/* Copyright (c) 2000, 2014, Oracle and/or its affiliates. Copyright (c) 2009, 2018, MariaDB Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* A lexical scanner on a temporary buffer with a yacc interface */ #define MYSQL_LEX 1 #include "mariadb.h" #include "sql_priv.h" #include "sql_class.h" // sql_lex.h: SQLCOM_END #include "sql_lex.h" #include "sql_parse.h" // add_to_list #include "item_create.h" #include #include #include "sp_head.h" #include "sp.h" #include "sql_select.h" #include "sql_cte.h" #include "sql_signal.h" #include "sql_partition.h" void LEX::parse_error(uint err_number) { thd->parse_error(err_number); } /** LEX_STRING constant for null-string to be used in parser and other places. */ const LEX_STRING empty_lex_str= {(char *) "", 0}; const LEX_CSTRING null_clex_str= {NULL, 0}; const LEX_CSTRING empty_clex_str= {"", 0}; const LEX_CSTRING star_clex_str= {"*", 1}; const LEX_CSTRING param_clex_str= {"?", 1}; /** @note The order of the elements of this array must correspond to the order of elements in enum_binlog_stmt_unsafe. */ const int Query_tables_list::binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT] = { ER_BINLOG_UNSAFE_LIMIT, ER_BINLOG_UNSAFE_INSERT_DELAYED, ER_BINLOG_UNSAFE_SYSTEM_TABLE, ER_BINLOG_UNSAFE_AUTOINC_COLUMNS, ER_BINLOG_UNSAFE_UDF, ER_BINLOG_UNSAFE_SYSTEM_VARIABLE, ER_BINLOG_UNSAFE_SYSTEM_FUNCTION, ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS, ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE, ER_BINLOG_UNSAFE_MIXED_STATEMENT, ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT, ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE, ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT, ER_BINLOG_UNSAFE_REPLACE_SELECT, ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT, ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT, ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC, ER_BINLOG_UNSAFE_UPDATE_IGNORE, ER_BINLOG_UNSAFE_INSERT_TWO_KEYS, ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST }; /* Longest standard keyword name */ #define TOCK_NAME_LENGTH 24 /* The following data is based on the latin1 character set, and is only used when comparing keywords */ static uchar to_upper_lex[]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127, 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223, 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,247,216,217,218,219,220,221,222,255 }; /* Names of the index hints (for error messages). Keep in sync with index_hint_type */ const char * index_hint_type_name[] = { "IGNORE INDEX", "USE INDEX", "FORCE INDEX" }; inline int lex_casecmp(const char *s, const char *t, uint len) { while (len-- != 0 && to_upper_lex[(uchar) *s++] == to_upper_lex[(uchar) *t++]) ; return (int) len+1; } #include void lex_init(void) { uint i; DBUG_ENTER("lex_init"); for (i=0 ; i < array_elements(symbols) ; i++) symbols[i].length=(uchar) strlen(symbols[i].name); for (i=0 ; i < array_elements(sql_functions) ; i++) sql_functions[i].length=(uchar) strlen(sql_functions[i].name); DBUG_VOID_RETURN; } void lex_free(void) { // Call this when daemon ends DBUG_ENTER("lex_free"); DBUG_VOID_RETURN; } /** Initialize lex object for use in fix_fields and parsing. SYNOPSIS init_lex_with_single_table() @param thd The thread object @param table The table object @return Operation status @retval TRUE An error occurred, memory allocation error @retval FALSE Ok DESCRIPTION This function is used to initialize a lex object on the stack for use by fix_fields and for parsing. In order to work properly it also needs to initialize the Name_resolution_context object of the lexer. Finally it needs to set a couple of variables to ensure proper functioning of fix_fields. */ int init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex) { TABLE_LIST *table_list; Table_ident *table_ident; SELECT_LEX *select_lex= lex->first_select_lex(); Name_resolution_context *context= &select_lex->context; /* We will call the parser to create a part_info struct based on the partition string stored in the frm file. We will use a local lex object for this purpose. However we also need to set the Name_resolution_object for this lex object. We do this by using add_table_to_list where we add the table that we're working with to the Name_resolution_context. */ thd->lex= lex; lex_start(thd); context->init(); if (unlikely((!(table_ident= new Table_ident(thd, &table->s->db, &table->s->table_name, TRUE)))) || (unlikely(!(table_list= select_lex->add_table_to_list(thd, table_ident, NULL, 0))))) return TRUE; context->resolve_in_table_list_only(table_list); lex->use_only_table_context= TRUE; lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_VCOL_EXPR; select_lex->cur_pos_in_select_list= UNDEF_POS; table->map= 1; //To ensure correct calculation of const item table_list->table= table; table_list->cacheable_table= false; return FALSE; } /** End use of local lex with single table SYNOPSIS end_lex_with_single_table() @param thd The thread object @param table The table object @param old_lex The real lex object connected to THD DESCRIPTION This function restores the real lex object after calling init_lex_with_single_table and also restores some table variables temporarily set. */ void end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex) { LEX *lex= thd->lex; table->map= 0; table->get_fields_in_item_tree= FALSE; lex_end(lex); thd->lex= old_lex; } void st_parsing_options::reset() { allows_variable= TRUE; } /** Perform initialization of Lex_input_stream instance. Basically, a buffer for pre-processed query. This buffer should be large enough to keep multi-statement query. The allocation is done once in Lex_input_stream::init() in order to prevent memory pollution when the server is processing large multi-statement queries. */ bool Lex_input_stream::init(THD *thd, char* buff, size_t length) { DBUG_EXECUTE_IF("bug42064_simulate_oom", DBUG_SET("+d,simulate_out_of_memory");); m_cpp_buf= (char*) thd->alloc(length + 1); DBUG_EXECUTE_IF("bug42064_simulate_oom", DBUG_SET("-d,bug42064_simulate_oom");); if (m_cpp_buf == NULL) return true; m_thd= thd; reset(buff, length); return false; } /** Prepare Lex_input_stream instance state for use for handling next SQL statement. It should be called between two statements in a multi-statement query. The operation resets the input stream to the beginning-of-parse state, but does not reallocate m_cpp_buf. */ void Lex_input_stream::reset(char *buffer, size_t length) { yylineno= 1; lookahead_token= -1; lookahead_yylval= NULL; m_ptr= buffer; m_tok_start= NULL; m_tok_end= NULL; m_end_of_query= buffer + length; m_tok_start_prev= NULL; m_buf= buffer; m_buf_length= length; m_echo= TRUE; m_cpp_tok_start= NULL; m_cpp_tok_start_prev= NULL; m_cpp_tok_end= NULL; m_body_utf8= NULL; m_cpp_utf8_processed_ptr= NULL; next_state= MY_LEX_START; found_semicolon= NULL; ignore_space= MY_TEST(m_thd->variables.sql_mode & MODE_IGNORE_SPACE); stmt_prepare_mode= FALSE; multi_statements= TRUE; in_comment=NO_COMMENT; m_underscore_cs= NULL; m_cpp_ptr= m_cpp_buf; } /** The operation is called from the parser in order to 1) designate the intention to have utf8 body; 1) Indicate to the lexer that we will need a utf8 representation of this statement; 2) Determine the beginning of the body. @param thd Thread context. @param begin_ptr Pointer to the start of the body in the pre-processed buffer. */ void Lex_input_stream::body_utf8_start(THD *thd, const char *begin_ptr) { DBUG_ASSERT(begin_ptr); DBUG_ASSERT(m_cpp_buf <= begin_ptr && begin_ptr <= m_cpp_buf + m_buf_length); size_t body_utf8_length= get_body_utf8_maximum_length(thd); m_body_utf8= (char *) thd->alloc(body_utf8_length + 1); m_body_utf8_ptr= m_body_utf8; *m_body_utf8_ptr= 0; m_cpp_utf8_processed_ptr= begin_ptr; } size_t Lex_input_stream::get_body_utf8_maximum_length(THD *thd) { /* String literals can grow during escaping: 1a. Character string '' can grow to '\t', 3 bytes to 4 bytes growth. 1b. Character string '1000 times ' grows from 1002 to 2002 bytes (including quotes), which gives a little bit less than 2 times growth. "2" should be a reasonable multiplier that safely covers escaping needs. */ return (m_buf_length / thd->variables.character_set_client->mbminlen) * my_charset_utf8_bin.mbmaxlen * 2/*for escaping*/; } /** @brief The operation appends unprocessed part of pre-processed buffer till the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to end_ptr. The idea is that some tokens in the pre-processed buffer (like character set introducers) should be skipped. Example: CPP buffer: SELECT 'str1', _latin1 'str2'; m_cpp_utf8_processed_ptr -- points at the "SELECT ..."; In order to skip "_latin1", the following call should be made: body_utf8_append(, ) @param ptr Pointer in the pre-processed buffer, which specifies the end of the chunk, which should be appended to the utf8 body. @param end_ptr Pointer in the pre-processed buffer, to which m_cpp_utf8_processed_ptr will be set in the end of the operation. */ void Lex_input_stream::body_utf8_append(const char *ptr, const char *end_ptr) { DBUG_ASSERT(m_cpp_buf <= ptr && ptr <= m_cpp_buf + m_buf_length); DBUG_ASSERT(m_cpp_buf <= end_ptr && end_ptr <= m_cpp_buf + m_buf_length); if (!m_body_utf8) return; if (m_cpp_utf8_processed_ptr >= ptr) return; size_t bytes_to_copy= ptr - m_cpp_utf8_processed_ptr; memcpy(m_body_utf8_ptr, m_cpp_utf8_processed_ptr, bytes_to_copy); m_body_utf8_ptr += bytes_to_copy; *m_body_utf8_ptr= 0; m_cpp_utf8_processed_ptr= end_ptr; } /** The operation appends unprocessed part of the pre-processed buffer till the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to ptr. @param ptr Pointer in the pre-processed buffer, which specifies the end of the chunk, which should be appended to the utf8 body. */ void Lex_input_stream::body_utf8_append(const char *ptr) { body_utf8_append(ptr, ptr); } /** The operation converts the specified text literal to the utf8 and appends the result to the utf8-body. @param thd Thread context. @param txt Text literal. @param txt_cs Character set of the text literal. @param end_ptr Pointer in the pre-processed buffer, to which m_cpp_utf8_processed_ptr will be set in the end of the operation. */ void Lex_input_stream::body_utf8_append_ident(THD *thd, const Lex_string_with_metadata_st *txt, const char *end_ptr) { if (!m_cpp_utf8_processed_ptr) return; LEX_CSTRING utf_txt; thd->make_text_string_sys(&utf_txt, txt); // QQ: check return value? /* NOTE: utf_txt.length is in bytes, not in symbols. */ memcpy(m_body_utf8_ptr, utf_txt.str, utf_txt.length); m_body_utf8_ptr += utf_txt.length; *m_body_utf8_ptr= 0; m_cpp_utf8_processed_ptr= end_ptr; } extern "C" { /** Escape a character. Consequently puts "escape" and "wc" characters into the destination utf8 string. @param cs - the character set (utf8) @param escape - the escape character (backslash, single quote, double quote) @param wc - the character to be escaped @param str - the destination string @param end - the end of the destination string @returns - a code according to the wc_mb() convension. */ int my_wc_mb_utf8_with_escape(CHARSET_INFO *cs, my_wc_t escape, my_wc_t wc, uchar *str, uchar *end) { DBUG_ASSERT(escape > 0); if (str + 1 >= end) return MY_CS_TOOSMALL2; // Not enough space, need at least two bytes. *str= (uchar)escape; int cnvres= my_charset_utf8_handler.wc_mb(cs, wc, str + 1, end); if (cnvres > 0) return cnvres + 1; // The character was normally put if (cnvres == MY_CS_ILUNI) return MY_CS_ILUNI; // Could not encode "wc" (e.g. non-BMP character) DBUG_ASSERT(cnvres <= MY_CS_TOOSMALL); return cnvres - 1; // Not enough space } /** Optionally escape a character. If "escape" is non-zero, then both "escape" and "wc" are put to the destination string. Otherwise, only "wc" is put. @param cs - the character set (utf8) @param wc - the character to be optionally escaped @param escape - the escape character, or 0 @param ewc - the escaped replacement of "wc" (e.g. 't' for '\t') @param str - the destination string @param end - the end of the destination string @returns - a code according to the wc_mb() conversion. */ int my_wc_mb_utf8_opt_escape(CHARSET_INFO *cs, my_wc_t wc, my_wc_t escape, my_wc_t ewc, uchar *str, uchar *end) { return escape ? my_wc_mb_utf8_with_escape(cs, escape, ewc, str, end) : my_charset_utf8_handler.wc_mb(cs, wc, str, end); } /** Encode a character with optional backlash escaping and quote escaping. Quote marks are escaped using another quote mark. Additionally, if "escape" is non-zero, then special characters are also escaped using "escape". Otherwise (if "escape" is zero, e.g. in case of MODE_NO_BACKSLASH_ESCAPES), then special characters are not escaped and handled as normal characters. @param cs - the character set (utf8) @param wc - the character to be encoded @param str - the destination string @param end - the end of the destination string @param sep - the string delimiter (e.g. ' or ") @param escape - the escape character (backslash, or 0) @returns - a code according to the wc_mb() convension. */ int my_wc_mb_utf8_escape(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end, my_wc_t sep, my_wc_t escape) { DBUG_ASSERT(escape == 0 || escape == '\\'); DBUG_ASSERT(sep == '"' || sep == '\''); switch (wc) { case 0: return my_wc_mb_utf8_opt_escape(cs, wc, escape, '0', str, end); case '\t': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 't', str, end); case '\r': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'r', str, end); case '\n': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'n', str, end); case '\032': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'Z', str, end); case '\'': case '\"': if (wc == sep) return my_wc_mb_utf8_with_escape(cs, wc, wc, str, end); } return my_charset_utf8_handler.wc_mb(cs, wc, str, end); // No escaping needed } /** wc_mb() compatible routines for all sql_mode and delimiter combinations */ int my_wc_mb_utf8_escape_single_quote_and_backslash(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end) { return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', '\\'); } int my_wc_mb_utf8_escape_double_quote_and_backslash(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end) { return my_wc_mb_utf8_escape(cs, wc, str, end, '"', '\\'); } int my_wc_mb_utf8_escape_single_quote(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end) { return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', 0); } int my_wc_mb_utf8_escape_double_quote(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end) { return my_wc_mb_utf8_escape(cs, wc, str, end, '"', 0); } }; // End of extern "C" /** Get an escaping function, depending on the current sql_mode and the string separator. */ my_charset_conv_wc_mb Lex_input_stream::get_escape_func(THD *thd, my_wc_t sep) const { return thd->backslash_escapes() ? (sep == '"' ? my_wc_mb_utf8_escape_double_quote_and_backslash: my_wc_mb_utf8_escape_single_quote_and_backslash) : (sep == '"' ? my_wc_mb_utf8_escape_double_quote: my_wc_mb_utf8_escape_single_quote); } /** Append a text literal to the end of m_body_utf8. The string is escaped according to the current sql_mode and the string delimiter (e.g. ' or "). @param thd - current THD @param txt - the string to be appended to m_body_utf8. Note, the string must be already unescaped. @param cs - the character set of the string @param end_ptr - m_cpp_utf8_processed_ptr will be set to this value (see body_utf8_append_ident for details) @param sep - the string delimiter (single or double quote) */ void Lex_input_stream::body_utf8_append_escape(THD *thd, const LEX_CSTRING *txt, CHARSET_INFO *cs, const char *end_ptr, my_wc_t sep) { DBUG_ASSERT(sep == '\'' || sep == '"'); if (!m_cpp_utf8_processed_ptr) return; uint errors; /** We previously alloced m_body_utf8 to be able to store the query with all strings properly escaped. See get_body_utf8_maximum_length(). So here we have guaranteedly enough space to append any string literal with escaping. Passing txt->length*2 as "available space" is always safe. For better safety purposes we could calculate get_body_utf8_maximum_length() every time we append a string, but this would affect performance negatively, so let's check that we don't get beyond the allocated buffer in debug build only. */ DBUG_ASSERT(m_body_utf8 + get_body_utf8_maximum_length(thd) >= m_body_utf8_ptr + txt->length * 2); uint32 cnv_length= my_convert_using_func(m_body_utf8_ptr, txt->length * 2, &my_charset_utf8_general_ci, get_escape_func(thd, sep), txt->str, txt->length, cs, cs->cset->mb_wc, &errors); m_body_utf8_ptr+= cnv_length; *m_body_utf8_ptr= 0; m_cpp_utf8_processed_ptr= end_ptr; } void Lex_input_stream::add_digest_token(uint token, LEX_YYSTYPE yylval) { if (m_digest != NULL) { m_digest= digest_add_token(m_digest, token, yylval); } } void Lex_input_stream::reduce_digest_token(uint token_left, uint token_right) { if (m_digest != NULL) { m_digest= digest_reduce_token(m_digest, token_left, token_right); } } /** lex starting operations for builtin select collected together */ void SELECT_LEX::lex_start(LEX *plex) { SELECT_LEX_UNIT *unit= &plex->unit; /* 'parent_lex' is used in init_query() so it must be before it. */ parent_lex= plex; init_query(); master= unit; prev= &unit->slave; link_next= slave= next= 0; link_prev= (st_select_lex_node**)&(plex->all_selects_list); DBUG_ASSERT(!group_list_ptrs); select_number= 1; in_sum_expr=0; ftfunc_list_alloc.empty(); ftfunc_list= &ftfunc_list_alloc; group_list.empty(); order_list.empty(); gorder_list.empty(); } void lex_start(THD *thd) { DBUG_ENTER("lex_start"); thd->lex->start(thd); DBUG_VOID_RETURN; } /* This is called before every query that is to be parsed. Because of this, it's critical to not do too much things here. (We already do too much here) */ void LEX::start(THD *thd_arg) { DBUG_ENTER("LEX::start"); DBUG_PRINT("info", ("This: %p thd_arg->lex: %p", this, thd_arg->lex)); thd= unit.thd= thd_arg; stmt_lex= this; // default, should be rewritten for VIEWs And CTEs DBUG_ASSERT(!explain); builtin_select.lex_start(this); lex_options= 0; context_stack.empty(); //empty select_stack select_stack_top= 0; unit.init_query(); current_select_number= 0; curr_with_clause= 0; with_clauses_list= 0; with_clauses_list_last_next= &with_clauses_list; clone_spec_offset= 0; create_view= NULL; field_list.empty(); value_list.empty(); update_list.empty(); set_var_list.empty(); param_list.empty(); view_list.empty(); with_column_list.empty(); with_persistent_for_clause= FALSE; column_list= NULL; index_list= NULL; prepared_stmt_params.empty(); auxiliary_table_list.empty(); unit.next= unit.master= unit.link_next= unit.return_to= 0; unit.prev= unit.link_prev= 0; unit.slave= current_select= all_selects_list= &builtin_select; sql_cache= LEX::SQL_CACHE_UNSPECIFIED; describe= 0; analyze_stmt= 0; explain_json= false; subqueries= FALSE; context_analysis_only= 0; derived_tables= 0; safe_to_cache_query= 1; parsing_options.reset(); empty_field_list_on_rset= 0; part_info= 0; m_sql_cmd= NULL; duplicates= DUP_ERROR; ignore= 0; spname= NULL; spcont= NULL; proc_list.first= 0; escape_used= FALSE; default_used= FALSE; query_tables= 0; reset_query_tables_list(FALSE); expr_allows_subselect= TRUE; selects_allow_into= FALSE; selects_allow_procedure= FALSE; use_only_table_context= FALSE; parse_vcol_expr= FALSE; check_exists= FALSE; create_info.lex_start(); verbose= 0; name= null_clex_str; event_parse_data= NULL; profile_options= PROFILE_NONE; nest_level= 0; builtin_select.nest_level_base= &unit; allow_sum_func.clear_all(); in_sum_func= NULL; used_tables= 0; table_type= TABLE_TYPE_UNKNOWN; reset_slave_info.all= false; limit_rows_examined= 0; limit_rows_examined_cnt= ULONGLONG_MAX; var_list.empty(); stmt_var_list.empty(); proc_list.elements=0; save_group_list.empty(); save_order_list.empty(); win_ref= NULL; win_frame= NULL; frame_top_bound= NULL; frame_bottom_bound= NULL; win_spec= NULL; vers_conditions.empty(); is_lex_started= TRUE; next_is_main= FALSE; next_is_down= FALSE; wild= 0; exchange= 0; DBUG_VOID_RETURN; } void lex_end(LEX *lex) { DBUG_ENTER("lex_end"); DBUG_PRINT("enter", ("lex: %p", lex)); lex_end_stage1(lex); lex_end_stage2(lex); DBUG_VOID_RETURN; } void lex_end_stage1(LEX *lex) { DBUG_ENTER("lex_end_stage1"); /* release used plugins */ if (lex->plugins.elements) /* No function call and no mutex if no plugins. */ { plugin_unlock_list(0, (plugin_ref*)lex->plugins.buffer, lex->plugins.elements); } reset_dynamic(&lex->plugins); if (lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE) { /* Don't delete lex->sphead, it'll be needed for EXECUTE. Note that of all statements that populate lex->sphead only SQLCOM_COMPOUND can be PREPAREd */ DBUG_ASSERT(lex->sphead == 0 || lex->sql_command == SQLCOM_COMPOUND); } else { delete lex->sphead; lex->sphead= NULL; } DBUG_VOID_RETURN; } /* MASTER INFO parameters (or state) is normally cleared towards the end of a statement. But in case of PS, the state needs to be preserved during its lifetime and should only be cleared on PS close or deallocation. */ void lex_end_stage2(LEX *lex) { DBUG_ENTER("lex_end_stage2"); /* Reset LEX_MASTER_INFO */ lex->mi.reset(lex->sql_command == SQLCOM_CHANGE_MASTER); delete_dynamic(&lex->delete_gtid_domain); DBUG_VOID_RETURN; } Yacc_state::~Yacc_state() { if (yacc_yyss) { my_free(yacc_yyss); my_free(yacc_yyvs); } } int Lex_input_stream::find_keyword(Lex_ident_cli_st *kwd, uint len, bool function) { const char *tok= m_tok_start; SYMBOL *symbol= get_hash_symbol(tok, len, function); if (symbol) { kwd->set_keyword(tok, len); DBUG_ASSERT(tok >= get_buf()); DBUG_ASSERT(tok < get_end_of_query()); if (m_thd->variables.sql_mode & MODE_ORACLE) { switch (symbol->tok) { case BEGIN_MARIADB_SYM: return BEGIN_ORACLE_SYM; case BLOB_MARIADB_SYM: return BLOB_ORACLE_SYM; case BODY_MARIADB_SYM: return BODY_ORACLE_SYM; case CLOB_MARIADB_SYM: return CLOB_ORACLE_SYM; case CONTINUE_MARIADB_SYM: return CONTINUE_ORACLE_SYM; case DECLARE_MARIADB_SYM: return DECLARE_ORACLE_SYM; case DECODE_MARIADB_SYM: return DECODE_ORACLE_SYM; case ELSEIF_MARIADB_SYM: return ELSEIF_ORACLE_SYM; case ELSIF_MARIADB_SYM: return ELSIF_ORACLE_SYM; case EXCEPTION_MARIADB_SYM: return EXCEPTION_ORACLE_SYM; case EXIT_MARIADB_SYM: return EXIT_ORACLE_SYM; case GOTO_MARIADB_SYM: return GOTO_ORACLE_SYM; case NUMBER_MARIADB_SYM: return NUMBER_ORACLE_SYM; case OTHERS_MARIADB_SYM: return OTHERS_ORACLE_SYM; case PACKAGE_MARIADB_SYM: return PACKAGE_ORACLE_SYM; case RAISE_MARIADB_SYM: return RAISE_ORACLE_SYM; case RAW_MARIADB_SYM: return RAW_ORACLE_SYM; case RETURN_MARIADB_SYM: return RETURN_ORACLE_SYM; case ROWTYPE_MARIADB_SYM: return ROWTYPE_ORACLE_SYM; case VARCHAR2_MARIADB_SYM: return VARCHAR2_ORACLE_SYM; } } if ((symbol->tok == NOT_SYM) && (m_thd->variables.sql_mode & MODE_HIGH_NOT_PRECEDENCE)) return NOT2_SYM; if ((symbol->tok == OR2_SYM) && (m_thd->variables.sql_mode & MODE_PIPES_AS_CONCAT)) { return (m_thd->variables.sql_mode & MODE_ORACLE) ? ORACLE_CONCAT_SYM : MYSQL_CONCAT_SYM; } return symbol->tok; } return 0; } /* Check if name is a keyword SYNOPSIS is_keyword() name checked name (must not be empty) len length of checked name RETURN VALUES 0 name is a keyword 1 name isn't a keyword */ bool is_keyword(const char *name, uint len) { DBUG_ASSERT(len != 0); return get_hash_symbol(name,len,0)!=0; } /** Check if name is a sql function @param name checked name @return is this a native function or not @retval 0 name is a function @retval 1 name isn't a function */ bool is_lex_native_function(const LEX_CSTRING *name) { DBUG_ASSERT(name != NULL); return (get_hash_symbol(name->str, (uint) name->length, 1) != 0); } bool is_native_function(THD *thd, const LEX_CSTRING *name) { if (find_native_function_builder(thd, name)) return true; if (is_lex_native_function(name)) return true; return false; } bool is_native_function_with_warn(THD *thd, const LEX_CSTRING *name) { if (!is_native_function(thd, name)) return false; /* This warning will be printed when [1] A client query is parsed, [2] A stored function is loaded by db_load_routine. Printing the warning for [2] is intentional, to cover the following scenario: - A user define a SF 'foo' using MySQL 5.N - An application uses select foo(), and works. - MySQL 5.{N+1} defines a new native function 'foo', as part of a new feature. - MySQL 5.{N+1} documentation is updated, and should mention that there is a potential incompatible change in case of existing stored function named 'foo'. - The user deploys 5.{N+1}. At this point, 'select foo()' means something different, and the user code is most likely broken (it's only safe if the code is 'select db.foo()'). With a warning printed when the SF is loaded (which has to occur before the call), the warning will provide a hint explaining the root cause of a later failure of 'select foo()'. With no warning printed, the user code will fail with no apparent reason. Printing a warning each time db_load_routine is executed for an ambiguous function is annoying, since that can happen a lot, but in practice should not happen unless there *are* name collisions. If a collision exists, it should not be silenced but fixed. */ push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE, ER_NATIVE_FCT_NAME_COLLISION, ER_THD(thd, ER_NATIVE_FCT_NAME_COLLISION), name->str); return true; } /* make a copy of token before ptr and set yytoklen */ LEX_CSTRING Lex_input_stream::get_token(uint skip, uint length) { LEX_CSTRING tmp; yyUnget(); // ptr points now after last token char tmp.length= length; tmp.str= m_thd->strmake(m_tok_start + skip, tmp.length); m_cpp_text_start= m_cpp_tok_start + skip; m_cpp_text_end= m_cpp_text_start + tmp.length; return tmp; } static size_t my_unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end, int sep, bool backslash_escapes) { char *start= to; for ( ; str != end ; str++) { #ifdef USE_MB int l; if (use_mb(cs) && (l= my_ismbchar(cs, str, end))) { while (l--) *to++ = *str++; str--; continue; } #endif if (backslash_escapes && *str == '\\' && str + 1 != end) { switch(*++str) { case 'n': *to++='\n'; break; case 't': *to++= '\t'; break; case 'r': *to++ = '\r'; break; case 'b': *to++ = '\b'; break; case '0': *to++= 0; // Ascii null break; case 'Z': // ^Z must be escaped on Win32 *to++='\032'; break; case '_': case '%': *to++= '\\'; // remember prefix for wildcard /* Fall through */ default: *to++= *str; break; } } else if (*str == sep) *to++= *str++; // Two ' or " else *to++ = *str; } *to= 0; return to - start; } size_t Lex_input_stream::unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end, int sep) { return my_unescape(cs, to, str, end, sep, m_thd->backslash_escapes()); } /* Return an unescaped text literal without quotes Fix sometimes to do only one scan of the string */ bool Lex_input_stream::get_text(Lex_string_with_metadata_st *dst, uint sep, int pre_skip, int post_skip) { uchar c; uint found_escape=0; CHARSET_INFO *cs= m_thd->charset(); bool is_8bit= false; while (! eof()) { c= yyGet(); if (c & 0x80) is_8bit= true; #ifdef USE_MB { int l; if (use_mb(cs) && (l = my_ismbchar(cs, get_ptr() -1, get_end_of_query()))) { skip_binary(l-1); continue; } } #endif if (c == '\\' && !(m_thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)) { // Escaped character found_escape=1; if (eof()) return true; yySkip(); } else if (c == sep) { if (c == yyGet()) // Check if two separators in a row { found_escape=1; // duplicate. Remember for delete continue; } else yyUnget(); /* Found end. Unescape and return string */ const char *str, *end; char *to; str= m_tok_start; end= get_ptr(); /* Extract the text from the token */ str += pre_skip; end -= post_skip; DBUG_ASSERT(end >= str); if (!