/* Copyright (c) 2000, 2011, Oracle and/or its affiliates. Copyright (c) 2008-2011 Monty Program Ab This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Some general useful functions */ #include "my_global.h" /* NO_EMBEDDED_ACCESS_CHECKS */ #include "sql_priv.h" #include "unireg.h" // REQUIRED: for other includes #include "table.h" #include "key.h" // find_ref_key #include "sql_table.h" // build_table_filename, // primary_key_name #include "sql_trigger.h" #include "sql_parse.h" // free_items #include "strfunc.h" // unhex_type2 #include "sql_partition.h" // mysql_unpack_partition, // fix_partition_func, partition_info #include "sql_acl.h" // *_ACL, acl_getroot_no_password #include "sql_base.h" // release_table_share #include "create_options.h" #include #include "my_md5.h" #include "my_bit.h" #include "sql_select.h" #include "sql_derived.h" #include "sql_statistics.h" #include "discover.h" #include "mdl.h" // MDL_wait_for_graph_visitor /* INFORMATION_SCHEMA name */ LEX_STRING INFORMATION_SCHEMA_NAME= {C_STRING_WITH_LEN("information_schema")}; /* PERFORMANCE_SCHEMA name */ LEX_STRING PERFORMANCE_SCHEMA_DB_NAME= {C_STRING_WITH_LEN("performance_schema")}; /* MYSQL_SCHEMA name */ LEX_STRING MYSQL_SCHEMA_NAME= {C_STRING_WITH_LEN("mysql")}; /* GENERAL_LOG name */ LEX_STRING GENERAL_LOG_NAME= {C_STRING_WITH_LEN("general_log")}; /* SLOW_LOG name */ LEX_STRING SLOW_LOG_NAME= {C_STRING_WITH_LEN("slow_log")}; /* Keyword added as a prefix when parsing the defining expression for a virtual column read from the column definition saved in the frm file */ LEX_STRING parse_vcol_keyword= { C_STRING_WITH_LEN("PARSE_VCOL_EXPR ") }; /* Functions defined in this file */ static void fix_type_pointers(const char ***array, TYPELIB *point_to_type, uint types, char **names); static uint find_field(Field **fields, uchar *record, uint start, uint length); inline bool is_system_table_name(const char *name, uint length); /************************************************************************** Object_creation_ctx implementation. **************************************************************************/ Object_creation_ctx *Object_creation_ctx::set_n_backup(THD *thd) { Object_creation_ctx *backup_ctx; DBUG_ENTER("Object_creation_ctx::set_n_backup"); backup_ctx= create_backup_ctx(thd); change_env(thd); DBUG_RETURN(backup_ctx); } void Object_creation_ctx::restore_env(THD *thd, Object_creation_ctx *backup_ctx) { if (!backup_ctx) return; backup_ctx->change_env(thd); delete backup_ctx; } /************************************************************************** Default_object_creation_ctx implementation. **************************************************************************/ Default_object_creation_ctx::Default_object_creation_ctx(THD *thd) : m_client_cs(thd->variables.character_set_client), m_connection_cl(thd->variables.collation_connection) { } Default_object_creation_ctx::Default_object_creation_ctx( CHARSET_INFO *client_cs, CHARSET_INFO *connection_cl) : m_client_cs(client_cs), m_connection_cl(connection_cl) { } Object_creation_ctx * Default_object_creation_ctx::create_backup_ctx(THD *thd) const { return new Default_object_creation_ctx(thd); } void Default_object_creation_ctx::change_env(THD *thd) const { thd->variables.character_set_client= m_client_cs; thd->variables.collation_connection= m_connection_cl; thd->update_charset(); } /************************************************************************** View_creation_ctx implementation. **************************************************************************/ View_creation_ctx *View_creation_ctx::create(THD *thd) { View_creation_ctx *ctx= new (thd->mem_root) View_creation_ctx(thd); return ctx; } /*************************************************************************/ View_creation_ctx * View_creation_ctx::create(THD *thd, TABLE_LIST *view) { View_creation_ctx *ctx= new (thd->mem_root) View_creation_ctx(thd); /* Throw a warning if there is NULL cs name. */ if (!view->view_client_cs_name.str || !view->view_connection_cl_name.str) { push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_VIEW_NO_CREATION_CTX, ER(ER_VIEW_NO_CREATION_CTX), (const char *) view->db, (const char *) view->table_name); ctx->m_client_cs= system_charset_info; ctx->m_connection_cl= system_charset_info; return ctx; } /* Resolve cs names. Throw a warning if there is unknown cs name. */ bool invalid_creation_ctx; invalid_creation_ctx= resolve_charset(view->view_client_cs_name.str, system_charset_info, &ctx->m_client_cs); invalid_creation_ctx= resolve_collation(view->view_connection_cl_name.str, system_charset_info, &ctx->m_connection_cl) || invalid_creation_ctx; if (invalid_creation_ctx) { sql_print_warning("View '%s'.'%s': there is unknown charset/collation " "names (client: '%s'; connection: '%s').", (const char *) view->db, (const char *) view->table_name, (const char *) view->view_client_cs_name.str, (const char *) view->view_connection_cl_name.str); push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_VIEW_INVALID_CREATION_CTX, ER(ER_VIEW_INVALID_CREATION_CTX), (const char *) view->db, (const char *) view->table_name); } return ctx; } /*************************************************************************/ /* Get column name from column hash */ static uchar *get_field_name(Field **buff, size_t *length, my_bool not_used __attribute__((unused))) { *length= (uint) strlen((*buff)->field_name); return (uchar*) (*buff)->field_name; } /* Returns pointer to '.frm' extension of the file name. SYNOPSIS fn_rext() name file name DESCRIPTION Checks file name part starting with the rightmost '.' character, and returns it if it is equal to '.frm'. TODO It is a good idea to get rid of this function modifying the code to garantee that the functions presently calling fn_rext() always get arguments in the same format: either with '.frm' or without '.frm'. RETURN VALUES Pointer to the '.frm' extension. If there is no extension, or extension is not '.frm', pointer at the end of file name. */ char *fn_rext(char *name) { char *res= strrchr(name, '.'); if (res && !strcmp(res, reg_ext)) return res; return name + strlen(name); } TABLE_CATEGORY get_table_category(const LEX_STRING *db, const LEX_STRING *name) { DBUG_ASSERT(db != NULL); DBUG_ASSERT(name != NULL); if (is_infoschema_db(db->str, db->length)) return TABLE_CATEGORY_INFORMATION; if ((db->length == PERFORMANCE_SCHEMA_DB_NAME.length) && (my_strcasecmp(system_charset_info, PERFORMANCE_SCHEMA_DB_NAME.str, db->str) == 0)) return TABLE_CATEGORY_PERFORMANCE; if ((db->length == MYSQL_SCHEMA_NAME.length) && (my_strcasecmp(system_charset_info, MYSQL_SCHEMA_NAME.str, db->str) == 0)) { if (is_system_table_name(name->str, name->length)) return TABLE_CATEGORY_SYSTEM; if ((name->length == GENERAL_LOG_NAME.length) && (my_strcasecmp(system_charset_info, GENERAL_LOG_NAME.str, name->str) == 0)) return TABLE_CATEGORY_LOG; if ((name->length == SLOW_LOG_NAME.length) && (my_strcasecmp(system_charset_info, SLOW_LOG_NAME.str, name->str) == 0)) return TABLE_CATEGORY_LOG; } return TABLE_CATEGORY_USER; } /* Allocate a setup TABLE_SHARE structure SYNOPSIS alloc_table_share() TABLE_LIST Take database and table name from there key Table cache key (db \0 table_name \0...) key_length Length of key RETURN 0 Error (out of memory) # Share */ TABLE_SHARE *alloc_table_share(const char *db, const char *table_name, char *key, uint key_length) { MEM_ROOT mem_root; TABLE_SHARE *share; char *key_buff, *path_buff; char path[FN_REFLEN]; uint path_length; DBUG_ENTER("alloc_table_share"); DBUG_PRINT("enter", ("table: '%s'.'%s'", db, table_name)); path_length= build_table_filename(path, sizeof(path) - 1, db, table_name, "", 0); init_sql_alloc(&mem_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(0)); if (multi_alloc_root(&mem_root, &share, sizeof(*share), &key_buff, key_length, &path_buff, path_length + 1, NULL)) { bzero((char*) share, sizeof(*share)); share->set_table_cache_key(key_buff, key, key_length); share->path.str= path_buff; share->path.length= path_length; strmov(share->path.str, path); share->normalized_path.str= share->path.str; share->normalized_path.length= path_length; share->table_category= get_table_category(& share->db, & share->table_name); share->set_refresh_version(); share->open_errno= ENOENT; /* Since alloc_table_share() can be called without any locking (for example, ha_create_table... functions), we do not assign a table map id here. Instead we assign a value that is not used elsewhere, and then assign a table map id inside open_table() under the protection of the LOCK_open mutex. */ share->table_map_id= ~0UL; share->cached_row_logging_check= -1; share->used_tables.empty(); share->free_tables.empty(); share->m_flush_tickets.empty(); init_sql_alloc(&share->stats_cb.mem_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(0)); memcpy((char*) &share->mem_root, (char*) &mem_root, sizeof(mem_root)); mysql_mutex_init(key_TABLE_SHARE_LOCK_ha_data, &share->LOCK_ha_data, MY_MUTEX_INIT_FAST); } DBUG_RETURN(share); } /* Initialize share for temporary tables SYNOPSIS init_tmp_table_share() thd thread handle share Share to fill key Table_cache_key, as generated from create_table_def_key. must start with db name. key_length Length of key table_name Table name path Path to file (possible in lower case) without .frm NOTES This is different from alloc_table_share() because temporary tables don't have to be shared between threads or put into the table def cache, so we can do some things notable simpler and faster If table is not put in thd->temporary_tables (happens only when one uses OPEN TEMPORARY) then one can specify 'db' as key and use key_length= 0 as neither table_cache_key or key_length will be used). */ void init_tmp_table_share(THD *thd, TABLE_SHARE *share, const char *key, uint key_length, const char *table_name, const char *path) { DBUG_ENTER("init_tmp_table_share"); DBUG_PRINT("enter", ("table: '%s'.'%s'", key, table_name)); bzero((char*) share, sizeof(*share)); /* This can't be MY_THREAD_SPECIFIC for slaves as they are freed during cleanup() from Relay_log_info::close_temporary_tables() */ init_sql_alloc(&share->mem_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(thd->slave_thread ? 0 : MY_THREAD_SPECIFIC)); share->table_category= TABLE_CATEGORY_TEMPORARY; share->tmp_table= INTERNAL_TMP_TABLE; share->db.str= (char*) key; share->db.length= strlen(key); share->table_cache_key.str= (char*) key; share->table_cache_key.length= key_length; share->table_name.str= (char*) table_name; share->table_name.length= strlen(table_name); share->path.str= (char*) path; share->normalized_path.str= (char*) path; share->path.length= share->normalized_path.length= strlen(path); share->frm_version= FRM_VER_TRUE_VARCHAR; share->cached_row_logging_check= -1; /* table_map_id is also used for MERGE tables to suppress repeated compatibility checks. */ share->table_map_id= (ulong) thd->query_id; share->used_tables.empty(); share->free_tables.empty(); share->m_flush_tickets.empty(); DBUG_VOID_RETURN; } /** Release resources (plugins) used by the share and free its memory. TABLE_SHARE is self-contained -- it's stored in its own MEM_ROOT. Free this MEM_ROOT. */ void TABLE_SHARE::destroy() { uint idx; KEY *info_it; if (tmp_table == NO_TMP_TABLE) mysql_mutex_lock(&LOCK_ha_data); free_root(&stats_cb.mem_root, MYF(0)); stats_cb.stats_can_be_read= FALSE; stats_cb.stats_is_read= FALSE; if (tmp_table == NO_TMP_TABLE) mysql_mutex_unlock(&LOCK_ha_data); /* The mutex is initialized only for shares that are part of the TDC */ if (tmp_table == NO_TMP_TABLE) mysql_mutex_destroy(&LOCK_ha_data); my_hash_free(&name_hash); plugin_unlock(NULL, db_plugin); db_plugin= NULL; /* Release fulltext parsers */ info_it= key_info; for (idx= keys; idx; idx--, info_it++) { if (info_it->flags & HA_USES_PARSER) { plugin_unlock(NULL, info_it->parser); info_it->flags= 0; } } if (ha_data_destroy) { ha_data_destroy(ha_data); ha_data_destroy= NULL; } #ifdef WITH_PARTITION_STORAGE_ENGINE if (ha_part_data_destroy) { ha_part_data_destroy(ha_part_data); ha_part_data_destroy= NULL; } #endif /* WITH_PARTITION_STORAGE_ENGINE */ /* Make a copy since the share is allocated in its own root, and free_root() updates its argument after freeing the memory. */ MEM_ROOT own_root= mem_root; free_root(&own_root, MYF(0)); } /* Free table share and memory used by it SYNOPSIS free_table_share() share Table share */ void free_table_share(TABLE_SHARE *share) { DBUG_ENTER("free_table_share"); DBUG_PRINT("enter", ("table: %s.%s", share->db.str, share->table_name.str)); DBUG_ASSERT(share->ref_count == 0); if (share->m_flush_tickets.is_empty()) { /* No threads are waiting for this share to be flushed (the share is not old, is for a temporary table, or just nobody happens to be waiting for it). Destroy it. */ share->destroy(); } else { Wait_for_flush_list::Iterator it(share->m_flush_tickets); Wait_for_flush *ticket; /* We're about to iterate over a list that is used concurrently. Make sure this never happens without a lock. */ mysql_mutex_assert_owner(&LOCK_open); while ((ticket= it++)) (void) ticket->get_ctx()->m_wait.set_status(MDL_wait::GRANTED); /* If there are threads waiting for this share to be flushed, the last one to receive the notification will destroy the share. At this point the share is removed from the table definition cache, so is OK to proceed here without waiting for this thread to do the work. */ } DBUG_VOID_RETURN; } /** Return TRUE if a table name matches one of the system table names. Currently these are: help_category, help_keyword, help_relation, help_topic, proc, event time_zone, time_zone_leap_second, time_zone_name, time_zone_transition, time_zone_transition_type This function trades accuracy for speed, so may return false positives. Presumably mysql.