void store_values(List &values); void send_error(uint errcode,const char *err); bool send_eof(); void abort(); virtual bool can_rollback_data() { return 1; } // Needed for access from local class MY_HOOKS in prepare(), since thd is proteted. const THD *get_thd(void) { return thd; } const HA_CREATE_INFO *get_create_info() { return create_info; }; }; #include /* Param to create temporary tables when doing SELECT:s NOTE This structure is copied using memcpy as a part of JOIN. */ class TMP_TABLE_PARAM :public Sql_alloc { private: /* Prevent use of these (not safe because of lists and copy_field) */ TMP_TABLE_PARAM(const TMP_TABLE_PARAM &); void operator=(TMP_TABLE_PARAM &); public: List copy_funcs; List save_copy_funcs; Copy_field *copy_field, *copy_field_end; Copy_field *save_copy_field, *save_copy_field_end; byte *group_buff; Item **items_to_copy; /* Fields in tmp table */ MI_COLUMNDEF *recinfo,*start_recinfo; KEY *keyinfo; ha_rows end_write_records; uint field_count,sum_func_count,func_count; uint hidden_field_count; uint group_parts,group_length,group_null_parts; uint quick_group; bool using_indirect_summary_function; /* If >0 convert all blob fields to varchar(convert_blob_length) */ uint convert_blob_length; CHARSET_INFO *table_charset; bool schema_table; /* True if GROUP BY and its aggregate functions are already computed by a table access method (e.g. by loose index scan). In this case query execution should not perform aggregation and should treat aggregate functions as normal functions. */ bool precomputed_group_by; bool force_copy_fields; TMP_TABLE_PARAM() :copy_field(0), group_parts(0), group_length(0), group_null_parts(0), convert_blob_length(0), schema_table(0), precomputed_group_by(0), force_copy_fields(0) {} ~TMP_TABLE_PARAM() { cleanup(); } void init(void); inline void cleanup(void) { if (copy_field) /* Fix for Intel compiler */ { delete [] copy_field; save_copy_field= copy_field= 0; } } }; class select_union :public select_result_interceptor { TMP_TABLE_PARAM tmp_table_param; public: TABLE *table; select_union() :table(0) {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool send_eof(); bool flush(); bool create_result_table(THD *thd, List *column_types, bool is_distinct, ulonglong options, const char *alias); }; /* Base subselect interface class */ class select_subselect :public select_result_interceptor { protected: Item_subselect *item; public: select_subselect(Item_subselect *item); bool send_data(List &items)=0; bool send_eof() { return 0; }; }; /* Single value subselect interface class */ class select_singlerow_subselect :public select_subselect { public: select_singlerow_subselect(Item_subselect *item):select_subselect(item){} bool send_data(List &items); }; /* used in independent ALL/ANY optimisation */ class select_max_min_finder_subselect :public select_subselect { Item_cache *cache; bool (select_max_min_finder_subselect::*op)(); bool fmax; public: select_max_min_finder_subselect(Item_subselect *item, bool mx) :select_subselect(item), cache(0), fmax(mx) {} void cleanup(); bool send_data(List &items); bool cmp_real(); bool cmp_int(); bool cmp_decimal(); bool cmp_str(); }; /* EXISTS subselect interface class */ class select_exists_subselect :public select_subselect { public: select_exists_subselect(Item_subselect *item):select_subselect(item){} bool send_data(List &items); }; /* Structs used when sorting */ typedef struct st_sort_field { Field *field; /* Field to sort */ Item *item; /* Item if not sorting fields */ uint length; /* Length of sort field */ uint suffix_length; /* Length suffix (0-4) */ Item_result result_type; /* Type of item */ bool reverse; /* if descending sort */ bool need_strxnfrm; /* If we have to use strxnfrm() */ } SORT_FIELD; typedef struct st_sort_buffer { uint index; /* 0 or 1 */ uint sort_orders; uint change_pos; /* If sort-fields changed */ char **buff; SORT_FIELD *sortorder; } SORT_BUFFER; /* Structure for db & table in sql_yacc */ class Table_ident :public Sql_alloc { public: LEX_STRING db; LEX_STRING table; SELECT_LEX_UNIT *sel; inline Table_ident(THD *thd, LEX_STRING db_arg, LEX_STRING table_arg, bool force) :table(table_arg), sel((SELECT_LEX_UNIT *)0) { if (!force && (thd->client_capabilities & CLIENT_NO_SCHEMA)) db.str=0; else db= db_arg; } inline Table_ident(LEX_STRING table_arg) :table(table_arg), sel((SELECT_LEX_UNIT *)0) { db.str=0; } inline Table_ident(SELECT_LEX_UNIT *s) : sel(s) { /* We must have a table name here as this is used with add_table_to_list */ db.str=0; table.str= internal_table_name; table.length=1; } inline void change_db(char *db_name) { db.str= db_name; db.length= (uint) strlen(db_name); } }; // this is needed for