(to= (char*) m_thd->alloc((uint) (end - str) + 1))) { dst->set(&empty_clex_str, 0, '\0'); return true; // Sql_alloc has set error flag } m_cpp_text_start= m_cpp_tok_start + pre_skip; m_cpp_text_end= get_cpp_ptr() - post_skip; if (!found_escape) { size_t len= (end - str); memcpy(to, str, len); to[len]= '\0'; dst->set(to, len, is_8bit, '\0'); } else { size_t len= unescape(cs, to, str, end, sep); dst->set(to, len, is_8bit, '\0'); } return false; } } return true; // unexpected end of query } /* ** Calc type of integer; long integer, longlong integer or real. ** Returns smallest type that match the string. ** When using unsigned long long values the result is converted to a real ** because else they will be unexpected sign changes because all calculation ** is done with longlong or double. */ static const char *long_str="2147483647"; static const uint long_len=10; static const char *signed_long_str="-2147483648"; static const char *longlong_str="9223372036854775807"; static const uint longlong_len=19; static const char *signed_longlong_str="-9223372036854775808"; static const uint signed_longlong_len=19; static const char *unsigned_longlong_str="18446744073709551615"; static const uint unsigned_longlong_len=20; static inline uint int_token(const char *str,uint length) { if (length < long_len) // quick normal case return NUM; bool neg=0; if (*str == '+') // Remove sign and pre-zeros { str++; length--; } else if (*str == '-') { str++; length--; neg=1; } while (*str == '0' && length) { str++; length --; } if (length < long_len) return NUM; uint smaller,bigger; const char *cmp; if (neg) { if (length == long_len) { cmp= signed_long_str + 1; smaller= NUM; // If <= signed_long_str bigger= LONG_NUM; // If >= signed_long_str } else if (length < signed_longlong_len) return LONG_NUM; else if (length > signed_longlong_len) return DECIMAL_NUM; else { cmp= signed_longlong_str + 1; smaller= LONG_NUM; // If <= signed_longlong_str bigger=DECIMAL_NUM; } } else { if (length == long_len) { cmp= long_str; smaller=NUM; bigger=LONG_NUM; } else if (length < longlong_len) return LONG_NUM; else if (length > longlong_len) { if (length > unsigned_longlong_len) return DECIMAL_NUM; cmp=unsigned_longlong_str; smaller=ULONGLONG_NUM; bigger=DECIMAL_NUM; } else { cmp=longlong_str; smaller=LONG_NUM; bigger= ULONGLONG_NUM; } } while (*cmp && *cmp++ == *str++) ; return ((uchar) str[-1] <= (uchar) cmp[-1]) ? smaller : bigger; } /** Given a stream that is advanced to the first contained character in an open comment, consume the comment. Optionally, if we are allowed, recurse so that we understand comments within this current comment. At this level, we do not support version-condition comments. We might have been called with having just passed one in the stream, though. In that case, we probably want to tolerate mundane comments inside. Thus, the case for recursion. @retval Whether EOF reached before comment is closed. */ bool Lex_input_stream::consume_comment(int remaining_recursions_permitted) { uchar c; while (!eof()) { c= yyGet(); if (remaining_recursions_permitted > 0) { if ((c == '/') && (yyPeek() == '*')) { yySkip(); // Eat asterisk consume_comment(remaining_recursions_permitted - 1); continue; } } if (c == '*') { if (yyPeek() == '/') { yySkip(); // Eat slash return FALSE; } } if (c == '\n') yylineno++; } return TRUE; } /* MYSQLlex remember the following states from the following MYSQLlex() @param yylval [out] semantic value of the token being parsed (yylval) @param thd THD - MY_LEX_EOQ Found end of query - MY_LEX_OPERATOR_OR_IDENT Last state was an ident, text or number (which can't be followed by a signed number) */ int MYSQLlex(YYSTYPE *yylval, THD *thd) { return thd->m_parser_state->m_lip.lex_token(yylval, thd); } int ORAlex(YYSTYPE *yylval, THD *thd) { return thd->m_parser_state->m_lip.lex_token(yylval, thd); } int Lex_input_stream::lex_token(YYSTYPE *yylval, THD *thd) { int token; const int left_paren= (int) '('; if (lookahead_token >= 0) { /* The next token was already parsed in advance, return it. */ token= lookahead_token; lookahead_token= -1; *yylval= *(lookahead_yylval); lookahead_yylval= NULL; return token; } token= lex_one_token(yylval, thd); add_digest_token(token, yylval); SELECT_LEX *curr_sel= thd->lex->current_select; switch(token) { case WITH: /* Parsing 'WITH' 'ROLLUP' or 'WITH' 'CUBE' requires 2 look ups, which makes the grammar LALR(2). Replace by a single 'WITH_ROLLUP' or 'WITH_CUBE' token, to transform the grammar into a LALR(1) grammar, which sql_yacc.yy can process. */ token= lex_one_token(yylval, thd); add_digest_token(token, yylval); switch(token) { case CUBE_SYM: return WITH_CUBE_SYM; case ROLLUP_SYM: return WITH_ROLLUP_SYM; case SYSTEM: return WITH_SYSTEM_SYM; default: /* Save the token following 'WITH' */ lookahead_yylval= yylval; lookahead_token= token; return WITH; } break; case FOR_SYM: /* * Additional look-ahead to resolve doubtful cases like: * SELECT ... FOR UPDATE * SELECT ... FOR SYSTEM_TIME ... . */ token= lex_one_token(yylval, thd); add_digest_token(token, yylval); switch(token) { case SYSTEM_TIME_SYM: return FOR_SYSTEM_TIME_SYM; default: /* Save the token following 'FOR_SYM' */ lookahead_yylval= yylval; lookahead_token= token; return FOR_SYM; } break; case VALUES: if (curr_sel && (curr_sel->parsing_place == BEFORE_OPT_LIST || curr_sel->parsing_place == AFTER_LIST)) { curr_sel->parsing_place= NO_MATTER; break; } if (curr_sel && (curr_sel->parsing_place == IN_UPDATE_ON_DUP_KEY || curr_sel->parsing_place == IN_PART_FUNC)) return VALUE_SYM; token= lex_one_token(yylval, thd); add_digest_token(token, yylval); switch(token) { case LESS_SYM: return VALUES_LESS_SYM; case IN_SYM: return VALUES_IN_SYM; default: lookahead_yylval= yylval; lookahead_token= token; return VALUES; } case VALUE_SYM: if (curr_sel && (curr_sel->parsing_place == BEFORE_OPT_LIST || curr_sel->parsing_place == AFTER_LIST)) { curr_sel->parsing_place= NO_MATTER; return VALUES; } break; case PARTITION_SYM: case SELECT_SYM: case UNION_SYM: if (curr_sel && (curr_sel->parsing_place == BEFORE_OPT_LIST || curr_sel->parsing_place == AFTER_LIST)) { curr_sel->parsing_place= NO_MATTER; } break; case left_paren: if (!curr_sel || curr_sel->parsing_place != BEFORE_OPT_LIST) return token; token= lex_one_token(yylval, thd); add_digest_token(token, yylval); lookahead_yylval= yylval; yylval= NULL; lookahead_token= token; curr_sel->parsing_place= NO_MATTER; if (token == LIKE) return LEFT_PAREN_LIKE; if (token == WITH) return LEFT_PAREN_WITH; if (token != left_paren && token != SELECT_SYM) return LEFT_PAREN_ALT; else return left_paren; break; default: break; } return token; } int Lex_input_stream::lex_one_token(YYSTYPE *yylval, THD *thd) { uchar UNINIT_VAR(c); bool comment_closed; int tokval; uint length; enum my_lex_states state; LEX *lex= thd->lex; CHARSET_INFO *const cs= thd->charset(); const uchar *const state_map= cs->state_map; const uchar *const ident_map= cs->ident_map; start_token(); state= next_state; next_state= MY_LEX_OPERATOR_OR_IDENT; for (;;) { switch (state) { case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword case MY_LEX_START: // Start of token // Skip starting whitespace while(state_map[c= yyPeek()] == MY_LEX_SKIP) { if (c == '\n') yylineno++; yySkip(); } /* Start of real token */ restart_token(); c= yyGet(); state= (enum my_lex_states) state_map[c]; break; case MY_LEX_ESCAPE: if (!eof() && yyGet() == 'N') { // Allow \N as shortcut for NULL yylval->lex_str.str= (char*) "\\N"; yylval->lex_str.length= 2; return NULL_SYM; } /* Fall through */ case MY_LEX_CHAR: // Unknown or single char token if (c == '%' && (m_thd->variables.sql_mode & MODE_ORACLE)) { next_state= MY_LEX_START; return PERCENT_ORACLE_SYM; } /* Fall through */ case MY_LEX_SKIP: // This should not happen if (c != ')') next_state= MY_LEX_START; // Allow signed numbers return((int) c); case MY_LEX_MINUS_OR_COMMENT: if (yyPeek() == '-' && (my_isspace(cs,yyPeekn(1)) || my_iscntrl(cs,yyPeekn(1)))) { state=MY_LEX_COMMENT; break; } next_state= MY_LEX_START; // Allow signed numbers return((int) c); case MY_LEX_PLACEHOLDER: /* Check for a placeholder: it should not precede a possible identifier because of binlogging: when a placeholder is replaced with its value in a query for the binlog, the query must stay grammatically correct. */ next_state= MY_LEX_START; // Allow signed numbers if (stmt_prepare_mode && !ident_map[(uchar) yyPeek()]) return(PARAM_MARKER); return((int) c); case MY_LEX_COMMA: next_state= MY_LEX_START; // Allow signed numbers /* Warning: This is a work around, to make the "remember_name" rule in sql/sql_yacc.yy work properly. The problem is that, when parsing "select expr1, expr2", the code generated by bison executes the *pre* action remember_name (see select_item) *before* actually parsing the first token of expr2. */ restart_token(); return((int) c); case MY_LEX_IDENT_OR_NCHAR: { uint sep; if (yyPeek() != '\'') { state= MY_LEX_IDENT; break; } /* Found N'string' */ yySkip(); // Skip ' if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 2, 1)) { state= MY_LEX_CHAR; // Read char by char break; } body_utf8_append(m_cpp_text_start); body_utf8_append_escape(thd, &yylval->lex_string_with_metadata, national_charset_info, m_cpp_text_end, sep); return(NCHAR_STRING); } case MY_LEX_IDENT_OR_HEX: if (yyPeek() == '\'') { // Found x'hex-number' state= MY_LEX_HEX_NUMBER; break; } /* fall through */ case MY_LEX_IDENT_OR_BIN: if (yyPeek() == '\'') { // Found b'bin-number' state= MY_LEX_BIN_NUMBER; break; } /* fall through */ case MY_LEX_IDENT: { tokval= scan_ident_middle(thd, &yylval->ident_cli, &yylval->charset, &state); if (!tokval) continue; if (tokval == UNDERSCORE_CHARSET) m_underscore_cs= yylval->charset; return tokval; } case MY_LEX_IDENT_SEP: // Found ident and now '.' yylval->lex_str.str= (char*) get_ptr(); yylval->lex_str.length= 1; c= yyGet(); // should be '.' next_state= MY_LEX_IDENT_START; // Next is ident (not keyword) if (!ident_map[(uchar) yyPeek()]) // Probably ` or " next_state= MY_LEX_START; return((int) c); case MY_LEX_NUMBER_IDENT: // number or ident which num-start if (yyGetLast() == '0') { c= yyGet(); if (c == 'x') { while (my_isxdigit(cs, (c = yyGet()))) ; if ((yyLength() >= 3) && !ident_map[c]) { /* skip '0x' */ yylval->lex_str= get_token(2, yyLength() - 2); return (HEX_NUM); } yyUnget(); state= MY_LEX_IDENT_START; break; } else if (c == 'b') { while ((c= yyGet()) == '0' || c == '1') ; if ((yyLength() >= 3) && !ident_map[c]) { /* Skip '0b' */ yylval->lex_str= get_token(2, yyLength() - 2); return (BIN_NUM); } yyUnget(); state= MY_LEX_IDENT_START; break; } yyUnget(); } while (my_isdigit(cs, (c= yyGet()))) ; if (!ident_map[c]) { // Can't be identifier state=MY_LEX_INT_OR_REAL; break; } if (c == 'e' || c == 'E') { // The following test is written this way to allow numbers of type 1e1 if (my_isdigit(cs, yyPeek()) || (c=(yyGet())) == '+' || c == '-') { // Allow 1E+10 if (my_isdigit(cs, yyPeek())) // Number must have digit after sign { yySkip(); while (my_isdigit(cs, yyGet())) ; yylval->lex_str= get_token(0, yyLength()); return(FLOAT_NUM); } } yyUnget(); } // fall through case MY_LEX_IDENT_START: // We come here after '.' return scan_ident_start(thd, &yylval->ident_cli); case MY_LEX_USER_VARIABLE_DELIMITER: // Found quote char return scan_ident_delimited(thd, &yylval->ident_cli); case MY_LEX_INT_OR_REAL: // Complete int or incomplete real if (c != '.' || yyPeek() == '.') { /* Found a complete integer number: - the number is either not followed by a dot at all, or - the number is followed by a double dot as in: FOR i IN 1..10 */ yylval->lex_str= get_token(0, yyLength()); return int_token(yylval->lex_str.str, (uint) yylval->lex_str.length); } // fall through case MY_LEX_REAL: // Incomplete real number while (my_isdigit(cs, c= yyGet())) ; if (c == 'e' || c == 'E') { c= yyGet(); if (c == '-' || c == '+') c= yyGet(); // Skip sign if (!my_isdigit(cs, c)) { // No digit after sign state= MY_LEX_CHAR; break; } while (my_isdigit(cs, yyGet())) ; yylval->lex_str= get_token(0, yyLength()); return(FLOAT_NUM); } yylval->lex_str= get_token(0, yyLength()); return(DECIMAL_NUM); case MY_LEX_HEX_NUMBER: // Found x'hexstring' yySkip(); // Accept opening ' while (my_isxdigit(cs, (c= yyGet()))) ; if (c != '\'') return(ABORT_SYM); // Illegal hex constant yySkip(); // Accept closing ' length= yyLength(); // Length of hexnum+3 if ((length % 2) == 0) return(ABORT_SYM); // odd number of hex digits yylval->lex_str= get_token(2, // skip x' length - 3); // don't count x' and last ' return HEX_STRING; case MY_LEX_BIN_NUMBER: // Found b'bin-string' yySkip(); // Accept opening ' while ((c= yyGet()) == '0' || c == '1') ; if (c != '\'') return(ABORT_SYM); // Illegal hex constant yySkip(); // Accept closing ' length= yyLength(); // Length of bin-num + 3 yylval->lex_str= get_token(2, // skip b' length - 3); // don't count b' and last ' return (BIN_NUM); case MY_LEX_CMP_OP: // Incomplete comparison operator next_state= MY_LEX_START; // Allow signed numbers if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP || state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP) { yySkip(); if ((tokval= find_keyword(&yylval->kwd, 2, 0))) return(tokval); yyUnget(); } return(c); case MY_LEX_LONG_CMP_OP: // Incomplete comparison operator next_state= MY_LEX_START; if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP || state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP) { yySkip(); if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP) { yySkip(); if ((tokval= find_keyword(&yylval->kwd, 3, 0))) return(tokval); yyUnget(); } if ((tokval= find_keyword(&yylval->kwd, 2, 0))) return(tokval); yyUnget(); } return(c); case MY_LEX_BOOL: if (c != yyPeek()) { state= MY_LEX_CHAR; break; } yySkip(); tokval= find_keyword(&yylval->kwd, 2, 0); // Is a bool operator next_state= MY_LEX_START; // Allow signed numbers return(tokval); case MY_LEX_STRING_OR_DELIMITER: if (thd->variables.sql_mode & MODE_ANSI_QUOTES) { state= MY_LEX_USER_VARIABLE_DELIMITER; break; } /* " used for strings */ /* fall through */ case MY_LEX_STRING: // Incomplete text string { uint sep; if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 1, 1)) { state= MY_LEX_CHAR; // Read char by char break; } CHARSET_INFO *strcs= m_underscore_cs ? m_underscore_cs : cs; body_utf8_append(m_cpp_text_start); body_utf8_append_escape(thd, &yylval->lex_string_with_metadata, strcs, m_cpp_text_end, sep); m_underscore_cs= NULL; return(TEXT_STRING); } case MY_LEX_COMMENT: // Comment lex->lex_options|= OPTION_LEX_FOUND_COMMENT; while ((c= yyGet()) != '\n' && c) ; yyUnget(); // Safety against eof state= MY_LEX_START; // Try again break; case MY_LEX_LONG_COMMENT: // Long C comment? if (yyPeek() != '*') { state= MY_LEX_CHAR; // Probable division break; } lex->lex_options|= OPTION_LEX_FOUND_COMMENT; /* Reject '/' '*', since we might need to turn off the echo */ yyUnget(); save_in_comment_state(); if (yyPeekn(2) == '!' || (yyPeekn(2) == 'M' && yyPeekn(3) == '!')) { bool maria_comment_syntax= yyPeekn(2) == 'M'; in_comment= DISCARD_COMMENT; /* Accept '/' '*' '!', but do not keep this marker. */ set_echo(FALSE); yySkipn(maria_comment_syntax ? 4 : 3); /* The special comment format is very strict: '/' '*' '!', followed by an optional 'M' and exactly 1-2 digits (major), 2 digits (minor), then 2 digits (dot). 32302 -> 3.23.02 50032 -> 5.0.32 50114 -> 5.1.14 100000 -> 10.0.0 */ if ( my_isdigit(cs, yyPeekn(0)) && my_isdigit(cs, yyPeekn(1)) && my_isdigit(cs, yyPeekn(2)) && my_isdigit(cs, yyPeekn(3)) && my_isdigit(cs, yyPeekn(4)) ) { ulong version; uint length= 5; char *end_ptr= (char*) get_ptr() + length; int error; if (my_isdigit(cs, yyPeekn(5))) { end_ptr++; // 6 digit number length++; } version= (ulong) my_strtoll10(get_ptr(), &end_ptr, &error); /* MySQL-5.7 has new features and might have new SQL syntax that MariaDB-10.0 does not understand. Ignore all versioned comments with MySQL versions in the range 50700-999999, but do not ignore MariaDB specific comments for the same versions. */ if (version <= MYSQL_VERSION_ID && (version < 50700 || version > 99999 || maria_comment_syntax)) { /* Accept 'M' 'm' 'm' 'd' 'd' */ yySkipn(length); /* Expand the content of the special comment as real code */ set_echo(TRUE); state=MY_LEX_START; break; /* Do not treat contents as a comment. */ } else { #ifdef WITH_WSREP if (WSREP(thd) && version == 99997 && wsrep_thd_is_local(thd)) { WSREP_DEBUG("consistency check: %s", thd->query()); thd->wsrep_consistency_check= CONSISTENCY_CHECK_DECLARED; yySkipn(5); set_echo(TRUE); state= MY_LEX_START; break; /* Do not treat contents as a comment. */ } #endif /* WITH_WSREP */ /* Patch and skip the conditional comment to avoid it being propagated infinitely (eg. to a slave). */ char *pcom= yyUnput(' '); comment_closed= ! consume_comment(1); if (! comment_closed) { *pcom= '!'; } /* version allowed to have one level of comment inside. */ } } else { /* Not a version comment. */ state=MY_LEX_START; set_echo(TRUE); break; } } else { in_comment= PRESERVE_COMMENT; yySkip(); // Accept / yySkip(); // Accept * comment_closed= ! consume_comment(0); /* regular comments can have zero comments inside. */ } /* Discard: - regular '/' '*' comments, - special comments '/' '*' '!' for a future version, by scanning until we find a closing '*' '/' marker. Nesting regular comments isn't allowed. The first '*' '/' returns the parser to the previous state. /#!VERSI oned containing /# regular #/ is allowed #/ Inside one versioned comment, another versioned comment is treated as a regular discardable comment. It gets no special parsing. */ /* Unbalanced comments with a missing '*' '/' are a syntax error */ if (! comment_closed) return (ABORT_SYM); state = MY_LEX_START; // Try again restore_in_comment_state(); break; case MY_LEX_END_LONG_COMMENT: if ((in_comment != NO_COMMENT) && yyPeek() == '/') { /* Reject '*' '/' */ yyUnget(); /* Accept '*' '/', with the proper echo */ set_echo(in_comment == PRESERVE_COMMENT); yySkipn(2); /* And start recording the tokens again */ set_echo(TRUE); in_comment= NO_COMMENT; state=MY_LEX_START; } else state= MY_LEX_CHAR; // Return '*' break; case MY_LEX_SET_VAR: // Check if ':=' if (yyPeek() != '=') { next_state= MY_LEX_START; if (m_thd->variables.sql_mode & MODE_ORACLE) { yylval->kwd.set_keyword(m_tok_start, 1); return COLON_ORACLE_SYM; } return (int) ':'; } yySkip(); return (SET_VAR); case MY_LEX_SEMICOLON: // optional line terminator state= MY_LEX_CHAR; // Return ';' break; case MY_LEX_EOL: if (eof()) { yyUnget(); // Reject the last '\0' set_echo(FALSE); yySkip(); set_echo(TRUE); /* Unbalanced comments with a missing '*' '/' are a syntax error */ if (in_comment != NO_COMMENT) return (ABORT_SYM); next_state= MY_LEX_END; // Mark for next loop return(END_OF_INPUT); } state=MY_LEX_CHAR; break; case MY_LEX_END: next_state= MY_LEX_END; return(0); // We found end of input last time /* Actually real shouldn't start with . but allow them anyhow */ case MY_LEX_REAL_OR_POINT: if (my_isdigit(cs, (c= yyPeek()))) state = MY_LEX_REAL; // Real else if (c == '.') { yySkip(); return DOT_DOT_SYM; } else { state= MY_LEX_IDENT_SEP; // return '.' yyUnget(); // Put back '.' } break; case MY_LEX_USER_END: // end '@' of user@hostname switch (state_map[(uchar) yyPeek()]) { case MY_LEX_STRING: case MY_LEX_USER_VARIABLE_DELIMITER: case MY_LEX_STRING_OR_DELIMITER: break; case MY_LEX_USER_END: next_state= MY_LEX_SYSTEM_VAR; break; default: next_state= MY_LEX_HOSTNAME; break; } yylval->lex_str.str= (char*) get_ptr(); yylval->lex_str.length= 1; return((int) '@'); case MY_LEX_HOSTNAME: // end '@' of user@hostname for (c= yyGet() ; my_isalnum(cs, c) || c == '.' || c == '_' || c == '$'; c= yyGet()) ; yylval->lex_str= get_token(0, yyLength()); return(LEX_HOSTNAME); case MY_LEX_SYSTEM_VAR: yylval->lex_str.str= (char*) get_ptr(); yylval->lex_str.length= 1; yySkip(); // Skip '@' next_state= (state_map[(uchar) yyPeek()] == MY_LEX_USER_VARIABLE_DELIMITER ? MY_LEX_OPERATOR_OR_IDENT : MY_LEX_IDENT_OR_KEYWORD); return((int) '@'); case MY_LEX_IDENT_OR_KEYWORD: /* We come here when we have found two '@' in a row. We should now be able to handle: [(global | local | session) .]variable_name */ return scan_ident_sysvar(thd, &yylval->ident_cli); } } } bool Lex_input_stream::get_7bit_or_8bit_ident(THD *thd, uchar *last_char) { uchar c; CHARSET_INFO *const cs= thd->charset(); const uchar *const ident_map= cs->ident_map; bool is_8bit= false; for ( ; ident_map[c= yyGet()]; ) { if (c & 0x80) is_8bit= true; // will convert } *last_char= c; return is_8bit; } int Lex_input_stream::scan_ident_sysvar(THD *thd, Lex_ident_cli_st *str) { uchar last_char; uint length; int tokval; bool is_8bit; DBUG_ASSERT(m_tok_start == m_ptr); is_8bit= get_7bit_or_8bit_ident(thd, &last_char); if (last_char == '.') next_state= MY_LEX_IDENT_SEP; if (!(length= yyLength())) return ABORT_SYM; // Names must be nonempty. if ((tokval= find_keyword(str, length, 0))) { yyUnget(); // Put back 'c' return tokval; // Was keyword } yyUnget(); // ptr points now after last token char str->set_ident(m_tok_start, length, is_8bit); m_cpp_text_start= m_cpp_tok_start; m_cpp_text_end= m_cpp_text_start + length; body_utf8_append(m_cpp_text_start); body_utf8_append_ident(thd, str, m_cpp_text_end); return is_8bit ? IDENT_QUOTED : IDENT; } /* We can come here if different parsing stages: - In an identifier chain: SELECT t1.cccc FROM t1; (when the "cccc" part starts) In this case both m_tok_start and m_ptr point to "cccc". - When a sequence of digits has changed to something else, therefore the token becomes an identifier rather than a number: SELECT 12345_6 FROM t1; In this case m_tok_start points to the entire "12345_678", while m_ptr points to "678". */ int Lex_input_stream::scan_ident_start(THD *thd, Lex_ident_cli_st *str) { uchar c; bool is_8bit; CHARSET_INFO *const cs= thd->charset(); const uchar *const ident_map= cs->ident_map; DBUG_ASSERT(m_tok_start <= m_ptr); if (use_mb(cs)) { is_8bit= true; while (ident_map[c= yyGet()]) { int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); if (char_length <= 0) break; skip_binary(char_length - 1); } } else { is_8bit= get_7bit_or_8bit_ident(thd, &c); } if (c == '.' && ident_map[(uchar) yyPeek()]) next_state= MY_LEX_IDENT_SEP;// Next is '.' uint length= yyLength(); yyUnget(); // ptr points now after last token char str->set_ident(m_tok_start, length, is_8bit); m_cpp_text_start= m_cpp_tok_start; m_cpp_text_end= m_cpp_text_start + length; body_utf8_append(m_cpp_text_start); body_utf8_append_ident(thd, str, m_cpp_text_end); return is_8bit ? IDENT_QUOTED : IDENT; } int Lex_input_stream::scan_ident_middle(THD *thd, Lex_ident_cli_st *str, CHARSET_INFO **introducer, my_lex_states *st) { CHARSET_INFO *const cs= thd->charset(); const uchar *const ident_map= cs->ident_map; const uchar *const state_map= cs->state_map; const char *start; uint length; uchar c; bool is_8bit; bool resolve_introducer= true; DBUG_ASSERT(m_ptr == m_tok_start + 1); // m_ptr points to the second byte if (use_mb(cs)) { is_8bit= true; int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); if (char_length <= 0) { *st= MY_LEX_CHAR; return 0; } skip_binary(char_length - 1); while (ident_map[c= yyGet()]) { char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); if (char_length <= 0) break; if (char_length > 1 || (c & 0x80)) resolve_introducer= false; skip_binary(char_length - 1); } } else { is_8bit= get_7bit_or_8bit_ident(thd, &c) || (m_tok_start[0] & 0x80); resolve_introducer= !is_8bit; } length= yyLength(); start= get_ptr(); if (ignore_space) { /* If we find a space then this can't be an identifier. We notice this below by checking start != lex->ptr. */ for (; state_map[(uchar) c] == MY_LEX_SKIP ; c= yyGet()) { if (c == '\n') yylineno++; } } if (start == get_ptr() && c == '.' && ident_map[(uchar) yyPeek()]) next_state= MY_LEX_IDENT_SEP; else { // '(' must follow directly if function int tokval; yyUnget(); if ((tokval= find_keyword(str, length, c == '('))) { next_state= MY_LEX_START; // Allow signed numbers return(tokval); // Was keyword } yySkip(); // next state does a unget } /* Note: "SELECT _bla AS 'alias'" _bla should be considered as a IDENT if charset haven't been found. So we don't use MYF(MY_WME) with get_charset_by_csname to avoid producing an error. */ DBUG_ASSERT(length > 0); if (resolve_introducer && m_tok_start[0] == '_') { yyUnget(); // ptr points now after last token char str->set_ident(m_tok_start, length, false); m_cpp_text_start= m_cpp_tok_start; m_cpp_text_end= m_cpp_text_start + length; body_utf8_append(m_cpp_text_start, m_cpp_tok_start + length); ErrConvString csname(str->str + 1, str->length - 1, &my_charset_bin); CHARSET_INFO *cs= get_charset_by_csname(csname.ptr(), MY_CS_PRIMARY, MYF(0)); if (cs) { *introducer= cs; return UNDERSCORE_CHARSET; } return IDENT; } yyUnget(); // ptr points now after last token char str->set_ident(m_tok_start, length, is_8bit); m_cpp_text_start= m_cpp_tok_start; m_cpp_text_end= m_cpp_text_start + length; body_utf8_append(m_cpp_text_start); body_utf8_append_ident(thd, str, m_cpp_text_end); return is_8bit ? IDENT_QUOTED : IDENT; } int Lex_input_stream::scan_ident_delimited(THD *thd, Lex_ident_cli_st *str) { CHARSET_INFO *const cs= thd->charset(); uint double_quotes= 0; uchar c, quote_char= m_tok_start[0]; DBUG_ASSERT(m_ptr == m_tok_start + 1); while ((c= yyGet())) { int var_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); if (var_length == 1) { if (c == quote_char) { if (yyPeek() != quote_char) break; c= yyGet(); double_quotes++; continue; } } else if (var_length > 1) { skip_binary(var_length - 1); } } str->set_ident_quoted(m_tok_start + 1, yyLength() - 1, true, quote_char); yyUnget(); // ptr points now after last token char m_cpp_text_start= m_cpp_tok_start + 1; m_cpp_text_end= m_cpp_text_start + str->length; if (c == quote_char) yySkip(); // Skip end ` next_state= MY_LEX_START; body_utf8_append(m_cpp_text_start); // QQQ: shouldn't it add unescaped version ???? body_utf8_append_ident(thd, str, m_cpp_text_end); return IDENT_QUOTED; } void trim_whitespace(CHARSET_INFO *cs, LEX_CSTRING *str, size_t * prefix_length) { /* TODO: This code assumes that there are no multi-bytes characters that can be considered white-space. */ size_t plen= 0; while ((str->length > 0) && (my_isspace(cs, str->str[0]))) { plen++; str->length --; str->str ++; } if (prefix_length) *prefix_length= plen; /* FIXME: Also, parsing backward is not safe with multi bytes characters */ while ((str->length > 0) && (my_isspace(cs, str->str[str->length-1]))) { str->length --; } } /* st_select_lex structures initialisations */ void st_select_lex_node::init_query_common() { options= 0; set_linkage(UNSPECIFIED_TYPE); distinct= TRUE; no_table_names_allowed= 0; uncacheable= 0; } void st_select_lex_unit::init_query() { init_query_common(); set_linkage(GLOBAL_OPTIONS_TYPE); select_limit_cnt= HA_POS_ERROR; offset_limit_cnt= 0; union_distinct= 0; prepared= optimized= optimized_2= executed= 0; optimize_started= 0; item= 0; union_result= 0; table= 0; fake_select_lex= 0; saved_fake_select_lex= 0; cleaned= 0; item_list.empty(); describe= 0; found_rows_for_union= 0; derived= 0; is_view= false; with_clause= 0; with_element= 0; columns_are_renamed= false; intersect_mark= NULL; } void st_select_lex::init_query() { init_query_common(); table_list.empty(); top_join_list.empty(); join_list= &top_join_list; embedding= 0; leaf_tables_prep.empty(); leaf_tables.empty(); item_list.empty(); min_max_opt_list.empty(); join= 0; having= prep_having= where= prep_where= 0; cond_pushed_into_where= cond_pushed_into_having= 0; attach_to_conds.empty(); olap= UNSPECIFIED_OLAP_TYPE; having_fix_field= 0; having_fix_field_for_pushed_cond= 0; context.select_lex= this; context.init(); cond_count= between_count= with_wild= 0; max_equal_elems= 0; ref_pointer_array.reset(); select_n_where_fields= 0; select_n_reserved= 0; select_n_having_items= 0; n_sum_items= 0; n_child_sum_items= 0; hidden_bit_fields= 0; subquery_in_having= explicit_limit= 0; is_item_list_lookup= 0; first_execution= 1; first_natural_join_processing= 1; first_cond_optimization= 1; parsing_place= NO_MATTER; exclude_from_table_unique_test= no_wrap_view_item= FALSE; nest_level= 0; link_next= 0; prep_leaf_list_state= UNINIT; have_merged_subqueries= FALSE; bzero((char*) expr_cache_may_be_used, sizeof(expr_cache_may_be_used)); select_list_tables= 0; m_non_agg_field_used= false; m_agg_func_used= false; m_custom_agg_func_used= false; window_specs.empty(); window_funcs.empty(); tvc= 0; in_tvc= false; versioned_tables= 0; pushdown_select= 0; } void st_select_lex::init_select() { sj_nests.empty(); sj_subselects.empty(); group_list.empty(); if (group_list_ptrs) group_list_ptrs->clear(); type= 0; db= null_clex_str; having= 0; table_join_options= 0; in_sum_expr= with_wild= 0; options= 0; ftfunc_list_alloc.empty(); inner_sum_func_list= 0; ftfunc_list= &ftfunc_list_alloc; order_list.empty(); /* Set limit and offset to default values */ select_limit= 0; /* denotes the default limit = HA_POS_ERROR */ offset_limit= 0; /* denotes the default offset = 0 */ is_set_query_expr_tail= false; with_sum_func= 0; with_all_modifier= 0; is_correlated= 0; cur_pos_in_select_list= UNDEF_POS; cond_value= having_value= Item::COND_UNDEF; inner_refs_list.empty(); insert_tables= 0; merged_into= 0; m_non_agg_field_used= false; m_agg_func_used= false; m_custom_agg_func_used= false; name_visibility_map.clear_all(); with_dep= 0; join= 0; lock_type= TL_READ_DEFAULT; tvc= 0; in_funcs.empty(); curr_tvc_name= 0; in_tvc= false; versioned_tables= 0; } /* st_select_lex structures linking */ /* include on level down */ void st_select_lex_node::include_down(st_select_lex_node *upper) { if ((next= upper->slave)) next->prev= &next; prev= &upper->slave; upper->slave= this; master= upper; slave= 0; } void st_select_lex_node::add_slave(st_select_lex_node *slave_arg) { for (; slave; slave= slave->next) if (slave == slave_arg) return; if (slave) { st_select_lex_node *slave_arg_slave= slave_arg->slave; /* Insert in the front of list of slaves if any. */ slave_arg->include_neighbour(slave); /* include_neighbour() sets slave_arg->slave=0, restore it. */ slave_arg->slave= slave_arg_slave; /* Count on include_neighbour() setting the master. */ DBUG_ASSERT(slave_arg->master == this); } else { slave= slave_arg; slave_arg->master= this; } } void st_select_lex_node::link_chain_down(st_select_lex_node *first) { st_select_lex_node *last_node; st_select_lex_node *node= first; do { last_node= node; node->master= this; node= node->next; } while (node); if ((last_node->next= slave)) { slave->prev= &last_node->next; } first->prev= &slave; slave= first; } /* include on level down (but do not link) SYNOPSYS st_select_lex_node::include_standalone() upper - reference on node underr which this node should be included ref - references on reference on this node */ void st_select_lex_node::include_standalone(st_select_lex_node *upper, st_select_lex_node **ref) { next= 0; prev= ref; master= upper; slave= 0; } /* include neighbour (on same level) */ void st_select_lex_node::include_neighbour(st_select_lex_node *before) { if ((next= before->next)) next->prev= &next; prev= &before->next; before->next= this; master= before->master; slave= 0; } /* including in global SELECT_LEX list */ void st_select_lex_node::include_global(st_select_lex_node **plink) { if ((link_next= *plink)) link_next->link_prev= &link_next; link_prev= plink; *plink= this; } //excluding from global list (internal function) void st_select_lex_node::fast_exclude() { if (link_prev) { if ((*link_prev= link_next)) link_next->link_prev= link_prev; } // Remove slave structure for (; slave; slave= slave->next) slave->fast_exclude(); } /** @brief Insert a new chain of nodes into another chain before a particular link @param in/out ptr_pos_to_insert the address of the chain pointer pointing to the link before which the subchain has to be inserted @param end_chain_node the last link of the subchain to be inserted @details The method inserts the chain of nodes starting from this node and ending with the node nd_chain_node into another chain of nodes before the node pointed to by *ptr_pos_to_insert. It is assumed that ptr_pos_to_insert belongs to the chain where we insert. So it must be updated. @retval The method returns the pointer to the first link of the inserted chain */ st_select_lex_node *st_select_lex_node:: insert_chain_before( st_select_lex_node **ptr_pos_to_insert, st_select_lex_node *end_chain_node) { end_chain_node->link_next= *ptr_pos_to_insert; (*ptr_pos_to_insert)->link_prev= &end_chain_node->link_next; this->link_prev= ptr_pos_to_insert; return this; } /* Detach the node from its master and attach it to a new master */ void st_select_lex_node::move_as_slave(st_select_lex_node *new_master) { exclude_from_tree(); if (new_master->slave) { st_select_lex_node *curr= new_master->slave; for ( ; curr->next ; curr= curr->next) ; prev= &curr->next; } else prev= &new_master->slave; *prev= this; next= 0; master= new_master; } /* Exclude a node from the tree lex structure, but leave it in the global list of nodes. */ void st_select_lex_node::exclude_from_tree() { if ((*prev= next)) next->prev= prev; } /* Exclude select_lex structure (except first (first select can't be deleted, because it is most upper select)) */ void st_select_lex_node::exclude() { /* exclude from global list */ fast_exclude(); /* exclude from other structures */ exclude_from_tree(); /* We do not need following statements, because prev pointer of first list element point to master->slave if (master->slave == this) master->slave= next; */ } /* Exclude level of current unit from tree of SELECTs SYNOPSYS st_select_lex_unit::exclude_level() NOTE: units which belong to current will be brought up on level of currernt unit */ void st_select_lex_unit::exclude_level() { SELECT_LEX_UNIT *units= 0, **units_last= &units; for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) { // unlink current level from global SELECTs list if (sl->link_prev && (*sl->link_prev= sl->link_next)) sl->link_next->link_prev= sl->link_prev; // bring up underlay levels SELECT_LEX_UNIT **last= 0; for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit()) { u->master= master; last= (SELECT_LEX_UNIT**)&(u->next); } if (last) { (*units_last)= sl->first_inner_unit(); units_last= last; } } if (units) { // include brought up levels in place of current (*prev)= units; (*units_last)= (SELECT_LEX_UNIT*)next; if (next) next->prev= (SELECT_LEX_NODE**)units_last; units->prev= prev; } else { // exclude currect unit from list of nodes (*prev)= next; if (next) next->prev= prev; } // Mark it excluded prev= NULL; } #if 0 /* Exclude subtree of current unit from tree of SELECTs SYNOPSYS st_select_lex_unit::exclude_tree() */ void st_select_lex_unit::exclude_tree() { for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) { // unlink current level from global SELECTs list if (sl->link_prev && (*sl->link_prev= sl->link_next)) sl->link_next->link_prev= sl->link_prev; // unlink underlay levels for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit()) { u->exclude_level(); } } // exclude currect unit from list of nodes (*prev)= next; if (next) next->prev= prev; } #endif /* st_select_lex_node::mark_as_dependent mark all st_select_lex struct from this to 'last' as dependent SYNOPSIS last - pointer to last st_select_lex struct, before which all st_select_lex have to be marked as dependent NOTE 'last' should be reachable from this st_select_lex_node */ bool st_select_lex::mark_as_dependent(THD *thd, st_select_lex *last, Item *dependency) { DBUG_ASSERT(this != last); /* Mark all selects from resolved to 1 before select where was found table as depended (of select where was found table) */ SELECT_LEX *s= this; do { if (!