* database is for internal purposes only and should not contain user tables. */ inline bool is_system_table_name(const char *name, uint length) { CHARSET_INFO *ci= system_charset_info; return ( /* mysql.proc table */ (length == 4 && my_tolower(ci, name[0]) == 'p' && my_tolower(ci, name[1]) == 'r' && my_tolower(ci, name[2]) == 'o' && my_tolower(ci, name[3]) == 'c') || (length > 4 && ( /* one of mysql.help* tables */ (my_tolower(ci, name[0]) == 'h' && my_tolower(ci, name[1]) == 'e' && my_tolower(ci, name[2]) == 'l' && my_tolower(ci, name[3]) == 'p') || /* one of mysql.time_zone* tables */ (my_tolower(ci, name[0]) == 't' && my_tolower(ci, name[1]) == 'i' && my_tolower(ci, name[2]) == 'm' && my_tolower(ci, name[3]) == 'e') || /* one of mysql.*_stat tables */ (my_tolower(ci, name[length-5]) == 's' && my_tolower(ci, name[length-4]) == 't' && my_tolower(ci, name[length-3]) == 'a' && my_tolower(ci, name[length-2]) == 't' && my_tolower(ci, name[length-1]) == 's') || /* mysql.event table */ (my_tolower(ci, name[0]) == 'e' && my_tolower(ci, name[1]) == 'v' && my_tolower(ci, name[2]) == 'e' && my_tolower(ci, name[3]) == 'n' && my_tolower(ci, name[4]) == 't') ) ) ); } /* Read table definition from a binary / text based .frm file SYNOPSIS open_table_def() thd Thread handler share Fill this with table definition db_flags Bit mask of the following flags: OPEN_VIEW NOTES This function is called when the table definition is not cached in table_def_cache The data is returned in 'share', which is alloced by alloc_table_share().. The code assumes that share is initialized. */ enum open_frm_error open_table_def(THD *thd, TABLE_SHARE *share, uint flags) { bool error_given= false; File file; MY_STAT stats; uchar *buf; uchar head[FRM_HEADER_SIZE]; char path[FN_REFLEN]; DBUG_ENTER("open_table_def"); DBUG_PRINT("enter", ("table: '%s'.'%s' path: '%s'", share->db.str, share->table_name.str, share->normalized_path.str)); share->error= OPEN_FRM_OPEN_ERROR; strxmov(path, share->normalized_path.str, reg_ext, NullS); file= mysql_file_open(key_file_frm, path, O_RDONLY | O_SHARE, MYF(0)); if (file < 0) { if ((flags & GTS_TABLE) && (flags & GTS_FORCE_DISCOVERY)) { ha_discover_table(thd, share); error_given= true; } goto err_not_open; } if (mysql_file_read(file, head, sizeof(head), MYF(MY_NABP))) { share->error = my_errno == HA_ERR_FILE_TOO_SHORT ? OPEN_FRM_CORRUPTED : OPEN_FRM_READ_ERROR; goto err; } if (memcmp(head, STRING_WITH_LEN("TYPE=VIEW\n")) == 0) { share->is_view= 1; share->error= flags & GTS_VIEW ? OPEN_FRM_OK : OPEN_FRM_NOT_A_TABLE; goto err; } if (!is_binary_frm_header(head)) { /* No handling of text based files yet */ share->error = OPEN_FRM_CORRUPTED; goto err; } if (!(flags & GTS_TABLE)) { share->error = OPEN_FRM_NOT_A_VIEW; goto err; } if (my_fstat(file, &stats, MYF(0))) goto err; if (!(buf= (uchar*)my_malloc(stats.st_size, MYF(MY_THREAD_SPECIFIC|MY_WME)))) goto err; memcpy(buf, head, sizeof(head)); if (mysql_file_read(file, buf + sizeof(head), stats.st_size - sizeof(head), MYF(MY_NABP))) { share->error = my_errno == HA_ERR_FILE_TOO_SHORT ? OPEN_FRM_CORRUPTED : OPEN_FRM_READ_ERROR; my_free(buf); goto err; } mysql_file_close(file, MYF(MY_WME)); share->init_from_binary_frm_image(thd, false, buf, stats.st_size); error_given= true; // init_from_binary_frm_image has already called my_error() my_free(buf); if (!share->error) thd->status_var.opened_shares++; goto err_not_open; err: mysql_file_close(file, MYF(MY_WME)); err_not_open: if (share->error && !error_given) { share->open_errno= my_errno; open_table_error(share, share->error, share->open_errno); } DBUG_RETURN(share->error); } /** Read data from a binary .frm file image into a TABLE_SHARE @note frm bytes at the following offsets are unused in MariaDB 10.0: 8..9 (used to be the number of "form names") 28..29 (used to be key_info_length) They're still set, for compatibility reasons, but never read. 42..46 are unused since 5.0 (were for RAID support) Also, there're few unused bytes in forminfo. */ bool TABLE_SHARE::init_from_binary_frm_image(THD *thd, bool write, const uchar *frm_image, size_t frm_length) { TABLE_SHARE *share= this; uint new_frm_ver, field_pack_length, new_field_pack_flag; uint interval_count, interval_parts, read_length, int_length; uint db_create_options, keys, key_parts, n_length; uint com_length, null_bit_pos; uint extra_rec_buf_length; uint i,j; bool use_hash; char *keynames, *names, *comment_pos; const uchar *forminfo; const uchar *frm_image_end = frm_image + frm_length; uchar *record, *null_flags, *null_pos; const uchar *disk_buff, *strpos; ulong pos, record_offset; ulong *rec_per_key= NULL; ulong rec_buff_length; handler *handler_file= 0; KEY *keyinfo; KEY_PART_INFO *key_part= NULL; Field **field_ptr, *reg_field; const char **interval_array; enum legacy_db_type legacy_db_type; my_bitmap_map *bitmaps; bool null_bits_are_used; uint vcol_screen_length, UNINIT_VAR(options_len); char *vcol_screen_pos; const uchar *UNINIT_VAR(options); KEY first_keyinfo; uint len; KEY_PART_INFO *first_key_part= NULL; uint ext_key_parts= 0; uint first_key_parts= 0; keyinfo= &first_keyinfo; share->ext_key_parts= 0; MEM_ROOT **root_ptr, *old_root; DBUG_ENTER("open_binary_frm"); root_ptr= my_pthread_getspecific_ptr(MEM_ROOT**, THR_MALLOC); old_root= *root_ptr; *root_ptr= &share->mem_root; if (write && writefrm(share->normalized_path.str, share->db.str, share->table_name.str, MY_SYNC, frm_image, frm_length)) goto err; if (frm_length < FRM_HEADER_SIZE + FRM_FORMINFO_SIZE) goto err; new_field_pack_flag= frm_image[27]; new_frm_ver= (frm_image[2] - FRM_VER); field_pack_length= new_frm_ver < 2 ? 11 : 17; /* Position of the form in the form file. */ len = uint2korr(frm_image+4); if (frm_length < FRM_HEADER_SIZE + len || !(pos= uint4korr(frm_image + FRM_HEADER_SIZE + len))) goto err; forminfo= frm_image + pos; if (forminfo + FRM_FORMINFO_SIZE >= frm_image_end) goto err; share->frm_version= frm_image[2]; /* Check if .frm file created by MySQL 5.0. In this case we want to display CHAR fields as CHAR and not as VARCHAR. We do it this way as we want to keep the old frm version to enable MySQL 4.1 to read these files. */ if (share->frm_version == FRM_VER_TRUE_VARCHAR -1 && frm_image[33] == 5) share->frm_version= FRM_VER_TRUE_VARCHAR; #ifdef WITH_PARTITION_STORAGE_ENGINE if (frm_image[61] && !(share->default_part_db_type= ha_checktype(thd, (enum legacy_db_type) (uint) frm_image[61], 1, 0))) goto err; DBUG_PRINT("info", ("default_part_db_type = %u", frm_image[61])); #endif legacy_db_type= (enum legacy_db_type) (uint) frm_image[3]; DBUG_ASSERT(share->db_plugin == NULL); /* if the storage engine is dynamic, no point in resolving it by its dynamically allocated legacy_db_type. We will resolve it later by name. */ if (legacy_db_type > DB_TYPE_UNKNOWN && legacy_db_type < DB_TYPE_FIRST_DYNAMIC) share->db_plugin= ha_lock_engine(NULL, ha_checktype(thd, legacy_db_type, 0, 0)); share->db_create_options= db_create_options= uint2korr(frm_image+30); share->db_options_in_use= share->db_create_options; share->mysql_version= uint4korr(frm_image+51); share->null_field_first= 0; if (!frm_image[32]) // New frm file in 3.23 { share->avg_row_length= uint4korr(frm_image+34); share->transactional= (ha_choice) (frm_image[39] & 3); share->page_checksum= (ha_choice) ((frm_image[39] >> 2) & 3); share->row_type= (enum row_type) frm_image[40]; share->table_charset= get_charset((((uint) frm_image[41]) << 8) + (uint) frm_image[38],MYF(0)); share->null_field_first= 1; } if (!share->table_charset) { /* unknown charset in frm_image[38] or pre-3.23 frm */ if (use_mb(default_charset_info)) { /* Warn that we may be changing the size of character columns */ sql_print_warning("'%s' had no or invalid character set, " "and default character set is multi-byte, " "so character column sizes may have changed", share->path.str); } share->table_charset= default_charset_info; } share->db_record_offset= 1; if (db_create_options & HA_OPTION_LONG_BLOB_PTR) share->blob_ptr_size= portable_sizeof_char_ptr; share->max_rows= uint4korr(frm_image+18); share->min_rows= uint4korr(frm_image+22); /* Read keyinformation */ disk_buff= frm_image + uint2korr(frm_image+6); if (disk_buff + 6 >= frm_image_end) goto err; if (disk_buff[0] & 0x80) { share->keys= keys= (disk_buff[1] << 7) | (disk_buff[0] & 0x7f); share->key_parts= key_parts= uint2korr(disk_buff+2); } else { share->keys= keys= disk_buff[0]; share->key_parts= key_parts= disk_buff[1]; } share->keys_for_keyread.init(0); share->keys_in_use.init(keys); /* At this point we don't have enough information read from the frm file to get a proper handlerton for the interesting engine in order to get properties of this engine. */ /* Currently only InnoDB can use extended keys */ share->set_use_ext_keys_flag(legacy_db_type == DB_TYPE_INNODB); len= (uint) uint2korr(disk_buff+4); if (!keys) { if (!(keyinfo = (KEY*) alloc_root(&share->mem_root, len))) goto err; bzero((char*) keyinfo, len); key_part= reinterpret_cast (keyinfo+keys); } strpos= disk_buff+6; /* If share->use_ext_keys is set to TRUE we assume that any key can be extended by the components of the primary key whose definition is read first from the frm file. For each key only those fields of the assumed primary key are added that are not included in the proper key definition. If after all it turns out that there is no primary key the added components are removed from each key. When in the future we support others schemes of extending of secondary keys with components of the primary key we'll have to change the type of this flag for an enumeration type. */ for (i=0 ; i < keys ; i++, keyinfo++) { if (new_frm_ver >= 3) { if (strpos + 8 >= frm_image_end) goto err; keyinfo->flags= (uint) uint2korr(strpos) ^ HA_NOSAME; keyinfo->key_length= (uint) uint2korr(strpos+2); keyinfo->key_parts= (uint) strpos[4]; keyinfo->algorithm= (enum ha_key_alg) strpos[5]; keyinfo->block_size= uint2korr(strpos+6); strpos+=8; } else { if (strpos + 4 >= frm_image_end) goto err; keyinfo->flags= ((uint) strpos[0]) ^ HA_NOSAME; keyinfo->key_length= (uint) uint2korr(strpos+1); keyinfo->key_parts= (uint) strpos[3]; keyinfo->algorithm= HA_KEY_ALG_UNDEF; strpos+=4; } if (i == 0) { ext_key_parts= key_parts + (share->use_ext_keys ? first_keyinfo.key_parts*(keys-1) : 0); n_length=keys * sizeof(KEY) + ext_key_parts * sizeof(KEY_PART_INFO); if (!(keyinfo= (KEY*) alloc_root(&share->mem_root, n_length + len))) goto err; /* purecov: inspected */ bzero((char*) keyinfo,n_length); share->key_info= keyinfo; key_part= reinterpret_cast (keyinfo + keys); if (!(rec_per_key= (ulong*) alloc_root(&share->mem_root, sizeof(ulong) * ext_key_parts))) goto err; first_key_part= key_part; first_key_parts= first_keyinfo.key_parts; keyinfo->flags= first_keyinfo.flags; keyinfo->key_length= first_keyinfo.key_length; keyinfo->key_parts= first_keyinfo.key_parts; keyinfo->algorithm= first_keyinfo.algorithm; if (new_frm_ver >= 3) keyinfo->block_size= first_keyinfo.block_size; } keyinfo->key_part= key_part; keyinfo->rec_per_key= rec_per_key; for (j=keyinfo->key_parts ; j-- ; key_part++) { if (strpos + (new_frm_ver >= 1 ? 9 : 7) >= frm_image_end) goto err; *rec_per_key++=0; key_part->fieldnr= (uint16) (uint2korr(strpos) & FIELD_NR_MASK); key_part->offset= (uint) uint2korr(strpos+2)-1; key_part->key_type= (uint) uint2korr(strpos+5); // key_part->field= (Field*) 0; // Will be fixed later if (new_frm_ver >= 1) { key_part->key_part_flag= *(strpos+4); key_part->length= (uint) uint2korr(strpos+7); strpos+=9; } else { key_part->length= *(strpos+4); key_part->key_part_flag=0; if (key_part->length > 128) { key_part->length&=127; /* purecov: inspected */ key_part->key_part_flag=HA_REVERSE_SORT; /* purecov: inspected */ } strpos+=7; } key_part->store_length=key_part->length; } keyinfo->ext_key_parts= keyinfo->key_parts; keyinfo->ext_key_flags= keyinfo->flags; keyinfo->ext_key_part_map= 0; if (share->use_ext_keys && i) { keyinfo->ext_key_part_map= 0; for (j= 0; j < first_key_parts && keyinfo->ext_key_parts < MAX_REF_PARTS; j++) { uint key_parts= keyinfo->key_parts; KEY_PART_INFO* curr_key_part= keyinfo->key_part; KEY_PART_INFO* curr_key_part_end= curr_key_part+key_parts; for ( ; curr_key_part < curr_key_part_end; curr_key_part++) { if (curr_key_part->fieldnr == first_key_part[j].fieldnr) break; } if (curr_key_part == curr_key_part_end) { *key_part++= first_key_part[j]; *rec_per_key++= 0; keyinfo->ext_key_parts++; keyinfo->ext_key_part_map|= 1 << j; } } if (j == first_key_parts) keyinfo->ext_key_flags= keyinfo->flags | HA_EXT_NOSAME; } share->ext_key_parts+= keyinfo->ext_key_parts; } keynames=(char*) key_part; strpos+= strnmov(keynames, (char *) strpos, frm_image_end - strpos) - keynames; if (*strpos++) // key names are \0-terminated goto err; //reading index comments for (keyinfo= share->key_info, i=0; i < keys; i++, keyinfo++) { if (keyinfo->flags & HA_USES_COMMENT) { if (strpos + 2 >= frm_image_end) goto err; keyinfo->comment.length= uint2korr(strpos); strpos+= 2; if (strpos + keyinfo->comment.length >= frm_image_end) goto err; keyinfo->comment.str= strmake_root(&share->mem_root, (char*) strpos, keyinfo->comment.length); strpos+= keyinfo->comment.length; } DBUG_ASSERT(test(keyinfo->flags & HA_USES_COMMENT) == (keyinfo->comment.length > 0)); } share->reclength = uint2korr((frm_image+16)); share->stored_rec_length= share->reclength; if (frm_image[26] == 1) share->system= 1; /* one-record-database */ record_offset= (ulong) (uint2korr(frm_image+6)+ ((uint2korr(frm_image+14) == 0xffff ? uint4korr(frm_image+47) : uint2korr(frm_image+14)))); if (record_offset + share->reclength >= frm_length) goto err; if ((n_length= uint4korr(frm_image+55))) { /* Read extra data segment */ const uchar *next_chunk, *buff_end; DBUG_PRINT("info", ("extra segment size is %u bytes", n_length)); next_chunk= frm_image + record_offset + share->reclength; buff_end= next_chunk + n_length; if (buff_end >= frm_image_end) goto err; share->connect_string.length= uint2korr(next_chunk); if (!