#ifndef SQL_SELECT_INCLUDED #define SQL_SELECT_INCLUDED /* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** @file @brief classes to use when handling where clause */ #ifdef USE_PRAGMA_INTERFACE #pragma interface /* gcc class implementation */ #endif #include "procedure.h" #include #include "sql_array.h" /* Array */ #include "records.h" /* READ_RECORD */ #include "opt_range.h" /* SQL_SELECT, QUICK_SELECT_I */ #if defined(WITH_ARIA_STORAGE_ENGINE) #include "../storage/maria/ha_maria.h" #endif #if defined(USE_ARIA_FOR_TMP_TABLES) #define TMP_ENGINE_HTON maria_hton #else #define TMP_ENGINE_HTON myisam_hton #endif /* Values in optimize */ #define KEY_OPTIMIZE_EXISTS 1 #define KEY_OPTIMIZE_REF_OR_NULL 2 typedef struct keyuse_t { TABLE *table; Item *val; /**< or value if no field */ table_map used_tables; uint key, keypart, optimize; key_part_map keypart_map; ha_rows ref_table_rows; /** If true, the comparison this value was created from will not be satisfied if val has NULL 'value'. */ bool null_rejecting; /* !NULL - This KEYUSE was created from an equality that was wrapped into an Item_func_trig_cond. This means the equality (and validity of this KEYUSE element) can be turned on and off. The on/off state is indicted by the pointed value: *cond_guard == TRUE <=> equality condition is on *cond_guard == FALSE <=> equality condition is off NULL - Otherwise (the source equality can't be turned off) */ bool *cond_guard; /* 0..64 <=> This was created from semi-join IN-equality # sj_pred_no. MAX_UINT Otherwise */ uint sj_pred_no; } KEYUSE; class store_key; typedef struct st_table_ref { bool key_err; /** True if something was read into buffer in join_read_key. */ bool has_record; uint key_parts; ///< num of ... uint key_length; ///< length of key_buff int key; ///< key no uchar *key_buff; ///< value to look for with key uchar *key_buff2; ///< key_buff+key_length store_key **key_copy; // Item **items; ///< val()'s for each keypart /* Array of pointers to trigger variables. Some/all of the pointers may be NULL. The ref access can be used iff for each used key part i, (!cond_guards[i] || *cond_guards[i]) This array is used by subquery code. The subquery code may inject triggered conditions, i.e. conditions that can be 'switched off'. A ref access created from such condition is not valid when at least one of the underlying conditions is switched off (see subquery code for more details) */ bool **cond_guards; /** (null_rejecting & (1<join_tab[-1] which means stop join execution after the first match. */ struct st_join_table *do_firstmatch; /* ptr - We're doing a LooseScan, this join tab is the first (i.e. "driving") join tab), and ptr points to the last join tab handled by the strategy. loosescan_match_tab->found_match should be checked to see if the current value group had a match. NULL - Not doing a loose scan on this join tab. */ struct st_join_table *loosescan_match_tab; /* Buffer to save index tuple to be able to skip duplicates */ uchar *loosescan_buf; /* Length of key tuple (depends on #keyparts used) to store in the above */ uint loosescan_key_len; /* Used by LooseScan. TRUE<=> there has been a matching record combination */ bool found_match; /* Used by DuplicateElimination. tab->table->ref must have the rowid whenever we have a current record. */ int keep_current_rowid; /* NestedOuterJoins: Bitmap of nested joins this table is part of */ nested_join_map embedding_map; /* Semi-join strategy to be used for this join table. This is a copy of POSITION::sj_strategy field. This field is set up by the fix_semijion_strategies_for_picked_join_order. */ uint sj_strategy; void cleanup(); inline bool is_using_loose_index_scan() { return (select && select->quick && (select->quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)); } bool is_using_agg_loose_index_scan () { return (is_using_loose_index_scan() && ((QUICK_GROUP_MIN_MAX_SELECT *)select->quick)->is_agg_distinct()); } bool check_rowid_field() { if (keep_current_rowid && !used_rowid_fields) { used_rowid_fields= 1; used_fieldlength+= table->file->ref_length; } return test(used_rowid_fields); } bool is_inner_table_of_semi_join_with_first_match() { return first_sj_inner_tab != NULL; } bool is_inner_table_of_outer_join() { return first_inner != NULL; } bool is_single_inner_of_semi_join_with_first_match() { return first_sj_inner_tab == this && last_sj_inner_tab == this; } bool is_single_inner_of_outer_join() { return first_inner == this && first_inner->last_inner == this; } bool is_first_inner_for_outer_join() { return first_inner && first_inner == this; } bool use_match_flag() { return is_first_inner_for_outer_join() || first_sj_inner_tab == this ; } bool check_only_first_match() { return is_inner_table_of_semi_join_with_first_match() || (is_inner_table_of_outer_join() && table->reginfo.not_exists_optimize); } bool is_last_inner_table() { return (first_inner && first_inner->last_inner == this) || last_sj_inner_tab == this; } struct st_join_table *get_first_inner_table() { if (first_inner) return first_inner; return first_sj_inner_tab; } void set_select_cond(COND *to, uint line) { DBUG_PRINT("info", ("select_cond changes %p -> %p at line %u tab %p", select_cond, to, line, this)); select_cond= to; } COND *set_cond(COND *new_cond) { COND *tmp_select_cond= select_cond; set_select_cond(new_cond, __LINE__); if (select) select->cond= new_cond; return tmp_select_cond; } } JOIN_TAB; /* Categories of data fields of variable length written into join cache buffers. The value of any of these fields is written into cache together with the prepended length of the value. */ #define CACHE_BLOB 1 /* blob field */ #define CACHE_STRIPPED 2 /* field stripped of trailing spaces */ #define CACHE_VARSTR1 3 /* short string value (length takes 1 byte) */ #define CACHE_VARSTR2 4 /* long string value (length takes 2 bytes) */ /* The CACHE_FIELD structure used to describe fields of records that are written into a join cache buffer from record buffers and backward. */ typedef struct st_cache_field { uchar *str; /**< buffer from/to where the field is to be copied */ uint length; /**< maximal number of bytes to be copied from/to str */ /* Field object for the moved field (0 - for a flag field, see JOIN_CACHE::create_flag_fields). */ Field *field; uint type; /**< category of the of the copied field (CACHE_BLOB et al.) */ /* The number of the record offset value for the field in the sequence of offsets placed after the last field of the record. These offset values are used to access fields referred to from other caches. If the value is 0 then no offset for the field is saved in the trailing sequence of offsets. */ uint referenced_field_no; /* The remaining structure fields are used as containers for temp values */ uint blob_length; /**< length of the blob to be copied */ uint offset; /**< field offset to be saved in cache buffer */ } CACHE_FIELD; /* JOIN_CACHE is the base class to support the implementations of both Blocked-Based Nested Loops (BNL) Join Algorithm and Batched Key Access (BKA) Join Algorithm. The first