(s->uncacheable & UNCACHEABLE_DEPENDENT_GENERATED)) { // Select is dependent of outer select s->uncacheable= (s->uncacheable & ~UNCACHEABLE_UNITED) | UNCACHEABLE_DEPENDENT_GENERATED; SELECT_LEX_UNIT *munit= s->master_unit(); munit->uncacheable= (munit->uncacheable & ~UNCACHEABLE_UNITED) | UNCACHEABLE_DEPENDENT_GENERATED; for (SELECT_LEX *sl= munit->first_select(); sl ; sl= sl->next_select()) { if (sl != s && !(sl->uncacheable & (UNCACHEABLE_DEPENDENT_GENERATED | UNCACHEABLE_UNITED))) sl->uncacheable|= UNCACHEABLE_UNITED; } } Item_subselect *subquery_expr= s->master_unit()->item; if (subquery_expr && subquery_expr->mark_as_dependent(thd, last, dependency)) return TRUE; } while ((s= s->outer_select()) != last && s != 0); is_correlated= TRUE; this->master_unit()->item->is_correlated= TRUE; return FALSE; } /* prohibit using LIMIT clause */ bool st_select_lex::test_limit() { if (select_limit != 0) { my_error(ER_NOT_SUPPORTED_YET, MYF(0), "LIMIT & IN/ALL/ANY/SOME subquery"); return(1); } return(0); } st_select_lex* st_select_lex_unit::outer_select() { return (st_select_lex*) master; } ha_rows st_select_lex::get_offset() { ulonglong val= 0; if (offset_limit) { // see comment for st_select_lex::get_limit() bool err= offset_limit->fix_fields_if_needed(master_unit()->thd, NULL); DBUG_ASSERT(!err); val= err ? HA_POS_ERROR : offset_limit->val_uint(); } return (ha_rows)val; } ha_rows st_select_lex::get_limit() { ulonglong val= HA_POS_ERROR; if (select_limit) { /* fix_fields() has not been called for select_limit. That's due to the historical reasons -- this item could be only of type Item_int, and Item_int does not require fix_fields(). Thus, fix_fields() was never called for select_limit. Some time ago, Item_splocal was also allowed for LIMIT / OFFSET clauses. However, the fix_fields() behavior was not updated, which led to a crash in some cases. There is no single place where to call fix_fields() for LIMIT / OFFSET items during the fix-fields-phase. Thus, for the sake of readability, it was decided to do it here, on the evaluation phase (which is a violation of design, but we chose the lesser of two evils). We can call fix_fields() here, because select_limit can be of two types only: Item_int and Item_splocal. Item_int::fix_fields() is trivial, and Item_splocal::fix_fields() (or rather Item_sp_variable::fix_fields()) has the following properties: 1) it does not affect other items; 2) it does not fail. Nevertheless DBUG_ASSERT was added to catch future changes in fix_fields() implementation. Also added runtime check against a result of fix_fields() in order to handle error condition in non-debug build. */ bool err= select_limit->fix_fields_if_needed(master_unit()->thd, NULL); DBUG_ASSERT(!err); val= err ? HA_POS_ERROR : select_limit->val_uint(); } return (ha_rows)val; } bool st_select_lex::add_order_to_list(THD *thd, Item *item, bool asc) { return add_to_list(thd, order_list, item, asc); } bool st_select_lex::add_gorder_to_list(THD *thd, Item *item, bool asc) { return add_to_list(thd, gorder_list, item, asc); } bool st_select_lex::add_item_to_list(THD *thd, Item *item) { DBUG_ENTER("st_select_lex::add_item_to_list"); DBUG_PRINT("info", ("Item: %p", item)); DBUG_RETURN(item_list.push_back(item, thd->mem_root)); } bool st_select_lex::add_group_to_list(THD *thd, Item *item, bool asc) { return add_to_list(thd, group_list, item, asc); } bool st_select_lex::add_ftfunc_to_list(THD *thd, Item_func_match *func) { return !func || ftfunc_list->push_back(func, thd->mem_root); // end of memory? } st_select_lex* st_select_lex::outer_select() { return (st_select_lex*) master->get_master(); } bool st_select_lex::inc_in_sum_expr() { in_sum_expr++; return 0; } uint st_select_lex::get_in_sum_expr() { return in_sum_expr; } TABLE_LIST* st_select_lex::get_table_list() { return table_list.first; } List* st_select_lex::get_item_list() { return &item_list; } ulong st_select_lex::get_table_join_options() { return table_join_options; } bool st_select_lex::setup_ref_array(THD *thd, uint order_group_num) { if (!((options & SELECT_DISTINCT) && !group_list.elements)) hidden_bit_fields= 0; // find_order_in_list() may need some extra space, so multiply by two. order_group_num*= 2; /* We have to create array in prepared statement memory if it is a prepared statement */ Query_arena *arena= thd->stmt_arena; const uint n_elems= (n_sum_items + n_child_sum_items + item_list.elements + select_n_reserved + select_n_having_items + select_n_where_fields + order_group_num + hidden_bit_fields) * 5; if (!ref_pointer_array.is_null()) { /* We need to take 'n_sum_items' into account when allocating the array, and this may actually increase during the optimization phase due to MIN/MAX rewrite in Item_in_subselect::single_value_transformer. In the usual case we can reuse the array from the prepare phase. If we need a bigger array, we must allocate a new one. */ if (ref_pointer_array.size() >= n_elems) return false; } Item **array= static_cast(arena->alloc(sizeof(Item*) * n_elems)); if (likely(array != NULL)) ref_pointer_array= Ref_ptr_array(array, n_elems); return array == NULL; } void st_select_lex_unit::print(String *str, enum_query_type query_type) { bool union_all= !union_distinct; if (with_clause) with_clause->print(str, query_type); for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) { if (sl != first_select()) { switch (sl->linkage) { default: DBUG_ASSERT(0); case UNION_TYPE: str->append(STRING_WITH_LEN(" union ")); if (union_all) str->append(STRING_WITH_LEN("all ")); else if (union_distinct == sl) union_all= TRUE; break; case INTERSECT_TYPE: str->append(STRING_WITH_LEN(" intersect ")); break; case EXCEPT_TYPE: str->append(STRING_WITH_LEN(" except ")); break; } } if (sl->braces) str->append('('); sl->print(thd, str, query_type); if (sl->braces) str->append(')'); } if (fake_select_lex) { if (fake_select_lex->order_list.elements) { str->append(STRING_WITH_LEN(" order by ")); fake_select_lex->print_order(str, fake_select_lex->order_list.first, query_type); } fake_select_lex->print_limit(thd, str, query_type); } else if (saved_fake_select_lex) saved_fake_select_lex->print_limit(thd, str, query_type); } void st_select_lex::print_order(String *str, ORDER *order, enum_query_type query_type) { for (; order; order= order->next) { if (order->counter_used) { char buffer[20]; size_t length= my_snprintf(buffer, 20, "%d", order->counter); str->append(buffer, (uint) length); } else { /* replace numeric reference with equivalent for ORDER constant */ if (order->item[0]->is_order_clause_position()) { /* make it expression instead of integer constant */ str->append(STRING_WITH_LEN("''")); } else (*order->item)->print(str, query_type); } if (order->direction == ORDER::ORDER_DESC) str->append(STRING_WITH_LEN(" desc")); if (order->next) str->append(','); } } void st_select_lex::print_limit(THD *thd, String *str, enum_query_type query_type) { SELECT_LEX_UNIT *unit= master_unit(); Item_subselect *item= unit->item; if (item && unit->global_parameters() == this) { Item_subselect::subs_type subs_type= item->substype(); if (subs_type == Item_subselect::EXISTS_SUBS || subs_type == Item_subselect::IN_SUBS || subs_type == Item_subselect::ALL_SUBS) { return; } } if (explicit_limit) { str->append(STRING_WITH_LEN(" limit ")); if (offset_limit) { offset_limit->print(str, query_type); str->append(','); } select_limit->print(str, query_type); } } /** @brief Restore the LEX and THD in case of a parse error. This is a clean up call that is invoked by the Bison generated parser before returning an error from MYSQLparse. If your semantic actions manipulate with the global thread state (which is a very bad practice and should not normally be employed) and need a clean-up in case of error, and you can not use %destructor rule in the grammar file itself, this function should be used to implement the clean up. */ void LEX::cleanup_lex_after_parse_error(THD *thd) { /* Delete sphead for the side effect of restoring of the original LEX state, thd->lex, thd->mem_root and thd->free_list if they were replaced when parsing stored procedure statements. We will never use sphead object after a parse error, so it's okay to delete it only for the sake of the side effect. TODO: make this functionality explicit in sp_head class. Sic: we must nullify the member of the main lex, not the current one that will be thrown away */ if (thd->lex->sphead) { sp_package *pkg; thd->lex->sphead->restore_thd_mem_root(thd); if ((pkg= thd->lex->sphead->m_parent)) { /* If a syntax error happened inside a package routine definition, then thd->lex points to the routine sublex. We need to restore to the top level LEX. */ DBUG_ASSERT(pkg->m_top_level_lex); DBUG_ASSERT(pkg == pkg->m_top_level_lex->sphead); pkg->restore_thd_mem_root(thd); LEX *top= pkg->m_top_level_lex; delete pkg; thd->lex= top; thd->lex->sphead= NULL; } else { delete thd->lex->sphead; thd->lex->sphead= NULL; } } } /* Initialize (or reset) Query_tables_list object. SYNOPSIS reset_query_tables_list() init TRUE - we should perform full initialization of object with allocating needed memory FALSE - object is already initialized so we should only reset its state so it can be used for parsing/processing of new statement DESCRIPTION This method initializes Query_tables_list so it can be used as part of LEX object for parsing/processing of statement. One can also use this method to reset state of already initialized Query_tables_list so it can be used for processing of new statement. */ void Query_tables_list::reset_query_tables_list(bool init) { sql_command= SQLCOM_END; if (!init && query_tables) { TABLE_LIST *table= query_tables; for (;;) { delete table->view; if (query_tables_last == &table->next_global || !(table= table->next_global)) break; } } query_tables= 0; query_tables_last= &query_tables; query_tables_own_last= 0; if (init) { /* We delay real initialization of hash (and therefore related memory allocation) until first insertion into this hash. */ my_hash_clear(&sroutines); } else if (sroutines.records) { /* Non-zero sroutines.records means that hash was initialized. */ my_hash_reset(&sroutines); } sroutines_list.empty(); sroutines_list_own_last= sroutines_list.next; sroutines_list_own_elements= 0; binlog_stmt_flags= 0; stmt_accessed_table_flag= 0; } /* Destroy Query_tables_list object with freeing all resources used by it. SYNOPSIS destroy_query_tables_list() */ void Query_tables_list::destroy_query_tables_list() { my_hash_free(&sroutines); } /* Initialize LEX object. SYNOPSIS LEX::LEX() NOTE LEX object initialized with this constructor can be used as part of THD object for which one can safely call open_tables(), lock_tables() and close_thread_tables() functions. But it is not yet ready for statement parsing. On should use lex_start() function to prepare LEX for this. */ LEX::LEX() : explain(NULL), result(0), arena_for_set_stmt(0), mem_root_for_set_stmt(0), option_type(OPT_DEFAULT), context_analysis_only(0), sphead(0), default_used(0), is_lex_started(0), limit_rows_examined_cnt(ULONGLONG_MAX) { init_dynamic_array2(&plugins, sizeof(plugin_ref), plugins_static_buffer, INITIAL_LEX_PLUGIN_LIST_SIZE, INITIAL_LEX_PLUGIN_LIST_SIZE, 0); reset_query_tables_list(TRUE); mi.init(); init_dynamic_array2(&delete_gtid_domain, sizeof(uint32), gtid_domain_static_buffer, initial_gtid_domain_buffer_size, initial_gtid_domain_buffer_size, 0); unit.slave= &builtin_select; } /* Check whether the merging algorithm can be used on this VIEW SYNOPSIS LEX::can_be_merged() DESCRIPTION We can apply merge algorithm if it is single SELECT view with subqueries only in WHERE clause (we do not count SELECTs of underlying views, and second level subqueries) and we have not grpouping, ordering, HAVING clause, aggregate functions, DISTINCT clause, LIMIT clause and several underlying tables. RETURN FALSE - only temporary table algorithm can be used TRUE - merge algorithm can be used */ bool LEX::can_be_merged() { // TODO: do not forget implement case when select_lex.table_list.elements==0 /* find non VIEW subqueries/unions */ bool selects_allow_merge= (first_select_lex()->next_select() == 0 && !(first_select_lex()->uncacheable & UNCACHEABLE_RAND)); if (selects_allow_merge) { for (SELECT_LEX_UNIT *tmp_unit= first_select_lex()->first_inner_unit(); tmp_unit; tmp_unit= tmp_unit->next_unit()) { if (tmp_unit->first_select()->parent_lex == this && (tmp_unit->item != 0 && (tmp_unit->item->place() != IN_WHERE && tmp_unit->item->place() != IN_ON && tmp_unit->item->place() != SELECT_LIST))) { selects_allow_merge= 0; break; } } } return (selects_allow_merge && first_select_lex()->group_list.elements == 0 && first_select_lex()->having == 0 && first_select_lex()->with_sum_func == 0 && first_select_lex()->table_list.elements >= 1 && !(first_select_lex()->options & SELECT_DISTINCT) && first_select_lex()->select_limit == 0); } /* check if command can use VIEW with MERGE algorithm (for top VIEWs) SYNOPSIS LEX::can_use_merged() DESCRIPTION Only listed here commands can use merge algorithm in top level SELECT_LEX (for subqueries will be used merge algorithm if LEX::can_not_use_merged() is not TRUE). RETURN FALSE - command can't use merged VIEWs TRUE - VIEWs with MERGE algorithms can be used */ bool LEX::can_use_merged() { switch (sql_command) { case SQLCOM_SELECT: case SQLCOM_CREATE_TABLE: case SQLCOM_UPDATE: case SQLCOM_UPDATE_MULTI: case SQLCOM_DELETE: case SQLCOM_DELETE_MULTI: case SQLCOM_INSERT: case SQLCOM_INSERT_SELECT: case SQLCOM_REPLACE: case SQLCOM_REPLACE_SELECT: case SQLCOM_LOAD: return TRUE; default: return FALSE; } } /* Check if command can't use merged views in any part of command SYNOPSIS LEX::can_not_use_merged() DESCRIPTION Temporary table algorithm will be used on all SELECT levels for queries listed here (see also LEX::can_use_merged()). RETURN FALSE - command can't use merged VIEWs TRUE - VIEWs with MERGE algorithms can be used */ bool LEX::can_not_use_merged() { switch (sql_command) { case SQLCOM_CREATE_VIEW: case SQLCOM_SHOW_CREATE: /* SQLCOM_SHOW_FIELDS is necessary to make information schema tables working correctly with views. see get_schema_tables_result function */ case SQLCOM_SHOW_FIELDS: return TRUE; default: return FALSE; } } /* Detect that we need only table structure of derived table/view SYNOPSIS only_view_structure() RETURN TRUE yes, we need only structure FALSE no, we need data */ bool LEX::only_view_structure() { switch (sql_command) { case SQLCOM_SHOW_CREATE: case SQLCOM_SHOW_TABLES: case SQLCOM_SHOW_FIELDS: case SQLCOM_REVOKE_ALL: case SQLCOM_REVOKE: case SQLCOM_GRANT: case SQLCOM_CREATE_VIEW: return TRUE; default: return FALSE; } } /* Should Items_ident be printed correctly SYNOPSIS need_correct_ident() RETURN TRUE yes, we need only structure FALSE no, we need data */ bool LEX::need_correct_ident() { switch(sql_command) { case SQLCOM_SHOW_CREATE: case SQLCOM_SHOW_TABLES: case SQLCOM_CREATE_VIEW: return TRUE; default: return FALSE; } } /* Get effective type of CHECK OPTION for given view SYNOPSIS get_effective_with_check() view given view NOTE It have not sense to set CHECK OPTION for SELECT satement or subqueries, so we do not. RETURN VIEW_CHECK_NONE no need CHECK OPTION VIEW_CHECK_LOCAL CHECK OPTION LOCAL VIEW_CHECK_CASCADED CHECK OPTION CASCADED */ uint8 LEX::get_effective_with_check(TABLE_LIST *view) { if (view->select_lex->master_unit() == &unit && which_check_option_applicable()) return (uint8)view->with_check; return VIEW_CHECK_NONE; } /** This method should be called only during parsing. It is aware of compound statements (stored routine bodies) and will initialize the destination with the default database of the stored routine, rather than the default database of the connection it is parsed in. E.g. if one has no current database selected, or current database set to 'bar' and then issues: CREATE PROCEDURE foo.p1() BEGIN SELECT * FROM t1 END// t1 is meant to refer to foo.t1, not to bar.t1. This method is needed to support this rule. @return TRUE in case of error (parsing should be aborted, FALSE in case of success */ bool LEX::copy_db_to(LEX_CSTRING *to) { if (sphead && sphead->m_name.str) { DBUG_ASSERT(sphead->m_db.str && sphead->m_db.length); /* It is safe to assign the string by-pointer, both sphead and its statements reside in the same memory root. */ *to= sphead->m_db; return FALSE; } return thd->copy_db_to(to); } /** Initialize offset and limit counters. @param sl SELECT_LEX to get offset and limit from. */ void st_select_lex_unit::set_limit(st_select_lex *sl) { DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare()); offset_limit_cnt= sl->get_offset(); select_limit_cnt= sl->get_limit(); if (select_limit_cnt + offset_limit_cnt >= select_limit_cnt) select_limit_cnt+= offset_limit_cnt; else select_limit_cnt= HA_POS_ERROR; } /** Decide if a temporary table is needed for the UNION. @retval true A temporary table is needed. @retval false A temporary table is not needed. */ bool st_select_lex_unit::union_needs_tmp_table() { if (with_element && with_element->is_recursive) return true; return union_distinct != NULL || global_parameters()->order_list.elements != 0 || thd->lex->sql_command == SQLCOM_INSERT_SELECT || thd->lex->sql_command == SQLCOM_REPLACE_SELECT; } /** @brief Set the initial purpose of this TABLE_LIST object in the list of used tables. We need to track this information on table-by-table basis, since when this table becomes an element of the pre-locked list, it's impossible to identify which SQL sub-statement it has been originally used in. E.g.: User request: SELECT * FROM t1 WHERE f1(); FUNCTION f1(): DELETE FROM t2; RETURN 1; BEFORE DELETE trigger on t2: INSERT INTO t3 VALUES (old.a); For this user request, the pre-locked list will contain t1, t2, t3 table elements, each needed for different DML. The trigger event map is updated to reflect INSERT, UPDATE, DELETE, REPLACE, LOAD DATA, CREATE TABLE .. SELECT, CREATE TABLE .. REPLACE SELECT statements, and additionally ON DUPLICATE KEY UPDATE clause. */ void LEX::set_trg_event_type_for_tables() { uint8 new_trg_event_map= 0; DBUG_ENTER("LEX::set_trg_event_type_for_tables"); /* Some auxiliary operations (e.g. GRANT processing) create TABLE_LIST instances outside the parser. Additionally, some commands (e.g. OPTIMIZE) change the lock type for a table only after parsing is done. Luckily, these do not fire triggers and do not need to pre-load them. For these TABLE_LISTs set_trg_event_type is never called, and trg_event_map is always empty. That means that the pre-locking algorithm will ignore triggers defined on these tables, if any, and the execution will either fail with an assert in sql_trigger.cc or with an error that a used table was not pre-locked, in case of a production build. TODO: this usage pattern creates unnecessary module dependencies and should be rewritten to go through the parser. Table list instances created outside the parser in most cases refer to mysql.* system tables. It is not allowed to have a trigger on a system table, but keeping track of initialization provides extra safety in case this limitation is circumvented. */ switch (sql_command) { case SQLCOM_LOCK_TABLES: /* On a LOCK TABLE, all triggers must be pre-loaded for this TABLE_LIST when opening an associated TABLE. */ new_trg_event_map= trg2bit(TRG_EVENT_INSERT) | trg2bit(TRG_EVENT_UPDATE) | trg2bit(TRG_EVENT_DELETE); break; /* Basic INSERT. If there is an additional ON DUPLIATE KEY UPDATE clause, it will be handled later in this method. */ case SQLCOM_INSERT: /* fall through */ case SQLCOM_INSERT_SELECT: /* LOAD DATA ... INFILE is expected to fire BEFORE/AFTER INSERT triggers. If the statement also has REPLACE clause, it will be handled later in this method. */ case SQLCOM_LOAD: /* fall through */ /* REPLACE is semantically equivalent to INSERT. In case of a primary or unique key conflict, it deletes the old record and inserts a new one. So we also may need to fire ON DELETE triggers. This functionality is handled later in this method. */ case SQLCOM_REPLACE: /* fall through */ case SQLCOM_REPLACE_SELECT: /* CREATE TABLE ... SELECT defaults to INSERT if the table or view already exists. REPLACE option of CREATE TABLE ... REPLACE SELECT is handled later in this method. */ case SQLCOM_CREATE_TABLE: case SQLCOM_CREATE_SEQUENCE: new_trg_event_map|= trg2bit(TRG_EVENT_INSERT); break; /* Basic update and multi-update */ case SQLCOM_UPDATE: /* fall through */ case SQLCOM_UPDATE_MULTI: new_trg_event_map|= trg2bit(TRG_EVENT_UPDATE); break; /* Basic delete and multi-delete */ case SQLCOM_DELETE: /* fall through */ case SQLCOM_DELETE_MULTI: new_trg_event_map|= trg2bit(TRG_EVENT_DELETE); break; default: break; } switch (duplicates) { case DUP_UPDATE: new_trg_event_map|= trg2bit(TRG_EVENT_UPDATE); break; case DUP_REPLACE: new_trg_event_map|= trg2bit(TRG_EVENT_DELETE); break; case DUP_ERROR: default: break; } /* Do not iterate over sub-selects, only the tables in the outermost SELECT_LEX can be modified, if any. */ TABLE_LIST *tables= first_select_lex()->get_table_list(); while (tables) { /* This is a fast check to filter out statements that do not change data, or tables on the right side, in case of INSERT .. SELECT, CREATE TABLE .. SELECT and so on. Here we also filter out OPTIMIZE statement and non-updateable views, for which lock_type is TL_UNLOCK or TL_READ after parsing. */ if (static_cast(tables->lock_type) >= static_cast(TL_WRITE_ALLOW_WRITE)) tables->trg_event_map= new_trg_event_map; tables= tables->next_local; } DBUG_VOID_RETURN; } /* Unlink the first table from the global table list and the first table from outer select (lex->select_lex) local list SYNOPSIS unlink_first_table() link_to_local Set to 1 if caller should link this table to local list NOTES We assume that first tables in both lists is the same table or the local list is empty. RETURN 0 If 'query_tables' == 0 unlinked table In this case link_to_local is set. */ TABLE_LIST *LEX::unlink_first_table(bool *link_to_local) { TABLE_LIST *first; if ((first= query_tables)) { /* Exclude from global table list */ if ((query_tables= query_tables->next_global)) query_tables->prev_global= &query_tables; else query_tables_last= &query_tables; first->next_global= 0; /* and from local list if it is not empty */ if ((*link_to_local= MY_TEST(first_select_lex()->table_list.first))) { first_select_lex()->context.table_list= first_select_lex()->context.first_name_resolution_table= first->next_local; first_select_lex()->table_list.first= first->next_local; first_select_lex()->table_list.elements--; //safety first->next_local= 0; /* Ensure that the global list has the same first table as the local list. */ first_lists_tables_same(); } } return first; } /* Bring first local table of first most outer select to first place in global table list SYNOPSYS LEX::first_lists_tables_same() NOTES In many cases (for example, usual INSERT/DELETE/...) the first table of main SELECT_LEX have special meaning => check that it is the first table in global list and re-link to be first in the global list if it is necessary. We need such re-linking only for queries with sub-queries in the select list, as only in this case tables of sub-queries will go to the global list first. */ void LEX::first_lists_tables_same() { TABLE_LIST *first_table= first_select_lex()->table_list.first; if (query_tables != first_table && first_table != 0) { TABLE_LIST *next; if (query_tables_last == &first_table->next_global) query_tables_last= first_table->prev_global; if (query_tables_own_last == &first_table->next_global) query_tables_own_last= first_table->prev_global; if ((next= *first_table->prev_global= first_table->next_global)) next->prev_global= first_table->prev_global; /* include in new place */ first_table->next_global= query_tables; /* We are sure that query_tables is not 0, because first_table was not first table in the global list => we can use query_tables->prev_global without check of query_tables */ query_tables->prev_global= &first_table->next_global; first_table->prev_global= &query_tables; query_tables= first_table; } } void LEX::fix_first_select_number() { SELECT_LEX *first= first_select_lex(); if (first && first->select_number != 1) { uint num= first->select_number; for (SELECT_LEX *sel= all_selects_list; sel; sel= sel->next_select_in_list()) { if (sel->select_number < num) sel->select_number++; } first->select_number= 1; } } /* Link table back that was unlinked with unlink_first_table() SYNOPSIS link_first_table_back() link_to_local do we need link this table to local RETURN global list */ void LEX::link_first_table_back(TABLE_LIST *first, bool link_to_local) { if (first) { if ((first->next_global= query_tables)) query_tables->prev_global= &first->next_global; else query_tables_last= &first->next_global; query_tables= first; if (link_to_local) { first->next_local= first_select_lex()->table_list.first; first_select_lex()->context.table_list= first; first_select_lex()->table_list.first= first; first_select_lex()->table_list.elements++; //safety } } } /* cleanup lex for case when we open table by table for processing SYNOPSIS LEX::cleanup_after_one_table_open() NOTE This method is mostly responsible for cleaning up of selects lists and derived tables state. To rollback changes in Query_tables_list one has to call Query_tables_list::reset_query_tables_list(FALSE). */ void LEX::cleanup_after_one_table_open() { /* thd->lex->derived_tables & additional units may be set if we open a view. It is necessary to clear thd->lex->derived_tables flag to prevent processing of derived tables during next open_and_lock_tables if next table is a real table and cleanup & remove underlying units NOTE: all units will be connected to thd->lex->select_lex, because we have not UNION on most upper level. */ if (all_selects_list != first_select_lex()) { derived_tables= 0; first_select_lex()->exclude_from_table_unique_test= false; /* cleunup underlying units (units of VIEW) */ for (SELECT_LEX_UNIT *un= first_select_lex()->first_inner_unit(); un; un= un->next_unit()) un->cleanup(); /* reduce all selects list to default state */ all_selects_list= first_select_lex(); /* remove underlying units (units of VIEW) subtree */ first_select_lex()->cut_subtree(); } } /* Save current state of Query_tables_list for this LEX, and prepare it for processing of new statemnt. SYNOPSIS reset_n_backup_query_tables_list() backup Pointer to Query_tables_list instance to be used for backup */ void LEX::reset_n_backup_query_tables_list(Query_tables_list *backup) { backup->set_query_tables_list(this); /* We have to perform full initialization here since otherwise we will damage backed up state. */ this->reset_query_tables_list(TRUE); } /* Restore state of Query_tables_list for this LEX from backup. SYNOPSIS restore_backup_query_tables_list() backup Pointer to Query_tables_list instance used for backup */ void LEX::restore_backup_query_tables_list(Query_tables_list *backup) { this->destroy_query_tables_list(); this->set_query_tables_list(backup); } /* Checks for usage of routines and/or tables in a parsed statement SYNOPSIS LEX:table_or_sp_used() RETURN FALSE No routines and tables used TRUE Either or both routines and tables are used. */ bool LEX::table_or_sp_used() { DBUG_ENTER("table_or_sp_used"); if (sroutines.records || query_tables) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } /* Do end-of-prepare fixup for list of tables and their merge-VIEWed tables SYNOPSIS fix_prepare_info_in_table_list() thd Thread handle tbl List of tables to process DESCRIPTION Perform end-end-of prepare fixup for list of tables, if any of the tables is a merge-algorithm VIEW, recursively fix up its underlying tables as well. */ static void fix_prepare_info_in_table_list(THD *thd, TABLE_LIST *tbl) { for (; tbl; tbl= tbl->next_local) { if (tbl->on_expr && !tbl->prep_on_expr) { thd->check_and_register_item_tree(&tbl->prep_on_expr, &tbl->on_expr); tbl->on_expr= tbl->on_expr->copy_andor_structure(thd); } if (tbl->is_view_or_derived() && tbl->is_merged_derived()) { SELECT_LEX *sel= tbl->get_single_select(); fix_prepare_info_in_table_list(thd, sel->get_table_list()); } } } /* Save WHERE/HAVING/ON clauses and replace them with disposable copies SYNOPSIS st_select_lex::fix_prepare_information thd thread handler conds in/out pointer to WHERE condition to be met at execution having_conds in/out pointer to HAVING condition to be met at execution DESCRIPTION The passed WHERE and HAVING are to be saved