(share->connect_string.str= strmake_root(&share->mem_root, (char*) next_chunk + 2, share->connect_string. length))) { goto err; } next_chunk+= share->connect_string.length + 2; if (next_chunk + 2 < buff_end) { uint str_db_type_length= uint2korr(next_chunk); LEX_STRING name; name.str= (char*) next_chunk + 2; name.length= str_db_type_length; plugin_ref tmp_plugin= ha_resolve_by_name(thd, &name); if (tmp_plugin != NULL && !plugin_equals(tmp_plugin, share->db_plugin)) { if (legacy_db_type > DB_TYPE_UNKNOWN && legacy_db_type < DB_TYPE_FIRST_DYNAMIC && legacy_db_type != ha_legacy_type( plugin_data(tmp_plugin, handlerton *))) { /* bad file, legacy_db_type did not match the name */ goto err; } /* tmp_plugin is locked with a local lock. we unlock the old value of share->db_plugin before replacing it with a globally locked version of tmp_plugin */ plugin_unlock(NULL, share->db_plugin); share->db_plugin= my_plugin_lock(NULL, tmp_plugin); DBUG_PRINT("info", ("setting dbtype to '%.*s' (%d)", str_db_type_length, next_chunk + 2, ha_legacy_type(share->db_type()))); } #ifdef WITH_PARTITION_STORAGE_ENGINE else if (str_db_type_length == 9 && !strncmp((char *) next_chunk + 2, "partition", 9)) { /* Use partition handler tmp_plugin is locked with a local lock. we unlock the old value of share->db_plugin before replacing it with a globally locked version of tmp_plugin */ /* Check if the partitioning engine is ready */ if (!plugin_is_ready(&name, MYSQL_STORAGE_ENGINE_PLUGIN)) { my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--skip-partition"); goto err; } plugin_unlock(NULL, share->db_plugin); share->db_plugin= ha_lock_engine(NULL, partition_hton); DBUG_PRINT("info", ("setting dbtype to '%.*s' (%d)", str_db_type_length, next_chunk + 2, ha_legacy_type(share->db_type()))); } #endif else if (!tmp_plugin) { /* purecov: begin inspected */ name.str[name.length]=0; my_error(ER_UNKNOWN_STORAGE_ENGINE, MYF(0), name.str); goto err; /* purecov: end */ } next_chunk+= str_db_type_length + 2; } if (next_chunk + 5 < buff_end) { uint32 partition_info_str_len = uint4korr(next_chunk); #ifdef WITH_PARTITION_STORAGE_ENGINE if ((share->partition_info_buffer_size= share->partition_info_str_len= partition_info_str_len)) { if (!(share->partition_info_str= (char*) memdup_root(&share->mem_root, next_chunk + 4, partition_info_str_len + 1))) { goto err; } } #else if (partition_info_str_len) { DBUG_PRINT("info", ("WITH_PARTITION_STORAGE_ENGINE is not defined")); goto err; } #endif next_chunk+= 5 + partition_info_str_len; } if (share->mysql_version >= 50110 && next_chunk < buff_end) { /* New auto_partitioned indicator introduced in 5.1.11 */ #ifdef WITH_PARTITION_STORAGE_ENGINE share->auto_partitioned= *next_chunk; #endif next_chunk++; } keyinfo= share->key_info; for (i= 0; i < keys; i++, keyinfo++) { if (keyinfo->flags & HA_USES_PARSER) { LEX_STRING parser_name; if (next_chunk >= buff_end) { DBUG_PRINT("error", ("fulltext key uses parser that is not defined in .frm")); goto err; } parser_name.str= (char*) next_chunk; parser_name.length= strlen((char*) next_chunk); next_chunk+= parser_name.length + 1; keyinfo->parser= my_plugin_lock_by_name(NULL, &parser_name, MYSQL_FTPARSER_PLUGIN); if (! keyinfo->parser) { my_error(ER_PLUGIN_IS_NOT_LOADED, MYF(0), parser_name.str); goto err; } } } if (forminfo[46] == (uchar)255) { //reading long table comment if (next_chunk + 2 > buff_end) { DBUG_PRINT("error", ("long table comment is not defined in .frm")); goto err; } share->comment.length = uint2korr(next_chunk); if (! (share->comment.str= strmake_root(&share->mem_root, (char*)next_chunk + 2, share->comment.length))) { goto err; } next_chunk+= 2 + share->comment.length; } DBUG_ASSERT(next_chunk <= buff_end); if (share->db_create_options & HA_OPTION_TEXT_CREATE_OPTIONS) { /* store options position, but skip till the time we will know number of fields */ options_len= uint4korr(next_chunk); options= next_chunk + 4; next_chunk+= options_len + 4; } DBUG_ASSERT(next_chunk <= buff_end); } share->key_block_size= uint2korr(frm_image+62); extra_rec_buf_length= uint2korr(frm_image+59); rec_buff_length= ALIGN_SIZE(share->reclength + 1 + extra_rec_buf_length); share->rec_buff_length= rec_buff_length; if (!(record= (uchar *) alloc_root(&share->mem_root, rec_buff_length))) goto err; /* purecov: inspected */ share->default_values= record; memcpy(record, frm_image + record_offset, share->reclength); disk_buff= frm_image + pos + FRM_FORMINFO_SIZE; share->fields= uint2korr(forminfo+258); pos= uint2korr(forminfo+260); /* Length of all screens */ n_length= uint2korr(forminfo+268); interval_count= uint2korr(forminfo+270); interval_parts= uint2korr(forminfo+272); int_length= uint2korr(forminfo+274); share->null_fields= uint2korr(forminfo+282); com_length= uint2korr(forminfo+284); vcol_screen_length= uint2korr(forminfo+286); share->vfields= 0; share->default_fields= 0; share->stored_fields= share->fields; if (forminfo[46] != (uchar)255) { share->comment.length= (int) (forminfo[46]); share->comment.str= strmake_root(&share->mem_root, (char*) forminfo+47, share->comment.length); } DBUG_PRINT("info",("i_count: %d i_parts: %d index: %d n_length: %d int_length: %d com_length: %d vcol_screen_length: %d", interval_count,interval_parts, share->keys,n_length,int_length, com_length, vcol_screen_length)); if (!(field_ptr = (Field **) alloc_root(&share->mem_root, (uint) ((share->fields+1)*sizeof(Field*)+ interval_count*sizeof(TYPELIB)+ (share->fields+interval_parts+ keys+3)*sizeof(char *)+ (n_length+int_length+com_length+ vcol_screen_length))))) goto err; /* purecov: inspected */ share->field= field_ptr; read_length=(uint) (share->fields * field_pack_length + pos+ (uint) (n_length+int_length+com_length+ vcol_screen_length)); strpos= disk_buff+pos; share->intervals= (TYPELIB*) (field_ptr+share->fields+1); interval_array= (const char **) (share->intervals+interval_count); names= (char*) (interval_array+share->fields+interval_parts+keys+3); if (!interval_count) share->intervals= 0; // For better debugging memcpy((char*) names, strpos+(share->fields*field_pack_length), (uint) (n_length+int_length)); comment_pos= names+(n_length+int_length); memcpy(comment_pos, disk_buff+read_length-com_length-vcol_screen_length, com_length); vcol_screen_pos= names+(n_length+int_length+com_length); memcpy(vcol_screen_pos, disk_buff+read_length-vcol_screen_length, vcol_screen_length); fix_type_pointers(&interval_array, &share->fieldnames, 1, &names); if (share->fieldnames.count != share->fields) goto err; fix_type_pointers(&interval_array, share->intervals, interval_count, &names); { /* Set ENUM and SET lengths */ TYPELIB *interval; for (interval= share->intervals; interval < share->intervals + interval_count; interval++) { uint count= (uint) (interval->count + 1) * sizeof(uint); if (!(interval->type_lengths= (uint *) alloc_root(&share->mem_root, count))) goto err; for (count= 0; count < interval->count; count++) { char *val= (char*) interval->type_names[count]; interval->type_lengths[count]= strlen(val); } interval->type_lengths[count]= 0; } } if (keynames) fix_type_pointers(&interval_array, &share->keynames, 1, &keynames); /* Allocate handler */ if (!(handler_file= get_new_handler(share, thd->mem_root, share->db_type()))) goto err; record= share->default_values-1; /* Fieldstart = 1 */ null_bits_are_used= share->null_fields != 0; if (share->null_field_first) { null_flags= null_pos= record+1; null_bit_pos= (db_create_options & HA_OPTION_PACK_RECORD) ? 0 : 1; /* null_bytes below is only correct under the condition that there are no bit fields. Correct values is set below after the table struct is initialized */ share->null_bytes= (share->null_fields + null_bit_pos + 7) / 8; } #ifndef WE_WANT_TO_SUPPORT_VERY_OLD_FRM_FILES else { share->null_bytes= (share->null_fields+7)/8; null_flags= null_pos= record + 1 + share->reclength - share->null_bytes; null_bit_pos= 0; } #endif use_hash= share->fields >= MAX_FIELDS_BEFORE_HASH; if (use_hash) use_hash= !my_hash_init(&share->name_hash, system_charset_info, share->fields,0,0, (my_hash_get_key) get_field_name,0,0); for (i=0 ; i < share->fields; i++, strpos+=field_pack_length, field_ptr++) { uint pack_flag, interval_nr, unireg_type, recpos, field_length; uint vcol_info_length=0; uint vcol_expr_length=0; enum_field_types field_type; CHARSET_INFO *charset=NULL; Field::geometry_type geom_type= Field::GEOM_GEOMETRY; LEX_STRING comment; Virtual_column_info *vcol_info= 0; bool fld_stored_in_db= TRUE; if (new_frm_ver >= 3) { /* new frm file in 4.1 */ field_length= uint2korr(strpos+3); recpos= uint3korr(strpos+5); pack_flag= uint2korr(strpos+8); unireg_type= (uint) strpos[10]; interval_nr= (uint) strpos[12]; uint comment_length=uint2korr(strpos+15); field_type=(enum_field_types) (uint) strpos[13]; /* charset and geometry_type share the same byte in frm */ if (field_type == MYSQL_TYPE_GEOMETRY) { #ifdef HAVE_SPATIAL geom_type= (Field::geometry_type) strpos[14]; charset= &my_charset_bin; #else goto err; #endif } else { uint csid= strpos[14] + (((uint) strpos[11]) << 8); if (!csid) charset= &my_charset_bin; else if (!(charset= get_charset(csid, MYF(0)))) { const char *csname= get_charset_name((uint) csid); char tmp[10]; if (!csname || csname[0] =='?') { my_snprintf(tmp, sizeof(tmp), "#%d", csid); csname= tmp; } my_printf_error(ER_UNKNOWN_COLLATION, "Unknown collation '%s' in table '%-.64s' definition", MYF(0), csname, share->table_name.str); goto err; } } if ((uchar)field_type == (uchar)MYSQL_TYPE_VIRTUAL) { DBUG_ASSERT(interval_nr); // Expect non-null expression /* The interval_id byte in the .frm file stores the length of the expression statement for a virtual column. */ vcol_info_length= interval_nr; interval_nr= 0; } if (!comment_length) { comment.str= (char*) ""; comment.length=0; } else { comment.str= (char*) comment_pos; comment.length= comment_length; comment_pos+= comment_length; } if (vcol_info_length) { /* Get virtual column data stored in the .frm file as follows: byte 1 = 1 | 2 byte 2 = sql_type byte 3 = flags (as of now, 0 - no flags, 1 - field is physically stored) [byte 4] = optional interval_id for sql_type (only if byte 1 == 2) next byte ... = virtual column expression (text data) */ vcol_info= new Virtual_column_info(); bool opt_interval_id= (uint)vcol_screen_pos[0] == 2; field_type= (enum_field_types) (uchar) vcol_screen_pos[1]; if (opt_interval_id) interval_nr= (uint)vcol_screen_pos[3]; else if ((uint)vcol_screen_pos[0] != 1) goto err; fld_stored_in_db= (bool) (uint) vcol_screen_pos[2]; vcol_expr_length= vcol_info_length - (uint)(FRM_VCOL_HEADER_SIZE(opt_interval_id)); if (!(vcol_info->expr_str.str= (char *)memdup_root(&share->mem_root, vcol_screen_pos + (uint) FRM_VCOL_HEADER_SIZE(opt_interval_id), vcol_expr_length))) goto err; if (opt_interval_id) interval_nr= (uint) vcol_screen_pos[3]; vcol_info->expr_str.length= vcol_expr_length; vcol_screen_pos+= vcol_info_length; share->vfields++; } } else { field_length= (uint) strpos[3]; recpos= uint2korr(strpos+4), pack_flag= uint2korr(strpos+6); pack_flag&= ~FIELDFLAG_NO_DEFAULT; // Safety for old files unireg_type= (uint) strpos[8]; interval_nr= (uint) strpos[10]; /* old frm file */ field_type= (enum_field_types) f_packtype(pack_flag); if (f_is_binary(pack_flag)) { /* Try to choose the best 4.1 type: - for 4.0 "CHAR(N) BINARY" or "VARCHAR(N) BINARY" try to find a binary collation for character set. - for other types (e.g. BLOB) just use my_charset_bin. */ if (!f_is_blob(pack_flag)) { // 3.23 or 4.0 string if (!