algorithm is supported by the derived class JOIN_CACHE_BNL, while the second algorithm is supported by the derived class JOIN_CACHE_BKA. These two algorithms have a lot in common. Both algorithms first accumulate the records of the left join operand in a join buffer and then search for matching rows of the second operand for all accumulated records. For the first algorithm this strategy saves on logical I/O operations: the entire set of records from the join buffer requires only one look-through the records provided by the second operand. For the second algorithm the accumulation of records allows to optimize fetching rows of the second operand from disk for some engines (MyISAM, InnoDB), or to minimize the number of round-trips between the Server and the engine nodes (NDB Cluster). */ class JOIN_CACHE :public Sql_alloc { private: /* Size of the offset of a record from the cache */ uint size_of_rec_ofs; /* Size of the length of a record in the cache */ uint size_of_rec_len; /* Size of the offset of a field within a record in the cache */ uint size_of_fld_ofs; protected: /* 3 functions below actually do not use the hidden parameter 'this' */ /* Calculate the number of bytes used to store an offset value */ uint offset_size(uint len) { return (len < 256 ? 1 : len < 256*256 ? 2 : 4); } /* Get the offset value that takes ofs_sz bytes at the position ptr */ ulong get_offset(uint ofs_sz, uchar *ptr) { switch (ofs_sz) { case 1: return uint(*ptr); case 2: return uint2korr(ptr); case 4: return uint4korr(ptr); } return 0; } /* Set the offset value ofs that takes ofs_sz bytes at the position ptr */ void store_offset(uint ofs_sz, uchar *ptr, ulong ofs) { switch (ofs_sz) { case 1: *ptr= (uchar) ofs; return; case 2: int2store(ptr, (uint16) ofs); return; case 4: int4store(ptr, (uint32) ofs); return; } } /* The total maximal length of the fields stored for a record in the cache. For blob fields only the sizes of the blob lengths are taken into account. */ uint length; /* Representation of the executed multi-way join through which all needed context can be accessed. */ JOIN *join; /* Cardinality of the range of join tables whose fields can be put into the cache. (A table from the range not necessarily contributes to the cache.) */ uint tables; /* The total number of flag and data fields that can appear in a record written into the cache. Fields with null values are always skipped to save space. */ uint fields; /* The total number of flag fields in a record put into the cache. They are used for table null bitmaps, table null row flags, and an optional match flag. Flag fields go before other fields in a cache record with the match flag field placed always at the very beginning of the record. */ uint flag_fields; /* The total number of blob fields that are written into the cache */ uint blobs; /* The total number of fields referenced from field descriptors for other join caches. These fields are used to construct key values to access matching rows with index lookups. Currently the fields can be referenced only from descriptors for bka caches. However they may belong to a cache of any type. */ uint referenced_fields; /* The current number of already created data field descriptors. This number can be useful for implementations of the init methods. */ uint data_field_count; /* The current number of already created pointers to the data field descriptors. This number can be useful for implementations of the init methods. */ uint data_field_ptr_count; /* Array of the descriptors of fields containing 'fields' elements. These are all fields that are stored for a record in the cache. */ CACHE_FIELD *field_descr; /* Array of pointers to the blob descriptors that contains 'blobs' elements. */ CACHE_FIELD **blob_ptr; /* This flag indicates that records written into the join buffer contain a match flag field. The flag must be set by the init method. */ bool with_match_flag; /* This flag indicates that any record is prepended with the length of the record which allows us to skip the record or part of it without reading. */ bool with_length; /* The maximal number of bytes used for a record representation in the cache excluding the space for blob data. For future derived classes this representation may contains some redundant info such as a key value associated with the record. */ uint pack_length; /* The value of pack_length incremented by the total size of all pointers of a record in the cache to the blob data. */ uint pack_length_with_blob_ptrs; /* Pointer to the beginning of the join buffer */ uchar *buff; /* Size of the entire memory allocated for the join buffer. Part of this memory may be reserved for the auxiliary buffer. */ ulong buff_size; /* Size of the auxiliary buffer. */ ulong aux_buff_size; /* The number of records put into the join buffer */ uint records; /* Pointer to the current position in the join buffer. This member is used both when writing to buffer and when reading from it. */ uchar *pos; /* Pointer to the first free position in the join buffer, right after the last record into it. */ uchar *end_pos; /* Pointer to the beginning of first field of the current read/write record from the join buffer. The value is adjusted by the get_record/put_record functions. */ uchar *curr_rec_pos; /* Pointer to the beginning of first field of the last record from the join buffer. */ uchar *last_rec_pos; /* Flag is set if the blob data for the last record in the join buffer is in record buffers rather than in the join cache. */ bool last_rec_blob_data_is_in_rec_buff; /* Pointer to the position to the current record link. Record links are used only with linked caches. Record links allow to set connections between parts of one join record that are stored in different join buffers. In the simplest case a record link is just a pointer to the beginning of the record stored in the buffer. In a more general case a link could be a reference to an array of pointers to records in the buffer. */ uchar *curr_rec_link; void calc_record_fields(); int alloc_fields(uint external_fields); void create_flag_fields(); void create_remaining_fields(bool all_read_fields); void set_constants(); int alloc_buffer(); uint get_size_of_rec_offset() { return size_of_rec_ofs; } uint get_size_of_rec_length() { return size_of_rec_len; } uint get_size_of_fld_offset() { return size_of_fld_ofs; } uchar *get_rec_ref(uchar *ptr) { return buff+get_offset(size_of_rec_ofs, ptr-size_of_rec_ofs); } ulong get_rec_length(uchar *ptr) { return (ulong) get_offset(size_of_rec_len, ptr); } ulong get_fld_offset(uchar *ptr) { return (ulong) get_offset(size_of_fld_ofs, ptr); } void store_rec_ref(uchar *ptr, uchar* ref) { store_offset(size_of_rec_ofs, ptr-size_of_rec_ofs, (ulong) (ref-buff)); } void store_rec_length(uchar *ptr, ulong len) { store_offset(size_of_rec_len, ptr, len); } void store_fld_offset(uchar *ptr, ulong ofs) { store_offset(size_of_fld_ofs, ptr, ofs); } /* Write record fields and their required offsets into the join buffer */ uint write_record_data(uchar *link, bool *is_full); /* This