for the future executions. This function saves it, and returns a copy which can be thrashed during this execution of the statement. By saving/thrashing here we mean only We also save the chain of ORDER::next in group_list, in case the list is modified by remove_const(). AND/OR trees. The function also calls fix_prepare_info_in_table_list that saves all ON expressions. */ void st_select_lex::fix_prepare_information(THD *thd, Item **conds, Item **having_conds) { DBUG_ENTER("st_select_lex::fix_prepare_information"); if (!thd->stmt_arena->is_conventional() && first_execution) { Query_arena_stmt on_stmt_arena(thd); first_execution= 0; if (group_list.first) { if (!group_list_ptrs) { void *mem= thd->stmt_arena->alloc(sizeof(Group_list_ptrs)); group_list_ptrs= new (mem) Group_list_ptrs(thd->stmt_arena->mem_root); } group_list_ptrs->reserve(group_list.elements); for (ORDER *order= group_list.first; order; order= order->next) { group_list_ptrs->push_back(order); } } if (*conds) { thd->check_and_register_item_tree(&prep_where, conds); *conds= where= prep_where->copy_andor_structure(thd); } if (*having_conds) { thd->check_and_register_item_tree(&prep_having, having_conds); *having_conds= having= prep_having->copy_andor_structure(thd); } fix_prepare_info_in_table_list(thd, table_list.first); } DBUG_VOID_RETURN; } /* There are st_select_lex::add_table_to_list & st_select_lex::set_lock_for_tables are in sql_parse.cc st_select_lex::print is in sql_select.cc st_select_lex_unit::prepare, st_select_lex_unit::exec, st_select_lex_unit::cleanup, st_select_lex_unit::reinit_exec_mechanism, st_select_lex_unit::change_result are in sql_union.cc */ /* Sets the kind of hints to be added by the calls to add_index_hint(). SYNOPSIS set_index_hint_type() type_arg The kind of hints to be added from now on. clause The clause to use for hints to be added from now on. DESCRIPTION Used in filling up the tagged hints list. This list is filled by first setting the kind of the hint as a context variable and then adding hints of the current kind. Then the context variable index_hint_type can be reset to the next hint type. */ void st_select_lex::set_index_hint_type(enum index_hint_type type_arg, index_clause_map clause) { current_index_hint_type= type_arg; current_index_hint_clause= clause; } /* Makes an array to store index usage hints (ADD/FORCE/IGNORE INDEX). SYNOPSIS alloc_index_hints() thd current thread. */ void st_select_lex::alloc_index_hints (THD *thd) { index_hints= new (thd->mem_root) List(); } /* adds an element to the array storing index usage hints (ADD/FORCE/IGNORE INDEX). SYNOPSIS add_index_hint() thd current thread. str name of the index. length number of characters in str. RETURN VALUE 0 on success, non-zero otherwise */ bool st_select_lex::add_index_hint (THD *thd, const char *str, size_t length) { return index_hints->push_front(new (thd->mem_root) Index_hint(current_index_hint_type, current_index_hint_clause, str, length), thd->mem_root); } /** Optimize all subqueries that have not been flattened into semi-joins. @details This functionality is a method of SELECT_LEX instead of JOIN because SQL statements as DELETE/UPDATE do not have a corresponding JOIN object. @see JOIN::optimize_unflattened_subqueries @param const_only Restrict subquery optimization to constant subqueries @return Operation status @retval FALSE success. @retval TRUE error occurred. */ bool st_select_lex::optimize_unflattened_subqueries(bool const_only) { SELECT_LEX_UNIT *next_unit= NULL; for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= next_unit ? next_unit : un->next_unit()) { Item_subselect *subquery_predicate= un->item; next_unit= NULL; if (subquery_predicate) { if (!subquery_predicate->fixed) { /* This subquery was excluded as part of some expression so it is invisible from all prepared expression. */ next_unit= un->next_unit(); un->exclude_level(); if (next_unit) continue; break; } if (subquery_predicate->substype() == Item_subselect::IN_SUBS) { Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate; if (in_subs->is_jtbm_merged) continue; } if (const_only && !subquery_predicate->const_item()) { /* Skip non-constant subqueries if the caller asked so. */ continue; } bool empty_union_result= true; bool is_correlated_unit= false; bool first= true; bool union_plan_saved= false; /* If the subquery is a UNION, optimize all the subqueries in the UNION. If there is no UNION, then the loop will execute once for the subquery. */ for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select()) { JOIN *inner_join= sl->join; if (first) first= false; else { if (!union_plan_saved) { union_plan_saved= true; if (un->save_union_explain(un->thd->lex->explain)) return true; /* Failure */ } } if (!inner_join) continue; SELECT_LEX *save_select= un->thd->lex->current_select; ulonglong save_options; int res; /* We need only 1 row to determine existence */ un->set_limit(un->global_parameters()); un->thd->lex->current_select= sl; save_options= inner_join->select_options; if (options & SELECT_DESCRIBE) { /* Optimize the subquery in the context of EXPLAIN. */ sl->set_explain_type(FALSE); sl->options|= SELECT_DESCRIBE; inner_join->select_options|= SELECT_DESCRIBE; } res= inner_join->optimize(); sl->update_used_tables(); sl->update_correlated_cache(); is_correlated_unit|= sl->is_correlated; inner_join->select_options= save_options; un->thd->lex->current_select= save_select; Explain_query *eq; if ((eq= inner_join->thd->lex->explain)) { Explain_select *expl_sel; if ((expl_sel= eq->get_select(inner_join->select_lex->select_number))) { sl->set_explain_type(TRUE); expl_sel->select_type= sl->type; } } if (empty_union_result) { /* If at least one subquery in a union is non-empty, the UNION result is non-empty. If there is no UNION, the only subquery is non-empy. */ empty_union_result= inner_join->empty_result(); } if (res) return TRUE; } if (empty_union_result) subquery_predicate->no_rows_in_result(); if (!is_correlated_unit) un->uncacheable&= ~UNCACHEABLE_DEPENDENT; subquery_predicate->is_correlated= is_correlated_unit; } } return FALSE; } /** @brief Process all derived tables/views of the SELECT. @param lex LEX of this thread @param phase phases to run derived tables/views through @details This function runs specified 'phases' on all tables from the table_list of this select. @return FALSE ok. @return TRUE an error occur. */ bool st_select_lex::handle_derived(LEX *lex, uint phases) { for (TABLE_LIST *cursor= (TABLE_LIST*) table_list.first; cursor; cursor= cursor->next_local) { if (cursor->is_view_or_derived() && cursor->handle_derived(lex, phases)) return TRUE; } return FALSE; } /** @brief Returns first unoccupied table map and table number @param map [out] return found map @param tablenr [out] return found tablenr @details Returns first unoccupied table map and table number in this select. Map and table are returned in *'map' and *'tablenr' accordingly. @retrun TRUE no free table map/table number @return FALSE found free table map/table number */ bool st_select_lex::get_free_table_map(table_map *map, uint *tablenr) { *map= 0; *tablenr= 0; TABLE_LIST *tl; List_iterator ti(leaf_tables); while ((tl= ti++)) { if (tl->table->map > *map) *map= tl->table->map; if (tl->table->tablenr > *tablenr) *tablenr= tl->table->tablenr; } (*map)<<= 1; (*tablenr)++; if (*tablenr >= MAX_TABLES) return TRUE; return FALSE; } /** @brief Append given table to the leaf_tables list. @param link Offset to which list in table structure to use @param table Table to append @details Append given 'table' to the leaf_tables list using the 'link' offset. If the 'table' is linked with other tables through next_leaf/next_local chains then whole list will be appended. */ void st_select_lex::append_table_to_list(TABLE_LIST *TABLE_LIST::*link, TABLE_LIST *table) { TABLE_LIST *tl; for (tl= leaf_tables.head(); tl->*link; tl= tl->*link) ; tl->*link= table; } /* @brief Replace given table from the leaf_tables list for a list of tables @param table Table to replace @param list List to substititute the table for @details Replace 'table' from the leaf_tables list for a list of tables 'tbl_list'. */ void st_select_lex::replace_leaf_table(TABLE_LIST *table, List &tbl_list) { TABLE_LIST *tl; List_iterator ti(leaf_tables); while ((tl= ti++)) { if (tl == table) { ti.replace(tbl_list); break; } } } /** @brief Assigns new table maps to tables in the leaf_tables list @param derived Derived table to take initial table map from @param map table map to begin with @param tablenr table number to begin with @param parent_lex new parent select_lex @details Assign new table maps/table numbers to all tables in the leaf_tables list. 'map'/'tablenr' are used for the first table and shifted to left/ increased for each consequent table in the leaf_tables list. If the 'derived' table is given then it's table map/number is used for the first table in the list and 'map'/'tablenr' are used for the second and all consequent tables. The 'parent_lex' is set as the new parent select_lex for all tables in the list. */ void st_select_lex::remap_tables(TABLE_LIST *derived, table_map map, uint tablenr, SELECT_LEX *parent_lex) { bool first_table= TRUE; TABLE_LIST *tl; table_map first_map; uint first_tablenr; if (derived && derived->table) { first_map= derived->table->map; first_tablenr= derived->table->tablenr; } else { first_map= map; map<<= 1; first_tablenr= tablenr++; } /* Assign table bit/table number. To the first table of the subselect the table bit/tablenr of the derived table is assigned. The rest of tables are getting bits sequentially, starting from the provided table map/tablenr. */ List_iterator ti(leaf_tables); while ((tl= ti++)) { if (first_table) { first_table= FALSE; tl->table->set_table_map(first_map, first_tablenr); } else { tl->table->set_table_map(map, tablenr); tablenr++; map<<= 1; } SELECT_LEX *old_sl= tl->select_lex; tl->select_lex= parent_lex; for(TABLE_LIST *emb= tl->embedding; emb && emb->select_lex == old_sl; emb= emb->embedding) emb->select_lex= parent_lex; } } /** @brief Merge a subquery into this select. @param derived derived table of the subquery to be merged @param subq_select select_lex of the subquery @param map table map for assigning to merged tables from subquery @param table_no table number for assigning to merged tables from subquery @details This function merges a subquery into its parent select. In short the merge operation appends the subquery FROM table list to the parent's FROM table list. In more details: .) the top_join_list of the subquery is wrapped into a join_nest and attached to 'derived' .) subquery's leaf_tables list is merged with the leaf_tables list of this select_lex .) the table maps and table numbers of the tables merged from the subquery are adjusted to reflect their new binding to this select @return TRUE an error occur @return FALSE ok */ bool SELECT_LEX::merge_subquery(THD *thd, TABLE_LIST *derived, SELECT_LEX *subq_select, uint table_no, table_map map) { derived->wrap_into_nested_join(subq_select->top_join_list); ftfunc_list->append(subq_select->ftfunc_list); if (join || thd->lex->sql_command == SQLCOM_UPDATE_MULTI || thd->lex->sql_command == SQLCOM_DELETE_MULTI) { List_iterator_fast li(subq_select->sj_subselects); Item_in_subselect *in_subq; while ((in_subq= li++)) { sj_subselects.push_back(in_subq, thd->mem_root); if (in_subq->emb_on_expr_nest == NO_JOIN_NEST) in_subq->emb_on_expr_nest= derived; } uint cnt= sizeof(expr_cache_may_be_used)/sizeof(bool); for (uint i= 0; i < cnt; i++) { if (subq_select->expr_cache_may_be_used[i]) expr_cache_may_be_used[i]= true; } List_iterator_fast it(subq_select->in_funcs); Item_func_in *in_func; while ((in_func= it++)) { in_funcs.push_back(in_func, thd->mem_root); if (in_func->emb_on_expr_nest == NO_JOIN_NEST) in_func->emb_on_expr_nest= derived; } } /* Walk through child's tables and adjust table map, tablenr, * parent_lex */ subq_select->remap_tables(derived, map, table_no, this); subq_select->merged_into= this; replace_leaf_table(derived, subq_select->leaf_tables); return FALSE; } /** @brief Mark tables from the leaf_tables list as belong to a derived table. @param derived tables will be marked as belonging to this derived @details Run through the leaf_list and mark all tables as belonging to the 'derived'. */ void SELECT_LEX::mark_as_belong_to_derived(TABLE_LIST *derived) { /* Mark tables as belonging to this DT */ TABLE_LIST *tl; List_iterator ti(leaf_tables); while ((tl= ti++)) tl->belong_to_derived= derived; } /** @brief Update used_tables cache for this select @details This function updates used_tables cache of ON expressions of all tables in the leaf_tables list and of the conds expression (if any). */ void SELECT_LEX::update_used_tables() { TABLE_LIST *tl; List_iterator ti(leaf_tables); while ((tl= ti++)) { if (tl->table && !tl->is_view_or_derived()) { TABLE_LIST *embedding= tl->embedding; for (embedding= tl->embedding; embedding; embedding=embedding->embedding) { if (embedding->is_view_or_derived()) { DBUG_ASSERT(embedding->is_merged_derived()); TABLE *tab= tl->table; tab->covering_keys= tab->s->keys_for_keyread; tab->covering_keys.intersect(tab->keys_in_use_for_query); /* View/derived was merged. Need to recalculate read_set bitmaps here. For example: CREATE VIEW v1 AS SELECT f1,f2,f3 FROM t1; SELECT f1 FROM v1; Initially, the view definition will put all f1,f2,f3 in the read_set for t1. But after the view is merged, only f1 should be in the read_set. */ bitmap_clear_all(tab->read_set); break; } } } } ti.rewind(); while ((tl= ti++)) { TABLE_LIST *embedding= tl; do { bool maybe_null; if ((maybe_null= MY_TEST(embedding->outer_join))) { tl->table->maybe_null= maybe_null; break; } } while ((embedding= embedding->embedding)); if (tl->on_expr) { tl->on_expr->update_used_tables(); tl->on_expr->walk(&Item::eval_not_null_tables, 0, NULL); } /* - There is no need to check sj_on_expr, because merged semi-joins inject sj_on_expr into the parent's WHERE clase. - For non-merged semi-joins (aka JTBMs), we need to check their left_expr. There is no need to check the rest of the subselect, we know it is uncorrelated and so cannot refer to any tables in this select. */ if (tl->jtbm_subselect) { Item *left_expr= tl->jtbm_subselect->left_expr; left_expr->walk(&Item::update_table_bitmaps_processor, FALSE, NULL); } embedding= tl->embedding; while (embedding) { if (embedding->on_expr && embedding->nested_join->join_list.head() == tl) { embedding->on_expr->update_used_tables(); embedding->on_expr->walk(&Item::eval_not_null_tables, 0, NULL); } tl= embedding; embedding= tl->embedding; } } if (join->conds) { join->conds->update_used_tables(); join->conds->walk(&Item::eval_not_null_tables, 0, NULL); } if (join->having) { join->having->update_used_tables(); } Item *item; List_iterator_fast it(join->fields_list); select_list_tables= 0; while ((item= it++)) { item->update_used_tables(); select_list_tables|= item->used_tables(); } Item_outer_ref *ref; List_iterator_fast ref_it(inner_refs_list); while ((ref= ref_it++)) { item= ref->outer_ref; item->update_used_tables(); } for (ORDER *order= group_list.first; order; order= order->next) (*order->item)->update_used_tables(); if (!master_unit()->is_unit_op() || master_unit()->global_parameters() != this) { for (ORDER *order= order_list.first; order; order= order->next) (*order->item)->update_used_tables(); } join->result->update_used_tables(); } /** @brief Update is_correlated cache for this select @details */ void st_select_lex::update_correlated_cache() { TABLE_LIST *tl; List_iterator ti(leaf_tables); is_correlated= false; while ((tl= ti++)) { // is_correlated|= tl->is_with_table_recursive_reference(); if (tl->on_expr) is_correlated|= MY_TEST(tl->on_expr->used_tables() & OUTER_REF_TABLE_BIT); for (TABLE_LIST *embedding= tl->embedding ; embedding ; embedding= embedding->embedding) { if (embedding->on_expr) is_correlated|= MY_TEST(embedding->on_expr->used_tables() & OUTER_REF_TABLE_BIT); } } if (join->conds) is_correlated|= MY_TEST(join->conds->used_tables() & OUTER_REF_TABLE_BIT); is_correlated|= join->having_is_correlated; if (join->having) is_correlated|= MY_TEST(join->having->used_tables() & OUTER_REF_TABLE_BIT); if (join->tmp_having) is_correlated|= MY_TEST(join->tmp_having->used_tables() & OUTER_REF_TABLE_BIT); Item *item; List_iterator_fast it(join->fields_list); while ((item= it++)) is_correlated|= MY_TEST(item->used_tables() & OUTER_REF_TABLE_BIT); for (ORDER *order= group_list.first; order; order= order->next) is_correlated|= MY_TEST((*order->item)->used_tables() & OUTER_REF_TABLE_BIT); if (!master_unit()->is_unit_op()) { for (ORDER *order= order_list.first; order; order= order->next) is_correlated|= MY_TEST((*order->item)->used_tables() & OUTER_REF_TABLE_BIT); } if (!is_correlated) uncacheable&= ~UNCACHEABLE_DEPENDENT; } /** Set the EXPLAIN type for this subquery. @param on_the_fly TRUE<=> We're running a SHOW EXPLAIN command, so we must not change any variables */ void st_select_lex::set_explain_type(bool on_the_fly) { bool is_primary= FALSE; if (next_select()) is_primary= TRUE; if (!is_primary && first_inner_unit()) { /* If there is at least one materialized derived|view then it's a PRIMARY select. Otherwise, all derived tables/views were merged and this select is a SIMPLE one. */ for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit()) { if ((!un->derived || un->derived->is_materialized_derived())) { is_primary= TRUE; break; } } } if (on_the_fly && !is_primary && have_merged_subqueries) is_primary= TRUE; SELECT_LEX *first= master_unit()->first_select(); /* drop UNCACHEABLE_EXPLAIN, because it is for internal usage only */ uint8 is_uncacheable= (uncacheable & ~UNCACHEABLE_EXPLAIN); bool using_materialization= FALSE; Item_subselect *parent_item; if ((parent_item= master_unit()->item) && parent_item->substype() == Item_subselect::IN_SUBS) { Item_in_subselect *in_subs= (Item_in_subselect*)parent_item; /* Surprisingly, in_subs->is_set_strategy() can return FALSE here, even for the last invocation of this function for the select. */ if (in_subs->test_strategy(SUBS_MATERIALIZATION)) using_materialization= TRUE; } if (master_unit()->thd->lex->first_select_lex() == this) { if (pushdown_select) type= pushed_select_text; else type= is_primary ? "PRIMARY" : "SIMPLE"; } else { if (this == first) { /* If we're a direct child of a UNION, we're the first sibling there */ if (linkage == DERIVED_TABLE_TYPE) { bool is_pushed_master_unit= master_unit()->derived && master_unit()->derived->pushdown_derived; if (is_pushed_master_unit) type= pushed_derived_text; else if (is_uncacheable & UNCACHEABLE_DEPENDENT) type= "LATERAL DERIVED"; else type= "DERIVED"; } else if (using_materialization) type= "MATERIALIZED"; else { if (is_uncacheable & UNCACHEABLE_DEPENDENT) type= "DEPENDENT SUBQUERY"; else { type= is_uncacheable? "UNCACHEABLE SUBQUERY" : "SUBQUERY"; } } } else { switch (linkage) { case INTERSECT_TYPE: type= "INTERSECT"; break; case EXCEPT_TYPE: type= "EXCEPT"; break; default: /* This a non-first sibling in UNION */ if (is_uncacheable & UNCACHEABLE_DEPENDENT) type= "DEPENDENT UNION"; else if (using_materialization) type= "MATERIALIZED UNION"; else { type= is_uncacheable ? "UNCACHEABLE UNION": "UNION"; if (this == master_unit()->fake_select_lex) type= unit_operation_text[master_unit()->common_op()]; /* join below may be =NULL when this functions is called at an early stage. It will be later called again and we will set the correct value. */ if (join) { bool uses_cte= false; for (JOIN_TAB *tab= first_linear_tab(join, WITHOUT_BUSH_ROOTS, WITH_CONST_TABLES); tab; tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS)) { /* pos_in_table_list=NULL for e.g. post-join aggregation JOIN_TABs. */ if (tab->table && tab->table->pos_in_table_list && tab->table->pos_in_table_list->with && tab->table->pos_in_table_list->with->is_recursive) { uses_cte= true; break; } } if (uses_cte) type= "RECURSIVE UNION"; } } break; } } } if (!on_the_fly) options|= SELECT_DESCRIBE; } /** @brief Increase estimated number of records for a derived table/view @param records number of records to increase estimate by @details This function increases estimated number of records by the 'records' for the derived table to which this select belongs to. */ void SELECT_LEX::increase_derived_records(ha_rows records) { SELECT_LEX_UNIT *unit= master_unit(); DBUG_ASSERT(unit->derived); if (unit->with_element && unit->with_element->is_recursive) { st_select_lex *first_recursive= unit->with_element->first_recursive; st_select_lex *sl= unit->first_select(); for ( ; sl != first_recursive; sl= sl->next_select()) { if (sl == this) break; } if (sl == first_recursive) return; } select_result *result= unit->result; switch (linkage) { case INTERSECT_TYPE: // result of intersect can't be more then one of components set_if_smaller(result->est_records, records); case EXCEPT_TYPE: // in worse case none of record will be removed break; default: // usual UNION result->est_records+= records; break; } } /** @brief Mark select's derived table as a const one. @param empty Whether select has an empty result set @details Mark derived table/view of this select as a constant one (to materialize it at the optimization phase) unless this select belongs to a union. Estimated number of rows is incremented if this select has non empty result set. */ void SELECT_LEX::mark_const_derived(bool empty) { TABLE_LIST *derived= master_unit()->derived; /* join == NULL in DELETE ... RETURNING */ if (!(join && join->thd->lex->describe) && derived) { if (!empty) increase_derived_records(1); if (!master_unit()->is_unit_op() && !derived->is_merged_derived() && !(join && join->with_two_phase_optimization)) derived->fill_me= TRUE; } } bool st_select_lex::save_leaf_tables(THD *thd) { Query_arena *arena, backup; arena= thd->activate_stmt_arena_if_needed(&backup); List_iterator_fast li(leaf_tables); TABLE_LIST *table; while ((table= li++)) { if (leaf_tables_exec.push_back(table, thd->mem_root)) return 1; table->tablenr_exec= table->get_tablenr(); table->map_exec= table->get_map(); if (join && (join->select_options & SELECT_DESCRIBE)) table->maybe_null_exec= 0; else table->maybe_null_exec= table->table? table->table->maybe_null: 0; } if (arena) thd->restore_active_arena(arena, &backup); return 0; } bool LEX::save_prep_leaf_tables() { if (!thd->save_prep_leaf_list) return FALSE; Query_arena *arena= thd->stmt_arena, backup; arena= thd->activate_stmt_arena_if_needed(&backup); //It is used for DETETE/UPDATE so top level has only one SELECT DBUG_ASSERT(first_select_lex()->next_select() == NULL); bool res= first_select_lex()->save_prep_leaf_tables(thd); if (arena) thd->restore_active_arena(arena, &backup); if (res) return TRUE; thd->save_prep_leaf_list= FALSE; return FALSE; } bool st_select_lex::save_prep_leaf_tables(THD *thd) { List_iterator_fast li(leaf_tables); TABLE_LIST *table; /* Check that the SELECT_LEX was really prepared and so tables are setup. It can be subquery in SET clause of UPDATE which was not prepared yet, so its tables are not yet setup and ready for storing. */ if (prep_leaf_list_state != READY) return FALSE; while ((table= li++)) { if (leaf_tables_prep.push_back(table)) return TRUE; } prep_leaf_list_state= SAVED; for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit()) { for (SELECT_LEX *sl= u->first_select(); sl; sl= sl->next_select()) { if (sl->save_prep_leaf_tables(thd)) return TRUE; } } return FALSE; } /* Return true if this select_lex has been converted into a semi-join nest within 'ancestor'. We need a loop to check this because there could be several nested subselects, like SELECT ... FROM grand_parent WHERE expr1 IN (SELECT ... FROM parent WHERE expr2 IN ( SELECT ... FROM child) which were converted into: SELECT ... FROM grand_parent SEMI_JOIN (parent JOIN child) WHERE expr1 AND expr2 In this case, both parent and child selects were merged into the parent. */ bool st_select_lex::is_merged_child_of(st_select_lex *ancestor) { bool all_merged= TRUE; for (SELECT_LEX *sl= this; sl && sl!=ancestor; sl=sl->outer_select()) { Item *subs= sl->master_unit()->item; if (subs && subs->type() == Item::SUBSELECT_ITEM && ((Item_subselect*)subs)->substype() == Item_subselect::IN_SUBS && ((Item_in_subselect*)subs)->test_strategy(SUBS_SEMI_JOIN)) { continue; } if (sl->master_unit()->derived && sl->master_unit()->derived->is_merged_derived()) { continue; } all_merged= FALSE; break; } return all_merged; } /* This is used by SHOW EXPLAIN. It assuses query plan has been already collected into QPF structures and we only need to print it out. */ int LEX::print_explain(select_result_sink *output, uint8 explain_flags, bool is_analyze, bool *printed_anything) { int res; if (explain && explain->have_query_plan()) { res= explain->print_explain(output, explain_flags, is_analyze); *printed_anything= true; } else { res= 0; *printed_anything= false; } return res; } /** Allocates and set arena for SET STATEMENT old values. @param backup where to save backup of arena. @retval 1 Error @retval 0 OK */ bool LEX::set_arena_for_set_stmt(Query_arena *backup) { DBUG_ENTER("LEX::set_arena_for_set_stmt"); DBUG_ASSERT(arena_for_set_stmt== 0); if (!mem_root_for_set_stmt) { mem_root_for_set_stmt= new MEM_ROOT(); if (unlikely(!(mem_root_for_set_stmt))) DBUG_RETURN(1); init_sql_alloc(mem_root_for_set_stmt, "set_stmt", ALLOC_ROOT_SET, ALLOC_ROOT_SET, MYF(MY_THREAD_SPECIFIC)); } if (unlikely(!(arena_for_set_stmt= new(mem_root_for_set_stmt) Query_arena_memroot(mem_root_for_set_stmt, Query_arena::STMT_INITIALIZED)))) DBUG_RETURN(1); DBUG_PRINT("info", ("mem_root: %p arena: %p", mem_root_for_set_stmt, arena_for_set_stmt)); thd->set_n_backup_active_arena(arena_for_set_stmt, backup); DBUG_RETURN(0); } void LEX::reset_arena_for_set_stmt(Query_arena *backup) { DBUG_ENTER("LEX::reset_arena_for_set_stmt"); DBUG_ASSERT(arena_for_set_stmt); thd->restore_active_arena(arena_for_set_stmt, backup); DBUG_PRINT("info", ("mem_root: %p arena: %p", arena_for_set_stmt->mem_root, arena_for_set_stmt)); DBUG_VOID_RETURN; } void LEX::free_arena_for_set_stmt() { DBUG_ENTER("LEX::free_arena_for_set_stmt"); if (!arena_for_set_stmt) return; DBUG_PRINT("info", ("mem_root: %p arena: %p", arena_for_set_stmt->mem_root, arena_for_set_stmt)); arena_for_set_stmt->free_items(); delete(arena_for_set_stmt); free_root(mem_root_for_set_stmt, MYF(MY_KEEP_PREALLOC)); arena_for_set_stmt= 0; DBUG_VOID_RETURN; } void LEX::restore_set_statement_var() { DBUG_ENTER("LEX::restore_set_statement_var"); if (!old_var_list.is_empty()) { DBUG_PRINT("info", ("vars: %d", old_var_list.elements)); sql_set_variables(thd, &old_var_list, false); old_var_list.empty(); free_arena_for_set_stmt(); } DBUG_ASSERT(!is_arena_for_set_stmt()); DBUG_VOID_RETURN; } unit_common_op st_select_lex_unit::common_op() { SELECT_LEX *first= first_select(); bool first_op= TRUE; unit_common_op operation= OP_MIX; // if no op for (SELECT_LEX *sl= first; sl; sl= sl->next_select()) { if (sl != first) { unit_common_op op; switch (sl->linkage) { case INTERSECT_TYPE: op= OP_INTERSECT; break; case EXCEPT_TYPE: op= OP_EXCEPT; break; default: op= OP_UNION; break; } if (first_op) { operation= op; first_op= FALSE; } else { if (operation != op) operation= OP_MIX; } } } return operation; } /* Save explain structures of a UNION. The only variable member is whether the union has "Using filesort". There is also save_union_explain_part2() function, which is called before we read UNION's output. The reason for it is examples like this: SELECT col1 FROM t1 UNION SELECT col2 FROM t2 ORDER BY (select ... from t3 ...) Here, the (select ... from t3 ...) subquery must be a child of UNION's st_select_lex. However, it is not connected as child until a very late stage in execution. */ int st_select_lex_unit::save_union_explain(Explain_query *output) { SELECT_LEX *first= first_select(); if (output->get_union(first->select_number)) return 0; /* Already added */ Explain_union *eu= new (output->mem_root) Explain_union(output->mem_root, thd->lex->analyze_stmt); if (unlikely(!eu)) return 0; if (with_element && with_element->is_recursive) eu->is_recursive_cte= true; if (derived) eu->connection_type= Explain_node::EXPLAIN_NODE_DERIVED; /* Note: Non-merged semi-joins cannot be made out of UNIONs currently, so we dont ever set EXPLAIN_NODE_NON_MERGED_SJ. */ for (SELECT_LEX *sl= first; sl; sl= sl->next_select()) eu->add_select(sl->select_number); eu->fake_select_type= unit_operation_text[eu->operation= common_op()]; eu->using_filesort= MY_TEST(global_parameters()->order_list.first); eu->using_tmp= union_needs_tmp_table(); // Save the UNION node output->add_node(eu); if (eu->get_select_id() == 1) output->query_plan_ready(); return 0; } /* @see st_select_lex_unit::save_union_explain */ int st_select_lex_unit::save_union_explain_part2(Explain_query *output) { Explain_union *eu= output->get_union(first_select()->select_number); if (fake_select_lex) { for (SELECT_LEX_UNIT *unit= fake_select_lex->first_inner_unit(); unit; unit= unit->next_unit()) { if (!(unit->item && unit->item->eliminated)) { eu->add_child(unit->first_select()->select_number); } } fake_select_lex->join->explain= &eu->fake_select_lex_explain; } return 0; } /** A routine used by the parser to decide whether we are specifying a full partitioning or if only partitions to add or to split. @note This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is used from the sql parser that doesn't have any ifdef's @retval TRUE Yes, it is part of a management partition command @retval FALSE No, not a management partition command */ bool LEX::is_partition_management() const { return (sql_command == SQLCOM_ALTER_TABLE && (alter_info.partition_flags == ALTER_PARTITION_ADD || alter_info.partition_flags == ALTER_PARTITION_REORGANIZE)); } /** Exclude last added SELECT_LEX (current) in the UNIT and return pointer in it (previous become currect) @return detached SELECT_LEX or NULL in case of error */ SELECT_LEX *LEX::exclude_last_select() { return exclude_not_first_select(current_select); } SELECT_LEX *LEX::exclude_not_first_select(SELECT_LEX *exclude) { DBUG_ENTER("LEX::exclude_not_first_select"); DBUG_PRINT("enter", ("exclude %p #%u", exclude, exclude->select_number)); SELECT_LEX_UNIT *unit= exclude->master_unit(); SELECT_LEX *sl; DBUG_ASSERT(unit->first_select() != exclude); /* we should go through the list to correctly set current_select */ for(sl= unit->first_select(); sl->next_select() && sl->next_select() != exclude; sl= sl->next_select()); DBUG_PRINT("info", ("excl: %p unit: %p prev: %p", exclude, unit, sl)); if (!sl) DBUG_RETURN(NULL); DBUG_ASSERT(&sl->next == exclude->prev); exclude->prev= NULL; current_select= sl; DBUG_RETURN(exclude); } SELECT_LEX_UNIT *LEX::alloc_unit() { SELECT_LEX_UNIT *unit; DBUG_ENTER("LEX::alloc_unit"); if (!