(charset= get_charset_by_csname(share->table_charset->csname, MY_CS_BINSORT, MYF(0)))) charset= &my_charset_bin; } else charset= &my_charset_bin; } else charset= share->table_charset; bzero((char*) &comment, sizeof(comment)); } if (interval_nr && charset->mbminlen > 1) { /* Unescape UCS2 intervals from HEX notation */ TYPELIB *interval= share->intervals + interval_nr - 1; unhex_type2(interval); } #ifndef TO_BE_DELETED_ON_PRODUCTION if (field_type == MYSQL_TYPE_NEWDECIMAL && !share->mysql_version) { /* Fix pack length of old decimal values from 5.0.3 -> 5.0.4 The difference is that in the old version we stored precision in the .frm table while we now store the display_length */ uint decimals= f_decimals(pack_flag); field_length= my_decimal_precision_to_length(field_length, decimals, f_is_dec(pack_flag) == 0); sql_print_error("Found incompatible DECIMAL field '%s' in %s; " "Please do \"ALTER TABLE '%s' FORCE\" to fix it!", share->fieldnames.type_names[i], share->table_name.str, share->table_name.str); push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_CRASHED_ON_USAGE, "Found incompatible DECIMAL field '%s' in %s; " "Please do \"ALTER TABLE '%s' FORCE\" to fix it!", share->fieldnames.type_names[i], share->table_name.str, share->table_name.str); share->crashed= 1; // Marker for CHECK TABLE } #endif *field_ptr= reg_field= make_field(share, record+recpos, (uint32) field_length, null_pos, null_bit_pos, pack_flag, field_type, charset, geom_type, (Field::utype) MTYP_TYPENR(unireg_type), (interval_nr ? share->intervals+interval_nr-1 : (TYPELIB*) 0), share->fieldnames.type_names[i]); if (!reg_field) // Not supported field type goto err; reg_field->field_index= i; reg_field->comment=comment; reg_field->vcol_info= vcol_info; reg_field->stored_in_db= fld_stored_in_db; if (field_type == MYSQL_TYPE_BIT && !f_bit_as_char(pack_flag)) { null_bits_are_used= 1; if ((null_bit_pos+= field_length & 7) > 7) { null_pos++; null_bit_pos-= 8; } } if (!(reg_field->flags & NOT_NULL_FLAG)) { if (!(null_bit_pos= (null_bit_pos + 1) & 7)) null_pos++; } if (f_no_default(pack_flag)) reg_field->flags|= NO_DEFAULT_VALUE_FLAG; if (reg_field->unireg_check == Field::NEXT_NUMBER) share->found_next_number_field= field_ptr; if (use_hash && my_hash_insert(&share->name_hash, (uchar*) field_ptr)) goto err; if (!reg_field->stored_in_db) { share->stored_fields--; if (share->stored_rec_length>=recpos) share->stored_rec_length= recpos-1; } if (reg_field->has_insert_default_function() || reg_field->has_update_default_function()) ++share->default_fields; } *field_ptr=0; // End marker /* Sanity checks: */ DBUG_ASSERT(share->fields>=share->stored_fields); DBUG_ASSERT(share->reclength>=share->stored_rec_length); /* Fix key->name and key_part->field */ if (key_parts) { uint add_first_key_parts= 0; uint primary_key=(uint) (find_type(primary_key_name, &share->keynames, FIND_TYPE_NO_PREFIX) - 1); longlong ha_option= handler_file->ha_table_flags(); keyinfo= share->key_info; if (share->use_ext_keys) { if (primary_key >= MAX_KEY) { add_first_key_parts= 0; share->set_use_ext_keys_flag(FALSE); } else { add_first_key_parts= first_key_parts; /* Do not add components of the primary key starting from the major component defined over the beginning of a field. */ for (i= 0; i < first_key_parts; i++) { uint fieldnr= keyinfo[0].key_part[i].fieldnr; if (share->field[fieldnr-1]->key_length() != keyinfo[0].key_part[i].length) { add_first_key_parts= i; break; } } } } for (uint key=0 ; key < share->keys ; key++,keyinfo++) { uint usable_parts= 0; keyinfo->name=(char*) share->keynames.type_names[key]; keyinfo->name_length= strlen(keyinfo->name); keyinfo->cache_name= (uchar*) alloc_root(&share->mem_root, share->table_cache_key.length+ keyinfo->name_length + 1); if (keyinfo->cache_name) // If not out of memory { uchar *pos= keyinfo->cache_name; memcpy(pos, share->table_cache_key.str, share->table_cache_key.length); memcpy(pos + share->table_cache_key.length, keyinfo->name, keyinfo->name_length+1); } if (ext_key_parts > share->key_parts && key) { KEY_PART_INFO *new_key_part= (keyinfo-1)->key_part + (keyinfo-1)->ext_key_parts; /* Do not extend the key that contains a component defined over the beginning of a field. */ for (i= 0; i < keyinfo->key_parts; i++) { uint fieldnr= keyinfo->key_part[i].fieldnr; if (share->field[fieldnr-1]->key_length() != keyinfo->key_part[i].length) { add_first_key_parts= 0; break; } } if (add_first_key_parts < keyinfo->ext_key_parts-keyinfo->key_parts) { share->ext_key_parts-= keyinfo->ext_key_parts; key_part_map ext_key_part_map= keyinfo->ext_key_part_map; keyinfo->ext_key_parts= keyinfo->key_parts; keyinfo->ext_key_flags= keyinfo->flags; keyinfo->ext_key_part_map= 0; for (i= 0; i < add_first_key_parts; i++) { if (ext_key_part_map & 1<ext_key_part_map|= 1<ext_key_parts++; } } share->ext_key_parts+= keyinfo->ext_key_parts; } if (new_key_part != keyinfo->key_part) { memmove(new_key_part, keyinfo->key_part, sizeof(KEY_PART_INFO) * keyinfo->ext_key_parts); keyinfo->key_part= new_key_part; } } /* Fix fulltext keys for old .frm files */ if (share->key_info[key].flags & HA_FULLTEXT) share->key_info[key].algorithm= HA_KEY_ALG_FULLTEXT; if (primary_key >= MAX_KEY && (keyinfo->flags & HA_NOSAME)) { /* If the UNIQUE key doesn't have NULL columns and is not a part key declare this as a primary key. */ primary_key=key; key_part= keyinfo->key_part; for (i=0 ; i < keyinfo->key_parts ;i++) { uint fieldnr= key_part[i].fieldnr; if (!fieldnr || share->field[fieldnr-1]->null_ptr || share->field[fieldnr-1]->key_length() != key_part[i].length) { primary_key=MAX_KEY; // Can't be used break; } } } key_part= keyinfo->key_part; uint key_parts= share->use_ext_keys ? keyinfo->ext_key_parts : keyinfo->key_parts; for (i=0; i < key_parts; key_part++, i++) { Field *field; if (new_field_pack_flag <= 1) key_part->fieldnr= (uint16) find_field(share->field, share->default_values, (uint) key_part->offset, (uint) key_part->length); if (!key_part->fieldnr) goto err; field= key_part->field= share->field[key_part->fieldnr-1]; key_part->type= field->key_type(); if (field->null_ptr) { key_part->null_offset=(uint) ((uchar*) field->null_ptr - share->default_values); key_part->null_bit= field->null_bit; key_part->store_length+=HA_KEY_NULL_LENGTH; keyinfo->flags|=HA_NULL_PART_KEY; keyinfo->key_length+= HA_KEY_NULL_LENGTH; } if (field->type() == MYSQL_TYPE_BLOB || field->real_type() == MYSQL_TYPE_VARCHAR || field->type() == MYSQL_TYPE_GEOMETRY) { if (field->type() == MYSQL_TYPE_BLOB || field->type() == MYSQL_TYPE_GEOMETRY) key_part->key_part_flag|= HA_BLOB_PART; else key_part->key_part_flag|= HA_VAR_LENGTH_PART; key_part->store_length+=HA_KEY_BLOB_LENGTH; keyinfo->key_length+= HA_KEY_BLOB_LENGTH; } if (field->type() == MYSQL_TYPE_BIT) key_part->key_part_flag|= HA_BIT_PART; if (i == 0 && key != primary_key) field->flags |= (((keyinfo->flags & HA_NOSAME) && (keyinfo->key_parts == 1)) ? UNIQUE_KEY_FLAG : MULTIPLE_KEY_FLAG); if (i == 0) field->key_start.set_bit(key); if (field->key_length() == key_part->length && !(field->flags & BLOB_FLAG)) { if (handler_file->index_flags(key, i, 0) & HA_KEYREAD_ONLY) { share->keys_for_keyread.set_bit(key); field->part_of_key.set_bit(key); if (i < keyinfo->key_parts) field->part_of_key_not_clustered.set_bit(key); } if (handler_file->index_flags(key, i, 1) & HA_READ_ORDER) field->part_of_sortkey.set_bit(key); } if (!(key_part->key_part_flag & HA_REVERSE_SORT) && usable_parts == i) usable_parts++; // For FILESORT field->flags|= PART_KEY_FLAG; if (key == primary_key) { field->flags|= PRI_KEY_FLAG; /* If this field is part of the primary key and all keys contains the primary key, then we can use any key to find this column */ if (ha_option & HA_PRIMARY_KEY_IN_READ_INDEX) { if (field->key_length() == key_part->length && !(field->flags & BLOB_FLAG)) field->part_of_key= share->keys_in_use; if (field->part_of_sortkey.is_set(key)) field->part_of_sortkey= share->keys_in_use; } } if (field->key_length() != key_part->length) { #ifndef TO_BE_DELETED_ON_PRODUCTION if (field->type() == MYSQL_TYPE_NEWDECIMAL) { /* Fix a fatal error in decimal key handling that causes crashes on Innodb. We fix it by reducing the key length so that InnoDB never gets a too big key when searching. This allows the end user to do an ALTER TABLE to fix the error. */ keyinfo->key_length-= (key_part->length - field->key_length()); key_part->store_length-= (uint16)(key_part->length - field->key_length()); key_part->length= (uint16)field->key_length(); sql_print_error("Found wrong key definition in %s; " "Please do \"ALTER TABLE '%s' FORCE \" to fix it!", share->table_name.str, share->table_name.str); push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_CRASHED_ON_USAGE, "Found wrong key definition in %s; " "Please do \"ALTER TABLE '%s' FORCE\" to fix " "it!", share->table_name.str, share->table_name.str); share->crashed= 1; // Marker for CHECK TABLE continue; } #endif key_part->key_part_flag|= HA_PART_KEY_SEG; } if (field->real_maybe_null()) key_part->key_part_flag|= HA_NULL_PART; /* Sometimes we can compare key parts for equality with memcmp. But not always. */ if (!(key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART | HA_BIT_PART)) && key_part->type != HA_KEYTYPE_FLOAT && key_part->type == HA_KEYTYPE_DOUBLE) key_part->key_part_flag|= HA_CAN_MEMCMP; } keyinfo->usable_key_parts= usable_parts; // Filesort set_if_bigger(share->max_key_length,keyinfo->key_length+ keyinfo->key_parts); share->total_key_length+= keyinfo->key_length; /* MERGE tables do not have unique indexes. But every key could be an unique index on the underlying MyISAM table. (Bug #10400) */ if ((keyinfo->flags & HA_NOSAME) || (ha_option & HA_ANY_INDEX_MAY_BE_UNIQUE)) set_if_bigger(share->max_unique_length,keyinfo->key_length); } if (primary_key < MAX_KEY && (share->keys_in_use.is_set(primary_key))) { share->primary_key= primary_key; /* If we are using an integer as the primary key then allow the user to refer to it as '_rowid' */ if (share->key_info[primary_key].key_parts == 1) { Field *field= share->key_info[primary_key].key_part[0].field; if (field && field->result_type() == INT_RESULT) { /* note that fieldnr here (and rowid_field_offset) starts from 1 */ share->rowid_field_offset= (share->key_info[primary_key].key_part[0]. fieldnr); } } } else share->primary_key = MAX_KEY; // we do not have a primary key } else share->primary_key= MAX_KEY; if (new_field_pack_flag <= 1) { /* Old file format with default as not null */ uint null_length= (share->null_fields+7)/8; bfill(share->default_values + (null_flags - (uchar*) record), null_length, 255); } if (share->db_create_options & HA_OPTION_TEXT_CREATE_OPTIONS) { DBUG_ASSERT(options_len); if (engine_table_options_frm_read(options, options_len, share)) goto err; } if (parse_engine_table_options(thd, handler_file->partition_ht(), share)) goto err; if (share->found_next_number_field) { reg_field= *share->found_next_number_field; if ((int) (share->next_number_index= (uint) find_ref_key(share->key_info, share->keys, share->default_values, reg_field, &share->next_number_key_offset, &share->next_number_keypart)) < 0) goto err; // Wrong field definition reg_field->flags |= AUTO_INCREMENT_FLAG; } if (share->blob_fields) { Field **ptr; uint k, *save; /* Store offsets to blob fields to find them fast */ if (!(share->blob_field= save= (uint*) alloc_root(&share->mem_root, (uint) (share->blob_fields* sizeof(uint))))) goto err; for (k=0, ptr= share->field ; *ptr ; ptr++, k++) { if ((*ptr)->flags & BLOB_FLAG) (*save++)= k; } } /* the correct null_bytes can now be set, since bitfields have been taken into account */ share->null_bytes= (null_pos - (uchar*) null_flags + (null_bit_pos + 7) / 8); share->last_null_bit_pos= null_bit_pos; share->null_bytes_for_compare= null_bits_are_used ? share->null_bytes : 0; share->can_cmp_whole_record= (share->blob_fields == 0 && share->varchar_fields == 0); share->column_bitmap_size= bitmap_buffer_size(share->fields); if (!