method must determine for how much the auxiliary buffer should be incremented when a new record is added to the join buffer. If no auxiliary buffer is needed the function should return 0. */ virtual uint aux_buffer_incr() { return 0; } /* Shall calculate how much space is remaining in the join buffer */ virtual ulong rem_space() { return max(buff_size-(end_pos-buff)-aux_buff_size,0); } /* Shall skip record from the join buffer if its match flag is on */ virtual bool skip_record_if_match(); /* Read all flag and data fields of a record from the join buffer */ uint read_all_record_fields(); /* Read all flag fields of a record from the join buffer */ uint read_flag_fields(); /* Read a data record field from the join buffer */ uint read_record_field(CACHE_FIELD *copy, bool last_record); /* Read a referenced field from the join buffer */ bool read_referenced_field(CACHE_FIELD *copy, uchar *rec_ptr, uint *len); /* True if rec_ptr points to the record whose blob data stay in record buffers */ bool blob_data_is_in_rec_buff(uchar *rec_ptr) { return rec_ptr == last_rec_pos && last_rec_blob_data_is_in_rec_buff; } /* Find matches from the next table for records from the join buffer */ virtual enum_nested_loop_state join_matching_records(bool skip_last)=0; /* Add null complements for unmatched outer records from buffer */ virtual enum_nested_loop_state join_null_complements(bool skip_last); /* Restore the fields of the last record from the join buffer */ virtual void restore_last_record(); /*Set match flag for a record in join buffer if it has not been set yet */ bool set_match_flag_if_none(JOIN_TAB *first_inner, uchar *rec_ptr); enum_nested_loop_state generate_full_extensions(uchar *rec_ptr); /* Check matching to a partial join record from the join buffer */ bool check_match(uchar *rec_ptr); public: /* Table to be joined with the partial join records from the cache */ JOIN_TAB *join_tab; /* Pointer to the previous join cache if there is any */ JOIN_CACHE *prev_cache; /* Pointer to the next join cache if there is any */ JOIN_CACHE *next_cache; /* Shall initialize the join cache structure */ virtual int init()=0; /* The function shall return TRUE only for BKA caches */ virtual bool is_key_access() { return FALSE; } /* Shall reset the join buffer for reading/writing */ virtual void reset(bool for_writing); /* This function shall add a record into the join buffer and return TRUE if it has been decided that it should be the last record in the buffer. */ virtual bool put_record(); /* This function shall read the next record into the join buffer and return TRUE if there is no more next records. */ virtual bool get_record(); /* This function shall read the record at the position rec_ptr in the join buffer */ virtual void get_record_by_pos(uchar *rec_ptr); /* Shall return the value of the match flag for the positioned record */ virtual bool get_match_flag_by_pos(uchar *rec_ptr); /* Shall return the position of the current record */ virtual uchar *get_curr_rec() { return curr_rec_pos; } /* Shall set the current record link */ virtual void set_curr_rec_link(uchar *link) { curr_rec_link= link; } /* Shall return the current record link */ virtual uchar *get_curr_rec_link() { return (curr_rec_link ? curr_rec_link : get_curr_rec()); } /* Join records from the join buffer with records from the next join table */ enum_nested_loop_state join_records(bool skip_last); virtual ~JOIN_CACHE() {} void reset_join(JOIN *j) { join= j; } void free() { my_free(buff); buff= 0; } friend class JOIN_CACHE_BNL; friend class JOIN_CACHE_BKA; friend class JOIN_CACHE_BKA_UNIQUE; }; class JOIN_CACHE_BNL :public JOIN_CACHE { protected: /* Using BNL find matches from the next table for records from join buffer */ enum_nested_loop_state join_matching_records(bool skip_last); public: /* This constructor creates an unlinked BNL join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. */ JOIN_CACHE_BNL(JOIN *j, JOIN_TAB *tab) { join= j; join_tab= tab; prev_cache= next_cache= 0; } /* This constructor creates a linked BNL join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. The parameter 'prev' specifies the previous cache object to which this cache is linked. */ JOIN_CACHE_BNL(JOIN *j, JOIN_TAB *tab, JOIN_CACHE *prev) { join= j; join_tab= tab; prev_cache= prev; next_cache= 0; if (prev) prev->next_cache= this; } /* Initialize the BNL cache */ int init(); }; class JOIN_CACHE_BKA :public JOIN_CACHE { protected: /* Flag to to be passed to the MRR interface */ uint mrr_mode; /* MRR buffer assotiated with this join cache */ HANDLER_BUFFER mrr_buff; /* Shall initialize the MRR buffer */ virtual void init_mrr_buff() { mrr_buff.buffer= end_pos; mrr_buff.buffer_end= buff+buff_size; } /* The number of the cache fields that are used in building keys to access the table join_tab */ uint local_key_arg_fields; /* The total number of the fields in the previous caches that are used in building keys t access the table join_tab */ uint external_key_arg_fields; /* This flag indicates that the key values will be read directly from the join buffer. It will save us building key values in the key buffer. */ bool use_emb_key; /* The length of an embedded key value */ uint emb_key_length; /* Check the possibility to read the access keys directly from join buffer */ bool check_emb_key_usage(); /* Calculate the increment of the MM buffer for a record write */ uint aux_buffer_incr(); /* Using BKA find matches from the next table for records from join buffer */ enum_nested_loop_state join_matching_records(bool skip_last); /* Prepare to search for records that match records from the join buffer */ enum_nested_loop_state init_join_matching_records(RANGE_SEQ_IF *seq_funcs, uint ranges); /* Finish searching for records that match records from the join buffer */ enum_nested_loop_state end_join_matching_records(enum_nested_loop_state rc); public: /* This constructor creates an unlinked BKA join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. The MRR mode initially is set to 'flags'. */ JOIN_CACHE_BKA(JOIN *j, JOIN_TAB *tab, uint flags) { join= j; join_tab= tab; prev_cache= next_cache= 0; mrr_mode= flags; } /* This constructor creates a linked BKA join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. The parameter 'prev' specifies the cache object to which this cache is linked. The MRR mode initially is set to 'flags'. */ JOIN_CACHE_BKA(JOIN *j, JOIN_TAB *tab, uint flags, JOIN_CACHE* prev) { join= j; join_tab= tab; prev_cache= prev; next_cache= 0; if (prev) prev->next_cache= this; mrr_mode= flags; } /* Initialize the BKA cache */ int init(); bool is_key_access() { return TRUE; } /* Shall get the key built over the next record from the join buffer */ virtual uint get_next_key(uchar **key); /* Check if the record combination matches the index condition */ bool skip_index_tuple(range_seq_t rseq, char *range_info); }; /* The class JOIN_CACHE_BKA_UNIQUE supports the variant of the BKA join algorithm that submits only distinct keys to the MRR interface. The records in the join buffer of a cache of this class