(unit= new (thd->mem_root) SELECT_LEX_UNIT())) DBUG_RETURN(NULL); unit->init_query(); /* TODO: reentrant problem */ unit->thd= thd; unit->link_next= 0; unit->link_prev= 0; /* TODO: remove return_to */ unit->return_to= NULL; DBUG_RETURN(unit); } SELECT_LEX *LEX::alloc_select(bool select) { SELECT_LEX *select_lex; DBUG_ENTER("LEX::alloc_select"); if (!(select_lex= new (thd->mem_root) SELECT_LEX())) DBUG_RETURN(NULL); DBUG_PRINT("info", ("Allocate select: %p #%u statement lex: %p", select_lex, thd->lex->stmt_lex->current_select_number, thd->lex->stmt_lex)); /* TODO: move following init to constructor when we get rid of builtin select */ select_lex->select_number= ++thd->lex->stmt_lex->current_select_number; select_lex->parent_lex= this; /* Used in init_query. */ select_lex->init_query(); if (select) select_lex->init_select(); select_lex->nest_level_base= &this->unit; select_lex->include_global((st_select_lex_node**)&all_selects_list); select_lex->context.resolve_in_select_list= TRUE; DBUG_RETURN(select_lex); } SELECT_LEX_UNIT * LEX::create_unit(SELECT_LEX *first_sel) { SELECT_LEX_UNIT *unit; DBUG_ENTER("LEX::create_unit"); if (first_sel->master_unit()) DBUG_RETURN(first_sel->master_unit()); if (!(unit= alloc_unit())) DBUG_RETURN(NULL); unit->register_select_chain(first_sel); if (first_sel->next_select()) { unit->reset_distinct(); DBUG_ASSERT(!unit->fake_select_lex); if (unit->add_fake_select_lex(thd)) DBUG_RETURN(NULL); } DBUG_RETURN(unit); } SELECT_LEX_UNIT * SELECT_LEX::attach_selects_chain(SELECT_LEX *first_sel, Name_resolution_context *context) { SELECT_LEX_UNIT *unit; DBUG_ENTER("SELECT_LEX::attach_select_chain"); if (!(unit= parent_lex->alloc_unit())) DBUG_RETURN(NULL); unit->register_select_chain(first_sel); register_unit(unit, context); if (first_sel->next_select()) { unit->reset_distinct(); DBUG_ASSERT(!unit->fake_select_lex); if (unit->add_fake_select_lex(parent_lex->thd)) DBUG_RETURN(NULL); } DBUG_RETURN(unit); } SELECT_LEX * LEX::wrap_unit_into_derived(SELECT_LEX_UNIT *unit) { SELECT_LEX *wrapping_sel; Table_ident *ti; DBUG_ENTER("LEX::wrap_unit_into_derived"); if (!(wrapping_sel= alloc_select(TRUE))) DBUG_RETURN(NULL); Name_resolution_context *context= &wrapping_sel->context; context->init(); wrapping_sel->automatic_brackets= FALSE; wrapping_sel->register_unit(unit, context); /* stuff dummy SELECT * FROM (...) */ if (push_select(wrapping_sel)) // for Items & TABLE_LIST DBUG_RETURN(NULL); /* add SELECT list*/ { Item *item= new (thd->mem_root) Item_field(thd, context, NULL, NULL, &star_clex_str); if (item == NULL) goto err; if (add_item_to_list(thd, item)) goto err; (wrapping_sel->with_wild)++; } unit->first_select()->set_linkage(DERIVED_TABLE_TYPE); ti= new (thd->mem_root) Table_ident(unit); if (ti == NULL) goto err; { TABLE_LIST *table_list; LEX_CSTRING alias; if (wrapping_sel->make_unique_derived_name(thd, &alias)) goto err; if (!(table_list= wrapping_sel->add_table_to_list(thd, ti, &alias, 0, TL_READ, MDL_SHARED_READ))) goto err; context->resolve_in_table_list_only(table_list); wrapping_sel->add_joined_table(table_list); } pop_select(); derived_tables|= DERIVED_SUBQUERY; DBUG_RETURN(wrapping_sel); err: pop_select(); DBUG_RETURN(NULL); } SELECT_LEX *LEX::wrap_select_chain_into_derived(SELECT_LEX *sel) { SELECT_LEX *dummy_select; SELECT_LEX_UNIT *unit; Table_ident *ti; DBUG_ENTER("LEX::wrap_select_chain_into_derived"); if (!(dummy_select= alloc_select(TRUE))) DBUG_RETURN(NULL); Name_resolution_context *context= &dummy_select->context; dummy_select->automatic_brackets= FALSE; if (!(unit= dummy_select->attach_selects_chain(sel, context))) DBUG_RETURN(NULL); /* stuff dummy SELECT * FROM (...) */ if (push_select(dummy_select)) // for Items & TABLE_LIST DBUG_RETURN(NULL); /* add SELECT list*/ { Item *item= new (thd->mem_root) Item_field(thd, context, NULL, NULL, &star_clex_str); if (item == NULL) goto err; if (add_item_to_list(thd, item)) goto err; (dummy_select->with_wild)++; } sel->set_linkage(DERIVED_TABLE_TYPE); ti= new (thd->mem_root) Table_ident(unit); if (ti == NULL) goto err; { TABLE_LIST *table_list; LEX_CSTRING alias; if (dummy_select->make_unique_derived_name(thd, &alias)) goto err; if (!(table_list= dummy_select->add_table_to_list(thd, ti, &alias, 0, TL_READ, MDL_SHARED_READ))) goto err; context->resolve_in_table_list_only(table_list); dummy_select->add_joined_table(table_list); } pop_select(); derived_tables|= DERIVED_SUBQUERY; DBUG_RETURN(dummy_select); err: pop_select(); DBUG_RETURN(NULL); } bool LEX::push_context(Name_resolution_context *context) { DBUG_ENTER("LEX::push_context"); DBUG_PRINT("info", ("Context: %p Select: %p (%d)", context, context->select_lex, (context->select_lex ? context->select_lex->select_number: 0))); bool res= context_stack.push_front(context, thd->mem_root); DBUG_RETURN(res); } SELECT_LEX *LEX::create_priority_nest(SELECT_LEX *first_in_nest) { DBUG_ENTER("LEX::create_priority_nest"); DBUG_ASSERT(first_in_nest->first_nested); enum sub_select_type wr_unit_type= first_in_nest->get_linkage(); bool wr_distinct= first_in_nest->distinct; SELECT_LEX *attach_to= first_in_nest->first_nested; attach_to->cut_next(); SELECT_LEX *wrapper= wrap_select_chain_into_derived(first_in_nest); if (wrapper) { first_in_nest->first_nested= NULL; wrapper->set_linkage_and_distinct(wr_unit_type, wr_distinct); wrapper->first_nested= attach_to->first_nested; wrapper->set_master_unit(attach_to->master_unit()); attach_to->link_neighbour(wrapper); } DBUG_RETURN(wrapper); } /** Checks if we need finish "automatic brackets" mode INTERSECT has higher priority then UNION and EXCEPT, so when it is need we automatically create lower layer for INTERSECT (automatic brackets) and here we check if we should return back one level up during parsing procedure. */ void LEX::check_automatic_up(enum sub_select_type type) { if (type != INTERSECT_TYPE && current_select->get_linkage() == INTERSECT_TYPE && current_select->outer_select() && current_select->outer_select()->automatic_brackets) { nest_level--; current_select= current_select->outer_select(); } } sp_variable *LEX::sp_param_init(LEX_CSTRING *name) { if (spcont->find_variable(name, true)) { my_error(ER_SP_DUP_PARAM, MYF(0), name->str); return NULL; } sp_variable *spvar= spcont->add_variable(thd, name); init_last_field(&spvar->field_def, name, thd->variables.collation_database); return spvar; } bool LEX::sp_param_fill_definition(sp_variable *spvar) { return sphead->fill_spvar_definition(thd, last_field, &spvar->name); } void LEX::set_stmt_init() { sql_command= SQLCOM_SET_OPTION; mysql_init_select(this); option_type= OPT_SESSION; autocommit= 0; }; /** Find a local or a package body variable by name. @param IN name - the variable name @param OUT ctx - NULL, if the variable was not found, or LEX::spcont (if a local variable was found) or the package top level context (if a package variable was found) @param OUT handler - NULL, if the variable was not found, or a pointer to rcontext handler @retval - the variable (if found), or NULL otherwise. */ sp_variable * LEX::find_variable(const LEX_CSTRING *name, sp_pcontext **ctx, const Sp_rcontext_handler **rh) const { sp_variable *spv; if (spcont && (spv= spcont->find_variable(name, false))) { *ctx= spcont; *rh= &sp_rcontext_handler_local; return spv; } sp_package *pkg= sphead ? sphead->m_parent : NULL; if (pkg && (spv= pkg->find_package_variable(name))) { *ctx= pkg->get_parse_context()->child_context(0); *rh= &sp_rcontext_handler_package_body; return spv; } *ctx= NULL; *rh= NULL; return NULL; } static bool is_new(const char *str) { return (str[0] == 'n' || str[0] == 'N') && (str[1] == 'e' || str[1] == 'E') && (str[2] == 'w' || str[2] == 'W'); } static bool is_old(const char *str) { return (str[0] == 'o' || str[0] == 'O') && (str[1] == 'l' || str[1] == 'L') && (str[2] == 'd' || str[2] == 'D'); } bool LEX::is_trigger_new_or_old_reference(const LEX_CSTRING *name) const { // "name" is not necessarily NULL-terminated! return sphead && sphead->m_handler->type() == TYPE_ENUM_TRIGGER && name->length == 3 && (is_new(name->str) || is_old(name->str)); } void LEX::sp_variable_declarations_init(THD *thd, int nvars) { sp_variable *spvar= spcont->get_last_context_variable(); sphead->reset_lex(thd); spcont->declare_var_boundary(nvars); thd->lex->init_last_field(&spvar->field_def, &spvar->name, thd->variables.collation_database); } bool LEX::sp_variable_declarations_set_default(THD *thd, int nvars, Item *dflt_value_item) { if (!dflt_value_item && unlikely(!(dflt_value_item= new (thd->mem_root) Item_null(thd)))) return true; for (uint i= 0 ; i < (uint) nvars ; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); bool last= i + 1 == (uint) nvars; spvar->default_value= dflt_value_item; /* The last instruction is responsible for freeing LEX. */ sp_instr_set *is= new (this->thd->mem_root) sp_instr_set(sphead->instructions(), spcont, &sp_rcontext_handler_local, spvar->offset, dflt_value_item, this, last); if (unlikely(is == NULL || sphead->add_instr(is))) return true; } return false; } bool LEX::sp_variable_declarations_copy_type_finalize(THD *thd, int nvars, const Column_definition &ref, Row_definition_list *fields, Item *default_value) { for (uint i= 0 ; i < (uint) nvars; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); spvar->field_def.set_type(ref); if (fields) { DBUG_ASSERT(ref.type_handler() == &type_handler_row); spvar->field_def.set_row_field_definitions(fields); } spvar->field_def.field_name= spvar->name; } if (unlikely(sp_variable_declarations_set_default(thd, nvars, default_value))) return true; spcont->declare_var_boundary(0); return sphead->restore_lex(thd); } bool LEX::sp_variable_declarations_finalize(THD *thd, int nvars, const Column_definition *cdef, Item *dflt_value_item) { DBUG_ASSERT(cdef); Column_definition tmp(*cdef); if (sphead->fill_spvar_definition(thd, &tmp)) return true; return sp_variable_declarations_copy_type_finalize(thd, nvars, tmp, NULL, dflt_value_item); } bool LEX::sp_variable_declarations_row_finalize(THD *thd, int nvars, Row_definition_list *row, Item *dflt_value_item) { DBUG_ASSERT(row); /* Prepare all row fields. Note, we do it only one time outside of the below loop. The converted list in "row" is further reused by all variable declarations processed by the current call. Example: DECLARE a, b, c ROW(x VARCHAR(10) CHARACTER SET utf8); BEGIN ... END; */ if (sphead->row_fill_field_definitions(thd, row)) return true; for (uint i= 0 ; i < (uint) nvars ; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); spvar->field_def.set_row_field_definitions(row); if (sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name)) return true; } if (sp_variable_declarations_set_default(thd, nvars, dflt_value_item)) return true; spcont->declare_var_boundary(0); return sphead->restore_lex(thd); } /** Finalize a %ROWTYPE declaration, e.g.: DECLARE a,b,c,d t1%ROWTYPE := ROW(1,2,3); @param thd - the current thd @param nvars - the number of variables in the declaration @param ref - the table or cursor name (see comments below) @param def - the default value, e.g., ROW(1,2,3), or NULL (no default). */ bool LEX::sp_variable_declarations_rowtype_finalize(THD *thd, int nvars, Qualified_column_ident *ref, Item *def) { uint coffp; const sp_pcursor *pcursor= ref->table.str && ref->db.str ? NULL : spcont->find_cursor(&ref->m_column, &coffp, false); if (pcursor) return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars, coffp, def); /* When parsing a qualified identifier chain, the parser does not know yet if it's going to be a qualified column name (for %TYPE), or a qualified table name (for %ROWTYPE). So it collects the chain into Qualified_column_ident. Now we know that it was actually a qualified table name (%ROWTYPE). Create a new Table_ident from Qualified_column_ident, shifting fields as follows: - ref->m_column becomes table_ref->table - ref->table becomes table_ref->db */ return sp_variable_declarations_table_rowtype_finalize(thd, nvars, ref->table, ref->m_column, def); } bool LEX::sp_variable_declarations_table_rowtype_finalize(THD *thd, int nvars, const LEX_CSTRING &db, const LEX_CSTRING &table, Item *def) { Table_ident *table_ref; if (unlikely(!(table_ref= new (thd->mem_root) Table_ident(thd, &db, &table, false)))) return true; // Loop through all variables in the same declaration for (uint i= 0 ; i < (uint) nvars; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); spvar->field_def.set_table_rowtype_ref(table_ref); sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); } if (sp_variable_declarations_set_default(thd, nvars, def)) return true; // Make sure sp_rcontext is created using the invoker security context: sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; spcont->declare_var_boundary(0); return sphead->restore_lex(thd); } bool LEX::sp_variable_declarations_cursor_rowtype_finalize(THD *thd, int nvars, uint offset, Item *def) { const sp_pcursor *pcursor= spcont->find_cursor(offset); // Loop through all variables in the same declaration for (uint i= 0 ; i < (uint) nvars; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); spvar->field_def.set_cursor_rowtype_ref(offset); sp_instr_cursor_copy_struct *instr= new (thd->mem_root) sp_instr_cursor_copy_struct(sphead->instructions(), spcont, offset, pcursor->lex(), spvar->offset); if (instr == NULL || sphead->add_instr(instr)) return true; sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); } if (unlikely(sp_variable_declarations_set_default(thd, nvars, def))) return true; // Make sure sp_rcontext is created using the invoker security context: sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; spcont->declare_var_boundary(0); return sphead->restore_lex(thd); } /* Add declarations for table column and SP variable anchor types: - DECLARE spvar1 TYPE OF db1.table1.column1; - DECLARE spvar1 TYPE OF table1.column1; - DECLARE spvar1 TYPE OF spvar0; */ bool LEX::sp_variable_declarations_with_ref_finalize(THD *thd, int nvars, Qualified_column_ident *ref, Item *def) { return ref->db.length == 0 && ref->table.length == 0 ? sp_variable_declarations_vartype_finalize(thd, nvars, ref->m_column, def) : sp_variable_declarations_column_type_finalize(thd, nvars, ref, def); } bool LEX::sp_variable_declarations_column_type_finalize(THD *thd, int nvars, Qualified_column_ident *ref, Item *def) { for (uint i= 0 ; i < (uint) nvars; i++) { sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); spvar->field_def.set_column_type_ref(ref); spvar->field_def.field_name= spvar->name; } sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; if (sp_variable_declarations_set_default(thd, nvars, def)) return true; spcont->declare_var_boundary(0); return sphead->restore_lex(thd); } bool LEX::sp_variable_declarations_vartype_finalize(THD *thd, int nvars, const LEX_CSTRING &ref, Item *default_value) { sp_variable *t; if (!spcont || !(t= spcont->find_variable(&ref, false))) { my_error(ER_SP_UNDECLARED_VAR, MYF(0), ref.str); return true; } if (t->field_def.is_cursor_rowtype_ref()) { uint offset= t->field_def.cursor_rowtype_offset(); return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars, offset, default_value); } if (t->field_def.is_column_type_ref()) { Qualified_column_ident *tmp= t->field_def.column_type_ref(); return sp_variable_declarations_column_type_finalize(thd, nvars, tmp, default_value); } if (t->field_def.is_table_rowtype_ref()) { const Table_ident *tmp= t->field_def.table_rowtype_ref(); return sp_variable_declarations_table_rowtype_finalize(thd, nvars, tmp->db, tmp->table, default_value); } // A reference to a scalar or a row variable with an explicit data type return sp_variable_declarations_copy_type_finalize(thd, nvars, t->field_def, t->field_def. row_field_definitions(), default_value); } /********************************************************************** The FOR LOOP statement This syntax: FOR i IN lower_bound .. upper_bound LOOP statements; END LOOP; is translated into: DECLARE i INT := lower_bound; j INT := upper_bound; BEGIN WHILE i <= j LOOP statements; i:= i + 1; END LOOP; END; */ sp_variable *LEX::sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name, Item *value) { sp_variable *spvar= spcont->add_variable(thd, name); spcont->declare_var_boundary(1); spvar->field_def.field_name= spvar->name; spvar->field_def.set_handler(&type_handler_longlong); type_handler_longlong.Column_definition_prepare_stage2(&spvar->field_def, NULL, HA_CAN_GEOMETRY); if (!value && unlikely(!(value= new (thd->mem_root) Item_null(thd)))) return NULL; spvar->default_value= value; sp_instr_set *is= new (this->thd->mem_root) sp_instr_set(sphead->instructions(), spcont, &sp_rcontext_handler_local, spvar->offset, value, this, true); if (unlikely(is == NULL || sphead->add_instr(is))) return NULL; spcont->declare_var_boundary(0); return spvar; } bool LEX::sp_for_loop_implicit_cursor_statement(THD *thd, Lex_for_loop_bounds_st *bounds, sp_lex_cursor *cur) { Item *item; DBUG_ASSERT(sphead); LEX_CSTRING name= {STRING_WITH_LEN("[implicit_cursor]") }; if (sp_declare_cursor(thd, &name, cur, NULL, true)) return true; DBUG_ASSERT(thd->lex == this); if (unlikely(!(bounds->m_index= new (thd->mem_root) sp_assignment_lex(thd, this)))) return true; bounds->m_index->sp_lex_in_use= true; sphead->reset_lex(thd, bounds->m_index); DBUG_ASSERT(thd->lex != this); /* We pass NULL as Name_resolution_context here. It's OK, fix_fields() will not be called for this Item_field created. Item_field is only needed for LEX::sp_for_loop_cursor_declarations() and is used to transfer the loop index variable name, "rec" in this example: FOR rec IN (SELECT * FROM t1) DO SELECT rec.a, rec.b; END FOR; */ if (!(item= new (thd->mem_root) Item_field(thd, NULL, NullS, NullS, &name))) return true; bounds->m_index->set_item_and_free_list(item, NULL); if (thd->lex->sphead->restore_lex(thd)) return true; DBUG_ASSERT(thd->lex == this); bounds->m_direction= 1; bounds->m_target_bound= NULL; bounds->m_implicit_cursor= true; return false; } sp_variable * LEX::sp_add_for_loop_cursor_variable(THD *thd, const LEX_CSTRING *name, const sp_pcursor *pcursor, uint coffset, sp_assignment_lex *param_lex, Item_args *parameters) { sp_variable *spvar= spcont->add_variable(thd, name); if (!spvar) return NULL; spcont->declare_var_boundary(1); sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); if (unlikely(!(spvar->default_value= new (thd->mem_root) Item_null(thd)))) return NULL; spvar->field_def.set_cursor_rowtype_ref(coffset); if (unlikely(sphead->add_for_loop_open_cursor(thd, spcont, spvar, pcursor, coffset, param_lex, parameters))) return NULL; spcont->declare_var_boundary(0); return spvar; } /** Generate a code for a FOR loop condition: - Make Item_splocal for the FOR loop index variable - Make Item_splocal for the FOR loop upper bound variable - Make a comparison function item on top of these two variables */ bool LEX::sp_for_loop_condition(THD *thd, const Lex_for_loop_st &loop) { Item_splocal *args[2]; for (uint i= 0 ; i < 2; i++) { sp_variable *src= i == 0 ? loop.m_index : loop.m_target_bound; args[i]= new (thd->mem_root) Item_splocal(thd, &sp_rcontext_handler_local, &src->name, src->offset, src->type_handler()); if (unlikely(args[i] == NULL)) return true; #ifdef DBUG_ASSERT_EXISTS args[i]->m_sp= sphead; #endif } Item *expr= loop.m_direction > 0 ? (Item *) new (thd->mem_root) Item_func_le(thd, args[0], args[1]) : (Item *) new (thd->mem_root) Item_func_ge(thd, args[0], args[1]); return unlikely(!expr) || unlikely(sp_while_loop_expression(thd, expr)); } /** Generate the FOR LOOP condition code in its own lex */ bool LEX::sp_for_loop_intrange_condition_test(THD *thd, const Lex_for_loop_st &loop) { spcont->set_for_loop(loop); sphead->reset_lex(thd); if (unlikely(thd->lex->sp_for_loop_condition(thd, loop))) return true; return thd->lex->sphead->restore_lex(thd); } bool LEX::sp_for_loop_cursor_condition_test(THD *thd, const Lex_for_loop_st &loop) { const LEX_CSTRING *cursor_name; Item *expr; spcont->set_for_loop(loop); sphead->reset_lex(thd); cursor_name= spcont->find_cursor(loop.m_cursor_offset); DBUG_ASSERT(cursor_name); if (unlikely(!(expr= new (thd->mem_root) Item_func_cursor_found(thd, cursor_name, loop.m_cursor_offset)))) return true; if (thd->lex->sp_while_loop_expression(thd, expr)) return true; return thd->lex->sphead->restore_lex(thd); } bool LEX::sp_for_loop_intrange_declarations(THD *thd, Lex_for_loop_st *loop, const LEX_CSTRING *index, const Lex_for_loop_bounds_st &bounds) { Item *item; if ((item= bounds.m_index->get_item())->type() == Item::FIELD_ITEM) { // We're here is the lower bound is unknown identifier my_error(ER_SP_UNDECLARED_VAR, MYF(0), item->full_name()); return true; } if ((item= bounds.m_target_bound->get_item())->type() == Item::FIELD_ITEM) { // We're here is the upper bound is unknown identifier my_error(ER_SP_UNDECLARED_VAR, MYF(0), item->full_name()); return true; } if (!(loop->m_index= bounds.m_index->sp_add_for_loop_variable(thd, index, bounds.m_index->get_item()))) return true; if (unlikely(!(loop->m_target_bound= bounds.m_target_bound-> sp_add_for_loop_target_bound(thd, bounds. m_target_bound->get_item())))) return true; loop->m_direction= bounds.m_direction; loop->m_implicit_cursor= 0; return false; } bool LEX::sp_for_loop_cursor_declarations(THD *thd, Lex_for_loop_st *loop, const LEX_CSTRING *index, const Lex_for_loop_bounds_st &bounds) { Item *item= bounds.m_index->get_item(); Item_splocal *item_splocal; Item_field *item_field; Item_func_sp *item_func_sp= NULL; LEX_CSTRING name; uint coffs, param_count= 0; const sp_pcursor *pcursor; if ((item_splocal= item->get_item_splocal())) name= item_splocal->m_name; else if ((item_field= item->type() == Item::FIELD_ITEM ? static_cast(item) : NULL) && item_field->table_name == NULL) name= item_field->field_name; else if (item->type() == Item::FUNC_ITEM && static_cast(item)->functype() == Item_func::FUNC_SP && !static_cast(item)->get_sp_name()->m_explicit_name) { /* When a FOR LOOP for a cursor with parameters is parsed: FOR index IN cursor(1,2,3) LOOP statements; END LOOP; the parser scans "cursor(1,2,3)" using the "expr" rule, so it thinks that cursor(1,2,3) is a stored function call. It's not easy to implement this without using "expr" because of grammar conflicts. As a side effect, the Item_func_sp and its arguments in the parentheses belong to the same LEX. This is different from an explicit "OPEN cursor(1,2,3)" where every expression belongs to a separate LEX. */ item_func_sp= static_cast(item); name= item_func_sp->get_sp_name()->m_name; param_count= item_func_sp->argument_count(); } else { thd->parse_error(); return true; } if (unlikely(!(pcursor= spcont->find_cursor_with_error(&name, &coffs, false)) || pcursor->check_param_count_with_error(param_count))) return true; if (!(loop->m_index= sp_add_for_loop_cursor_variable(thd, index, pcursor, coffs, bounds.m_index, item_func_sp))) return true; loop->m_target_bound= NULL; loop->m_direction= bounds.m_direction; loop->m_cursor_offset= coffs; loop->m_implicit_cursor= bounds.m_implicit_cursor; return false; } /** Generate a code for a FOR loop index increment */ bool LEX::sp_for_loop_increment(THD *thd, const Lex_for_loop_st &loop) { Item_splocal *splocal= new (thd->mem_root) Item_splocal(thd, &sp_rcontext_handler_local, &loop.m_index->name, loop.m_index->offset, loop.m_index->type_handler()); if (unlikely(splocal == NULL)) return true; #ifdef DBUG_ASSERT_EXISTS splocal->m_sp= sphead; #endif Item_int *inc= new (thd->mem_root) Item_int(thd, loop.m_direction); if (unlikely(!inc)) return true; Item *expr= new (thd->mem_root) Item_func_plus(thd, splocal, inc); if (unlikely(!expr) || unlikely(sphead->set_local_variable(thd, spcont, &sp_rcontext_handler_local, loop.m_index, expr, this, true))) return true; return false; } bool LEX::sp_for_loop_intrange_finalize(THD *thd, const Lex_for_loop_st &loop) { sphead->reset_lex(thd); // Generate FOR LOOP index increment in its own lex DBUG_ASSERT(this != thd->lex); if (unlikely(thd->lex->sp_for_loop_increment(thd, loop) || thd->lex->sphead->restore_lex(thd))) return true; // Generate a jump to the beginning of the loop DBUG_ASSERT(this == thd->lex); return sp_while_loop_finalize(thd); } bool LEX::sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &loop) { sp_instr_cfetch *instr= new (thd->mem_root) sp_instr_cfetch(sphead->instructions(), spcont, loop.m_cursor_offset, false); if (unlikely(instr == NULL) || unlikely(sphead->add_instr(instr))) return true; instr->add_to_varlist(loop.m_index); // Generate a jump to the beginning of the loop return sp_while_loop_finalize(thd); } bool LEX::sp_for_loop_outer_block_finalize(THD *thd, const Lex_for_loop_st &loop) { Lex_spblock tmp; tmp.curs= MY_TEST(loop.m_implicit_cursor); if (unlikely(sp_block_finalize(thd, tmp))) // The outer DECLARE..BEGIN..END return true; if (!loop.is_for_loop_explicit_cursor()) return false; /* Explicit cursor FOR loop must close the cursor automatically. Note, implicit cursor FOR loop does not need to close the cursor, it's closed by sp_instr_cpop. */ sp_instr_cclose *ic= new (thd->mem_root) sp_instr_cclose(sphead->instructions(), spcont, loop.m_cursor_offset); return ic == NULL || sphead->add_instr(ic); } /***************************************************************************/ bool LEX::sp_declare_cursor(THD *thd, const LEX_CSTRING *name, sp_lex_cursor *cursor_stmt, sp_pcontext *param_ctx, bool add_cpush_instr) { uint offp; sp_instr_cpush *i; if (spcont->find_cursor(name, &offp, true)) { my_error(ER_SP_DUP_CURS, MYF(0), name->str); return true; } if (unlikely(spcont->add_cursor(name, param_ctx, cursor_stmt))) return true; if (add_cpush_instr) { i= new (thd->mem_root) sp_instr_cpush(sphead->instructions(), spcont, cursor_stmt, spcont->current_cursor_count() - 1); return unlikely(i == NULL) || unlikely(sphead->add_instr(i)); } return false; } /** Generate an SP code for an "OPEN cursor_name" statement. @param thd @param name - Name of the cursor @param parameters - Cursor parameters, e.g. OPEN c(1,2,3) @returns - false on success, true on error */ bool LEX::sp_open_cursor(THD *thd, const LEX_CSTRING *name, List *parameters) { uint offset; const sp_pcursor *pcursor; uint param_count= parameters ? parameters->elements : 0; return !(pcursor= spcont->find_cursor_with_error(name, &offset, false)) || pcursor->check_param_count_with_error(param_count) || sphead->add_open_cursor(thd, spcont, offset, pcursor->param_context(), parameters); } bool LEX::sp_handler_declaration_init(THD *thd, int type) { sp_handler *h= spcont->add_handler(thd, (sp_handler::enum_type) type); spcont= spcont->push_context(thd, sp_pcontext::HANDLER_SCOPE); sp_instr_hpush_jump *i= new (thd->mem_root) sp_instr_hpush_jump(sphead->instructions(), spcont, h); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) return true; /* For continue handlers, mark end of handler scope. */ if (type == sp_handler::CONTINUE && unlikely(sphead->push_backpatch(thd, i, spcont->last_label()))) return true; if (unlikely(sphead->push_backpatch(thd, i, spcont->push_label(thd, &empty_clex_str, 0)))) return true; return false; } bool LEX::sp_handler_declaration_finalize(THD *thd, int type) { sp_label *hlab= spcont->pop_label(); /* After this hdlr */ sp_instr_hreturn *i; if (type == sp_handler::CONTINUE) { i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) return true; } else { /* EXIT or UNDO handler, just jump to the end of the block */ i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i)) || unlikely(sphead->push_backpatch(thd, i, spcont->last_label()))) /* Block end */ return true; } sphead->backpatch(hlab); spcont= spcont->pop_context(); return false; } void LEX::sp_block_init(THD *thd, const LEX_CSTRING *label) { spcont->push_label(thd, label, sphead->instructions(), sp_label::BEGIN); spcont= spcont->push_context(thd, sp_pcontext::REGULAR_SCOPE); } bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock, class sp_label **splabel) { sp_head *sp= sphead; sp_pcontext *ctx= spcont; sp_instr *i; sp->backpatch(ctx->last_label()); /* We always have a label */ if (spblock.hndlrs) { i= new (thd->mem_root) sp_instr_hpop(sp->instructions(), ctx, spblock.hndlrs); if (unlikely(i == NULL) || unlikely(sp->add_instr(i))) return true; } if (spblock.curs) { i= new (thd->mem_root) sp_instr_cpop(sp->instructions(), ctx, spblock.curs); if (unlikely(i == NULL) || unlikely(sp->add_instr(i))) return true; } spcont= ctx->pop_context(); *splabel= spcont->pop_label(); return false; } bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock, const LEX_CSTRING *end_label) { sp_label *splabel; if (unlikely(sp_block_finalize(thd, spblock, &splabel))) return true; if (unlikely(end_label->str && lex_string_cmp(system_charset_info, end_label, &splabel->name) != 0)) { my_error(ER_SP_LABEL_MISMATCH, MYF(0), end_label->str); return true; } return false; } sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name) { sp_name *res; LEX_CSTRING db; if (unlikely(check_routine_name(name)) || unlikely(copy_db_to(&db)) || unlikely((!(res= new (thd->mem_root) sp_name(&db, name, false))))) return NULL; return res; } /** When a package routine name is stored in memory in Database_qualified_name, the dot character is used to delimit package name from the routine name, e.g.: m_db= 'test'; -- database 'test' m_name= 'p1.p1'; -- package 'p1', routine 'p1' See database_qualified_name::make_package_routine_name() for details. Disallow package routine names with dots, to avoid ambiguity when interpreting m_name='p1.p1.p1', between: a. package 'p1.p1' + routine 'p1' b. package 'p1' + routine 'p1.p1' m_name='p1.p1.p1' will always mean (a). */ sp_name *LEX::make_sp_name_package_routine(THD *thd, const LEX_CSTRING *name) { sp_name *res= make_sp_name(thd, name); if (likely(res) && unlikely(strchr(res->m_name.str, '.'))) { my_error(ER_SP_WRONG_NAME, MYF(0), res->m_name.str); res= NULL; } return res; } sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name1, const LEX_CSTRING *name2) { sp_name *res; LEX_CSTRING norm_name1; if (unlikely(!name1->str) || unlikely(!thd->make_lex_string(&norm_name1, name1->str, name1->length)) || unlikely(check_db_name((LEX_STRING *) &norm_name1))) { my_error(ER_WRONG_DB_NAME, MYF(0), name1->str); return NULL; } if (unlikely(check_routine_name(name2)) || unlikely(!