(bitmaps= (my_bitmap_map*) alloc_root(&share->mem_root, share->column_bitmap_size))) goto err; bitmap_init(&share->all_set, bitmaps, share->fields, FALSE); bitmap_set_all(&share->all_set); delete handler_file; #ifndef DBUG_OFF if (use_hash) (void) my_hash_check(&share->name_hash); #endif share->error= OPEN_FRM_OK; *root_ptr= old_root; DBUG_RETURN(0); err: share->error= OPEN_FRM_CORRUPTED; share->open_errno= my_errno; delete handler_file; my_hash_free(&share->name_hash); if (share->ha_data_destroy) { share->ha_data_destroy(share->ha_data); share->ha_data_destroy= NULL; } #ifdef WITH_PARTITION_STORAGE_ENGINE if (share->ha_part_data_destroy) { share->ha_part_data_destroy(share->ha_part_data); share->ha_data_destroy= NULL; } #endif /* WITH_PARTITION_STORAGE_ENGINE */ if (!thd->is_error()) open_table_error(share, OPEN_FRM_CORRUPTED, share->open_errno); *root_ptr= old_root; DBUG_RETURN(1); } /* open_binary_frm */ /* @brief Clear GET_FIXED_FIELDS_FLAG in all fields of a table @param table The table for whose fields the flags are to be cleared @note This routine is used for error handling purposes. @return none */ static void clear_field_flag(TABLE *table) { Field **ptr; DBUG_ENTER("clear_field_flag"); for (ptr= table->field; *ptr; ptr++) (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG); DBUG_VOID_RETURN; } /* @brief Perform semantic analysis of the defining expression for a virtual column @param thd The thread object @param table The table containing the virtual column @param vcol_field The virtual field whose defining expression is to be analyzed @details The function performs semantic analysis of the defining expression for the virtual column vcol_field. The expression is used to compute the values of this column. @note The function exploits the fact that the fix_fields method sets the flag GET_FIXED_FIELDS_FLAG for all fields in the item tree. This flag must always be unset before returning from this function since it is used for other purposes as well. @retval TRUE An error occurred, something was wrong with the function @retval FALSE Otherwise */ bool fix_vcol_expr(THD *thd, TABLE *table, Field *vcol_field) { Virtual_column_info *vcol_info= vcol_field->vcol_info; Item* func_expr= vcol_info->expr_item; bool result= TRUE; TABLE_LIST tables; int error; const char *save_where; Field **ptr, *field; enum_mark_columns save_mark_used_columns= thd->mark_used_columns; DBUG_ASSERT(func_expr); DBUG_ENTER("fix_vcol_expr"); thd->mark_used_columns= MARK_COLUMNS_NONE; save_where= thd->where; thd->where= "virtual column function"; /* Fix fields referenced to by the virtual column function */ error= func_expr->fix_fields(thd, (Item**)0); if (unlikely(error)) { DBUG_PRINT("info", ("Field in virtual column expression does not belong to the table")); goto end; } thd->where= save_where; if (unlikely(func_expr->result_type() == ROW_RESULT)) { my_error(ER_ROW_EXPR_FOR_VCOL, MYF(0)); goto end; } #ifdef PARANOID /* Walk through the Item tree checking if all items are valid to be part of the virtual column */ error= func_expr->walk(&Item::check_vcol_func_processor, 0, NULL); if (error) { my_error(ER_VIRTUAL_COLUMN_FUNCTION_IS_NOT_ALLOWED, MYF(0), field_name); goto end; } #endif if (unlikely(func_expr->const_item())) { my_error(ER_CONST_EXPR_IN_VCOL, MYF(0)); goto end; } /* Ensure that this virtual column is not based on another virtual field. */ ptr= table->field; while ((field= *(ptr++))) { if ((field->flags & GET_FIXED_FIELDS_FLAG) && (field->vcol_info)) { my_error(ER_VCOL_BASED_ON_VCOL, MYF(0)); goto end; } } result= FALSE; end: /* Clear GET_FIXED_FIELDS_FLAG for the fields of the table */ clear_field_flag(table); table->get_fields_in_item_tree= FALSE; thd->mark_used_columns= save_mark_used_columns; table->map= 0; //Restore old value DBUG_RETURN(result); } /* @brief Unpack the definition of a virtual column from its linear representation @param thd The thread object @param mem_root The mem_root object where to allocated memory @param table The table containing the virtual column @param field The field for the virtual @param vcol_expr The string representation of the defining expression @param[out] error_reported The flag to inform the caller that no other error messages are to be generated @details The function takes string representation 'vcol_expr' of the defining expression for the virtual field 'field' of the table 'table' and parses it, building an item object for it. The pointer to this item is placed into in field->vcol_info.expr_item. After this the function performs semantic analysis of the item by calling the the function fix_vcol_expr. Since the defining expression is part of the table definition the item for it is created in table->memroot within the special arena TABLE::expr_arena. @note Before passing 'vcol_expr" to the parser the function embraces it in parenthesis and prepands it a special keyword. @retval FALSE If a success @retval TRUE Otherwise */ bool unpack_vcol_info_from_frm(THD *thd, MEM_ROOT *mem_root, TABLE *table, Field *field, LEX_STRING *vcol_expr, bool *error_reported) { bool rc; char *vcol_expr_str; int str_len; CHARSET_INFO *old_character_set_client; Query_arena *backup_stmt_arena_ptr; Query_arena backup_arena; Query_arena *vcol_arena= 0; Parser_state parser_state; LEX *old_lex= thd->lex; LEX lex; DBUG_ENTER("unpack_vcol_info_from_frm"); DBUG_ASSERT(vcol_expr); old_character_set_client= thd->variables.character_set_client; backup_stmt_arena_ptr= thd->stmt_arena; /* Step 1: Construct the input string for the parser. The string to be parsed has to be of the following format: "PARSE_VCOL_EXPR ()". */ if (!(vcol_expr_str= (char*) alloc_root(mem_root, vcol_expr->length + parse_vcol_keyword.length + 3))) { DBUG_RETURN(TRUE); } memcpy(vcol_expr_str, (char*) parse_vcol_keyword.str, parse_vcol_keyword.length); str_len= parse_vcol_keyword.length; memcpy(vcol_expr_str + str_len, "(", 1); str_len++; memcpy(vcol_expr_str + str_len, (char*) vcol_expr->str, vcol_expr->length); str_len+= vcol_expr->length; memcpy(vcol_expr_str + str_len, ")", 1); str_len++; memcpy(vcol_expr_str + str_len, "\0", 1); str_len++; if (parser_state.init(thd, vcol_expr_str, str_len)) goto err; /* Step 2: Setup thd for parsing. */ vcol_arena= table->expr_arena; if (!vcol_arena) { /* We need to use CONVENTIONAL_EXECUTION here to ensure that any new items created by fix_fields() are not reverted. */ Query_arena expr_arena(mem_root, Query_arena::STMT_CONVENTIONAL_EXECUTION); if (!(vcol_arena= (Query_arena *) alloc_root(mem_root, sizeof(Query_arena)))) goto err; *vcol_arena= expr_arena; table->expr_arena= vcol_arena; } thd->set_n_backup_active_arena(vcol_arena, &backup_arena); thd->stmt_arena= vcol_arena; if (init_lex_with_single_table(thd, table, &lex)) goto err; thd->lex->parse_vcol_expr= TRUE; /* Step 3: Use the parser to build an Item object from vcol_expr_str. */ if (parse_sql(thd, &parser_state, NULL)) { goto err; } /* From now on use vcol_info generated by the parser. */ field->vcol_info= thd->lex->vcol_info; /* Validate the Item tree. */ if (fix_vcol_expr(thd, table, field)) { *error_reported= TRUE; field->vcol_info= 0; goto err; } rc= FALSE; goto end; err: rc= TRUE; thd->free_items(); end: thd->stmt_arena= backup_stmt_arena_ptr; if (vcol_arena) thd->restore_active_arena(vcol_arena, &backup_arena); end_lex_with_single_table(thd, table, old_lex); thd->variables.character_set_client= old_character_set_client; DBUG_RETURN(rc); } /* Read data from a binary .frm file from MySQL 3.23 - 5.0 into TABLE_SHARE */ /* Open a table based on a TABLE_SHARE SYNOPSIS open_table_from_share() thd Thread handler share Table definition alias Alias for table db_stat open flags (for example HA_OPEN_KEYFILE| HA_OPEN_RNDFILE..) can be 0 (example in ha_example_table) prgflag READ_ALL etc.. ha_open_flags HA_OPEN_ABORT_IF_LOCKED etc.. outparam result table RETURN VALUES 0 ok 1 Error (see open_table_error) 2 Error (see open_table_error) 3 Wrong data in .frm file 4 Error (see open_table_error) 5 Error (see open_table_error: charset unavailable) 7 Table definition has changed in engine */ enum open_frm_error open_table_from_share(THD *thd, TABLE_SHARE *share, const char *alias, uint db_stat, uint prgflag, uint ha_open_flags, TABLE *outparam, bool is_create_table) { enum open_frm_error error; uint records, i, bitmap_size; bool error_reported= FALSE; uchar *record, *bitmaps; Field **field_ptr, **UNINIT_VAR(vfield_ptr), **UNINIT_VAR(dfield_ptr); uint8 save_context_analysis_only= thd->lex->context_analysis_only; DBUG_ENTER("open_table_from_share"); DBUG_PRINT("enter",("name: '%s.%s' form: 0x%lx", share->db.str, share->table_name.str, (long) outparam)); thd->lex->context_analysis_only&= ~CONTEXT_ANALYSIS_ONLY_VIEW; // not a view error= OPEN_FRM_ERROR_ALREADY_ISSUED; // for OOM errors below bzero((char*) outparam, sizeof(*outparam)); outparam->in_use= thd; outparam->s= share; outparam->db_stat= db_stat; outparam->write_row_record= NULL; init_sql_alloc(&outparam->mem_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(0)); if (outparam->alias.copy(alias, strlen(alias), table_alias_charset)) goto err; outparam->quick_keys.init(); outparam->covering_keys.init(); outparam->merge_keys.init(); outparam->keys_in_use_for_query.init(); /* Allocate handler */ outparam->file= 0; if (!(prgflag & OPEN_FRM_FILE_ONLY)) { if (!(outparam->file= get_new_handler(share, &outparam->mem_root, share->db_type()))) goto err; } else { DBUG_ASSERT(!db_stat); } outparam->reginfo.lock_type= TL_UNLOCK; outparam->current_lock= F_UNLCK; records=0; if ((db_stat & HA_OPEN_KEYFILE) || (prgflag & DELAYED_OPEN)) records=1; if (prgflag & (READ_ALL+EXTRA_RECORD)) records++; if (!(record= (uchar*) alloc_root(&outparam->mem_root, share->rec_buff_length * records))) goto err; /* purecov: inspected */ if (records == 0) { /* We are probably in hard repair, and the buffers should not be used */ outparam->record[0]= outparam->record[1]= share->default_values; } else { outparam->record[0]= record; if (records > 1) outparam->record[1]= record+ share->rec_buff_length; else outparam->record[1]= outparam->record[0]; // Safety } #ifdef HAVE_valgrind /* We need this because when we read var-length rows, we are not updating bytes after end of varchar */ if (records > 1) { memcpy(outparam->record[0], share->default_values, share->rec_buff_length); memcpy(outparam->record[1], share->default_values, share->null_bytes); if (records > 2) memcpy(outparam->record[1], share->default_values, share->rec_buff_length); } #endif if (!(field_ptr = (Field **) alloc_root(&outparam->mem_root, (uint) ((share->fields+1)* sizeof(Field*))))) goto err; /* purecov: inspected */ outparam->field= field_ptr; record= (uchar*) outparam->record[0]-1; /* Fieldstart = 1 */ if (share->null_field_first) outparam->null_flags= (uchar*) record+1; else outparam->null_flags= (uchar*) (record+ 1+ share->reclength - share->null_bytes); /* Setup copy of fields from share, but use the right alias and record */ for (i=0 ; i < share->fields; i++, field_ptr++) { if (!((*field_ptr)= share->field[i]->clone(&outparam->mem_root, outparam))) goto err; } (*field_ptr)= 0; // End marker if (share->found_next_number_field) outparam->found_next_number_field= outparam->field[(uint) (share->found_next_number_field - share->field)]; /* Fix key->name and key_part->field */ if (share->key_parts) { KEY *key_info, *key_info_end; KEY_PART_INFO *key_part; uint n_length; n_length= share->keys*sizeof(KEY) + share->ext_key_parts*sizeof(KEY_PART_INFO); if (!(key_info= (KEY*) alloc_root(&outparam->mem_root, n_length))) goto err; outparam->key_info= key_info; key_part= (reinterpret_cast(key_info+share->keys)); memcpy(key_info, share->key_info, sizeof(*key_info)*share->keys); memcpy(key_part, share->key_info[0].key_part, (sizeof(*key_part) * share->ext_key_parts)); for (key_info_end= key_info + share->keys ; key_info < key_info_end ; key_info++) { KEY_PART_INFO *key_part_end; key_info->table= outparam; key_info->key_part= key_part; key_part_end= key_part + (share->use_ext_keys ? key_info->ext_key_parts : key_info->key_parts) ; for ( ; key_part < key_part_end; key_part++) { Field *field= key_part->field= outparam->field[key_part->fieldnr - 1]; if (field->key_length() != key_part->length && !(field->flags & BLOB_FLAG)) { /* We are using only a prefix of the column as a key: Create a new field for the key part that matches the index */ field= key_part->field=field->new_field(&outparam->mem_root, outparam, 0); field->field_length= key_part->length; } } if (!share->use_ext_keys) key_part+= key_info->ext_key_parts - key_info->key_parts; } } /* Process virtual and default columns, if any. */ if (share->vfields) { if (!(vfield_ptr = (Field **) alloc_root(&outparam->mem_root, (uint) ((share->vfields+1)* sizeof(Field*))))) goto err; outparam->vfield= vfield_ptr; } if (share->default_fields) { if (!(dfield_ptr = (Field **) alloc_root(&outparam->mem_root, (uint) ((share->default_fields+1)* sizeof(Field*))))) goto err; outparam->default_field= dfield_ptr; } if (share->vfields || share->default_fields) { /* Reuse the same loop both for virtual and default fields. */ for (field_ptr= outparam->field; *field_ptr; field_ptr++) { if (share->vfields && (*field_ptr)->vcol_info) { if (unpack_vcol_info_from_frm(thd, &outparam->mem_root, outparam, *field_ptr, &(*field_ptr)->vcol_info->expr_str, &error_reported)) { error= OPEN_FRM_CORRUPTED; goto err; } *(vfield_ptr++)= *field_ptr; } if (share->default_fields && ((*field_ptr)->has_insert_default_function() || (*field_ptr)->has_update_default_function())) *(dfield_ptr++)= *field_ptr; } if (share->vfields) *vfield_ptr= 0; // End marker if (share->default_fields) *dfield_ptr= 0; // End marker } #ifdef WITH_PARTITION_STORAGE_ENGINE if (share->partition_info_str_len && outparam->file) { /* In this execution we must avoid calling thd->change_item_tree since we might release memory before statement is completed. We do this by changing to a new statement arena. As part of this arena we also set the memory root to be the memory root of the table since we call the parser and fix_fields which both can allocate memory for item objects. We keep the arena to ensure that we can release the free_list when closing the table object. SEE Bug #21658 */ Query_arena *backup_stmt_arena_ptr= thd->stmt_arena; Query_arena backup_arena; Query_arena part_func_arena(&outparam->mem_root, Query_arena::STMT_INITIALIZED); thd->set_n_backup_active_arena(&part_func_arena, &backup_arena); thd->stmt_arena= &part_func_arena; bool tmp; bool work_part_info_used; tmp= mysql_unpack_partition(thd, share->partition_info_str, share->partition_info_str_len, outparam, is_create_table, share->default_part_db_type, &work_part_info_used); if (tmp) { thd->stmt_arena= backup_stmt_arena_ptr; thd->restore_active_arena(&part_func_arena, &backup_arena); goto partititon_err; } outparam->part_info->is_auto_partitioned= share->auto_partitioned; DBUG_PRINT("info", ("autopartitioned: %u", share->auto_partitioned)); /* we should perform the fix_partition_func in either local or caller's arena depending on work_part_info_used value */ if (!work_part_info_used) tmp= fix_partition_func(thd, outparam, is_create_table); thd->stmt_arena= backup_stmt_arena_ptr; thd->restore_active_arena(&part_func_arena, &backup_arena); if (!tmp) { if (work_part_info_used) tmp= fix_partition_func(thd, outparam, is_create_table); } outparam->part_info->item_free_list= part_func_arena.free_list; partititon_err: if (tmp) { if (is_create_table) { /* During CREATE/ALTER TABLE it is ok to receive errors here. It is not ok if it happens during the opening of an frm file as part of a normal query. */ error_reported= TRUE; } goto err; } } #endif /* Check virtual columns against table's storage engine. */ if (share->vfields && (outparam->file && !