that have the same access key are linked into a chain attached to a key entry structure that either itself contains the key value, or, in the case when the keys are embedded, refers to its occurance in one of the records from the chain. To build the chains with the same keys a hash table is employed. It is placed at the very end of the join buffer. The array of hash entries is allocated first at the very bottom of the join buffer, then go key entries. A hash entry contains a header of the list of the key entries with the same hash value. Each key entry is a structure of the following type: struct st_join_cache_key_entry { union { uchar[] value; cache_ref *value_ref; // offset from the beginning of the buffer } hash_table_key; key_ref next_key; // offset backward from the beginning of hash table cache_ref *last_rec // offset from the beginning of the buffer } The references linking the records in a chain are always placed at the very beginning of the record info stored in the join buffer. The records are linked in a circular list. A new record is always added to the end of this list. When a key is passed to the MRR interface it can be passed either with an association link containing a reference to the header of the record chain attached to the corresponding key entry in the hash table, or without any association link. When the next record is returned by a call to the MRR function multi_range_read_next without any association (because if was not passed together with the key) then the key value is extracted from the returned record and searched for it in the hash table. If there is any records with such key the chain of them will be yielded as the result of this search. The following picture represents a typical layout for the info stored in the join buffer of a join cache object of the JOIN_CACHE_BKA_UNIQUE class. buff V +----------------------------------------------------------------------------+ | |[*]record_1_1| | | ^ | | | | +--------------------------------------------------+ | | | |[*]record_2_1| | | | | ^ | V | | | | +------------------+ |[*]record_1_2| | | | +--------------------+-+ | | |+--+ +---------------------+ | | +-------------+ | || | | V | | | |||[*]record_3_1| |[*]record_1_3| |[*]record_2_2| | | ||^ ^ ^ | | ||+----------+ | | | | ||^ | |<---------------------------+-------------------+ | |++ | | ... mrr | buffer ... ... | | | | | | | | | +-----+--------+ | +-----|-------+ | | V | | | V | | | ||key_3|[/]|[*]| | | |key_2|[/]|[*]| | | | +-+---|-----------------------+ | | | V | | | | | | |key_1|[*]|[*]| | | ... |[*]| ... |[*]| ... | | +----------------------------------------------------------------------------+ ^ ^ ^ | i-th entry j-th entry hash table i-th hash entry: circular record chain for key_1: record_1_1 record_1_2 record_1_3 (points to record_1_1) circular record chain for key_3: record_3_1 (points to itself) j-th hash entry: circular record chain for key_2: record_2_1 record_2_2 (points to record_2_1) */ class JOIN_CACHE_BKA_UNIQUE :public JOIN_CACHE_BKA { private: /* Size of the offset of a key entry in the hash table */ uint size_of_key_ofs; /* Length of a key value. It is assumed that all key values have the same length. */ uint key_length; /* Length of the key entry in the hash table. A key entry either contains the key value, or it contains a reference to the key value if use_emb_key flag is set for the cache. */ uint key_entry_length; /* The beginning of the hash table in the join buffer */ uchar *hash_table; /* Number of hash entries in the hash table */ uint hash_entries; /* Number of key entries in the hash table (number of distinct keys) */ uint key_entries; /* The position of the last key entry in the hash table */ uchar *last_key_entry; /* The position of the currently retrieved key entry in the hash table */ uchar *curr_key_entry; /* The offset of the record fields from the beginning of the record representation. The record representation starts with a reference to the next record in the key record chain followed by the length of the trailing record data followed by a reference to the record segment in the previous cache, if any, followed by the record fields. */ uint rec_fields_offset; /* The offset of the data fields from the beginning of the record fields */ uint data_fields_offset; uint get_hash_idx(uchar* key, uint key_len); void cleanup_hash_table(); protected: uint get_size_of_key_offset() { return size_of_key_ofs; } /* Get the position of the next_key_ptr field pointed to by a linking reference stored at the position key_ref_ptr. This reference is actually the offset backward from the beginning of hash table. */ uchar *get_next_key_ref(uchar *key_ref_ptr) { return hash_table-get_offset(size_of_key_ofs, key_ref_ptr); } /* Store the linking reference to the next_key_ptr field at the position key_ref_ptr. The position of the next_key_ptr field is pointed to by ref. The stored reference is actually the offset backward from the beginning of the hash table. */ void store_next_key_ref(uchar *key_ref_ptr, uchar *ref) { store_offset(size_of_key_ofs, key_ref_ptr, (ulong) (hash_table-ref)); } /* Check whether the reference to the next_key_ptr field at the position key_ref_ptr contains a nil value. */ bool is_null_key_ref(uchar *key_ref_ptr) { ulong nil= 0; return memcmp(key_ref_ptr, &nil, size_of_key_ofs ) == 0; } /* Set the reference to the next_key_ptr field at the position key_ref_ptr equal to nil. */ void store_null_key_ref(uchar *key_ref_ptr) { ulong nil= 0; store_offset(size_of_key_ofs, key_ref_ptr, nil); } uchar *get_next_rec_ref(uchar *ref_ptr) { return buff+get_offset(get_size_of_rec_offset(), ref_ptr); } void store_next_rec_ref(uchar *ref_ptr, uchar *ref) { store_offset(get_size_of_rec_offset(), ref_ptr, (ulong) (ref-buff)); } /* Get the position of the embedded key value for the current record pointed to by get_curr_rec(). */ uchar *get_curr_emb_key() { return get_curr_rec()+data_fields_offset; } /* Get the position of the embedded key value pointed to by a reference stored at ref_ptr. The stored reference is actually the offset from the beginning of the join buffer. */ uchar *get_emb_key(uchar *ref_ptr) { return buff+get_offset(get_size_of_rec_offset(), ref_ptr); } /* Store the reference to an embedded key at the position key_ref_ptr. The position of the embedded key is pointed to by ref. The stored reference is actually the offset from the beginning of the join buffer. */ void store_emb_key_ref(uchar *ref_ptr, uchar *ref) { store_offset(get_size_of_rec_offset(), ref_ptr, (ulong) (ref-buff)); } /* Calculate how much space in the buffer would not be occupied by records, key entries and additional memory for the MMR buffer. */ ulong rem_space() { return max(last_key_entry-end_pos-aux_buff_size,0); } /* Initialize the MRR buffer allocating some space within the join buffer. The entire space between the last record put into the join buffer and the last key entry added to the hash table is used for the MRR buffer. */ void init_mrr_buff() { mrr_buff.buffer= end_pos; mrr_buff.buffer_end= last_key_entry; } /* Skip