(res= new (thd->mem_root) sp_name(&norm_name1, name2, true)))) return NULL; return res; } sp_head *LEX::make_sp_head(THD *thd, const sp_name *name, const Sp_handler *sph) { sp_package *package= get_sp_package(); sp_head *sp; /* Order is important here: new - reset - init */ if (likely((sp= new sp_head(package, sph)))) { sp->reset_thd_mem_root(thd); sp->init(this); if (name) { if (package) sp->make_package_routine_name(sp->get_main_mem_root(), package->m_db, package->m_name, name->m_name); else sp->init_sp_name(name); sp->make_qname(sp->get_main_mem_root(), &sp->m_qname); } sphead= sp; } sp_chistics.init(); return sp; } sp_head *LEX::make_sp_head_no_recursive(THD *thd, const sp_name *name, const Sp_handler *sph) { sp_package *package= thd->lex->get_sp_package(); /* Sp_handler::sp_clone_and_link_routine() generates a standalone-alike statement to clone package routines for recursion, e.g.: CREATE PROCEDURE p1 AS BEGIN NULL; END; Translate a standalone routine handler to the corresponding package routine handler if we're cloning a package routine, e.g.: sp_handler_procedure -> sp_handler_package_procedure sp_handler_function -> sp_handler_package_function */ if (package && package->m_is_cloning_routine) sph= sph->package_routine_handler(); if (!sphead || (package && (sph == &sp_handler_package_procedure || sph == &sp_handler_package_function))) return make_sp_head(thd, name, sph); my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str()); return NULL; } bool LEX::sp_body_finalize_procedure(THD *thd) { if (sphead->check_unresolved_goto()) return true; sphead->set_stmt_end(thd); sphead->restore_thd_mem_root(thd); return false; } bool LEX::sp_body_finalize_function(THD *thd) { if (sphead->is_not_allowed_in_function("function")) return true; if (!(sphead->m_flags & sp_head::HAS_RETURN)) { my_error(ER_SP_NORETURN, MYF(0), ErrConvDQName(sphead).ptr()); return true; } if (sp_body_finalize_procedure(thd)) return true; (void) is_native_function_with_warn(thd, &sphead->m_name); return false; } bool LEX::sp_block_with_exceptions_finalize_declarations(THD *thd) { /* [ DECLARE declarations ] BEGIN executable_section [ EXCEPTION exceptions ] END We are now at the "BEGIN" keyword. We have collected all declarations, including DECLARE HANDLER directives. But there will be possibly more handlers in the EXCEPTION section. Generate a forward jump from the end of the DECLARE section to the beginning of the EXCEPTION section, over the executable section. */ return sphead->add_instr_jump(thd, spcont); } bool LEX::sp_block_with_exceptions_finalize_executable_section(THD *thd, uint executable_section_ip) { /* We're now at the end of "executable_section" of the block, near the "EXCEPTION" or the "END" keyword. Generate a jump to the END of the block over the EXCEPTION section. */ if (sphead->add_instr_jump_forward_with_backpatch(thd, spcont)) return true; /* Set the destination for the jump that we added in sp_block_with_exceptions_finalize_declarations(). */ sp_instr *instr= sphead->get_instr(executable_section_ip - 1); instr->backpatch(sphead->instructions(), spcont); return false; } bool LEX::sp_block_with_exceptions_finalize_exceptions(THD *thd, uint executable_section_ip, uint exception_count) { if (!exception_count) { /* The jump from the end of DECLARE section to the beginning of the EXCEPTION section that we added in sp_block_with_exceptions_finalize_declarations() is useless if there were no exceptions. Replace it to "no operation". */ return sphead->replace_instr_to_nop(thd, executable_section_ip - 1); } /* Generate a jump from the end of the EXCEPTION code to the executable section. */ return sphead->add_instr_jump(thd, spcont, executable_section_ip); } bool LEX::sp_block_with_exceptions_add_empty(THD *thd) { uint ip= sphead->instructions(); return sp_block_with_exceptions_finalize_executable_section(thd, ip) || sp_block_with_exceptions_finalize_exceptions(thd, ip, 0); } bool LEX::sp_change_context(THD *thd, const sp_pcontext *ctx, bool exclusive) { uint n; uint ip= sphead->instructions(); if ((n= spcont->diff_handlers(ctx, exclusive))) { sp_instr_hpop *hpop= new (thd->mem_root) sp_instr_hpop(ip++, spcont, n); if (unlikely(hpop == NULL) || unlikely(sphead->add_instr(hpop))) return true; } if ((n= spcont->diff_cursors(ctx, exclusive))) { sp_instr_cpop *cpop= new (thd->mem_root) sp_instr_cpop(ip++, spcont, n); if (unlikely(cpop == NULL) || unlikely(sphead->add_instr(cpop))) return true; } return false; } bool LEX::sp_leave_statement(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->find_label(label_name); if (unlikely(!lab)) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "LEAVE", label_name->str); return true; } return sp_exit_block(thd, lab, NULL); } bool LEX::sp_goto_statement(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->find_goto_label(label_name); if (!lab || lab->ip == 0) { sp_label *delayedlabel; if (!lab) { // Label not found --> add forward jump to an unknown label spcont->push_goto_label(thd, label_name, 0, sp_label::GOTO); delayedlabel= spcont->last_goto_label(); } else { delayedlabel= lab; } return sphead->push_backpatch_goto(thd, spcont, delayedlabel); } else { // Label found (backward goto) return sp_change_context(thd, lab->ctx, false) || sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */ } return false; } bool LEX::sp_push_goto_label(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->find_goto_label(label_name, false); if (lab) { if (unlikely(lab->ip != 0)) { my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str); return true; } lab->ip= sphead->instructions(); sp_label *beginblocklabel= spcont->find_label(&empty_clex_str); sphead->backpatch_goto(thd, lab, beginblocklabel); } else { spcont->push_goto_label(thd, label_name, sphead->instructions()); } return false; } bool LEX::sp_exit_block(THD *thd, sp_label *lab) { /* When jumping to a BEGIN-END block end, the target jump points to the block hpop/cpop cleanup instructions, so we should exclude the block context here. When jumping to something else (i.e., SP_LAB_ITER), there are no hpop/cpop at the jump destination, so we should include the block context here for cleanup. */ bool exclusive= (lab->type == sp_label::BEGIN); return sp_change_context(thd, lab->ctx, exclusive) || sphead->add_instr_jump_forward_with_backpatch(thd, spcont, lab); } bool LEX::sp_exit_block(THD *thd, sp_label *lab, Item *when) { if (!when) return sp_exit_block(thd, lab); DBUG_ASSERT(sphead == thd->lex->sphead); DBUG_ASSERT(spcont == thd->lex->spcont); sp_instr_jump_if_not *i= new (thd->mem_root) sp_instr_jump_if_not(sphead->instructions(), spcont, when, thd->lex); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i)) || unlikely(sp_exit_block(thd, lab))) return true; i->backpatch(sphead->instructions(), spcont); return false; } bool LEX::sp_exit_statement(THD *thd, Item *item) { sp_label *lab= spcont->find_label_current_loop_start(); if (unlikely(!lab)) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT", ""); return true; } DBUG_ASSERT(lab->type == sp_label::ITERATION); return sp_exit_block(thd, lab, item); } bool LEX::sp_exit_statement(THD *thd, const LEX_CSTRING *label_name, Item *item) { sp_label *lab= spcont->find_label(label_name); if (unlikely(!lab || lab->type != sp_label::ITERATION)) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT", label_name->str); return true; } return sp_exit_block(thd, lab, item); } bool LEX::sp_iterate_statement(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->find_label(label_name); if (unlikely(!lab || lab->type != sp_label::ITERATION)) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "ITERATE", label_name->str); return true; } return sp_continue_loop(thd, lab); } bool LEX::sp_continue_loop(THD *thd, sp_label *lab) { if (lab->ctx->for_loop().m_index) { // We're in a FOR loop, increment the index variable before backward jump sphead->reset_lex(thd); DBUG_ASSERT(this != thd->lex); if (thd->lex->sp_for_loop_increment(thd, lab->ctx->for_loop()) || thd->lex->sphead->restore_lex(thd)) return true; } return sp_change_context(thd, lab->ctx, false) || sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */ } bool LEX::sp_continue_loop(THD *thd, sp_label *lab, Item *when) { if (!when) return sp_continue_loop(thd, lab); DBUG_ASSERT(sphead == thd->lex->sphead); DBUG_ASSERT(spcont == thd->lex->spcont); sp_instr_jump_if_not *i= new (thd->mem_root) sp_instr_jump_if_not(sphead->instructions(), spcont, when, thd->lex); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i)) || unlikely(sp_continue_loop(thd, lab))) return true; i->backpatch(sphead->instructions(), spcont); return false; } bool LEX::sp_continue_statement(THD *thd, Item *when) { sp_label *lab= spcont->find_label_current_loop_start(); if (unlikely(!lab)) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", ""); return true; } DBUG_ASSERT(lab->type == sp_label::ITERATION); return sp_continue_loop(thd, lab, when); } bool LEX::sp_continue_statement(THD *thd, const LEX_CSTRING *label_name, Item *when) { sp_label *lab= spcont->find_label(label_name); if (!lab || lab->type != sp_label::ITERATION) { my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE", label_name->str); return true; } return sp_continue_loop(thd, lab, when); } bool LEX::maybe_start_compound_statement(THD *thd) { if (!sphead) { if (!make_sp_head(thd, NULL, &sp_handler_procedure)) return true; sphead->set_suid(SP_IS_NOT_SUID); sphead->set_body_start(thd, thd->m_parser_state->m_lip.get_cpp_ptr()); } return false; } bool LEX::sp_push_loop_label(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->find_label(label_name); if (lab) { my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str); return true; } spcont->push_label(thd, label_name, sphead->instructions(), sp_label::ITERATION); return false; } bool LEX::sp_push_loop_empty_label(THD *thd) { if (maybe_start_compound_statement(thd)) return true; /* Unlabeled controls get an empty label. */ spcont->push_label(thd, &empty_clex_str, sphead->instructions(), sp_label::ITERATION); return false; } bool LEX::sp_pop_loop_label(THD *thd, const LEX_CSTRING *label_name) { sp_label *lab= spcont->pop_label(); sphead->backpatch(lab); if (label_name->str && lex_string_cmp(system_charset_info, label_name, &lab->name) != 0) { my_error(ER_SP_LABEL_MISMATCH, MYF(0), label_name->str); return true; } return false; } void LEX::sp_pop_loop_empty_label(THD *thd) { sp_label *lab= spcont->pop_label(); sphead->backpatch(lab); DBUG_ASSERT(lab->name.length == 0); } bool LEX::sp_while_loop_expression(THD *thd, Item *expr) { sp_instr_jump_if_not *i= new (thd->mem_root) sp_instr_jump_if_not(sphead->instructions(), spcont, expr, this); return (unlikely(i == NULL) || /* Jumping forward */ unlikely(sphead->push_backpatch(thd, i, spcont->last_label())) || unlikely(sphead->new_cont_backpatch(i)) || unlikely(sphead->add_instr(i))); } bool LEX::sp_while_loop_finalize(THD *thd) { sp_label *lab= spcont->last_label(); /* Jumping back */ sp_instr_jump *i= new (thd->mem_root) sp_instr_jump(sphead->instructions(), spcont, lab->ip); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) return true; sphead->do_cont_backpatch(); return false; } Item *LEX::create_and_link_Item_trigger_field(THD *thd, const LEX_CSTRING *name, bool new_row) { Item_trigger_field *trg_fld; if (unlikely(trg_chistics.event == TRG_EVENT_INSERT && !new_row)) { my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "OLD", "on INSERT"); return NULL; } if (unlikely(trg_chistics.event == TRG_EVENT_DELETE && new_row)) { my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW", "on DELETE"); return NULL; } DBUG_ASSERT(!new_row || (trg_chistics.event == TRG_EVENT_INSERT || trg_chistics.event == TRG_EVENT_UPDATE)); const bool tmp_read_only= !(new_row && trg_chistics.action_time == TRG_ACTION_BEFORE); trg_fld= new (thd->mem_root) Item_trigger_field(thd, current_context(), new_row ? Item_trigger_field::NEW_ROW: Item_trigger_field::OLD_ROW, name, SELECT_ACL, tmp_read_only); /* Let us add this item to list of all Item_trigger_field objects in trigger. */ if (likely(trg_fld)) trg_table_fields.link_in_list(trg_fld, &trg_fld->next_trg_field); return trg_fld; } Item *LEX::make_item_colon_ident_ident(THD *thd, const Lex_ident_cli_st *ca, const Lex_ident_cli_st *cb) { Lex_ident_sys a(thd, ca), b(thd, cb); if (a.is_null() || b.is_null()) return NULL; // OEM if (!is_trigger_new_or_old_reference(&a)) { thd->parse_error(); return NULL; } bool new_row= (a.str[0] == 'N' || a.str[0] == 'n'); return create_and_link_Item_trigger_field(thd, &b, new_row); } Item *LEX::make_item_plsql_cursor_attr(THD *thd, const LEX_CSTRING *name, plsql_cursor_attr_t attr) { uint offset; if (unlikely(!spcont || !spcont->find_cursor(name, &offset, false))) { my_error(ER_SP_CURSOR_MISMATCH, MYF(0), name->str); return NULL; } switch (attr) { case PLSQL_CURSOR_ATTR_ISOPEN: return new (thd->mem_root) Item_func_cursor_isopen(thd, name, offset); case PLSQL_CURSOR_ATTR_FOUND: return new (thd->mem_root) Item_func_cursor_found(thd, name, offset); case PLSQL_CURSOR_ATTR_NOTFOUND: return new (thd->mem_root) Item_func_cursor_notfound(thd, name, offset); case PLSQL_CURSOR_ATTR_ROWCOUNT: return new (thd->mem_root) Item_func_cursor_rowcount(thd, name, offset); } DBUG_ASSERT(0); return NULL; } Item *LEX::make_item_sysvar(THD *thd, enum_var_type type, const LEX_CSTRING *name, const LEX_CSTRING *component) { Item *item; DBUG_ASSERT(name->str); /* "SELECT @@global.global.variable" is not allowed Note, "global" can come through TEXT_STRING_sys. */ if (component->str && unlikely(check_reserved_words(name))) { thd->parse_error(); return NULL; } if (unlikely(!(item= get_system_var(thd, type, name, component)))) return NULL; if (!((Item_func_get_system_var*) item)->is_written_to_binlog()) set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_VARIABLE); return item; } static bool param_push_or_clone(THD *thd, LEX *lex, Item_param *item) { return !lex->clone_spec_offset ? lex->param_list.push_back(item, thd->mem_root) : item->add_as_clone(thd); } Item_param *LEX::add_placeholder(THD *thd, const LEX_CSTRING *name, const char *start, const char *end) { if (unlikely(!thd->m_parser_state->m_lip.stmt_prepare_mode)) { thd->parse_error(ER_SYNTAX_ERROR, start); return NULL; } if (unlikely(!parsing_options.allows_variable)) { my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); return NULL; } Query_fragment pos(thd, sphead, start, end); Item_param *item= new (thd->mem_root) Item_param(thd, name, pos.pos(), pos.length()); if (unlikely(!item) || unlikely(param_push_or_clone(thd, this, item))) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); return NULL; } return item; } bool LEX::add_signal_statement(THD *thd, const sp_condition_value *v) { Yacc_state *state= &thd->m_parser_state->m_yacc; sql_command= SQLCOM_SIGNAL; m_sql_cmd= new (thd->mem_root) Sql_cmd_signal(v, state->m_set_signal_info); return m_sql_cmd == NULL; } bool LEX::add_resignal_statement(THD *thd, const sp_condition_value *v) { Yacc_state *state= &thd->m_parser_state->m_yacc; sql_command= SQLCOM_RESIGNAL; m_sql_cmd= new (thd->mem_root) Sql_cmd_resignal(v, state->m_set_signal_info); return m_sql_cmd == NULL; } /* Make an Item when an identifier is found in the FOR loop bounds: FOR rec IN cursor FOR var IN var1 .. xxx FOR var IN row1.field1 .. xxx When we parse the first expression after the "IN" keyword, we don't know yet if it's a cursor name, or a scalar SP variable name, or a field of a ROW SP variable. Here we create Item_field to remember the fully qualified name. Later sp_for_loop_cursor_declarations() detects how to treat this name properly. */ Item *LEX::create_item_for_loop_bound(THD *thd, const LEX_CSTRING *a, const LEX_CSTRING *b, const LEX_CSTRING *c) { /* Pass NULL as the name resolution context. This is OK, fix_fields() won't be called for this Item_field. */ return new (thd->mem_root) Item_field(thd, NULL, a->str, b->str, c); } bool LEX::check_expr_allows_fields_or_error(THD *thd, const char *name) const { if (select_stack_top > 0) return false; // OK, fields are allowed my_error(ER_BAD_FIELD_ERROR, MYF(0), name, thd->where); return true; // Error, fields are not allowed } Item *LEX::create_item_ident_nospvar(THD *thd, const Lex_ident_sys_st *a, const Lex_ident_sys_st *b) { DBUG_ASSERT(this == thd->lex); /* FIXME This will work ok in simple_ident_nospvar case because we can't meet simple_ident_nospvar in trigger now. But it should be changed in future. */ if (is_trigger_new_or_old_reference(a)) { bool new_row= (a->str[0]=='N' || a->str[0]=='n'); return create_and_link_Item_trigger_field(thd, b, new_row); } if (unlikely(current_select->no_table_names_allowed)) { my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), a->str, thd->where); return NULL; } if (current_select->parsing_place == FOR_LOOP_BOUND) return create_item_for_loop_bound(thd, &null_clex_str, a, b); return create_item_ident_field(thd, NullS, a->str, b); } Item_splocal *LEX::create_item_spvar_row_field(THD *thd, const Sp_rcontext_handler *rh, const Lex_ident_sys *a, const Lex_ident_sys *b, sp_variable *spv, const char *start, const char *end) { if (unlikely(!parsing_options.allows_variable)) { my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); return NULL; } Query_fragment pos(thd, sphead, start, end); Item_splocal *item; if (spv->field_def.is_table_rowtype_ref() || spv->field_def.is_cursor_rowtype_ref()) { if (unlikely(!(item= new (thd->mem_root) Item_splocal_row_field_by_name(thd, rh, a, b, spv->offset, &type_handler_null, pos.pos(), pos.length())))) return NULL; } else { uint row_field_offset; const Spvar_definition *def; if (unlikely(!(def= spv->find_row_field(a, b, &row_field_offset)))) return NULL; if (unlikely(!(item= new (thd->mem_root) Item_splocal_row_field(thd, rh, a, b, spv->offset, row_field_offset, def->type_handler(), pos.pos(), pos.length())))) return NULL; } #ifdef DBUG_ASSERT_EXISTS item->m_sp= sphead; #endif safe_to_cache_query=0; return item; } my_var *LEX::create_outvar(THD *thd, const LEX_CSTRING *name) { const Sp_rcontext_handler *rh; sp_variable *spv; if (likely((spv= find_variable(name, &rh)))) return result ? new (thd->mem_root) my_var_sp(rh, name, spv->offset, spv->type_handler(), sphead) : NULL /* EXPLAIN */; my_error(ER_SP_UNDECLARED_VAR, MYF(0), name->str); return NULL; } my_var *LEX::create_outvar(THD *thd, const LEX_CSTRING *a, const LEX_CSTRING *b) { const Sp_rcontext_handler *rh; sp_variable *t; if (unlikely(!(t= find_variable(a, &rh)))) { my_error(ER_SP_UNDECLARED_VAR, MYF(0), a->str); return NULL; } uint row_field_offset; if (!t->find_row_field(a, b, &row_field_offset)) return NULL; return result ? new (thd->mem_root) my_var_sp_row_field(rh, a, b, t->offset, row_field_offset, sphead) : NULL /* EXPLAIN */; } Item *LEX::create_item_func_nextval(THD *thd, Table_ident *table_ident) { TABLE_LIST *table; if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, TL_OPTION_SEQUENCE, TL_WRITE_ALLOW_WRITE, MDL_SHARED_WRITE)))) return NULL; thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION); return new (thd->mem_root) Item_func_nextval(thd, table); } Item *LEX::create_item_func_lastval(THD *thd, Table_ident *table_ident) { TABLE_LIST *table; if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, TL_OPTION_SEQUENCE, TL_READ, MDL_SHARED_READ)))) return NULL; thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION); return new (thd->mem_root) Item_func_lastval(thd, table); } Item *LEX::create_item_func_nextval(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *name) { Table_ident *table_ident; if (unlikely(!(table_ident= new (thd->mem_root) Table_ident(thd, db, name, false)))) return NULL; return create_item_func_nextval(thd, table_ident); } Item *LEX::create_item_func_lastval(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *name) { Table_ident *table_ident; if (unlikely(!(table_ident= new (thd->mem_root) Table_ident(thd, db, name, false)))) return NULL; return create_item_func_lastval(thd, table_ident); } Item *LEX::create_item_func_setval(THD *thd, Table_ident *table_ident, longlong nextval, ulonglong round, bool is_used) { TABLE_LIST *table; if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, TL_OPTION_SEQUENCE, TL_WRITE_ALLOW_WRITE, MDL_SHARED_WRITE)))) return NULL; return new (thd->mem_root) Item_func_setval(thd, table, nextval, round, is_used); } Item *LEX::create_item_ident(THD *thd, const Lex_ident_cli_st *ca, const Lex_ident_cli_st *cb) { const char *start= ca->pos(); const char *end= cb->end(); const Sp_rcontext_handler *rh; sp_variable *spv; DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start); DBUG_ASSERT(start <= end); DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query()); Lex_ident_sys a(thd, ca), b(thd, cb); if (a.is_null() || b.is_null()) return NULL; // OEM if ((spv= find_variable(&a, &rh)) && (spv->field_def.is_row() || spv->field_def.is_table_rowtype_ref() || spv->field_def.is_cursor_rowtype_ref())) return create_item_spvar_row_field(thd, rh, &a, &b, spv, start, end); if ((thd->variables.sql_mode & MODE_ORACLE) && b.length == 7) { if (!my_strnncoll(system_charset_info, (const uchar *) b.str, 7, (const uchar *) "NEXTVAL", 7)) return create_item_func_nextval(thd, &null_clex_str, &a); else if (!my_strnncoll(system_charset_info, (const uchar *) b.str, 7, (const uchar *) "CURRVAL", 7)) return create_item_func_lastval(thd, &null_clex_str, &a); } return create_item_ident_nospvar(thd, &a, &b); } Item *LEX::create_item_ident(THD *thd, const Lex_ident_sys_st *a, const Lex_ident_sys_st *b, const Lex_ident_sys_st *c) { const char *schema= (thd->client_capabilities & CLIENT_NO_SCHEMA ? NullS : a->str); if ((thd->variables.sql_mode & MODE_ORACLE) && c->length == 7) { if (!my_strnncoll(system_charset_info, (const uchar *) c->str, 7, (const uchar *) "NEXTVAL", 7)) return create_item_func_nextval(thd, a, b); else if (!my_strnncoll(system_charset_info, (const uchar *) c->str, 7, (const uchar *) "CURRVAL", 7)) return create_item_func_lastval(thd, a, b); } if (current_select->no_table_names_allowed) { my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), b->str, thd->where); return NULL; } if (current_select->parsing_place == FOR_LOOP_BOUND) return create_item_for_loop_bound(thd, &null_clex_str, b, c); return create_item_ident_field(thd, schema, b->str, c); } Item *LEX::create_item_limit(THD *thd, const Lex_ident_cli_st *ca) { DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos()); DBUG_ASSERT(ca->pos() <= ca->end()); DBUG_ASSERT(ca->end() <= thd->m_parser_state->m_lip.get_end_of_query()); const Sp_rcontext_handler *rh; sp_variable *spv; Lex_ident_sys sa(thd, ca); if (sa.is_null()) return NULL; // EOM if (!(spv= find_variable(&sa, &rh))) { my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str); return NULL; } Query_fragment pos(thd, sphead, ca->pos(), ca->end()); Item_splocal *item; if (unlikely(!(item= new (thd->mem_root) Item_splocal(thd, rh, &sa, spv->offset, spv->type_handler(), pos.pos(), pos.length())))) return NULL; #ifdef DBUG_ASSERT_EXISTS item->m_sp= sphead; #endif safe_to_cache_query= 0; if (!item->is_valid_limit_clause_variable_with_error()) return NULL; item->limit_clause_param= true; return item; } Item *LEX::create_item_limit(THD *thd, const Lex_ident_cli_st *ca, const Lex_ident_cli_st *cb) { DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos()); DBUG_ASSERT(ca->pos() <= cb->end()); DBUG_ASSERT(cb->end() <= thd->m_parser_state->m_lip.get_end_of_query()); const Sp_rcontext_handler *rh; sp_variable *spv; Lex_ident_sys sa(thd, ca), sb(thd, cb); if (unlikely(sa.is_null() || sb.is_null())) return NULL; // EOM if (!(spv= find_variable(&sa, &rh))) { my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str); return NULL; } // Qualified %TYPE variables are not possible DBUG_ASSERT(!spv->field_def.column_type_ref()); Item_splocal *item; if (unlikely(!(item= create_item_spvar_row_field(thd, rh, &sa, &sb, spv, ca->pos(), cb->end())))) return NULL; if (!item->is_valid_limit_clause_variable_with_error()) return NULL; item->limit_clause_param= true; return item; } bool LEX::set_user_variable(THD *thd, const LEX_CSTRING *name, Item *val) { Item_func_set_user_var *item; set_var_user *var; if (unlikely(!(item= new (thd->mem_root) Item_func_set_user_var(thd, name, val))) || unlikely(!(var= new (thd->mem_root) set_var_user(item)))) return true; if (unlikely(var_list.push_back(var, thd->mem_root))) return true; return false; } Item *LEX::create_item_ident_field(THD *thd, const char *db, const char *table, const Lex_ident_sys_st *name) { if (check_expr_allows_fields_or_error(thd, name->str)) return NULL; if (current_select->parsing_place != IN_HAVING || current_select->get_in_sum_expr() > 0) return new (thd->mem_root) Item_field(thd, current_context(), db, table, name); return new (thd->mem_root) Item_ref(thd, current_context(), db, table, name); } Item *LEX::create_item_ident_sp(THD *thd, Lex_ident_sys_st *name, const char *start, const char *end) { DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start); DBUG_ASSERT(start <= end); DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query()); const Sp_rcontext_handler *rh; sp_variable *spv; DBUG_ASSERT(spcont); DBUG_ASSERT(sphead); if ((spv= find_variable(name, &rh))) { /* We're compiling a stored procedure and found a variable */ if (!parsing_options.allows_variable) { my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); return NULL; } Query_fragment pos(thd, sphead, start, end); Item_splocal *splocal= spv->field_def.is_column_type_ref() ? new (thd->mem_root) Item_splocal_with_delayed_data_type(thd, rh, name, spv->offset, pos.pos(), pos.length()) : new (thd->mem_root) Item_splocal(thd, rh, name, spv->offset, spv->type_handler(), pos.pos(), pos.length()); if (unlikely(splocal == NULL)) return NULL; #ifdef DBUG_ASSERT_EXISTS splocal->m_sp= sphead; #endif safe_to_cache_query= 0; return splocal; } if (thd->variables.sql_mode & MODE_ORACLE) { if (lex_string_eq(name, STRING_WITH_LEN("SQLCODE"))) return new (thd->mem_root) Item_func_sqlcode(thd); if (lex_string_eq(name, STRING_WITH_LEN("SQLERRM"))) return new (thd->mem_root) Item_func_sqlerrm(thd); } if (current_select->parsing_place == FOR_LOOP_BOUND) return create_item_for_loop_bound(thd, &null_clex_str, &null_clex_str, name); return create_item_ident_nosp(thd, name); } bool LEX::set_variable(const LEX_CSTRING *name, Item *item) { sp_pcontext *ctx; const Sp_rcontext_handler *rh; sp_variable *spv= find_variable(name, &ctx, &rh); return spv ? sphead->set_local_variable(thd, ctx, rh, spv, item, this, true) : set_system_variable(option_type, name, item); } /** Generate instructions for: SET x.y= expr; */ bool LEX::set_variable(const LEX_CSTRING *name1, const LEX_CSTRING *name2, Item *item) { const Sp_rcontext_handler *rh; sp_pcontext *ctx; sp_variable *spv; if (spcont && (spv= find_variable(name1, &ctx, &rh))) { if (spv->field_def.is_table_rowtype_ref() || spv->field_def.is_cursor_rowtype_ref()) return sphead->set_local_variable_row_field_by_name(thd, ctx, rh, spv, name2, item, this); // A field of a ROW variable uint row_field_offset; return !spv->find_row_field(name1, name2, &row_field_offset) || sphead->set_local_variable_row_field(thd, ctx, rh, spv, row_field_offset, item, this); } if (is_trigger_new_or_old_reference(name1)) return set_trigger_field(name1, name2, item); return set_system_variable(thd, option_type, name1, name2, item); } bool LEX::set_default_system_variable(enum_var_type var_type, const LEX_CSTRING *name, Item *val) { static LEX_CSTRING default_base_name= {STRING_WITH_LEN("default")}; sys_var *var= find_sys_var(thd, name->str, name->length); if (!var) return true; if (unlikely(!var->is_struct())) { my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name->str); return true; } return set_system_variable(var_type, var, &default_base_name, val); } bool LEX::set_system_variable(enum_var_type var_type, const LEX_CSTRING *name, Item *val) { sys_var *var= find_sys_var(thd, name->str, name->length); DBUG_ASSERT(thd->is_error() || var != NULL); return likely(var) ? set_system_variable(var_type, var, &null_clex_str, val) : true; } bool LEX::set_system_variable(THD *thd, enum_var_type var_type, const LEX_CSTRING *name1, const LEX_CSTRING *name2, Item *val) { sys_var *tmp; if (unlikely(check_reserved_words(name1)) || unlikely(!(tmp= find_sys_var_ex(thd, name2->str, name2->length, true, false)))) { my_error(ER_UNKNOWN_STRUCTURED_VARIABLE, MYF(0), (int) name1->length, name1->str); return true; } if (unlikely(!tmp->is_struct())) { my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name2->str); return true; } return set_system_variable(var_type, tmp, name1, val); } bool LEX::set_trigger_field(const LEX_CSTRING *name1, const LEX_CSTRING *name2, Item *val) { DBUG_ASSERT(is_trigger_new_or_old_reference(name1)); if (unlikely(name1->str[0]=='O' || name1->str[0]=='o')) { my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "OLD", ""); return true; } if (unlikely(trg_chistics.event == TRG_EVENT_DELETE)) { my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW", "on DELETE"); return true; } if (unlikely(trg_chistics.action_time == TRG_ACTION_AFTER)) { my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "NEW", "after "); return true; } return set_trigger_new_row(name2, val); } #ifdef MYSQL_SERVER uint binlog_unsafe_map[256]; #define UNSAFE(a, b, c) \ { \ DBUG_PRINT("unsafe_mixed_statement", ("SETTING BASE VALUES: %s, %s, %02X\n", \ LEX::stmt_accessed_table_string(a), \ LEX::stmt_accessed_table_string(b), \ c)); \ unsafe_mixed_statement(a, b, c); \ } /* Sets the combination given by "a" and "b" and automatically combinations given by other types of access, i.e. 2^(8 - 2), as unsafe. It may happen a colision when automatically defining a combination as unsafe. For that reason, a combination has its unsafe condition redefined only when the new_condition is greater then the old. For instance, . (BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY) is never overwritten by . (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF). */ void unsafe_mixed_statement(LEX::enum_stmt_accessed_table a, LEX::enum_stmt_accessed_table b, uint condition) { int type= 0; int index= (1U << a) | (1U << b); for (type= 0; type < 256; type++) { if ((type & index) == index) { binlog_unsafe_map[type] |= condition; } } } /* The BINLOG_* AND TRX_CACHE_* values can be combined by using '&' or '|', which means that both conditions need to be satisfied or any of them is enough. For example, . BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY means that the statment is unsafe when the option is on and trx-cache is not empty; . BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF means the statement is unsafe in all cases. . TRX_CACHE_EMPTY | TRX_CACHE_NOT_EMPTY means the statement is unsafe in all cases. Similar as above. */ void binlog_unsafe_map_init() { memset((void*) binlog_unsafe_map, 0, sizeof(uint) * 256); /* Classify a statement as unsafe when there is a mixed statement and an on-going transaction at any point of the execution if: 1. The mixed statement is about to update a transactional table and a non-transactional table. 