(outparam->file->ha_table_flags() & HA_CAN_VIRTUAL_COLUMNS))) { my_error(ER_UNSUPPORTED_ENGINE_FOR_VIRTUAL_COLUMNS, MYF(0), plugin_name(share->db_plugin)->str); error_reported= TRUE; goto err; } /* Allocate bitmaps */ bitmap_size= share->column_bitmap_size; if (!(bitmaps= (uchar*) alloc_root(&outparam->mem_root, bitmap_size*5))) goto err; bitmap_init(&outparam->def_read_set, (my_bitmap_map*) bitmaps, share->fields, FALSE); bitmap_init(&outparam->def_write_set, (my_bitmap_map*) (bitmaps+bitmap_size), share->fields, FALSE); bitmap_init(&outparam->def_vcol_set, (my_bitmap_map*) (bitmaps+bitmap_size*2), share->fields, FALSE); bitmap_init(&outparam->tmp_set, (my_bitmap_map*) (bitmaps+bitmap_size*3), share->fields, FALSE); bitmap_init(&outparam->eq_join_set, (my_bitmap_map*) (bitmaps+bitmap_size*4), share->fields, FALSE); outparam->default_column_bitmaps(); /* The table struct is now initialized; Open the table */ if (db_stat) { if (db_stat & HA_OPEN_TEMPORARY) ha_open_flags|= HA_OPEN_TMP_TABLE; else if ((db_stat & HA_WAIT_IF_LOCKED) || (specialflag & SPECIAL_WAIT_IF_LOCKED)) ha_open_flags|= HA_OPEN_WAIT_IF_LOCKED; else if (db_stat & (HA_ABORT_IF_LOCKED | HA_GET_INFO)) ha_open_flags|= HA_OPEN_ABORT_IF_LOCKED; else ha_open_flags|= HA_OPEN_IGNORE_IF_LOCKED; int ha_err= outparam->file->ha_open(outparam, share->normalized_path.str, (db_stat & HA_READ_ONLY ? O_RDONLY : O_RDWR), ha_open_flags); if (ha_err) { share->open_errno= ha_err; /* Set a flag if the table is crashed and it can be auto. repaired */ share->crashed= (outparam->file->auto_repair(ha_err) && !(ha_open_flags & HA_OPEN_FOR_REPAIR)); outparam->file->print_error(ha_err, MYF(0)); error_reported= TRUE; if (ha_err == HA_ERR_TABLE_DEF_CHANGED) error= OPEN_FRM_DISCOVER; goto err; } } #if defined(HAVE_valgrind) && !defined(DBUG_OFF) bzero((char*) bitmaps, bitmap_size*3); #endif outparam->no_replicate= outparam->file && test(outparam->file->ha_table_flags() & HA_HAS_OWN_BINLOGGING); thd->status_var.opened_tables++; thd->lex->context_analysis_only= save_context_analysis_only; DBUG_RETURN (OPEN_FRM_OK); err: if (! error_reported) open_table_error(share, error, my_errno); delete outparam->file; #ifdef WITH_PARTITION_STORAGE_ENGINE if (outparam->part_info) free_items(outparam->part_info->item_free_list); #endif outparam->file= 0; // For easier error checking outparam->db_stat=0; thd->lex->context_analysis_only= save_context_analysis_only; free_root(&outparam->mem_root, MYF(0)); // Safe to call on bzero'd root outparam->alias.free(); DBUG_RETURN (error); } /* Free information allocated by openfrm SYNOPSIS closefrm() table TABLE object to free free_share Is 1 if we also want to free table_share */ int closefrm(register TABLE *table, bool free_share) { int error=0; DBUG_ENTER("closefrm"); DBUG_PRINT("enter", ("table: 0x%lx", (long) table)); if (table->db_stat) { if (table->s->deleting) table->file->extra(HA_EXTRA_PREPARE_FOR_DROP); error=table->file->ha_close(); } table->alias.free(); if (table->expr_arena) table->expr_arena->free_items(); if (table->field) { for (Field **ptr=table->field ; *ptr ; ptr++) { delete *ptr; } table->field= 0; } delete table->file; table->file= 0; /* For easier errorchecking */ #ifdef WITH_PARTITION_STORAGE_ENGINE if (table->part_info) { free_items(table->part_info->item_free_list); table->part_info->item_free_list= 0; table->part_info= 0; } #endif if (free_share) { if (table->s->tmp_table == NO_TMP_TABLE) release_table_share(table->s); else free_table_share(table->s); } free_root(&table->mem_root, MYF(0)); DBUG_RETURN(error); } /* Deallocate temporary blob storage */ void free_blobs(register TABLE *table) { uint *ptr, *end; for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ; ptr != end ; ptr++) { /* Reduced TABLE objects which are used by row-based replication for type conversion might have some fields missing. Skip freeing BLOB buffers for such missing fields. */ if (table->field[*ptr]) ((Field_blob*) table->field[*ptr])->free(); } } /** Reclaim temporary blob storage which is bigger than a threshold. @param table A handle to the TABLE object containing blob fields @param size The threshold value. */ void free_field_buffers_larger_than(TABLE *table, uint32 size) { uint *ptr, *end; for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ; ptr != end ; ptr++) { Field_blob *blob= (Field_blob*) table->field[*ptr]; if (blob->get_field_buffer_size() > size) blob->free(); } } /* error message when opening a form file */ void open_table_error(TABLE_SHARE *share, enum open_frm_error error, int db_errno) { char buff[FN_REFLEN]; const myf errortype= ME_ERROR+ME_WAITTANG; // Write fatals error to log DBUG_ENTER("open_table_error"); switch (error) { case OPEN_FRM_OPEN_ERROR: /* Test if file didn't exists. We have to also test for EINVAL as this may happen on windows when opening a file with a not legal file name */ if (db_errno == ENOENT || db_errno == EINVAL) my_error(ER_NO_SUCH_TABLE, MYF(0), share->db.str, share->table_name.str); else { strxmov(buff, share->normalized_path.str, reg_ext, NullS); my_error((db_errno == EMFILE) ? ER_CANT_OPEN_FILE : ER_FILE_NOT_FOUND, errortype, buff, db_errno); } break; case OPEN_FRM_OK: DBUG_ASSERT(0); // open_table_error() is never called for this one break; case OPEN_FRM_ERROR_ALREADY_ISSUED: break; case OPEN_FRM_NOT_A_VIEW: my_error(ER_WRONG_OBJECT, MYF(0), share->db.str, share->table_name.str, "VIEW"); break; case OPEN_FRM_NOT_A_TABLE: my_error(ER_WRONG_OBJECT, MYF(0), share->db.str, share->table_name.str, "TABLE"); break; case OPEN_FRM_DISCOVER: DBUG_ASSERT(0); // open_table_error() is never called for this one break; case OPEN_FRM_CORRUPTED: strxmov(buff, share->normalized_path.str, reg_ext, NullS); my_error(ER_NOT_FORM_FILE, errortype, buff); break; case OPEN_FRM_READ_ERROR: strxmov(buff, share->normalized_path.str, reg_ext, NullS); my_error(ER_ERROR_ON_READ, errortype, buff, db_errno); break; } DBUG_VOID_RETURN; } /* open_table_error */ /* ** fix a str_type to a array type ** typeparts separated with some char. differents types are separated ** with a '\0' */ static void fix_type_pointers(const char ***array, TYPELIB *point_to_type, uint types, char **names) { char *type_name, *ptr; char chr; ptr= *names; while (types--) { point_to_type->name=0; point_to_type->type_names= *array; if ((chr= *ptr)) /* Test if empty type */ { while ((type_name=strchr(ptr+1,chr)) != NullS) { *((*array)++) = ptr+1; *type_name= '\0'; /* End string */ ptr=type_name; } ptr+=2; /* Skip end mark and last 0 */ } else ptr++; point_to_type->count= (uint) (*array - point_to_type->type_names); point_to_type++; *((*array)++)= NullS; /* End of type */ } *names=ptr; /* Update end */ return; } /* fix_type_pointers */ TYPELIB *typelib(MEM_ROOT *mem_root, List &strings) { TYPELIB *result= (TYPELIB*) alloc_root(mem_root, sizeof(TYPELIB)); if (!result) return 0; result->count=strings.elements; result->name=""; uint nbytes= (sizeof(char*) + sizeof(uint)) * (result->count + 1); if (!(result->type_names= (const char**) alloc_root(mem_root, nbytes))) return 0; result->type_lengths= (uint*) (result->type_names + result->count + 1); List_iterator it(strings); String *tmp; for (uint i=0; (tmp=it++) ; i++) { result->type_names[i]= tmp->ptr(); result->type_lengths[i]= tmp->length(); } result->type_names[result->count]= 0; // End marker result->type_lengths[result->count]= 0; return result; } /* Search after a field with given start & length If an exact field isn't found, return longest field with starts at right position. NOTES This is needed because in some .frm fields 'fieldnr' was saved wrong RETURN 0 error # field number +1 */ static uint find_field(Field **fields, uchar *record, uint start, uint length) { Field **field; uint i, pos; pos= 0; for (field= fields, i=1 ; *field ; i++,field++) { if ((*field)->offset(record) == start) { if ((*field)->key_length() == length) return (i); if (!pos || fields[pos-1]->pack_length() < (*field)->pack_length()) pos= i; } } return (pos); } /* Store an SQL quoted string. SYNOPSIS append_unescaped() res result String pos string to be quoted length it's length NOTE This function works correctly with utf8 or single-byte charset strings. May fail with some multibyte charsets though. */ void append_unescaped(String *res, const char *pos, uint length) { const char *end= pos+length; res->append('\''); for (; pos != end ; pos++) { #if defined(USE_MB) && MYSQL_VERSION_ID < 40100 uint mblen; if (use_mb(default_charset_info) && (mblen= my_ismbchar(default_charset_info, pos, end))) { res->append(pos, mblen); pos+= mblen; continue; } #endif switch (*pos) { case 0: /* Must be escaped for 'mysql' */ res->append('\\'); res->append('0'); break; case '\n': /* Must be escaped for logs */ res->append('\\'); res->append('n'); break; case '\r': res->append('\\'); /* This gives better readability */ res->append('r'); break; case '\\': res->append('\\'); /* Because of the sql syntax */ res->append('\\'); break; case '\'': res->append('\''); /* Because of the sql syntax */ res->append('\''); break; default: res->append(*pos); break; } } res->append('\''); } void prepare_frm_header(THD *thd, uint reclength, uchar *fileinfo, HA_CREATE_INFO *create_info, uint keys, KEY *key_info) { ulong key_comment_total_bytes= 0; uint i; DBUG_ENTER("prepare_frm_header"); /* Fix this when we have new .frm files; Current limit is 4G rows (TODO) */ if (create_info->max_rows > UINT_MAX32) create_info->max_rows= UINT_MAX32; if (create_info->min_rows > UINT_MAX32) create_info->min_rows= UINT_MAX32; uint key_length, tmp_key_length, tmp, csid; bzero((char*) fileinfo, FRM_HEADER_SIZE); /* header */ fileinfo[0]=(uchar) 254; fileinfo[1]= 1; fileinfo[2]= FRM_VER+3+ test(create_info->varchar); fileinfo[3]= (uchar) ha_legacy_type( ha_checktype(thd,ha_legacy_type(create_info->db_type),0,0)); int2store(fileinfo+4,3); /* Keep in sync with pack_keys() in unireg.cc For each key: 8 bytes for the key header 9 bytes for each key-part (MAX_REF_PARTS) NAME_LEN bytes for the name 1 byte for the NAMES_SEP_CHAR (before the name) For all keys: 6 bytes for the header 1 byte for the NAMES_SEP_CHAR (after the last name) 9 extra bytes (padding for safety? alignment?) */ for (i= 0; i < keys; i++) { DBUG_ASSERT(test(key_info[i].flags & HA_USES_COMMENT) == (key_info[i].comment.length > 0)); if (key_info[i].flags & HA_USES_COMMENT) key_comment_total_bytes += 2 + key_info[i].comment.length; } key_length= keys * (8 + MAX_REF_PARTS * 9 + NAME_LEN + 1) + 16 + key_comment_total_bytes; int2store(fileinfo+8,1); tmp_key_length= (key_length < 0xffff) ? key_length : 0xffff; int2store(fileinfo+14,tmp_key_length); int2store(fileinfo+16,reclength); int4store(fileinfo+18,create_info->max_rows); int4store(fileinfo+22,create_info->min_rows); /* fileinfo[26] is set in mysql_create_frm() */ fileinfo[27]=2; // Use long pack-fields /* fileinfo[28 & 29] is set to key_info_length in mysql_create_frm() */ create_info->table_options|=HA_OPTION_LONG_BLOB_PTR; // Use portable blob pointers int2store(fileinfo+30,create_info->table_options); fileinfo[32]=0; // No filename anymore fileinfo[33]=5; // Mark for 5.0 frm file int4store(fileinfo+34,create_info->avg_row_length); csid= (create_info->default_table_charset ? create_info->default_table_charset->number : 0); fileinfo[38]= (uchar) csid; fileinfo[39]= (uchar) ((uint) create_info->transactional | ((uint) create_info->page_checksum << 2)); fileinfo[40]= (uchar) create_info->row_type; /* Next few bytes where for RAID support */ fileinfo[41]= (uchar) (csid >> 8); fileinfo[42]= 0; fileinfo[43]= 0; fileinfo[44]= 0; fileinfo[45]= 0; fileinfo[46]= 0; int4store(fileinfo+47, key_length); tmp= MYSQL_VERSION_ID; // Store to avoid warning from int4store int4store(fileinfo+51, tmp); int4store(fileinfo+55, create_info->extra_size); /* 59-60 is reserved for extra_rec_buf_length, 61 for default_part_db_type */ int2store(fileinfo+62, create_info->key_block_size); DBUG_VOID_RETURN; } /* prepare_fileinfo */ void update_create_info_from_table(HA_CREATE_INFO *create_info, TABLE *table) { TABLE_SHARE *share= table->s; DBUG_ENTER("update_create_info_from_table"); create_info->max_rows= share->max_rows; create_info->min_rows= share->min_rows; create_info->table_options= share->db_create_options; create_info->avg_row_length= share->avg_row_length; create_info->row_type= share->row_type; create_info->default_table_charset= share->table_charset; create_info->table_charset= 0; create_info->comment= share->comment; create_info->transactional= share->transactional; create_info->page_checksum= share->page_checksum; create_info->option_list= share->option_list; DBUG_VOID_RETURN; } int rename_file_ext(const char * from,const char * to,const char * ext) { char from_b[FN_REFLEN],to_b[FN_REFLEN]; (void) strxmov(from_b,from,ext,NullS); (void) strxmov(to_b,to,ext,NullS); return (mysql_file_rename(key_file_frm, from_b, to_b, MYF(0))); } /* Allocate string field in MEM_ROOT and return it as String SYNOPSIS get_field() mem MEM_ROOT for allocating field Field for retrieving of string res result String RETURN VALUES 1 string is empty 0 all ok */ bool get_field(MEM_ROOT *mem, Field *field, String *res) { char buff[MAX_FIELD_WIDTH], *to; String str(buff,sizeof(buff),&my_charset_bin); uint length; field->val_str(&str); if (!