record from JOIN_CACHE_BKA_UNIQUE buffer if its match flag is on */ bool skip_record_if_match(); /* Using BKA_UNIQUE find matches for records from join buffer */ enum_nested_loop_state join_matching_records(bool skip_last); /* Search for a key in the hash table of the join buffer */ bool key_search(uchar *key, uint key_len, uchar **key_ref_ptr); public: /* This constructor creates an unlinked BKA_UNIQUE join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. The MRR mode initially is set to 'flags'. */ JOIN_CACHE_BKA_UNIQUE(JOIN *j, JOIN_TAB *tab, uint flags) :JOIN_CACHE_BKA(j, tab, flags) {} /* This constructor creates a linked BKA_UNIQUE join cache. The cache is to be used to join table 'tab' to the result of joining the previous tables specified by the 'j' parameter. The parameter 'prev' specifies the cache object to which this cache is linked. The MRR mode initially is set to 'flags'. */ JOIN_CACHE_BKA_UNIQUE(JOIN *j, JOIN_TAB *tab, uint flags, JOIN_CACHE* prev) :JOIN_CACHE_BKA(j, tab, flags, prev) {} /* Initialize the BKA_UNIQUE cache */ int init(); /* Reset the JOIN_CACHE_BKA_UNIQUE buffer for reading/writing */ void reset(bool for_writing); /* Add a record into the JOIN_CACHE_BKA_UNIQUE buffer */ bool put_record(); /* Read the next record from the JOIN_CACHE_BKA_UNIQUE buffer */ bool get_record(); /* Shall check whether all records in a key chain have their match flags set on */ virtual bool check_all_match_flags_for_key(uchar *key_chain_ptr); uint get_next_key(uchar **key); /* Get the head of the record chain attached to the current key entry */ uchar *get_curr_key_chain() { return get_next_rec_ref(curr_key_entry+key_entry_length- get_size_of_rec_offset()); } /* Check if the record combination matches the index condition */ bool skip_index_tuple(range_seq_t rseq, char *range_info); }; enum_nested_loop_state sub_select_cache(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state sub_select(JOIN *join,JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state sub_select_sjm(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state end_send_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records); enum_nested_loop_state end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)), bool end_of_records); /** Information about a position of table within a join order. Used in join optimization. */ typedef struct st_position { /* The "fanout": number of output rows that will be produced (after pushed down selection condition is applied) per each row combination of previous tables. */ double records_read; /* Cost accessing the table in course of the entire complete join execution, i.e. cost of one access method use (e.g. 'range' or 'ref' scan ) times number the access method will be invoked. */ double read_time; JOIN_TAB *table; /* NULL - 'index' or 'range' or 'index_merge' or 'ALL' access is used. Other - [eq_]ref[_or_null] access is used. Pointer to {t.keypart1 = expr} */ KEYUSE *key; /* If ref-based access is used: bitmap of tables this table depends on */ table_map ref_depend_map; bool use_join_buffer; /* These form a stack of partial join order costs and output sizes */ COST_VECT prefix_cost; double prefix_record_count; /* Current optimization state: Semi-join strategy to be used for this and preceding join tables. Join optimizer sets this for the *last* join_tab in the duplicate-generating range. That is, in order to interpret this field, one needs to traverse join->[best_]positions array from right to left. When you see a join table with sj_strategy!= SJ_OPT_NONE, some other field (depending on the strategy) tells how many preceding positions this applies to. The values of covered_preceding_positions->sj_strategy must be ignored. */ uint sj_strategy; /* Valid only after fix_semijoin_strategies_for_picked_join_order() call: if sj_strategy!=SJ_OPT_NONE, this is the number of subsequent tables that are covered by the specified semi-join strategy */ uint n_sj_tables; /* LooseScan strategy members */ /* The first (i.e. driving) table we're doing loose scan for */ uint first_loosescan_table; /* Tables that need to be in the prefix before we can calculate the cost of using LooseScan strategy. */ table_map loosescan_need_tables; /* keyno - Planning to do LooseScan on this key. If keyuse is NULL then this is a full index scan, otherwise this is a ref+loosescan scan (and keyno matches the KEUSE's) MAX_KEY - Not doing a LooseScan */ uint loosescan_key; // final (one for strategy instance ) uint loosescan_parts; /* Number of keyparts to be kept distinct */ /* FirstMatch strategy */ /* Index of the first inner table that we intend to handle with this strategy */ uint first_firstmatch_table; /* Tables that were not in the join prefix when we've started considering FirstMatch strategy. */ table_map first_firstmatch_rtbl; /* Tables that need to be in the prefix before we can calculate the cost of using FirstMatch strategy. */ table_map firstmatch_need_tables; /* Duplicate Weedout strategy */ /* The first table that the strategy will need to handle */ uint first_dupsweedout_table; /* Tables that we will need to have in the prefix to do the weedout step (all inner and all outer that the involved semi-joins are correlated with) */ table_map dupsweedout_tables; /* SJ-Materialization-Scan strategy */ /* The last inner table (valid once we're after it) */ uint sjm_scan_last_inner; /* Tables that we need to have in the prefix to calculate the correct cost. Basically, we need all inner tables and outer tables mentioned in the semi-join's ON expression so we can correctly account for fanout. */ table_map sjm_scan_need_tables; } POSITION; typedef struct st_rollup { enum State { STATE_NONE, STATE_INITED, STATE_READY }; State state; Item_null_result **null_items; Item ***ref_pointer_arrays; List *fields; } ROLLUP; #define SJ_OPT_NONE 0 #define SJ_OPT_DUPS_WEEDOUT 1 #define SJ_OPT_LOOSE_SCAN 2 #define SJ_OPT_FIRST_MATCH 3 #define SJ_OPT_MATERIALIZE 4 #define SJ_OPT_MATERIALIZE_SCAN 5 inline bool sj_is_materialize_strategy(uint strategy) { return strategy >= SJ_OPT_MATERIALIZE; } class JOIN :public Sql_alloc { JOIN(const JOIN &rhs); /**< not implemented */ JOIN& operator=(const JOIN &rhs); /**< not implemented */ public: JOIN_TAB *join_tab,**best_ref; JOIN_TAB **map2table; ///< mapping between table indexes and JOIN_TABs JOIN_TAB *join_tab_save; ///< saved join_tab for subquery reexecution TABLE **all_tables; /** The table which has an index that allows to produce the requried ordering. A special value of 0x1 means that the ordering will be produced by passing 1st non-const table to filesort(). NULL means no such table exists. */ TABLE *sort_by_table; uint tables; /**< Number of tables in the join */ uint outer_tables; /**< Number of tables that are not inside semijoin */ uint const_tables; uint send_group_parts; bool group; /**< If query contains GROUP BY clause */ /** Indicates that grouping will be performed on the result set during query execution. This field belongs to query execution. @see