2. The mixed statement is about to update a transactional table and read from a non-transactional table. 3. The mixed statement is about to update a non-transactional table and temporary transactional table. 4. The mixed statement is about to update a temporary transactional table and read from a non-transactional table. 5. The mixed statement is about to update a transactional table and a temporary non-transactional table. 6. The mixed statement is about to update a transactional table and read from a temporary non-transactional table. 7. The mixed statement is about to update a temporary transactional table and temporary non-transactional table. 8. The mixed statement is about to update a temporary transactional table and read from a temporary non-transactional table. After updating a transactional table if: 9. The mixed statement is about to update a non-transactional table and read from a transactional table. 10. The mixed statement is about to update a non-transactional table and read from a temporary transactional table. 11. The mixed statement is about to update a temporary non-transactional table and read from a transactional table. 12. The mixed statement is about to update a temporary non-transactional table and read from a temporary transactional table. 13. The mixed statement is about to update a temporary non-transactional table and read from a non-transactional table. The reason for this is that locks acquired may not protected a concurrent transaction of interfering in the current execution and by consequence in the result. */ /* Case 1. */ UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_NON_TRANS_TABLE, BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); /* Case 2. */ UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); /* Case 3. */ UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_WRITES_TEMP_TRANS_TABLE, BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); /* Case 4. */ UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); /* Case 5. */ UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, BINLOG_DIRECT_ON); /* Case 6. */ UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE, BINLOG_DIRECT_ON); /* Case 7. */ UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, BINLOG_DIRECT_ON); /* Case 8. */ UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE, BINLOG_DIRECT_ON); /* Case 9. */ UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE, (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY); /* Case 10 */ UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE, (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY); /* Case 11. */ UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE, BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY); /* Case 12. */ UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE, BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY); /* Case 13. */ UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, BINLOG_DIRECT_OFF & TRX_CACHE_NOT_EMPTY); } #endif /** @brief Collect fiels that are used in the GROUP BY of this st_select_lex @param thd The thread handle @details This method looks through the fields that are used in the GROUP BY of this st_select_lex and saves info on these fields. */ void st_select_lex::collect_grouping_fields_for_derived(THD *thd, ORDER *grouping_list) { grouping_tmp_fields.empty(); List_iterator li(join->fields_list); Item *item= li++; for (uint i= 0; i < master_unit()->derived->table->s->fields; i++, (item=li++)) { for (ORDER *ord= grouping_list; ord; ord= ord->next) { if ((*ord->item)->eq((Item*)item, 0)) { Field_pair *grouping_tmp_field= new Field_pair(master_unit()->derived->table->field[i], item); grouping_tmp_fields.push_back(grouping_tmp_field); } } } } /** Collect fields that are used in the GROUP BY of this SELECT */ bool st_select_lex::collect_grouping_fields(THD *thd) { grouping_tmp_fields.empty(); for (ORDER *ord= group_list.first; ord; ord= ord->next) { Item *item= *ord->item; if (item->type() != Item::FIELD_ITEM && !(item->type() == Item::REF_ITEM && ((((Item_ref *) item)->ref_type() == Item_ref::VIEW_REF) || (((Item_ref *) item)->ref_type() == Item_ref::REF)))) continue; Field_pair *grouping_tmp_field= new Field_pair(((Item_field *)item->real_item())->field, item); if (grouping_tmp_fields.push_back(grouping_tmp_field, thd->mem_root)) return false; } if (grouping_tmp_fields.elements) return false; return true; } /** @brief For a condition check possibility of exraction a formula over grouping fields @param thd The thread handle @param cond The condition whose subformulas are to be analyzed @param checker The checker callback function to be applied to the nodes of the tree of the object @details This method traverses the AND-OR condition cond and for each subformula of the condition it checks whether it can be usable for the extraction of a condition over the grouping fields of this select. The method uses the call-back parameter checker to check whether a primary formula depends only on grouping fields. The subformulas that are not usable are marked with the flag NO_EXTRACTION_FL. The subformulas that can be entierly extracted are marked with the flag FULL_EXTRACTION_FL. @note This method is called before any call of extract_cond_for_grouping_fields. The flag NO_EXTRACTION_FL set in a subformula allows to avoid building clone for the subformula when extracting the pushable condition. The flag FULL_EXTRACTION_FL allows to delete later all top level conjuncts from cond. */ void st_select_lex::check_cond_extraction_for_grouping_fields(THD *thd, Item *cond, Pushdown_checker checker) { if (thd->having_pushdown && cond->get_extraction_flag() == NO_EXTRACTION_FL) return; cond->clear_extraction_flag(); if (cond->type() == Item::COND_ITEM) { Item_cond_and *and_cond= (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) ? ((Item_cond_and*) cond) : 0; List *arg_list= ((Item_cond*) cond)->argument_list(); List_iterator li(*arg_list); uint count= 0; // to count items not containing NO_EXTRACTION_FL uint count_full= 0; // to count items with FULL_EXTRACTION_FL Item *item; while ((item=li++)) { check_cond_extraction_for_grouping_fields(thd, item, checker); if (item->get_extraction_flag() != NO_EXTRACTION_FL) { count++; if (item->get_extraction_flag() == FULL_EXTRACTION_FL) count_full++; } else if (!and_cond) break; } if ((and_cond && count == 0) || item) cond->set_extraction_flag(NO_EXTRACTION_FL); if (count_full == arg_list->elements) { cond->set_extraction_flag(FULL_EXTRACTION_FL); } if (cond->get_extraction_flag() != 0) { li.rewind(); while ((item=li++)) item->clear_extraction_flag(); } } else { int fl= ((cond->*checker) ((uchar *)this)) ? FULL_EXTRACTION_FL : NO_EXTRACTION_FL; cond->set_extraction_flag(fl); } } /** @brief Build condition extractable from the given one depended on grouping fields @param thd The thread handle @param cond The condition from which the condition depended on grouping fields is to be extracted @param no_top_clones If it's true then no clones for the top fully extractable conjuncts are built @details For the given condition cond this method finds out what condition depended only on the grouping fields can be extracted from cond. If such condition C exists the method builds the item for it. This method uses the flags NO_EXTRACTION_FL and FULL_EXTRACTION_FL set by the preliminary call of st_select_lex::check_cond_extraction_for_grouping_fields to figure out whether a subformula depends only on these fields or not. @note The built condition C is always implied by the condition cond (cond => C). The method tries to build the least restictive such condition (i.e. for any other condition C' such that cond => C' we have C => C'). @note The build item is not ready for usage: substitution for the field items has to be done and it has to be re-fixed. @retval the built condition depended only on grouping fields if such a condition exists NULL if there is no such a condition */ Item *st_select_lex::build_cond_for_grouping_fields(THD *thd, Item *cond, bool no_top_clones) { if (cond->get_extraction_flag() == FULL_EXTRACTION_FL) { if (no_top_clones) return cond; cond->clear_extraction_flag(); return cond->build_clone(thd); } if (cond->type() == Item::COND_ITEM) { bool cond_and= false; Item_cond *new_cond; if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { cond_and= true; new_cond= new (thd->mem_root) Item_cond_and(thd); } else new_cond= new (thd->mem_root) Item_cond_or(thd); if (unlikely(!new_cond)) return 0; List_iterator li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { if (item->get_extraction_flag() == NO_EXTRACTION_FL) { DBUG_ASSERT(cond_and); item->clear_extraction_flag(); continue; } Item *fix= build_cond_for_grouping_fields(thd, item, no_top_clones & cond_and); if (unlikely(!fix)) { if (cond_and) continue; break; } new_cond->argument_list()->push_back(fix, thd->mem_root); } if (!cond_and && item) { while((item= li++)) item->clear_extraction_flag(); return 0; } switch (new_cond->argument_list()->elements) { case 0: return 0; case 1: return new_cond->argument_list()->head(); default: return new_cond; } } return 0; } bool st_select_lex::set_nest_level(int new_nest_level) { DBUG_ENTER("st_select_lex::set_nest_level"); DBUG_PRINT("enter", ("select #%d %p nest level: %d", select_number, this, new_nest_level)); if (new_nest_level > (int) MAX_SELECT_NESTING) { my_error(ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT, MYF(0)); DBUG_RETURN(TRUE); } nest_level= new_nest_level; new_nest_level++; for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit()) { if (u->set_nest_level(new_nest_level)) DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } bool st_select_lex_unit::set_nest_level(int new_nest_level) { DBUG_ENTER("st_select_lex_unit::set_nest_level"); for(SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) { if (sl->set_nest_level(new_nest_level)) DBUG_RETURN(TRUE); } if (fake_select_lex && fake_select_lex->set_nest_level(new_nest_level)) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } bool st_select_lex::check_parameters(SELECT_LEX *main_select) { DBUG_ENTER("st_select_lex::check_parameters"); DBUG_PRINT("enter", ("select #%d %p nest level: %d", select_number, this, nest_level)); if ((options & OPTION_PROCEDURE_CLAUSE) && (!parent_lex->selects_allow_procedure || next_select() != NULL || this != master_unit()->first_select() || nest_level != 0)) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "PROCEDURE"); DBUG_RETURN(TRUE); } if ((options & SELECT_HIGH_PRIORITY) && this != main_select) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "HIGH_PRIORITY"); DBUG_RETURN(TRUE); } if ((options & OPTION_BUFFER_RESULT) && this != main_select) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_BUFFER_RESULT"); DBUG_RETURN(TRUE); } if ((options & OPTION_FOUND_ROWS) && this != main_select) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_CALC_FOUND_ROWS"); DBUG_RETURN(TRUE); } if (options & OPTION_NO_QUERY_CACHE) { /* Allow this flag only on the first top-level SELECT statement, if SQL_CACHE wasn't specified. */ if (this != main_select) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_NO_CACHE"); DBUG_RETURN(TRUE); } if (parent_lex->sql_cache == LEX::SQL_CACHE) { my_error(ER_WRONG_USAGE, MYF(0), "SQL_CACHE", "SQL_NO_CACHE"); DBUG_RETURN(TRUE); } parent_lex->safe_to_cache_query=0; parent_lex->sql_cache= LEX::SQL_NO_CACHE; } if (options & OPTION_TO_QUERY_CACHE) { /* Allow this flag only on the first top-level SELECT statement, if SQL_NO_CACHE wasn't specified. */ if (this != main_select) { my_error(ER_CANT_USE_OPTION_HERE, MYF(0), "SQL_CACHE"); DBUG_RETURN(TRUE); } if (parent_lex->sql_cache == LEX::SQL_NO_CACHE) { my_error(ER_WRONG_USAGE, MYF(0), "SQL_NO_CACHE", "SQL_CACHE"); DBUG_RETURN(TRUE); } parent_lex->safe_to_cache_query=1; parent_lex->sql_cache= LEX::SQL_CACHE; } for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit()) { if (u->check_parameters(main_select)) DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } bool st_select_lex_unit::check_parameters(SELECT_LEX *main_select) { for(SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) { if (sl->check_parameters(main_select)) return TRUE; } return fake_select_lex && fake_select_lex->check_parameters(main_select); } bool LEX::check_main_unit_semantics() { if (unit.set_nest_level(0) || unit.check_parameters(first_select_lex())) return TRUE; return FALSE; } int set_statement_var_if_exists(THD *thd, const char *var_name, size_t var_name_length, ulonglong value) { sys_var *sysvar; if (unlikely(thd->lex->sql_command == SQLCOM_CREATE_VIEW)) { my_error(ER_VIEW_SELECT_CLAUSE, MYF(0), "[NO]WAIT"); return 1; } if (unlikely(thd->lex->sphead)) { my_error(ER_SP_BADSTATEMENT, MYF(0), "[NO]WAIT"); return 1; } if ((sysvar= find_sys_var_ex(thd, var_name, var_name_length, true, false))) { Item *item= new (thd->mem_root) Item_uint(thd, value); set_var *var= new (thd->mem_root) set_var(thd, OPT_SESSION, sysvar, &null_clex_str, item); if (unlikely(!item) || unlikely(!var) || unlikely(thd->lex->stmt_var_list.push_back(var, thd->mem_root))) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); return 1; } } return 0; } bool LEX::sp_add_cfetch(THD *thd, const LEX_CSTRING *name) { uint offset; sp_instr_cfetch *i; if (!spcont->find_cursor(name, &offset, false)) { my_error(ER_SP_CURSOR_MISMATCH, MYF(0), name->str); return true; } i= new (thd->mem_root) sp_instr_cfetch(sphead->instructions(), spcont, offset, !(thd->variables.sql_mode & MODE_ORACLE)); if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) return true; return false; } bool LEX::create_or_alter_view_finalize(THD *thd, Table_ident *table_ident) { sql_command= SQLCOM_CREATE_VIEW; /* first table in list is target VIEW name */ if (!first_select_lex()->add_table_to_list(thd, table_ident, NULL, TL_OPTION_UPDATING, TL_IGNORE, MDL_EXCLUSIVE)) return true; query_tables->open_strategy= TABLE_LIST::OPEN_STUB; return false; } bool LEX::add_alter_view(THD *thd, uint16 algorithm, enum_view_suid suid, Table_ident *table_ident) { if (unlikely(sphead)) { my_error(ER_SP_BADSTATEMENT, MYF(0), "ALTER VIEW"); return true; } if (unlikely(!(create_view= new (thd->mem_root) Create_view_info(VIEW_ALTER, algorithm, suid)))) return true; return create_or_alter_view_finalize(thd, table_ident); } bool LEX::add_create_view(THD *thd, DDL_options_st ddl, uint16 algorithm, enum_view_suid suid, Table_ident *table_ident) { if (unlikely(set_create_options_with_check(ddl))) return true; if (unlikely(!(create_view= new (thd->mem_root) Create_view_info(ddl.or_replace() ? VIEW_CREATE_OR_REPLACE : VIEW_CREATE_NEW, algorithm, suid)))) return true; return create_or_alter_view_finalize(thd, table_ident); } bool LEX::call_statement_start(THD *thd, sp_name *name) { Database_qualified_name pkgname(&null_clex_str, &null_clex_str); const Sp_handler *sph= &sp_handler_procedure; sql_command= SQLCOM_CALL; value_list.empty(); if (unlikely(sph->sp_resolve_package_routine(thd, thd->lex->sphead, name, &sph, &pkgname))) return true; if (unlikely(!(m_sql_cmd= new (thd->mem_root) Sql_cmd_call(name, sph)))) return true; sph->add_used_routine(this, thd, name); if (pkgname.m_name.length) sp_handler_package_body.add_used_routine(this, thd, &pkgname); return false; } bool LEX::call_statement_start(THD *thd, const LEX_CSTRING *name) { sp_name *spname= make_sp_name(thd, name); return unlikely(!spname) || call_statement_start(thd, spname); } bool LEX::call_statement_start(THD *thd, const LEX_CSTRING *name1, const LEX_CSTRING *name2) { sp_name *spname= make_sp_name(thd, name1, name2); return unlikely(!spname) || call_statement_start(thd, spname); } sp_package *LEX::get_sp_package() const { return sphead ? sphead->get_package() : NULL; } sp_package *LEX::create_package_start(THD *thd, enum_sql_command command, const Sp_handler *sph, const sp_name *name_arg, DDL_options_st options) { sp_package *pkg; if (unlikely(sphead)) { my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str()); return NULL; } if (unlikely(set_command_with_check(command, options))) return NULL; if (sph->type() == TYPE_ENUM_PACKAGE_BODY) { /* If we start parsing a "CREATE PACKAGE BODY", we need to load the corresponding "CREATE PACKAGE", for the following reasons: 1. "CREATE PACKAGE BODY" is allowed only if "CREATE PACKAGE" was done earlier for the same package name. So if "CREATE PACKAGE" does not exist, we throw an error here. 2. When parsing "CREATE PACKAGE BODY", we need to know all package public and private routine names, to translate procedure and function calls correctly. For example, this statement inside a package routine: CALL p; can be translated to: CALL db.pkg.p; -- p is a known (public or private) package routine CALL db.p; -- p is not a known package routine */ sp_head *spec; int ret= sp_handler_package_spec. sp_cache_routine_reentrant(thd, name_arg, &spec); if (unlikely(!spec)) { if (!ret) my_error(ER_SP_DOES_NOT_EXIST, MYF(0), "PACKAGE", ErrConvDQName(name_arg).ptr()); return 0; } } if (unlikely(!(pkg= new sp_package(this, name_arg, sph)))) return NULL; pkg->reset_thd_mem_root(thd); pkg->init(this); pkg->make_qname(pkg->get_main_mem_root(), &pkg->m_qname); sphead= pkg; return pkg; } bool LEX::create_package_finalize(THD *thd, const sp_name *name, const sp_name *name2, const char *body_start, const char *body_end) { if (name2 && (name2->m_explicit_name != name->m_explicit_name || strcmp(name2->m_db.str, name->m_db.str) || !Sp_handler::eq_routine_name(name2->m_name, name->m_name))) { bool exp= name2->m_explicit_name || name->m_explicit_name; my_error(ER_END_IDENTIFIER_DOES_NOT_MATCH, MYF(0), exp ? ErrConvDQName(name2).ptr() : name2->m_name.str, exp ? ErrConvDQName(name).ptr() : name->m_name.str); return true; } sphead->m_body.length= body_end - body_start; if (unlikely(!(sphead->m_body.str= thd->strmake(body_start, sphead->m_body.length)))) return true; size_t not_used; Lex_input_stream *lip= & thd->m_parser_state->m_lip; sphead->m_defstr.length= lip->get_cpp_ptr() - lip->get_cpp_buf(); sphead->m_defstr.str= thd->strmake(lip->get_cpp_buf(), sphead->m_defstr.length); trim_whitespace(thd->charset(), &sphead->m_defstr, ¬_used); sphead->restore_thd_mem_root(thd); sp_package *pkg= sphead->get_package(); DBUG_ASSERT(pkg); return pkg->validate_after_parser(thd); } bool LEX::add_grant_command(THD *thd, enum_sql_command sql_command_arg, stored_procedure_type type_arg) { if (columns.elements) { thd->parse_error(); return true; } sql_command= sql_command_arg, type= type_arg; return false; } Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b, Item *c) { return (thd->variables.sql_mode & MODE_ORACLE) ? new (thd->mem_root) Item_func_substr_oracle(thd, a, b, c) : new (thd->mem_root) Item_func_substr(thd, a, b, c); } Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b) { return (thd->variables.sql_mode & MODE_ORACLE) ? new (thd->mem_root) Item_func_substr_oracle(thd, a, b) : new (thd->mem_root) Item_func_substr(thd, a, b); } Item *LEX::make_item_func_replace(THD *thd, Item *org, Item *find, Item *replace) { return (thd->variables.sql_mode & MODE_ORACLE) ? new (thd->mem_root) Item_func_replace_oracle(thd, org, find, replace) : new (thd->mem_root) Item_func_replace(thd, org, find, replace); } bool SELECT_LEX::vers_push_field(THD *thd, TABLE_LIST *table, const LEX_CSTRING field_name) { DBUG_ASSERT(field_name.str); Item_field *fld= new (thd->mem_root) Item_field(thd, &context, table->db.str, table->alias.str, &field_name); if (unlikely(!fld) || unlikely(item_list.push_back(fld))) return true; if (thd->lex->view_list.elements) { LEX_CSTRING *l; if (unlikely(!(l= thd->make_clex_string(field_name.str, field_name.length))) || unlikely(thd->lex->view_list.push_back(l))) return true; } return false; } Item *Lex_trim_st::make_item_func_trim_std(THD *thd) const { if (m_remove) { switch (m_spec) { case TRIM_BOTH: return new (thd->mem_root) Item_func_trim(thd, m_source, m_remove); case TRIM_LEADING: return new (thd->mem_root) Item_func_ltrim(thd, m_source, m_remove); case TRIM_TRAILING: return new (thd->mem_root) Item_func_rtrim(thd, m_source, m_remove); } } switch (m_spec) { case TRIM_BOTH: return new (thd->mem_root) Item_func_trim(thd, m_source); case TRIM_LEADING: return new (thd->mem_root) Item_func_ltrim(thd, m_source); case TRIM_TRAILING: return new (thd->mem_root) Item_func_rtrim(thd, m_source); } DBUG_ASSERT(0); return NULL; } Item *Lex_trim_st::make_item_func_trim_oracle(THD *thd) const { if (m_remove) { switch (m_spec) { case TRIM_BOTH: return new (thd->mem_root) Item_func_trim_oracle(thd, m_source, m_remove); case TRIM_LEADING: return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source, m_remove); case TRIM_TRAILING: return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source, m_remove); } } switch (m_spec) { case TRIM_BOTH: return new (thd->mem_root) Item_func_trim_oracle(thd, m_source); case TRIM_LEADING: return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source); case TRIM_TRAILING: return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source); } DBUG_ASSERT(0); return NULL; } Item *Lex_trim_st::make_item_func_trim(THD *thd) const { return (thd->variables.sql_mode & MODE_ORACLE) ? make_item_func_trim_oracle(thd) : make_item_func_trim_std(thd); } Item *LEX::make_item_func_call_generic(THD *thd, Lex_ident_cli_st *cdb, Lex_ident_cli_st *cname, List *args) { Lex_ident_sys db(thd, cdb), name(thd, cname); if (db.is_null() || name.is_null()) return NULL; // EOM /* The following in practice calls: Create_sp_func::create() and builds a stored function. However, it's important to maintain the interface between the parser and the implementation in item_create.cc clean, since this will change with WL#2128 (SQL PATH): - INFORMATION_SCHEMA.version() is the SQL 99 syntax for the native function version(), - MySQL.version() is the SQL 2003 syntax for the native function version() (a vendor can specify any schema). */ if (!name.str || check_db_name((LEX_STRING*) static_cast(&db))) { my_error(ER_WRONG_DB_NAME, MYF(0), db.str); return NULL; } if (check_routine_name(&name)) return NULL; Create_qfunc *builder= find_qualified_function_builder(thd); DBUG_ASSERT(builder); return builder->create_with_db(thd, &db, &name, true, args); } Item *LEX::create_item_qualified_asterisk(THD *thd, const Lex_ident_sys_st *name) { Item *item; if (!(item= new (thd->mem_root) Item_field(thd, current_context(), NullS, name->str, &star_clex_str))) return NULL; current_select->with_wild++; return item; } Item *LEX::create_item_qualified_asterisk(THD *thd, const Lex_ident_sys_st *a, const Lex_ident_sys_st *b) { Item *item; const char* schema= thd->client_capabilities & CLIENT_NO_SCHEMA ? NullS : a->str; if (!(item= new (thd->mem_root) Item_field(thd, current_context(), schema, b->str, &star_clex_str))) return NULL; current_select->with_wild++; return item; } bool Lex_ident_sys_st::copy_ident_cli(THD *thd, const Lex_ident_cli_st *str) { return thd->to_ident_sys_alloc(this, str); } bool Lex_ident_sys_st::copy_keyword(THD *thd, const Lex_ident_cli_st *str) { return thd->make_lex_string(static_cast(this), str->str, str->length) == NULL; } bool Lex_ident_sys_st::copy_or_convert(THD *thd, const Lex_ident_cli_st *src, CHARSET_INFO *cs) { if (!src->is_8bit()) return copy_keyword(thd, src); // 7bit string makes a wellformed identifier return convert(thd, src, cs); } bool Lex_ident_sys_st::copy_sys(THD *thd, const LEX_CSTRING *src) { if (thd->check_string_for_wellformedness(src->str, src->length, system_charset_info)) return true; return thd->make_lex_string(this, src->str, src->length) == NULL; } bool Lex_ident_sys_st::convert(THD *thd, const LEX_CSTRING *src, CHARSET_INFO *cs) { LEX_STRING tmp; if (thd->convert_with_error(system_charset_info, &tmp, cs, src->str, src->length)) return true; str= tmp.str; length= tmp.length; return false; } bool Lex_ident_sys_st::to_size_number(ulonglong *to) const { ulonglong number; uint text_shift_number= 0; longlong prefix_number; const char *start_ptr= str; size_t str_len= length; const char *end_ptr= start_ptr + str_len; int error; prefix_number= my_strtoll10(start_ptr, (char**) &end_ptr, &error); if (likely((start_ptr + str_len - 1) == end_ptr)) { switch (end_ptr[0]) { case 'g': case 'G': text_shift_number+=30; break; case 'm': case 'M': text_shift_number+=20; break; case 'k': case 'K': text_shift_number+=10; break; default: my_error(ER_WRONG_SIZE_NUMBER, MYF(0)); return true; } if (unlikely(prefix_number >> 31)) { my_error(ER_SIZE_OVERFLOW_ERROR, MYF(0)); return true; } number= prefix_number << text_shift_number; } else { my_error(ER_WRONG_SIZE_NUMBER, MYF(0)); return true; } *to= number; return false; } bool LEX::part_values_current(THD *thd) { partition_element *elem= part_info->curr_part_elem; if (!is_partition_management()) { if (unlikely(part_info->part_type != VERSIONING_PARTITION)) { my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME"); return true; } } else { DBUG_ASSERT(create_last_non_select_table); DBUG_ASSERT(create_last_non_select_table->table_name.str); // FIXME: other ALTER commands? my_error(ER_VERS_WRONG_PARTS, MYF(0), create_last_non_select_table->table_name.str); return true; } elem->type(partition_element::CURRENT); DBUG_ASSERT(part_info->vers_info); part_info->vers_info->now_part= elem; if (unlikely(part_info->init_column_part(thd))) return true; return false; } bool LEX::part_values_history(THD *thd) { partition_element *elem= part_info->curr_part_elem; if (!is_partition_management()) { if (unlikely(part_info->part_type != VERSIONING_PARTITION)) { my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME"); return true; } } else { part_info->vers_init_info(thd); elem->id= UINT_MAX32; } DBUG_ASSERT(part_info->vers_info); if (unlikely(part_info->vers_info->now_part)) { DBUG_ASSERT(create_last_non_select_table); DBUG_ASSERT(create_last_non_select_table->table_name.str); my_error(ER_VERS_WRONG_PARTS, MYF(0), create_last_non_select_table->table_name.str); return true; } elem->type(partition_element::HISTORY); if (unlikely(part_info->init_column_part(thd))) return true; return false; } bool LEX::last_field_generated_always_as_row_start_or_end(Lex_ident *p, const char *type, uint flag) { if (unlikely(p->str)) { my_error(ER_VERS_DUPLICATE_ROW_START_END, MYF(0), type, last_field->field_name.str); return true; } last_field->flags|= (flag | NOT_NULL_FLAG); DBUG_ASSERT(p); *p= last_field->field_name; return false; } bool LEX::last_field_generated_always_as_row_start() { Vers_parse_info &info= vers_get_info(); Lex_ident *p= &info.as_row.start; return last_field_generated_always_as_row_start_or_end(p, "START", VERS_SYS_START_FLAG); } bool LEX::last_field_generated_always_as_row_end() { Vers_parse_info &info= vers_get_info(); Lex_ident *p= &info.as_row.end; return last_field_generated_always_as_row_start_or_end(p, "END", VERS_SYS_END_FLAG); } bool LEX::tvc_finalize() { mysql_init_select(this); if (unlikely(!(current_select->tvc= new (thd->mem_root) table_value_constr(many_values, current_select, current_select->options)))) return true; many_values.empty(); return false; } bool LEX::tvc_finalize_derived() { derived_tables|= DERIVED_SUBQUERY; if (unlikely(!expr_allows_subselect || sql_command == (int)SQLCOM_PURGE)) { thd->parse_error(); return true; } if (current_select->get_linkage() == GLOBAL_OPTIONS_TYPE || unlikely(mysql_new_select(this, 1, NULL))) return true; current_select->set_linkage(DERIVED_TABLE_TYPE); return tvc_finalize(); } void st_select_lex_unit::reset_distinct() { union_distinct= NULL; for(SELECT_LEX *sl= first_select()->next_select(); sl; sl= sl->next_select()) { if (sl->distinct) { union_distinct= sl; } } } void st_select_lex_unit::fix_distinct(st_select_lex_unit *new_unit) { if (union_distinct) { if (this != union_distinct->master_unit()) { DBUG_ASSERT(new_unit == union_distinct->master_unit()); new_unit->union_distinct= union_distinct; reset_distinct(); } else new_unit->reset_distinct(); } } void st_select_lex_unit::register_select_chain(SELECT_LEX *first_sel) { DBUG_ASSERT(first_sel != 0); slave= first_sel; first_sel->prev= &slave; for(SELECT_LEX *sel=first_sel; sel; sel= sel->next_select()) { sel->master= (st_select_lex_node *)this; uncacheable|= sel->uncacheable; } } void st_select_lex::register_unit(SELECT_LEX_UNIT *unit, Name_resolution_context *outer_context) { if ((unit->next= slave)) slave->prev= &unit->next; unit->prev= &slave; slave= unit; unit->master= this; uncacheable|= unit->uncacheable; for(SELECT_LEX *sel= unit->first_select();sel; sel= sel->next_select()) { sel->context.outer_context= outer_context; } } void st_select_lex::add_statistics(SELECT_LEX_UNIT *unit) { for (; unit; unit= unit->next_unit()) for(SELECT_LEX *child= unit->first_select(); child; child= child->next_select()) { /* A subselect can add fields to an outer select. Reserve space for them. */ select_n_where_fields+= child->select_n_where_fields; /* Aggregate functions in having clause may add fields to an outer select. Count them also. */ select_n_having_items+= child->select_n_having_items; } } bool LEX::main_select_push() { DBUG_ENTER("LEX::main_select_push"); current_select_number= 1; builtin_select.select_number= 1; if (push_select(&builtin_select)) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } void Lex_select_lock::set_to(SELECT_LEX *sel) { if (defined_lock) { if (sel->master_unit() && sel == sel->master_unit()->fake_select_lex) sel->master_unit()->set_lock_to_the_last_select(*this); else { sel->parent_lex->safe_to_cache_query= 0; if (update_lock) { sel->lock_type= TL_WRITE; sel->set_lock_for_tables(TL_WRITE); } else { sel->lock_type= TL_READ_WITH_SHARED_LOCKS; sel->set_lock_for_tables(TL_READ_WITH_SHARED_LOCKS); } } } } bool Lex_order_limit_lock::set_to(SELECT_LEX *sel) { /*TODO: lock */ //if (lock.defined_lock && sel == sel->master_unit()->fake_select_lex) // return TRUE; if (lock.defined_timeout) { THD *thd= sel->parent_lex->thd; if (set_statement_var_if_exists(thd, C_STRING_WITH_LEN("lock_wait_timeout"), lock.timeout) || set_statement_var_if_exists(thd, C_STRING_WITH_LEN("innodb_lock_wait_timeout"), lock.timeout)) return TRUE; } lock.set_to(sel); sel->explicit_limit= limit.explicit_limit; sel->select_limit= limit.select_limit; sel->offset_limit= limit.offset_limit; if (order_list) { if (sel->get_linkage() != GLOBAL_OPTIONS_TYPE && sel->olap != UNSPECIFIED_OLAP_TYPE && (sel->get_linkage() != UNION_TYPE || sel->braces)) { my_error(ER_WRONG_USAGE, MYF(0), "CUBE/ROLLUP", "ORDER BY"); return TRUE; } sel->order_list= *(order_list); } sel->is_set_query_expr_tail= true; return FALSE; } static void change_item_list_context(List *list, Name_resolution_context *context) { List_iterator_fast it (*list); Item *item; while((item= it++)) { item->walk(&Item::change_context_processor, FALSE, (void *)context); } } bool LEX::insert_select_hack(SELECT_LEX *sel) { DBUG_ENTER("LEX::insert_select_hack"); DBUG_ASSERT(first_select_lex() == &builtin_select); DBUG_ASSERT(sel != NULL); DBUG_ASSERT(builtin_select.first_inner_unit() == NULL); if (builtin_select.link_prev) { if ((*builtin_select.link_prev= builtin_select.link_next)) ((st_select_lex *)builtin_select.link_next)->link_prev= builtin_select.link_prev; builtin_select.link_prev= NULL; // indicator of removal } set_main_unit(sel->master_unit()); DBUG_ASSERT(builtin_select.table_list.elements == 1); TABLE_LIST *insert_table= builtin_select.table_list.first; if (!