(length= str.length())) { res->length(0); return 1; } if (!(to= strmake_root(mem, str.ptr(), length))) length= 0; // Safety fix res->set(to, length, ((Field_str*)field)->charset()); return 0; } /* Allocate string field in MEM_ROOT and return it as NULL-terminated string SYNOPSIS get_field() mem MEM_ROOT for allocating field Field for retrieving of string RETURN VALUES NullS string is empty # pointer to NULL-terminated string value of field */ char *get_field(MEM_ROOT *mem, Field *field) { char buff[MAX_FIELD_WIDTH], *to; String str(buff,sizeof(buff),&my_charset_bin); uint length; field->val_str(&str); length= str.length(); if (!length || !(to= (char*) alloc_root(mem,length+1))) return NullS; memcpy(to,str.ptr(),(uint) length); to[length]=0; return to; } /* DESCRIPTION given a buffer with a key value, and a map of keyparts that are present in this value, returns the length of the value */ uint calculate_key_len(TABLE *table, uint key, const uchar *buf, key_part_map keypart_map) { /* works only with key prefixes */ DBUG_ASSERT(((keypart_map + 1) & keypart_map) == 0); KEY *key_info= table->s->key_info+key; KEY_PART_INFO *key_part= key_info->key_part; KEY_PART_INFO *end_key_part= key_part + table->actual_n_key_parts(key_info); uint length= 0; while (key_part < end_key_part && keypart_map) { length+= key_part->store_length; keypart_map >>= 1; key_part++; } return length; } /* Check if database name is valid SYNPOSIS check_db_name() org_name Name of database and length NOTES If lower_case_table_names is set then database is converted to lower case RETURN 0 ok 1 error */ bool check_db_name(LEX_STRING *org_name) { char *name= org_name->str; uint name_length= org_name->length; bool check_for_path_chars; if ((check_for_path_chars= check_mysql50_prefix(name))) { name+= MYSQL50_TABLE_NAME_PREFIX_LENGTH; name_length-= MYSQL50_TABLE_NAME_PREFIX_LENGTH; } if (!name_length || name_length > NAME_LEN) return 1; if (lower_case_table_names && name != any_db) my_casedn_str(files_charset_info, name); if (db_name_is_in_ignore_db_dirs_list(name)) return 1; return check_table_name(name, name_length, check_for_path_chars); } /* Allow anything as a table name, as long as it doesn't contain an ' ' at the end returns 1 on error */ bool check_table_name(const char *name, size_t length, bool check_for_path_chars) { // name length in symbols size_t name_length= 0; const char *end= name+length; if (!check_for_path_chars && (check_for_path_chars= check_mysql50_prefix(name))) { name+= MYSQL50_TABLE_NAME_PREFIX_LENGTH; length-= MYSQL50_TABLE_NAME_PREFIX_LENGTH; } if (!length || length > NAME_LEN) return 1; #if defined(USE_MB) && defined(USE_MB_IDENT) bool last_char_is_space= FALSE; #else if (name[length-1]==' ') return 1; #endif while (name != end) { #if defined(USE_MB) && defined(USE_MB_IDENT) last_char_is_space= my_isspace(system_charset_info, *name); if (use_mb(system_charset_info)) { int len=my_ismbchar(system_charset_info, name, end); if (len) { name+= len; name_length++; continue; } } #endif if (check_for_path_chars && (*name == '/' || *name == '\\' || *name == '~' || *name == FN_EXTCHAR)) return 1; name++; name_length++; } #if defined(USE_MB) && defined(USE_MB_IDENT) return last_char_is_space || (name_length > NAME_CHAR_LEN); #else return FALSE; #endif } bool check_column_name(const char *name) { // name length in symbols size_t name_length= 0; bool last_char_is_space= TRUE; while (*name) { #if defined(USE_MB) && defined(USE_MB_IDENT) last_char_is_space= my_isspace(system_charset_info, *name); if (use_mb(system_charset_info)) { int len=my_ismbchar(system_charset_info, name, name+system_charset_info->mbmaxlen); if (len) { name += len; name_length++; continue; } } #else last_char_is_space= *name==' '; #endif if (*name == NAMES_SEP_CHAR) return 1; name++; name_length++; } /* Error if empty or too long column name */ return last_char_is_space || (name_length > NAME_CHAR_LEN); } /** Checks whether a table is intact. Should be done *just* after the table has been opened. @param[in] table The table to check @param[in] table_f_count Expected number of columns in the table @param[in] table_def Expected structure of the table (column name and type) @retval FALSE OK @retval TRUE There was an error. An error message is output to the error log. We do not push an error message into the error stack because this function is currently only called at start up, and such errors never reach the user. */ bool Table_check_intact::check(TABLE *table, const TABLE_FIELD_DEF *table_def) { uint i; my_bool error= FALSE; const TABLE_FIELD_TYPE *field_def= table_def->field; DBUG_ENTER("table_check_intact"); DBUG_PRINT("info",("table: %s expected_count: %d", table->alias.c_ptr(), table_def->count)); /* Whether the table definition has already been validated. */ if (table->s->table_field_def_cache == table_def) DBUG_RETURN(FALSE); if (table->s->fields != table_def->count) { DBUG_PRINT("info", ("Column count has changed, checking the definition")); /* previous MySQL version */ if (MYSQL_VERSION_ID > table->s->mysql_version) { report_error(ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE, ER(ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE), table->alias.c_ptr(), table_def->count, table->s->fields, static_cast(table->s->mysql_version), MYSQL_VERSION_ID); DBUG_RETURN(TRUE); } else if (MYSQL_VERSION_ID == table->s->mysql_version) { report_error(ER_COL_COUNT_DOESNT_MATCH_CORRUPTED, ER(ER_COL_COUNT_DOESNT_MATCH_CORRUPTED), table->alias.c_ptr(), table_def->count, table->s->fields); DBUG_RETURN(TRUE); } /* Something has definitely changed, but we're running an older version of MySQL with new system tables. Let's check column definitions. If a column was added at the end of the table, then we don't care much since such change is backward compatible. */ } char buffer[1024]; for (i=0 ; i < table_def->count; i++, field_def++) { String sql_type(buffer, sizeof(buffer), system_charset_info); sql_type.length(0); /* Allocate min 256 characters at once */ sql_type.extra_allocation(256); if (i < table->s->fields) { Field *field= table->field[i]; if (strncmp(field->field_name, field_def->name.str, field_def->name.length)) { /* Name changes are not fatal, we use ordinal numbers to access columns. Still this can be a sign of a tampered table, output an error to the error log. */ report_error(0, "Incorrect definition of table %s.%s: " "expected column '%s' at position %d, found '%s'.", table->s->db.str, table->alias.c_ptr(), field_def->name.str, i, field->field_name); } field->sql_type(sql_type); /* Generally, if column types don't match, then something is wrong. However, we only compare column definitions up to the length of the original definition, since we consider the following definitions compatible: 1. DATETIME and DATETIM 2. INT(11) and INT(11 3. SET('one', 'two') and SET('one', 'two', 'more') For SETs or ENUMs, if the same prefix is there it's OK to add more elements - they will get higher ordinal numbers and the new table definition is backward compatible with the original one. */ if (strncmp(sql_type.c_ptr_safe(), field_def->type.str, field_def->type.length - 1)) { report_error(0, "Incorrect definition of table %s.%s: " "expected column '%s' at position %d to have type " "%s, found type %s.", table->s->db.str, table->alias.c_ptr(), field_def->name.str, i, field_def->type.str, sql_type.c_ptr_safe()); error= TRUE; } else if (field_def->cset.str && !field->has_charset()) { report_error(0, "Incorrect definition of table %s.%s: " "expected the type of column '%s' at position %d " "to have character set '%s' but the type has no " "character set.", table->s->db.str, table->alias.c_ptr(), field_def->name.str, i, field_def->cset.str); error= TRUE; } else if (field_def->cset.str && strcmp(field->charset()->csname, field_def->cset.str)) { report_error(0, "Incorrect definition of table %s.%s: " "expected the type of column '%s' at position %d " "to have character set '%s' but found " "character set '%s'.", table->s->db.str, table->alias.c_ptr(), field_def->name.str, i, field_def->cset.str, field->charset()->csname); error= TRUE; } } else { report_error(0, "Incorrect definition of table %s.%s: " "expected column '%s' at position %d to have type %s " " but the column is not found.", table->s->db.str, table->alias.c_ptr(), field_def->name.str, i, field_def->type.str); error= TRUE; } } if (! error) table->s->table_field_def_cache= table_def; DBUG_RETURN(error); } /** Traverse portion of wait-for graph which is reachable through edge represented by this flush ticket in search for deadlocks. @retval TRUE A deadlock is found. A victim is remembered by the visitor. @retval FALSE Success, no deadlocks. */ bool Wait_for_flush::accept_visitor(MDL_wait_for_graph_visitor *gvisitor) { return m_share->visit_subgraph(this, gvisitor); } uint Wait_for_flush::get_deadlock_weight() const { return m_deadlock_weight; } /** Traverse portion of wait-for graph which is reachable through this table share in search for deadlocks. @param waiting_ticket Ticket representing wait for this share. @param dvisitor Deadlock detection visitor. @retval TRUE A deadlock is found. A victim is remembered by the visitor. @retval FALSE No deadlocks, it's OK to begin wait. */ bool TABLE_SHARE::visit_subgraph(Wait_for_flush *wait_for_flush, MDL_wait_for_graph_visitor *gvisitor) { TABLE *table; MDL_context *src_ctx= wait_for_flush->get_ctx(); bool result= TRUE; /* To protect used_tables list from being concurrently modified while we are iterating through it we acquire LOCK_open. This does not introduce deadlocks in the deadlock detector because we won't try to acquire LOCK_open while holding a write-lock on MDL_lock::m_rwlock. */ if (gvisitor->m_lock_open_count++ == 0) mysql_mutex_lock(&LOCK_open); I_P_List_iterator tables_it(used_tables); /* In case of multiple searches running in parallel, avoid going over the same loop twice and shortcut the search. Do it after taking the lock to weed out unnecessary races. */ if (src_ctx->m_wait.get_status() != MDL_wait::EMPTY) { result= FALSE; goto end; } if (gvisitor->enter_node(src_ctx)) goto end; while ((table= tables_it++)) { if (gvisitor->inspect_edge(&table->in_use->mdl_context)) { goto end_leave_node; } } tables_it.rewind(); while ((table= tables_it++)) { if (table->in_use->mdl_context.visit_subgraph(gvisitor)) { goto end_leave_node; } } result= FALSE; end_leave_node: gvisitor->leave_node(src_ctx); end: if (gvisitor->m_lock_open_count-- == 1) mysql_mutex_unlock(&LOCK_open); return result; } /** Wait until the subject share is removed from the table definition cache and make sure it's destroyed. @param mdl_context MDL context for thread which is going to wait. @param abstime Timeout for waiting as absolute time value. @param deadlock_weight Weight of this wait for deadlock detector. @pre LOCK_open is write locked, the share is used (has non-zero reference count), is marked for flush and this connection does not reference the share. LOCK_open will be unlocked temporarily during execution. @retval FALSE - Success. @retval TRUE - Error (OOM, deadlock, timeout, etc...). */ bool TABLE_SHARE::wait_for_old_version(THD *thd, struct timespec *abstime, uint deadlock_weight) { MDL_context *mdl_context= &thd->mdl_context; Wait_for_flush ticket(mdl_context, this, deadlock_weight); MDL_wait::enum_wait_status wait_status; mysql_mutex_assert_owner(&LOCK_open); /* We should enter this method only when share's version is not up to date and the share is referenced. Otherwise our thread will never be woken up from wait. */ DBUG_ASSERT(version != refresh_version && ref_count != 0); m_flush_tickets.push_front(&ticket); mdl_context->m_wait.reset_status(); mysql_mutex_unlock(&LOCK_open); mdl_context->will_wait_for(&ticket); mdl_context->find_deadlock(); wait_status= mdl_context->m_wait.timed_wait(thd, abstime, TRUE, "Waiting for table flush"); mdl_context->done_waiting_for(); mysql_mutex_lock(&LOCK_open); m_flush_tickets.remove(&ticket); if (m_flush_tickets.is_empty() && ref_count == 0) { /* If our thread was the last one using the share, we must destroy it here. */ destroy(); } /* In cases when our wait was aborted by KILL statement, a deadlock or a timeout, the share might still be referenced, so we don't delete it. Note, that we can't determine this condition by checking wait_status alone, since, for example, a timeout can happen after all references to the table share were released, but before the share is removed from the cache and we receive the notification. This is why we first destroy the share, and then look at wait_status. */ switch (wait_status) { case MDL_wait::GRANTED: return FALSE; case MDL_wait::VICTIM: my_error(ER_LOCK_DEADLOCK, MYF(0)); return TRUE; case MDL_wait::TIMEOUT: my_error(ER_LOCK_WAIT_TIMEOUT, MYF(0)); return