make_group_fields, alloc_group_fields, JOIN::exec */ bool sort_and_group; bool first_record,full_join, no_field_update; bool do_send_rows; table_map const_table_map; /* Constant tables for which we have found a row (as opposed to those for which we didn't). */ table_map found_const_table_map; /* Tables removed by table elimination. Set to 0 before the elimination. */ table_map eliminated_tables; /* Bitmap of all inner tables from outer joins */ table_map outer_join; ha_rows send_records,found_records,examined_rows,row_limit, select_limit; /** Used to fetch no more than given amount of rows per one fetch operation of server side cursor. The value is checked in end_send and end_send_group in fashion, similar to offset_limit_cnt: - fetch_limit= HA_POS_ERROR if there is no cursor. - when we open a cursor, we set fetch_limit to 0, - on each fetch iteration we add num_rows to fetch to fetch_limit */ ha_rows fetch_limit; /* Finally picked QEP. This is result of join optimization */ POSITION best_positions[MAX_TABLES+1]; /******* Join optimization state members start *******/ /* pointer - we're doing optimization for a semi-join materialization nest. NULL - otherwise */ TABLE_LIST *emb_sjm_nest; /* Current join optimization state */ POSITION positions[MAX_TABLES+1]; /* Bitmap of nested joins embedding the position at the end of the current partial join (valid only during join optimizer run). */ nested_join_map cur_embedding_map; /* Bitmap of inner tables of semi-join nests that have a proper subset of their tables in the current join prefix. That is, of those semi-join nests that have their tables both in and outside of the join prefix. */ table_map cur_sj_inner_tables; /* Bitmap of semi-join inner tables that are in the join prefix and for which there's no provision for how to eliminate semi-join duplicates they produce. */ table_map cur_dups_producing_tables; /* We also maintain a stack of join optimization states in * join->positions[] */ /******* Join optimization state members end *******/ Next_select_func first_select; /* The cost of best complete join plan found so far during optimization, after optimization phase - cost of picked join order (not taking into account the changes made by test_if_skip_sort_order()). */ double best_read; List *fields; List group_fields, group_fields_cache; TABLE *tmp_table; /// used to store 2 possible tmp table of SELECT TABLE *exec_tmp_table1, *exec_tmp_table2; THD *thd; Item_sum **sum_funcs, ***sum_funcs_end; /** second copy of sumfuncs (for queries with 2 temporary tables */ Item_sum **sum_funcs2, ***sum_funcs_end2; Procedure *procedure; Item *having; Item *tmp_having; ///< To store having when processed temporary table Item *having_history; ///< Store having for explain ulonglong select_options; select_result *result; TMP_TABLE_PARAM tmp_table_param; MYSQL_LOCK *lock; /// unit structure (with global parameters) for this select SELECT_LEX_UNIT *unit; /// select that processed SELECT_LEX *select_lex; /** TRUE <=> optimizer must not mark any table as a constant table. This is needed for subqueries in form "a IN (SELECT .. UNION SELECT ..): when we optimize the select that reads the results of the union from a temporary table, we must not mark the temp. table as constant because the number of rows in it may vary from one subquery execution to another. */ bool no_const_tables; /* This flag is set if we call no_rows_in_result() as par of end_group(). This is used as a simple speed optimization to avoiding calling restore_no_rows_in_result() in ::reinit() */ bool no_rows_in_result_called; /** Copy of this JOIN to be used with temporary tables. tmp_join is used when the JOIN needs to be "reusable" (e.g. in a subquery that gets re-executed several times) and we know will use temporary tables for materialization. The materialization to a temporary table overwrites the JOIN structure to point to the temporary table after the materialization is done. This is where tmp_join is used : it's a copy of the JOIN before the materialization and is used in restoring before re-execution by overwriting the current JOIN structure with the saved copy. Because of this we should pay extra care of not freeing up helper structures that are referenced by the original contents of the JOIN. We can check for this by making sure the "current" join is not the temporary copy, e.g. !tmp_join || tmp_join != join We should free these sub-structures at JOIN::destroy() if the "current" join has a copy is not that copy. */ JOIN *tmp_join; ROLLUP rollup; ///< Used with rollup bool select_distinct; ///< Set if SELECT DISTINCT /** If we have the GROUP BY statement in the query, but the group_list was emptied by optimizer, this flag is TRUE. It happens when fields in the GROUP BY are from constant table */ bool group_optimized_away; /* simple_xxxxx is set if ORDER/GROUP BY doesn't include any references to other tables than the first non-constant table in the JOIN. It's also set if ORDER/GROUP BY is empty. Used for deciding for or against using a temporary table to compute GROUP/ORDER BY. */ bool simple_order, simple_group; /** Is set only in case if we have a GROUP BY clause and no ORDER BY after constant elimination of 'order'. */ bool no_order; /** Is set if we have a GROUP BY and we have ORDER BY on a constant. */ bool skip_sort_order; bool need_tmp, hidden_group_fields; DYNAMIC_ARRAY keyuse; Item::cond_result cond_value, having_value; List all_fields; ///< to store all fields that used in query ///Above list changed to use temporary table List tmp_all_fields1, tmp_all_fields2, tmp_all_fields3; ///Part, shared with list above, emulate following list List tmp_fields_list1, tmp_fields_list2, tmp_fields_list3; List &fields_list; ///< hold field list passed to mysql_select List procedure_fields_list; int error; ORDER *order, *group_list, *proc_param; //hold parameters of mysql_select COND *conds; // ---"--- Item *conds_history; // store WHERE for explain TABLE_LIST *tables_list; /// *join_list; ///< list of joined tables in reverse order COND_EQUAL *cond_equal; COND_EQUAL *having_equal; SQL_SELECT *select; /// sj_subselects; /* Temporary tables used to weed-out semi-join duplicates */ List sj_tmp_tables; /* SJM nests that are executed with SJ-Materialization strategy */ List sjm_info_list; /* storage for caching buffers allocated during query execution. These buffers allocations need to be cached as the thread memory pool is cleared only at the end of the execution of the whole query and not caching allocations that occur in repetition at execution time will result in excessive memory usage. Note: make_simple_join always creates an execution plan that accesses a single table, thus it is sufficient to have a one-element array for table_reexec. */ SORT_FIELD *sortorder; // make_unireg_sortorder() TABLE *table_reexec[1]; // make_simple_join() JOIN_TAB *join_tab_reexec; // make_simple_join() /* end of allocation caching storage */ JOIN(THD *thd_arg, List &fields_arg, ulonglong select_options_arg, select_result *result_arg) :fields_list(fields_arg), sj_subselects(thd_arg->mem_root, 4) { init(thd_arg, fields_arg, select_options_arg, result_arg); } void init(THD *thd_arg, List &fields_arg, ulonglong select_options_arg, select_result *result_arg) { join_tab= join_tab_save= 0; all_tables= 0; tables= 0; const_tables= 0; eliminated_tables= 0; join_list= 0; implicit_grouping= FALSE; sort_and_group= 0; first_record= 0; do_send_rows= 1; send_records= 0; found_records= 0; fetch_limit= HA_POS_ERROR; examined_rows= 0; exec_tmp_table1= 0; exec_tmp_table2= 0; sortorder= 0; table_reexec[0]= 0; join_tab_reexec= 0; thd= thd_arg; sum_funcs= sum_funcs2= 0; procedure= 0; having= tmp_having= having_history= 0; select_options= select_options_arg; result= result_arg; lock= thd_arg->lock; select_lex= 0; //for safety tmp_join= 0; select_distinct= test(select_options & SELECT_DISTINCT); no_order= 0; simple_order= 0; simple_group= 0; skip_sort_order= 0; need_tmp= 0; hidden_group_fields= 0; /*safety*/ error= 0; select= 0; return_tab= 0; ref_pointer_array= items0= items1= items2= items3= 0; ref_pointer_array_size= 0; zero_result_cause= 0; optimized= 0; cond_equal= 0; having_equal= 0; group_optimized_away= 0; no_rows_in_result_called= 0; all_fields= fields_arg; if (&fields_list != &fields_arg) /* Avoid valgrind-warning */ fields_list= fields_arg; bzero((char*) &keyuse,sizeof(keyuse)); tmp_table_param.init(); tmp_table_param.end_write_records= HA_POS_ERROR; rollup.state= ROLLUP::STATE_NONE; no_const_tables= FALSE; first_select= sub_select; } int prepare(Item ***rref_pointer_array, TABLE_LIST *tables, uint wind_num, COND *conds, uint og_num, ORDER *order, ORDER *group, Item *having, ORDER *proc_param, SELECT_LEX *select, SELECT_LEX_UNIT *unit); int optimize(); int reinit(); void exec(); int destroy(); void restore_tmp(); bool alloc_func_list(); bool flatten_subqueries(); bool setup_subquery_materialization(); bool make_sum_func_list(List &all_fields, List &send_fields, bool before_group_by, bool recompute= FALSE); inline void set_items_ref_array(Item **ptr) { memcpy((char*) ref_pointer_array, (char*) ptr, ref_pointer_array_size); current_ref_pointer_array= ptr; } inline void init_items_ref_array() { items0= ref_pointer_array + all_fields.elements; memcpy(items0, ref_pointer_array, ref_pointer_array_size); current_ref_pointer_array= items0; } bool rollup_init(); bool rollup_process_const_fields(); bool rollup_make_fields(List &all_fields, List &fields, Item_sum ***func); int rollup_send_data(uint idx); int rollup_write_data(uint idx, TABLE *table); /** Release memory and, if possible, the open tables held by this execution plan (and nested plans). It's used to release some tables before the end of execution in order to increase concurrency and reduce memory consumption. */ void join_free(); /** Cleanup this JOIN, possibly for reuse */ void cleanup(bool full); void clear(); bool save_join_tab(); bool init_save_join_tab(); bool send_row_on_empty_set() { return (do_send_rows && tmp_table_param.sum_func_count != 0 && !group_list && having_value != Item::COND_FALSE); } bool change_result(select_result *result); bool is_top_level_join() const { return (unit == &thd->lex->unit && (unit->fake_select_lex == 0 || select_lex == unit->fake_select_lex)); } void cache_const_exprs(); inline table_map all_tables_map() { return (table_map(1) << tables) - 1; } /* Return the table for which an index scan can be used to satisfy the sort order needed by the ORDER BY/(implicit) GROUP BY clause */ JOIN_TAB *get_sort_by_join_tab() { return (need_tmp || !sort_by_table || skip_sort_order || ((group || tmp_table_param.sum_func_count) && !group_list)) ? NULL : join_tab+const_tables; } bool setup_subquery_caches(); private: /** TRUE if the query contains an aggregate function but has no GROUP BY clause. */ bool implicit_grouping; bool make_simple_join(JOIN *join, TABLE *tmp_table); void cleanup_item_list(List &items) const; }; typedef struct st_select_check { uint const_ref,reg_ref; } SELECT_CHECK; extern const char *join_type_str[]; /* Extern functions in sql_select.cc */ bool store_val_in_field(Field *field, Item *val, enum_check_fields check_flag); void count_field_types(SELECT_LEX *select_lex, TMP_TABLE_PARAM *param, List &fields, bool reset_with_sum_func); bool setup_copy_fields(THD *thd, TMP_TABLE_PARAM *param, Item **ref_pointer_array, List &new_list1, List &new_list2, uint elements, List &fields); void copy_fields(TMP_TABLE_PARAM *param); bool copy_funcs(Item **func_ptr, const THD *thd); uint find_shortest_key(TABLE *table, const key_map *usable_keys); Field* create_tmp_field_from_field(THD *thd, Field* org_field, const char *name, TABLE *table, Item_field *item, uint convert_blob_length); bool is_indexed_agg_distinct(JOIN *join, List *out_args); /* functions from opt_sum.cc */ bool simple_pred(Item_func *func_item, Item **args, bool *inv_order); int opt_sum_query(THD* thd, TABLE_LIST *tables, List &all_fields, COND *conds); /* from sql_delete.cc, used by opt_range.cc */ extern "C" int refpos_order_cmp(void* arg, const void *a,const void *b); /** class to copying an field/item to a key struct */ class store_key :public Sql_alloc { public: bool null_key; /* TRUE <=> the value of the key has a null part */ enum store_key_result { STORE_KEY_OK, STORE_KEY_FATAL, STORE_KEY_CONV }; store_key(THD *thd, Field *field_arg, uchar *ptr, uchar *null, uint length) :null_key(0), null_ptr(null), err(0) { if (field_arg->type() == MYSQL_TYPE_BLOB || field_arg->type() == MYSQL_TYPE_GEOMETRY) { /* Key segments are always packed with a 2 byte length prefix. See mi_rkey for details. */ to_field= new Field_varstring(ptr, length, 2, null, 1, Field::NONE, field_arg->field_name, field_arg->table->s, field_arg->charset()); to_field->init(field_arg->table); } else to_field=field_arg->new_key_field(thd->mem_root, field_arg->table, ptr, null, 1); } virtual ~store_key() {} /** Not actually needed */ virtual const char *name() const=0; /** @brief sets ignore truncation warnings mode and calls the real copy method @details this function makes sure truncation warnings when preparing the key buffers don't end up as errors (because of an enclosing INSERT/UPDATE). */ enum store_key_result copy() { enum store_key_result result; THD *thd= to_field->table->in_use; enum_check_fields saved_count_cuted_fields= thd->count_cuted_fields; ulonglong sql_mode= thd->variables.sql_mode; thd->variables.sql_mode&= ~(MODE_NO_ZERO_IN_DATE | MODE_NO_ZERO_DATE); thd->count_cuted_fields= CHECK_FIELD_IGNORE; result= copy_inner(); thd->count_cuted_fields= saved_count_cuted_fields; thd->variables.sql_mode= sql_mode; return result; } protected: Field *to_field; // Store data here uchar *null_ptr; uchar err; virtual enum store_key_result copy_inner()=0; }; class store_key_field: public store_key { Copy_field copy_field; const char *field_name; public: store_key_field(THD *thd, Field *to_field_arg, uchar *ptr, uchar *null_ptr_arg, uint length, Field *from_field, const char *name_arg) :store_key(thd, to_field_arg,ptr, null_ptr_arg ? null_ptr_arg : from_field->maybe_null() ? &err : (uchar*) 0, length), field_name(name_arg) { if (to_field) { copy_field.set(to_field,from_field,0); } } const char *name() const { return field_name; } protected: enum store_key_result copy_inner() { TABLE *table= copy_field.to_field->table; my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); copy_field.do_copy(©_field); dbug_tmp_restore_column_map(table->write_set, old_map); null_key= to_field->is_null(); return err != 0 ? STORE_KEY_FATAL : STORE_KEY_OK; } }; class store_key_item :public store_key { protected: Item *item; /* Flag that forces usage of save_val() method which save value of the item instead of save_in_field() method which saves result. */ bool use_value; public: store_key_item(THD *thd, Field *to_field_arg, uchar *ptr, uchar *null_ptr_arg, uint length, Item *item_arg, bool val) :store_key(thd, to_field_arg, ptr, null_ptr_arg ? null_ptr_arg : item_arg->maybe_null ? &err : (uchar*) 0, length), item(item_arg), use_value(val) {} const char *name() const { return "func"; } protected: enum store_key_result copy_inner() { TABLE *table= to_field->table; my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); int res= FALSE; if (use_value) item->save_val(to_field); else res= item->save_in_field(to_field, 1); /* Item::save_in_field() may call Item::val_xxx(). And if this is a subquery we need to check for errors executing it and react accordingly */ if (!res && table->in_use->is_error()) res= 1; /* STORE_KEY_FATAL */ dbug_tmp_restore_column_map(table->write_set, old_map); null_key= to_field->is_null() || item->null_value; return ((err != 0 || res < 0 || res > 2) ? STORE_KEY_FATAL : (store_key_result) res); } }; class store_key_const_item :public store_key_item { bool inited; public: store_key_const_item(THD *thd, Field *to_field_arg, uchar *ptr, uchar *null_ptr_arg, uint length, Item *item_arg) :store_key_item(thd, to_field_arg,ptr, null_ptr_arg ? null_ptr_arg : item_arg->maybe_null ? &err : (uchar*) 0, length, item_arg, FALSE), inited(0) { } const char *name() const { return "const"; } protected: enum store_key_result copy_inner() { int res; if (!inited) { inited=1; if ((res= item->save_in_field(to_field, 1))) { if (!err) err= res < 0 ? 1 : res; /* 1=STORE_KEY_FATAL */ } /* Item::save_in_field() may call Item::val_xxx(). And if this is a subquery we need to check for errors executing it and react accordingly */ if (!err && to_field->table->in_use->is_error()) err= 1; /* STORE_KEY_FATAL */ } null_key= to_field->is_null() || item->null_value; return (err > 2 ? STORE_KEY_FATAL : (store_key_result) err); } }; bool cp_buffer_from_ref(THD *thd, TABLE *table, TABLE_REF *ref); bool error_if_full_join(JOIN *join); int report_error(TABLE *table, int error); int safe_index_read(JOIN_TAB *tab); COND *remove_eq_conds(THD *thd, COND *cond, Item::cond_result *cond_value); int get_quick_record(SQL_SELECT *select); SORT_FIELD * make_unireg_sortorder(ORDER *order, uint *length, SORT_FIELD *sortorder); int setup_order(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, List &fields, List &all_fields, ORDER *order); int setup_group(THD *thd, Item **ref_pointer_array, TABLE_LIST *tables, List &fields, List &all_fields, ORDER *order, bool *hidden_group_fields); bool fix_inner_refs(THD *thd, List &all_fields, SELECT_LEX *select, Item **ref_pointer_array); int join_read_key2(THD *thd, struct st_join_table *tab, TABLE *table, struct st_table_ref *table_ref); bool handle_select(THD *thd, LEX *lex, select_result *result, ulong setup_tables_done_option); bool mysql_select(THD *thd, Item ***rref_pointer_array, TABLE_LIST *tables, uint wild_num, List &list, COND *conds, uint og_num, ORDER *order, ORDER *group, Item *having, ORDER *proc_param, ulonglong select_type, select_result *result, SELECT_LEX_UNIT *unit, SELECT_LEX *select_lex); void free_underlaid_joins(THD *thd, SELECT_LEX *select); bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result); Field *create_tmp_field(THD *thd, TABLE *table,Item *item, Item::Type type, Item ***copy_func, Field **from_field, Field **def_field, bool group, bool modify_item, bool table_cant_handle_bit_fields, bool make_copy_field, uint convert_blob_length); /* General routine to change field->ptr of a NULL-terminated array of Field objects. Useful when needed to call val_int, val_str or similar and the field data is not in table->record[0] but in some other structure. set_key_field_ptr changes all fields of an index using a key_info object. All methods presume that there is at least one field to change. */ TABLE *create_virtual_tmp_table(THD *thd, List &field_list); int test_if_item_cache_changed(List &list); void calc_used_field_length(THD *thd, JOIN_TAB *join_tab); int join_init_read_record(JOIN_TAB *tab); void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key); inline Item * and_items(Item* cond, Item *item) { return (cond? (new Item_cond_and(cond, item)) : item); } bool choose_plan(JOIN *join,table_map join_tables); void get_partial_join_cost(JOIN *join, uint n_tables, double *read_time_arg, double *record_count_arg); void optimize_wo_join_buffering(JOIN *join, uint first_tab, uint last_tab, table_map last_remaining_tables, bool first_alt, uint no_jbuf_before, double *reopt_rec_count, double *reopt_cost, double *sj_inner_fanout); Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field, bool *inherited_fl); bool test_if_ref(COND *root_cond, Item_field *left_item,Item *right_item); inline bool optimizer_flag(THD *thd, uint flag) { return (thd->variables.optimizer_switch & flag); } uint get_index_for_order(ORDER *order, TABLE *table, SQL_SELECT *select, ha_rows limit, bool *need_sort, bool *reverse); ORDER *simple_remove_const(ORDER *order, COND *where); bool const_expression_in_where(COND *cond, Item *comp_item, Field *comp_field= NULL, Item **const_item= NULL); /* Table elimination entry point function */ void eliminate_tables(JOIN *join); /* Index Condition Pushdown entry point function */ void push_index_cond(JOIN_TAB *tab, uint keyno, bool other_tbls_ok); /**************************************************************************** Temporary table support for SQL Runtime ***************************************************************************/ #define STRING_TOTAL_LENGTH_TO_PACK_ROWS 128 #define AVG_STRING_LENGTH_TO_PACK_ROWS 64 #define RATIO_TO_PACK_ROWS 2 #define MIN_STRING_LENGTH_TO_PACK_ROWS 10 TABLE *create_tmp_table(THD *thd,TMP_TABLE_PARAM *param,List &fields, ORDER *group, bool distinct, bool save_sum_fields, ulonglong select_options, ha_rows rows_limit, const char* alias); void free_tmp_table(THD *thd, TABLE *entry); bool create_internal_tmp_table_from_heap(THD *thd, TABLE *table, ENGINE_COLUMNDEF *start_recinfo, ENGINE_COLUMNDEF **recinfo, int error, bool ignore_last_dupp_key_error); bool create_internal_tmp_table(TABLE *table, KEY *keyinfo, ENGINE_COLUMNDEF *start_recinfo, ENGINE_COLUMNDEF **recinfo, ulonglong options, my_bool big_tables); bool open_tmp_table(TABLE *table); void setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps); #endif /* SQL_SELECT_INCLUDED */