(insert_table->next_local= sel->table_list.first)) { sel->table_list.next= &insert_table->next_local; } sel->table_list.first= insert_table; sel->table_list.elements++; insert_table->select_lex= sel; sel->context.first_name_resolution_table= insert_table; builtin_select.context= sel->context; change_item_list_context(&field_list, &sel->context); if (sel->tvc && !sel->next_select() && (sql_command == SQLCOM_INSERT_SELECT || sql_command == SQLCOM_REPLACE_SELECT)) { DBUG_PRINT("info", ("'Usual' INSERT detected")); many_values= sel->tvc->lists_of_values; sel->options= sel->tvc->select_options; sel->tvc= NULL; if (sql_command == SQLCOM_INSERT_SELECT) sql_command= SQLCOM_INSERT; else sql_command= SQLCOM_REPLACE; } for (SELECT_LEX *sel= all_selects_list; sel; sel= sel->next_select_in_list()) { if (sel->select_number != 1) sel->select_number--; }; DBUG_RETURN(FALSE); } /* Create an Item_singlerow_subselect for a query expression. */ Item *LEX::create_item_query_expression(THD *thd, const char *tok_start, st_select_lex_unit *unit) { if (!expr_allows_subselect || sql_command == SQLCOM_PURGE) { thd->parse_error(ER_SYNTAX_ERROR, tok_start); return NULL; } // Add the subtree of subquery to the current SELECT_LEX SELECT_LEX *curr_sel= select_stack_head(); DBUG_ASSERT(current_select == curr_sel); if (!curr_sel) curr_sel= &builtin_select; curr_sel->register_unit(unit, &curr_sel->context); curr_sel->add_statistics(unit); return new (thd->mem_root) Item_singlerow_subselect(thd, unit->first_select()); } /** Process unit parsed in brackets */ bool LEX::parsed_unit_in_brackets(SELECT_LEX_UNIT *unit) { SELECT_LEX *first_in_nest= unit->pre_last_parse->next_select()->first_nested; if (first_in_nest->first_nested != first_in_nest) { /* There is a priority jump starting from first_in_nest */ if (create_priority_nest(first_in_nest) == NULL) return true; } push_select(unit->fake_select_lex); return false; } /** Process tail of unit parsed in brackets */ SELECT_LEX *LEX::parsed_unit_in_brackets_tail(SELECT_LEX_UNIT *unit, Lex_order_limit_lock * l) { pop_select(); if (l) { (l)->set_to(unit->fake_select_lex); } return unit->first_select(); } /** Process select parsed in brackets */ SELECT_LEX *LEX::parsed_select(SELECT_LEX *sel, Lex_order_limit_lock * l) { pop_select(); if (l) { if (sel->next_select()) { SELECT_LEX_UNIT *unit= sel->master_unit(); if (!unit) unit= create_unit(sel); if (!unit) return NULL; if (!unit->fake_select_lex->is_set_query_expr_tail) l->set_to(unit->fake_select_lex); else { sel= wrap_unit_into_derived(unit); if (!sel) return NULL; l->set_to(sel); } } else if (!sel->is_set_query_expr_tail) { l->set_to(sel); } else { SELECT_LEX_UNIT *unit= create_unit(sel); if (!unit) return NULL; sel= wrap_unit_into_derived(unit); if (!sel) return NULL; l->set_to(sel); } } return sel; } /** Process select parsed in brackets */ SELECT_LEX *LEX::parsed_select_in_brackets(SELECT_LEX *sel, Lex_order_limit_lock * l) { sel->braces= TRUE; return parsed_select(sel, l); } SELECT_LEX_UNIT *LEX::parsed_select_expr_start(SELECT_LEX *s1, SELECT_LEX *s2, enum sub_select_type unit_type, bool distinct) { SELECT_LEX_UNIT *res; SELECT_LEX *sel1; SELECT_LEX *sel2; if (!s1->next_select()) sel1= s1; else { sel1= wrap_unit_into_derived(s1->master_unit()); if (!sel1) return NULL; } if (!s2->next_select()) sel2= s2; else { sel2= wrap_unit_into_derived(s2->master_unit()); if (!sel2) return NULL; } sel1->link_neighbour(sel2); sel2->set_linkage_and_distinct(unit_type, distinct); sel2->first_nested= sel1->first_nested= sel1; res= create_unit(sel1); if (res == NULL) return NULL; res->pre_last_parse= sel1; return res; } SELECT_LEX_UNIT *LEX::parsed_select_expr_cont(SELECT_LEX_UNIT *unit, SELECT_LEX *s2, enum sub_select_type unit_type, bool distinct, bool oracle) { SELECT_LEX *sel1; if (!s2->next_select()) sel1= s2; else { sel1= wrap_unit_into_derived(s2->master_unit()); if (!sel1) return NULL; } SELECT_LEX *last= unit->pre_last_parse->next_select(); int cmp= oracle? 0 : cmp_unit_op(unit_type, last->get_linkage()); if (cmp == 0) { sel1->first_nested= last->first_nested; } else if (cmp > 0) { last->first_nested= unit->pre_last_parse; sel1->first_nested= last; } else /* cmp < 0 */ { SELECT_LEX *first_in_nest= last->first_nested; if (first_in_nest->first_nested != first_in_nest) { /* There is a priority jump starting from first_in_nest */ if ((last= create_priority_nest(first_in_nest)) == NULL) return NULL; } sel1->first_nested= last->first_nested; } last->link_neighbour(sel1); sel1->set_master_unit(unit); sel1->set_linkage_and_distinct(unit_type, distinct); unit->pre_last_parse= last; return unit; } /** Process parsed select in body */ SELECT_LEX_UNIT *LEX::parsed_body_select(SELECT_LEX *sel, Lex_order_limit_lock * l) { if (!(sel= parsed_select(sel, l))) return NULL; SELECT_LEX_UNIT *res= create_unit(sel); return res; } /** Process parsed unit in body */ bool LEX::parsed_body_unit(SELECT_LEX_UNIT *unit) { SELECT_LEX *first_in_nest= unit->pre_last_parse->next_select()->first_nested; if (first_in_nest->first_nested != first_in_nest) { /* There is a priority jump starting from first_in_nest */ if (create_priority_nest(first_in_nest) == NULL) return true; } push_select(unit->fake_select_lex); return false; } /** Process parsed tail of unit in body TODO: make processing for double tail case */ SELECT_LEX_UNIT *LEX::parsed_body_unit_tail(SELECT_LEX_UNIT *unit, Lex_order_limit_lock * l) { pop_select(); if (l) { (l)->set_to(unit->fake_select_lex); } return unit; } /** Process subselect parsing */ SELECT_LEX *LEX::parsed_subselect(SELECT_LEX_UNIT *unit, char *place) { if (!expr_allows_subselect || sql_command == (int)SQLCOM_PURGE) { thd->parse_error(ER_SYNTAX_ERROR, place); return NULL; } // Add the subtree of subquery to the current SELECT_LEX SELECT_LEX *curr_sel= select_stack_head(); DBUG_ASSERT(current_select == curr_sel); if (curr_sel) { curr_sel->register_unit(unit, &curr_sel->context); curr_sel->add_statistics(unit); } return unit->first_select(); } /** Process INSERT-like select */ bool LEX::parsed_insert_select(SELECT_LEX *first_select) { if (sql_command == SQLCOM_INSERT || sql_command == SQLCOM_REPLACE) { if (sql_command == SQLCOM_INSERT) sql_command= SQLCOM_INSERT_SELECT; else sql_command= SQLCOM_REPLACE_SELECT; } insert_select_hack(first_select); if (check_main_unit_semantics()) return true; // fix "main" select SELECT_LEX *blt __attribute__((unused))= pop_select(); DBUG_ASSERT(blt == &builtin_select); push_select(first_select); return false; } bool LEX::parsed_TVC_start() { SELECT_LEX *sel; many_values.empty(); insert_list= 0; if (!(sel= alloc_select(TRUE)) || push_select(sel)) return true; sel->init_select(); sel->braces= FALSE; // just initialisation return false; } SELECT_LEX *LEX::parsed_TVC_end() { SELECT_LEX *res= pop_select(); // above TVC select if (!(res->tvc= new (thd->mem_root) table_value_constr(many_values, res, res->options))) return NULL; many_values.empty(); return res; } TABLE_LIST *LEX::parsed_derived_select(SELECT_LEX *sel, int for_system_time, LEX_CSTRING *alias) { TABLE_LIST *res; derived_tables|= DERIVED_SUBQUERY; sel->set_linkage(DERIVED_TABLE_TYPE); sel->braces= FALSE; // Add the subtree of subquery to the current SELECT_LEX SELECT_LEX *curr_sel= select_stack_head(); DBUG_ASSERT(current_select == curr_sel); SELECT_LEX_UNIT *unit= sel->master_unit(); if (!unit) { unit= create_unit(sel); if (!unit) return NULL; } curr_sel->register_unit(unit, &curr_sel->context); curr_sel->add_statistics(unit); Table_ident *ti= new (thd->mem_root) Table_ident(unit); if (ti == NULL) return NULL; if (!(res= curr_sel->add_table_to_list(thd, ti, alias, 0, TL_READ, MDL_SHARED_READ))) return NULL; if (for_system_time) { res->vers_conditions= vers_conditions; } return res; } TABLE_LIST *LEX::parsed_derived_unit(SELECT_LEX_UNIT *unit, int for_system_time, LEX_CSTRING *alias) { TABLE_LIST *res; derived_tables|= DERIVED_SUBQUERY; unit->first_select()->set_linkage(DERIVED_TABLE_TYPE); // Add the subtree of subquery to the current SELECT_LEX SELECT_LEX *curr_sel= select_stack_head(); DBUG_ASSERT(current_select == curr_sel); curr_sel->register_unit(unit, &curr_sel->context); curr_sel->add_statistics(unit); Table_ident *ti= new (thd->mem_root) Table_ident(unit); if (ti == NULL) return NULL; if (!(res= curr_sel->add_table_to_list(thd, ti, alias, 0, TL_READ, MDL_SHARED_READ))) return NULL; if (for_system_time) { res->vers_conditions= vers_conditions; } return res; } bool LEX::parsed_create_view(SELECT_LEX_UNIT *unit, int check) { SQL_I_List *save= &first_select_lex()->table_list; set_main_unit(unit); if (check_main_unit_semantics()) return true; first_select_lex()->table_list.push_front(save); current_select= first_select_lex(); size_t len= thd->m_parser_state->m_lip.get_cpp_ptr() - create_view->select.str; void *create_view_select= thd->memdup(create_view->select.str, len); create_view->select.length= len; create_view->select.str= (char *) create_view_select; size_t not_used; trim_whitespace(thd->charset(), &create_view->select, ¬_used); create_view->check= check; parsing_options.allows_variable= TRUE; return false; } bool LEX::select_finalize(st_select_lex_unit *expr) { sql_command= SQLCOM_SELECT; selects_allow_into= TRUE; selects_allow_procedure= TRUE; set_main_unit(expr); return check_main_unit_semantics(); } /* "IN" and "EXISTS" subselect can appear in two statement types: 1. Statements that can have table columns, such as SELECT, DELETE, UPDATE 2. Statements that cannot have table columns, e.g: RETURN ((1) IN (SELECT * FROM t1)) IF ((1) IN (SELECT * FROM t1)) Statements of the first type call master_select_push() in the beginning. In such case everything is properly linked. Statements of the second type do not call mastr_select_push(). Here we catch the second case and relink thd->lex->builtin_select and select_lex to properly point to each other. QQ: Shouldn't subselects of other type also call relink_hack()? QQ: Can we do it at constructor time instead? */ void LEX::relink_hack(st_select_lex *select_lex) { if (!select_stack_top) // Statements of the second type { if (!select_lex->get_master()->get_master()) ((st_select_lex *) select_lex->get_master())-> set_master(&builtin_select); if (!builtin_select.get_slave()) builtin_select.set_slave(select_lex->get_master()); } } bool SELECT_LEX_UNIT::set_lock_to_the_last_select(Lex_select_lock l) { if (l.defined_lock) { SELECT_LEX *sel= first_select(); while (sel->next_select()) sel= sel->next_select(); if (sel->braces) { my_error(ER_WRONG_USAGE, MYF(0), "lock options", "End SELECT expression"); return TRUE; } l.set_to(sel); } return FALSE; } /** Generate unique name for generated derived table for this SELECT */ bool SELECT_LEX::make_unique_derived_name(THD *thd, LEX_CSTRING *alias) { // uint32 digits + two underscores + trailing '\0' char buff[MAX_INT_WIDTH + 2 + 1]; alias->length= my_snprintf(buff, sizeof(buff), "__%u", select_number); alias->str= thd->strmake(buff, alias->length); return !alias->str; } /* Make a new sp_instr_stmt and set its m_query to a concatenation of two strings. */ bool LEX::new_sp_instr_stmt(THD *thd, const LEX_CSTRING &prefix, const LEX_CSTRING &suffix) { LEX_STRING qbuff; sp_instr_stmt *i; if (!(i= new (thd->mem_root) sp_instr_stmt(sphead->instructions(), spcont, this))) return true; qbuff.length= prefix.length + suffix.length; if (!(qbuff.str= (char*) alloc_root(thd->mem_root, qbuff.length + 1))) return true; memcpy(qbuff.str, prefix.str, prefix.length); strmake(qbuff.str + prefix.length, suffix.str, suffix.length); i->m_query= qbuff; return sphead->add_instr(i); } bool LEX::sp_proc_stmt_statement_finalize_buf(THD *thd, const LEX_CSTRING &qbuf) { sphead->m_flags|= sp_get_flags_for_command(this); /* "USE db" doesn't work in a procedure */ if (unlikely(sql_command == SQLCOM_CHANGE_DB)) { my_error(ER_SP_BADSTATEMENT, MYF(0), "USE"); return true; } /* Don't add an instruction for SET statements, since all instructions for them were already added during processing of "set" rule. */ DBUG_ASSERT(sql_command != SQLCOM_SET_OPTION || var_list.is_empty()); if (sql_command != SQLCOM_SET_OPTION) return new_sp_instr_stmt(thd, empty_clex_str, qbuf); return false; } bool LEX::sp_proc_stmt_statement_finalize(THD *thd, bool no_lookahead) { // Extract the query statement from the tokenizer Lex_input_stream *lip= &thd->m_parser_state->m_lip; Lex_cstring qbuf(sphead->m_tmp_query, no_lookahead ? lip->get_ptr() : lip->get_tok_start()); return LEX::sp_proc_stmt_statement_finalize_buf(thd, qbuf); } /** @brief Extract from given item a condition pushable into WHERE clause @param thd the thread handle @param cond the item to extract a condition to be pushed into WHERE @param remaining_cond the condition that will remain of cond after the pushdown of its parts into the WHERE clause @param transformer the transformer callback function to be applied to the condition so it can be pushed down into the WHERE clause of this select @param arg parameter to be passed to the transformer @details This method checks if cond entirely or its parts can be pushed into the WHERE clause of this select and prepares it for pushing. First it checks wherever this select doesn't have any aggregation function in its projection and GROUP BY clause. If so cond can be entirely pushed into the WHERE clause of this select but before its fields should be transformed with transformer_for_where to make it pushable. Otherwise the method checks wherever any condition depending only on grouping fields can be extracted from cond. If there is any it prepares it for pushing using grouping_field_transformer_for_where and if it happens to be a conjunct of cond it removes it from cond. It saves the result of removal in remaining_cond. The extracted condition is saved in cond_pushed_into_where of this select. @note When looking for pushable condition the method considers only the grouping fields from the list grouping_tmp_fields whose elements are of the type Field_pair. This list must be prepared before the call of the function. @note This method is called for pushdown conditions into materialized derived tables/views optimization. Item::derived_field_transformer_for_where is passed as the actual callback function. Also it is called for pushdown conditions into materialized IN subqueries. Item::in_subq_field_transformer_for_where is passed as the actual callback function. */ void st_select_lex::pushdown_cond_into_where_clause(THD *thd, Item *cond, Item **remaining_cond, Item_transformer transformer, uchar *arg) { if (!cond_pushdown_is_allowed()) return; thd->lex->current_select= this; if (have_window_funcs()) { Item *cond_over_partition_fields; check_cond_extraction_for_grouping_fields(thd, cond, &Item::dep_on_grouping_fields_checker); cond_over_partition_fields= build_cond_for_grouping_fields(thd, cond, true); if (cond_over_partition_fields) cond_over_partition_fields= cond_over_partition_fields->transform(thd, &Item::grouping_field_transformer_for_where, (uchar*) this); if (cond_over_partition_fields) { cond_over_partition_fields->walk( &Item::cleanup_excluding_const_fields_processor, 0, 0); cond_pushed_into_where= cond_over_partition_fields; } return; } if (!join->group_list && !with_sum_func) { cond= cond->transform(thd, transformer, arg); if (cond) { cond->walk( &Item::cleanup_excluding_const_fields_processor, 0, 0); cond_pushed_into_where= cond; } return; } /* Figure out what can be extracted from cond that could be pushed into the WHERE clause of this select */ Item *cond_over_grouping_fields; check_cond_extraction_for_grouping_fields(thd, cond, &Item::dep_on_grouping_fields_checker); cond_over_grouping_fields= build_cond_for_grouping_fields(thd, cond, true); /* Transform the references to the columns from the cond pushed into the WHERE clause of this select to make them usable in the new context */ if (cond_over_grouping_fields) cond_over_grouping_fields= cond_over_grouping_fields->transform(thd, &Item::grouping_field_transformer_for_where, (uchar*) this); if (cond_over_grouping_fields) { /* In cond remove top conjuncts that has been pushed into the WHERE clause of this select */ cond= remove_pushed_top_conjuncts(thd, cond); cond_over_grouping_fields->walk( &Item::cleanup_excluding_const_fields_processor, 0, 0); cond_pushed_into_where= cond_over_grouping_fields; } *remaining_cond= cond; } /** @brief Mark OR-conditions as non-pushable to avoid repeatable pushdown @param cond The condition that should be marked (or its subformulas) @details In the case when OR-condition can be pushed into the HAVING clause of the materialized derived table/view/IN subquery and some of its parts can be pushed into the WHERE clause it can cause repeatable pushdown in the pushdown from HAVING into WHERE clause. Example: SELECT * FROM t1, ( SELECT a,MAX(c) AS m_c GROUP BY a ) AS dt WHERE ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) AND (t1.a=v1.a); after the pushdown into the materialized views/derived tables optimization is done: SELECT * FROM t1, ( SELECT a,MAX(c) AS m_c WHERE (dt.a>2) OR (dt.a<3) GROUP BY a HAVING ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) ) AS dt WHERE ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) AND (t1.a=v1.a); In the optimization stage for the select that defines derived table in the pushdown from HAVING into WHERE optimization (dt.a>2) OR (dt.a<3) will be again extracted from ((dt.m_c>10) AND (dt.a>2)) OR ((dt.m_c<7) and (dt.a<3)) and pushed into the WHERE clause of the select that defines derived table. To avoid it after conditions are pushed into the materialized derived tables/views or IN subqueries OR-conditions that were pushed are marked with NO_EXTRACTION_FL flag to avoid repeatable pushdown. */ void st_select_lex::mark_or_conds_to_avoid_pushdown(Item *cond) { cond->walk(&Item::cleanup_excluding_const_fields_processor, 0, 0); if (cond->type() == Item::COND_ITEM && ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { List_iterator li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { if (item->type() == Item::COND_ITEM && ((Item_cond*) item)->functype() == Item_func::COND_OR_FUNC) item->set_extraction_flag(NO_EXTRACTION_FL); } } else if (cond->type() == Item::COND_ITEM && ((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC) cond->set_extraction_flag(NO_EXTRACTION_FL); cond_pushed_into_having= cond; } /** @brief Gets conditions that can be pushed down for pushdown from HAVING into WHERE @param thd The thread handle @param cond The condition from which the condition depended on grouping fields is to be extracted @param checker The checker callback function to be applied to the nodes of the tree of the object @details The method finds out what conditions can be extracted from cond depended only on the grouping fields of this SELECT or fields equal to them. If the condition that can be pushed is AND-condition it is splitted up and for each its element it is checked if it can be pushed. Pushable elements are attached to the attach_to_conds list. If the condition isn't AND-condition it is entirely pushed into the attach_to_conds list. If the condition that is extracted is a multiple equality it is transformed into the set of equalities. attach_to_conds list is created to be passed to and_new_conditions_to_optimized_cond() method so extracted conditions can be joined to the already optimized WHERE clause in the right way. @note The method is similar to st_select_lex::build_cond_for_grouping_fields() and Item::build_pushable_cond(). @retval true - if an error occurs false - otherwise */ bool st_select_lex::build_pushable_cond_for_having_pushdown(THD *thd, Item *cond) { Pushdown_checker checker= &Item::pushable_equality_checker_for_having_pushdown; bool is_multiple_equality= cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC; if (cond->get_extraction_flag() == NO_EXTRACTION_FL) return false; if (cond->type() == Item::COND_ITEM) { bool cond_and= false; if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) cond_and= true; List equalities; List new_conds; List_iterator li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item=li++)) { if (item->get_extraction_flag() == NO_EXTRACTION_FL) continue; if (item->type() == Item::FUNC_ITEM && ((Item_func*) item)->functype() == Item_func::MULT_EQUAL_FUNC) { equalities.empty(); if (((Item_equal*) item)->create_pushable_equalities(thd, &equalities, checker, (uchar *)this)) return true; if (equalities.elements != 0) { if (cond_and) new_conds.append(&equalities); else { Item_cond_and *new_cond= new (thd->mem_root) Item_cond_and(thd, equalities); if (!new_cond || new_conds.push_back(new_cond, thd->mem_root)) return true; } } else if (!cond_and) return true; continue; } Item *fix= item->build_pushable_cond(thd, checker, (uchar *)this); if (!fix && !cond_and) { attach_to_conds.empty(); return false; } if (!fix) continue; if (new_conds.push_back(fix, thd->mem_root)) return true; } if (!cond_and) { Item_cond_or *new_cond= new (thd->mem_root) Item_cond_or(thd, new_conds); if (attach_to_conds.push_back(new_cond, thd->mem_root)) return true; } else attach_to_conds.append(&new_conds); } else if (is_multiple_equality) { List equalities; Item_equal *item_equal= (Item_equal *)cond; if (item_equal->create_pushable_equalities(thd, &equalities, checker, (uchar *)this)) return true; attach_to_conds.append(&equalities); return false; } else if (cond->get_extraction_flag() != NO_EXTRACTION_FL) { Item *copy= cond->build_clone(thd); if (attach_to_conds.push_back(copy, thd->mem_root)) return true; } return false; } /** Check if the item is equal to some field in Field_pair 'field_pair' from 'pair_list' and return found 'field_pair' if it exists. */ Field_pair *get_corresponding_field_pair(Item *item, List pair_list) { DBUG_ASSERT(item->type() == Item::FIELD_ITEM || (item->type() == Item::REF_ITEM && ((((Item_ref *) item)->ref_type() == Item_ref::VIEW_REF) || (((Item_ref *) item)->ref_type() == Item_ref::REF)))); List_iterator it(pair_list); Field_pair *field_pair; Item_field *field_item= (Item_field *) (item->real_item()); while ((field_pair= it++)) { if (field_item->field == field_pair->field) return field_pair; } return NULL; } /** @brief Collect fields in multiple equalities usable for pushdown from having @param thd The thread handle @details This method looks through the multiple equalities of the WHERE clause trying to find any of them whose fields are used in the GROUP BY of the SELECT. Any field from these multiple equality is included into the the list of fields against which any candidate for pushing is checked. @retval true - if an error occurs false - otherwise */ bool st_select_lex::collect_fields_equal_to_grouping(THD *thd) { if (!join->cond_equal || join->cond_equal->is_empty()) return false; List_iterator_fast li(join->cond_equal->current_level); Item_equal *item_equal; while ((item_equal= li++)) { Item_equal_fields_iterator it(*item_equal); Item *item; while ((item= it++)) { if (get_corresponding_field_pair(item, grouping_tmp_fields)) break; } if (!item) break; it.rewind(); while ((item= it++)) { if (get_corresponding_field_pair(item, grouping_tmp_fields)) continue; Field_pair *grouping_tmp_field= new Field_pair(((Item_field *)item->real_item())->field, item); if (grouping_tmp_fields.push_back(grouping_tmp_field, thd->mem_root)) return true; } } return false; } /** @brief Cleanup and fix of the condition that is ready to be pushed down @param thd The thread handle @param cond The condition to be processed @details This method recursively traverses cond making cleanup and fix where needed. There is no need to make cleanup and fix for multiple equalities as they are created so they can be immediately pushed down. @retval true - if an error occurs false - otherwise */ static bool cleanup_condition_pushed_from_having(THD *thd, Item *cond) { if (cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC) return false; if (cond->type() == Item::COND_ITEM) { List_iterator_fast it(*((Item_cond *)cond)->argument_list()); Item *item; while ((item=it++)) cleanup_condition_pushed_from_having(thd, item); } else { cond->walk(&Item::cleanup_excluding_const_fields_processor, 0, 0); if (cond->fix_fields(thd, NULL)) return true; } return false; } /** @brief Remove marked top conjuncts of condition for pushdown from HAVING into WHERE @param thd The thread handle @param cond The condition which subformulas are to be removed @details The function behavior is similar to remove_pushed_top_conjuncts() except the case when 'cond' is the AND-condition. As in the pushdown from HAVING into WHERE conditions are not just cloned so they can be later pushed down as it is for pushdown into materialized derived tables/views or IN subqueries, but also should be removed from the HAVING clause. The multiple equalities of the HAVING clause are not removed in this function, but rather marked as to be removed later. Their removal is done in substitute_for_best_equal_field() called for HAVING at the moment when all multiple equalities referencing the top level multiple equalities have been already eliminated. @retval condition without removed subformulas 0 if the whole 'cond' is removed */ Item *remove_pushed_top_conjuncts_for_having(THD *thd, Item *cond) { if (cond->get_extraction_flag() == FULL_EXTRACTION_FL) { cond->clear_extraction_flag(); if (cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC) { cond->set_extraction_flag(DELETION_FL); return cond; } return 0; } if (cond->type() != Item::COND_ITEM) return cond; if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { List *cond_arg_list= ((Item_cond_and *)cond)->argument_list(); List_iterator li(*cond_arg_list); Item *item; while ((item= li++)) { if (item->get_extraction_flag() == FULL_EXTRACTION_FL) { item->clear_extraction_flag(); if (item->type() == Item::FUNC_ITEM && ((Item_func*) item)->functype() == Item_func::MULT_EQUAL_FUNC) item->set_extraction_flag(DELETION_FL); else li.remove(); } } switch (cond_arg_list->elements) { case 0: return 0; case 1: return (cond_arg_list->head()); default: return cond; } } return cond; } /** @brief Extract condition that can be pushed from HAVING clause into WHERE clause @param thd the thread handle @param having the HAVING clause of this select @param having_equal multiple equalities of HAVING @details This function builds the most restrictive condition depending only on the fields used in the GROUP BY of this select (directly or indirectly through equality) that can be extracted from the HAVING clause of this select and pushes it into the WHERE clause of this select. Example of the transformation: SELECT t1.a,MAX(t1.b) FROM t1 GROUP BY t1.a HAVING (t1.a>2) AND (MAX(c)>12); => SELECT t1.a,MAX(t1.b) FROM t1 WHERE (t1.a>2) GROUP BY t1.a HAVING (MAX(c)>12); In details: 1. Collect fields used in the GROUP BY grouping_fields of this SELECT 2. Collect fields equal to grouping_fields from the WHERE clause of this SELECT and add them to the grouping_fields list. 3. Extract the most restrictive condition from the HAVING clause of this select that depends only on the grouping fields (directly or indirectly through equality). Store it in the attach_to_conds list. 4. Remove pushable conditions from the HAVING clause if it's possible. @note This method is similar to st_select_lex::pushdown_cond_into_where_clause(). @retval TRUE if an error occurs @retval FALSE otherwise */ Item *st_select_lex::pushdown_from_having_into_where(THD *thd, Item *having) { if (!having || !group_list.first) return having; if (!cond_pushdown_is_allowed()) return having; st_select_lex *save_curr_select= thd->lex->current_select; thd->lex->current_select= this; /* 1. Collect fields used in the GROUP BY grouping fields of this SELECT 2. Collect fields equal to grouping_fields from the WHERE clause of this SELECT and add them to the grouping fields list. */ if (collect_grouping_fields(thd) || collect_fields_equal_to_grouping(thd)) return having; /* 3. Extract the most restrictive condition from the HAVING clause of this select that depends only on the grouping fields (directly or indirectly through equality). Store it in the attach_to_conds list. */ thd->having_pushdown= true; List_iterator_fast it(attach_to_conds); Item *item; check_cond_extraction_for_grouping_fields(thd, having, &Item::dep_on_grouping_fields_checker_for_having_pushdown); if (build_pushable_cond_for_having_pushdown(thd, having)) { attach_to_conds.empty(); goto exit; } if (attach_to_conds.elements != 0) { /* 4. Remove pushable conditions from the HAVING clause if it's possible. */ having= remove_pushed_top_conjuncts_for_having(thd, having); it.rewind(); while ((item=it++)) { if (cleanup_condition_pushed_from_having(thd, item)) { attach_to_conds.empty(); goto exit; } } /* Refresh having_equal as some of the multiple equalities of having can be removed after pushdown. */ join->having_equal= 0; if (having) { if (having->type() == Item::COND_ITEM && ((Item_cond*) having)->functype() == Item_func::COND_AND_FUNC) { Item_cond_and *and_having= (Item_cond_and *)having; join->having_equal= &and_having->m_cond_equal; } if (having->type() == Item::FUNC_ITEM && ((Item_func*) having)->functype() == Item_func::MULT_EQUAL_FUNC) join->having_equal= new (thd->mem_root) COND_EQUAL((Item_equal *)having, thd->mem_root); } } exit: thd->lex->current_select= save_curr_select; thd->having_pushdown= false; return having; }