user_vars hash class user_var_entry { public: user_var_entry() {} /* Remove gcc warning */ LEX_STRING name; char *value; ulong length; query_id_t update_query_id, used_query_id; Item_result type; double val_real(my_bool *null_value); longlong val_int(my_bool *null_value); String *val_str(my_bool *null_value, String *str, uint decimals); my_decimal *val_decimal(my_bool *null_value, my_decimal *result); DTCollation collation; }; /* Unique -- class for unique (removing of duplicates). Puts all values to the TREE. If the tree becomes too big, it's dumped to the file. User can request sorted values, or just iterate through them. In the last case tree merging is performed in memory simultaneously with iteration, so it should be ~2-3x faster. */ class Unique :public Sql_alloc { DYNAMIC_ARRAY file_ptrs; ulong max_elements, max_in_memory_size; IO_CACHE file; TREE tree; byte *record_pointers; bool flush(); uint size; public: ulong elements; Unique(qsort_cmp2 comp_func, void *comp_func_fixed_arg, uint size_arg, ulong max_in_memory_size_arg); ~Unique(); ulong elements_in_tree() { return tree.elements_in_tree; } inline bool unique_add(void *ptr) { DBUG_ENTER("unique_add"); DBUG_PRINT("info", ("tree %u - %u", tree.elements_in_tree, max_elements)); if (tree.elements_in_tree > max_elements && flush()) DBUG_RETURN(1); DBUG_RETURN(!tree_insert(&tree, ptr, 0, tree.custom_arg)); } bool get(TABLE *table); static double get_use_cost(uint *buffer, uint nkeys, uint key_size, ulong max_in_memory_size); inline static int get_cost_calc_buff_size(ulong nkeys, uint key_size, ulong max_in_memory_size) { register ulong max_elems_in_tree= (1 + max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size)); return sizeof(uint)*(1 + nkeys/max_elems_in_tree); } void reset(); bool walk(tree_walk_action action, void *walk_action_arg); friend int unique_write_to_file(gptr key, element_count count, Unique *unique); friend int unique_write_to_ptrs(gptr key, element_count count, Unique *unique); }; class multi_delete :public select_result_interceptor { TABLE_LIST *delete_tables, *table_being_deleted; Unique **tempfiles; ha_rows deleted, found; uint num_of_tables; int error; bool do_delete; /* True if at least one table we delete from is transactional */ bool transactional_tables; /* True if at least one table we delete from is not transactional */ bool normal_tables; bool delete_while_scanning; public: multi_delete(TABLE_LIST *dt, uint num_of_tables); ~multi_delete(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool initialize_tables (JOIN *join); void send_error(uint errcode,const char *err); int do_deletes(); bool send_eof(); }; class multi_update :public select_result_interceptor { TABLE_LIST *all_tables; /* query/update command tables */ TABLE_LIST *leaves; /* list of leves of join table tree */ TABLE_LIST *update_tables, *table_being_updated; TABLE **tmp_tables, *main_table, *table_to_update; TMP_TABLE_PARAM *tmp_table_param; ha_rows updated, found; List *fields, *values; List **fields_for_table, **values_for_table; uint table_count; Copy_field *copy_field; enum enum_duplicates handle_duplicates; bool do_update, trans_safe; /* True if the update operation has made a change in a transactional table */ bool transactional_tables; bool ignore; public: multi_update(TABLE_LIST *ut, TABLE_LIST *leaves_list, List *fields, List *values, enum_duplicates handle_duplicates, bool ignore); ~multi_update(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool initialize_tables (JOIN *join); void send_error(uint errcode,const char *err); int do_updates (bool from_send_error); bool send_eof(); }; class my_var : public Sql_alloc { public: LEX_STRING s; #ifndef DBUG_OFF /* Routine to which this Item_splocal belongs. Used for checking if correct runtime context is used for variable handling. */ sp_head *sp; #endif bool local; uint offset; enum_field_types type; my_var (LEX_STRING& j, bool i, uint o, enum_field_types t) :s(j), local(i), offset(o), type(t) {} ~my_var() {} }; class select_dumpvar :public select_result_interceptor { ha_rows row_count; public: List var_list; List vars; List local_vars; select_dumpvar(void) { var_list.empty(); local_vars.empty(); vars.empty(); row_count=0;} ~select_dumpvar() {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool send_eof(); void cleanup(); }; /* Bits in sql_command_flags */ #define CF_CHANGES_DATA 1 #define CF_HAS_ROW_COUNT 2 #define CF_STATUS_COMMAND 4 #define CF_SHOW_TABLE_COMMAND 8 /* Functions in sql_class.cc */ void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var); void add_diff_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var, STATUS_VAR *dec_var); #endif /* MYSQL_SERVER */