TRUE; case MDL_wait::KILLED: return TRUE; default: DBUG_ASSERT(0); return TRUE; } } /** Initialize TABLE instance (newly created, or coming either from table cache or THD::temporary_tables list) and prepare it for further use during statement execution. Set the 'alias' attribute from the specified TABLE_LIST element. Remember the TABLE_LIST element in the TABLE::pos_in_table_list member. @param thd Thread context. @param tl TABLE_LIST element. */ void TABLE::init(THD *thd, TABLE_LIST *tl) { DBUG_ASSERT(s->ref_count > 0 || s->tmp_table != NO_TMP_TABLE); if (thd->lex->need_correct_ident()) alias_name_used= my_strcasecmp(table_alias_charset, s->table_name.str, tl->alias); /* Fix alias if table name changes. */ if (strcmp(alias.c_ptr(), tl->alias)) alias.copy(tl->alias, strlen(tl->alias), alias.charset()); tablenr= thd->current_tablenr++; used_fields= 0; const_table= 0; null_row= 0; maybe_null= 0; force_index= 0; force_index_order= 0; force_index_group= 0; status= STATUS_NO_RECORD; insert_values= 0; fulltext_searched= 0; file->ha_start_of_new_statement(); reginfo.impossible_range= 0; created= TRUE; /* Catch wrong handling of the auto_increment_field_not_null. */ DBUG_ASSERT(!auto_increment_field_not_null); auto_increment_field_not_null= FALSE; pos_in_table_list= tl; clear_column_bitmaps(); DBUG_ASSERT(key_read == 0); /* mark the record[0] uninitialized */ TRASH(record[0], s->reclength); /* Initialize the null marker bits, to ensure that if we are doing a read of only selected columns (like in keyread), all null markers are initialized. */ memset(record[0], 255, s->null_bytes); memset(record[1], 255, s->null_bytes); /* Tables may be reused in a sub statement. */ DBUG_ASSERT(!file->extra(HA_EXTRA_IS_ATTACHED_CHILDREN)); } /* Create Item_field for each column in the table. SYNPOSIS TABLE::fill_item_list() item_list a pointer to an empty list used to store items DESCRIPTION Create Item_field object for each column in the table and initialize it with the corresponding Field. New items are created in the current THD memory root. RETURN VALUE 0 success 1 out of memory */ bool TABLE::fill_item_list(List *item_list) const { /* All Item_field's created using a direct pointer to a field are fixed in Item_field constructor. */ for (Field **ptr= field; *ptr; ptr++) { Item_field *item= new Item_field(*ptr); if (!item || item_list->push_back(item)) return TRUE; } return FALSE; } /* Reset an existing list of Item_field items to point to the Fields of this table. SYNPOSIS TABLE::fill_item_list() item_list a non-empty list with Item_fields DESCRIPTION This is a counterpart of fill_item_list used to redirect Item_fields to the fields of a newly created table. The caller must ensure that number of items in the item_list is the same as the number of columns in the table. */ void TABLE::reset_item_list(List *item_list) const { List_iterator_fast it(*item_list); for (Field **ptr= field; *ptr; ptr++) { Item_field *item_field= (Item_field*) it++; DBUG_ASSERT(item_field != 0); item_field->reset_field(*ptr); } } /* calculate md5 of query SYNOPSIS TABLE_LIST::calc_md5() buffer buffer for md5 writing */ void TABLE_LIST::calc_md5(char *buffer) { uchar digest[16]; MY_MD5_HASH(digest, (uchar *) select_stmt.str, select_stmt.length); sprintf((char *) buffer, "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", digest[0], digest[1], digest[2], digest[3], digest[4], digest[5], digest[6], digest[7], digest[8], digest[9], digest[10], digest[11], digest[12], digest[13], digest[14], digest[15]); } /** @brief Create field translation for mergeable derived table/view. @param thd Thread handle @details Create field translation for mergeable derived table/view. @return FALSE ok. @return TRUE an error occur. */ bool TABLE_LIST::create_field_translation(THD *thd) { Item *item; Field_translator *transl; SELECT_LEX *select= get_single_select(); List_iterator_fast it(select->item_list); uint field_count= 0; Query_arena *arena= thd->stmt_arena, backup; bool res= FALSE; if (thd->stmt_arena->is_conventional() || thd->stmt_arena->is_stmt_prepare_or_first_sp_execute()) { /* initialize lists */ used_items.empty(); persistent_used_items.empty(); } else { /* Copy the list created by natural join procedure because the procedure will not be repeated. */ used_items= persistent_used_items; } if (field_translation) { /* Update items in the field translation aftet view have been prepared. It's needed because some items in the select list, like IN subselects, might be substituted for optimized ones. */ if (is_view() && get_unit()->prepared && !field_translation_updated) { while ((item= it++)) { field_translation[field_count++].item= item; } field_translation_updated= TRUE; } return FALSE; } if (arena->is_conventional()) arena= 0; // For easier test else thd->set_n_backup_active_arena(arena, &backup); /* Create view fields translation table */ if (!(transl= (Field_translator*)(thd->stmt_arena-> alloc(select->item_list.elements * sizeof(Field_translator))))) { res= TRUE; goto exit; } while ((item= it++)) { transl[field_count].name= item->name; transl[field_count++].item= item; } field_translation= transl; field_translation_end= transl + field_count; exit: if (arena) thd->restore_active_arena(arena, &backup); return res; } /** @brief Create field translation for mergeable derived table/view. @param thd Thread handle @details Create field translation for mergeable derived table/view. @return FALSE ok. @return TRUE an error occur. */ bool TABLE_LIST::setup_underlying(THD *thd) { DBUG_ENTER("TABLE_LIST::setup_underlying"); if (!view || (!field_translation && merge_underlying_list)) { SELECT_LEX *select= get_single_select(); if (create_field_translation(thd)) DBUG_RETURN(TRUE); /* full text function moving to current select */ if (select->ftfunc_list->elements) { Item_func_match *ifm; SELECT_LEX *current_select= thd->lex->current_select; List_iterator_fast li(*(select_lex->ftfunc_list)); while ((ifm= li++)) current_select->ftfunc_list->push_front(ifm); } } DBUG_RETURN(FALSE); } /* Prepare where expression of derived table/view SYNOPSIS TABLE_LIST::prep_where() thd - thread handler conds - condition of this JOIN no_where_clause - do not build WHERE or ON outer qwery do not need it (it is INSERT), we do not need conds if this flag is set NOTE: have to be called befor CHECK OPTION preparation, because it makes fix_fields for view WHERE clause RETURN FALSE - OK TRUE - error */ bool TABLE_LIST::prep_where(THD *thd, Item **conds, bool no_where_clause) { DBUG_ENTER("TABLE_LIST::prep_where"); for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local) { if (tbl->is_view_or_derived() && tbl->prep_where(thd, conds, no_where_clause)) { DBUG_RETURN(TRUE); } } if (where) { if (where->fixed) where->update_used_tables(); if (!where->fixed && where->fix_fields(thd, &where)) { DBUG_RETURN(TRUE); } /* check that it is not VIEW in which we insert with INSERT SELECT (in this case we can't add view WHERE condition to main SELECT_LEX) */ if (!no_where_clause && !where_processed) { TABLE_LIST *tbl= this; Query_arena *arena= thd->stmt_arena, backup; arena= thd->activate_stmt_arena_if_needed(&backup); // For easier test /* Go up to join tree and try to find left join */ for (; tbl; tbl= tbl->embedding) { if (tbl->outer_join) { /* Store WHERE condition to ON expression for outer join, because we can't use WHERE to correctly execute left joins on VIEWs and this expression will not be moved to WHERE condition (i.e. will be clean correctly for PS/SP) */ tbl->on_expr= and_conds(tbl->on_expr, where->copy_andor_structure(thd)); break; } } if (tbl == 0) { if (*conds && !(*conds)->fixed) (*conds)->fix_fields(thd, conds); *conds= and_conds(*conds, where->copy_andor_structure(thd)); if (*conds && !(*conds)->fixed) (*conds)->fix_fields(thd, conds); } if (arena) thd->restore_active_arena(arena, &backup); where_processed= TRUE; } } DBUG_RETURN(FALSE); } /** Check that table/view is updatable and if it has single underlying tables/views it is also updatable @return Result of the check. */ bool TABLE_LIST::single_table_updatable() { if (!updatable) return false; if (view_tables && view_tables->elements == 1) { /* We need to check deeply only single table views. Multi-table views will be turned to multi-table updates and then checked by leaf tables */ return view_tables->head()->single_table_updatable(); } return true; } /* Merge ON expressions for a view SYNOPSIS merge_on_conds() thd thread handle table table for the VIEW is_cascaded TRUE <=> merge ON expressions from underlying views DESCRIPTION This function returns the result of ANDing the ON expressions of the given view and all underlying views. The ON expressions of the underlying views are added only if is_cascaded is TRUE. RETURN Pointer to the built expression if there is any. Otherwise and in the case of a failure NULL is returned. */ static Item * merge_on_conds(THD *thd, TABLE_LIST *table, bool is_cascaded) { DBUG_ENTER("merge_on_conds"); Item *cond= NULL; DBUG_PRINT("info", ("alias: %s", table->alias)); if (table->on_expr) cond= table->on_expr->copy_andor_structure(thd); if (!table->view) DBUG_RETURN(cond); for (TABLE_LIST *tbl= (TABLE_LIST*)table->view->select_lex.table_list.first; tbl; tbl= tbl->next_local) { if (tbl->view && !is_cascaded) continue; cond= and_conds(cond, merge_on_conds(thd, tbl, is_cascaded)); } DBUG_RETURN(cond); } /* Prepare check option expression of table SYNOPSIS TABLE_LIST::prep_check_option() thd - thread handler check_opt_type - WITH CHECK OPTION type (VIEW_CHECK_NONE, VIEW_CHECK_LOCAL, VIEW_CHECK_CASCADED) we use this parameter instead of direct check of effective_with_check to change type of underlying views to VIEW_CHECK_CASCADED if outer view have such option and prevent processing of underlying view check options if outer view have just VIEW_CHECK_LOCAL option. NOTE This method builds check option condition to use it later on every call (usual execution or every SP/PS call). This method have to be called after WHERE preparation (TABLE_LIST::prep_where) RETURN FALSE - OK TRUE - error */ bool TABLE_LIST::prep_check_option(THD *thd, uint8 check_opt_type) { DBUG_ENTER("TABLE_LIST::prep_check_option"); bool is_cascaded= check_opt_type == VIEW_CHECK_CASCADED; TABLE_LIST *merge_underlying_list= view->select_lex.get_table_list(); for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local) { /* see comment of check_opt_type parameter */ if (tbl->view && tbl->prep_check_option(thd, (is_cascaded ? VIEW_CHECK_CASCADED : VIEW_CHECK_NONE))) DBUG_RETURN(TRUE); } if (check_opt_type && !check_option_processed) { Query_arena *arena= thd->stmt_arena, backup; arena= thd->activate_stmt_arena_if_needed(&backup); // For easier test if (where) { check_option= where->copy_andor_structure(thd); } if (is_cascaded) { for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local) { if (tbl->check_option) check_option= and_conds(check_option, tbl->check_option); } } check_option= and_conds(check_option, merge_on_conds(thd, this, is_cascaded)); if (arena) thd->restore_active_arena(arena, &backup); check_option_processed= TRUE; } if (check_option) { const char *save_where= thd->where; thd->where= "check option"; if ((!check_option->fixed && check_option->fix_fields(thd, &check_option)) || check_option->check_cols(1)) { DBUG_RETURN(TRUE); } thd->where= save_where; } DBUG_RETURN(FALSE); } /** Hide errors which show view underlying table information. There are currently two mechanisms at work that handle errors for views, this one and a more general mechanism based on an Internal_error_handler, see Show_create_error_handler. The latter handles errors encountered during execution of SHOW CREATE VIEW, while the mechanism using this method is handles SELECT from views. The two methods should not clash. @param[in,out] thd thread handler @pre This method can be called only if there is an error. */ void TABLE_LIST::hide_view_error(THD *thd) { if (thd->killed || thd->get_internal_handler()) return; /* Hide "Unknown column" or "Unknown function" error */ DBUG_ASSERT(thd->is_error()); if (thd->stmt_da->sql_errno() == ER_BAD_FIELD_ERROR || thd->stmt_da->sql_errno() == ER_SP_DOES_NOT_EXIST || thd->stmt_da->sql_errno() == ER_FUNC_INEXISTENT_NAME_COLLISION || thd->stmt_da->sql_errno() == ER_PROCACCESS_DENIED_ERROR || thd->stmt_da->sql_errno() == ER_COLUMNACCESS_DENIED_ERROR || thd->stmt_da->sql_errno() == ER_TABLEACCESS_DENIED_ERROR || thd->stmt_da->sql_errno() == ER_TABLE_NOT_LOCKED || thd->stmt_da->sql_errno() == ER_NO_SUCH_TABLE) { TABLE_LIST *top= top_table(); thd->clear_error(); my_error(ER_VIEW_INVALID, MYF(0), top->view_db.str, top->view_name.str); } else if (thd->stmt_da->sql_errno() == ER_NO_DEFAULT_FOR_FIELD) { TABLE_LIST *top= top_table(); thd->clear_error(); // TODO: make correct error message my_error(ER_NO_DEFAULT_FOR_VIEW_FIELD, MYF(0), top->view_db.str, top->view_name.str); } } /* Find underlying base tables (TABLE_LIST) which represent given table_to_find (TABLE) SYNOPSIS TABLE_LIST::find_underlying_table() table_to_find table to find RETURN 0 table is not found found table reference */ TABLE_LIST *TABLE_LIST::find_underlying_table(TABLE *table_to_find) { /* is this real table and table which we are looking for? */ if (table == table_to_find && view == 0) return this; if (!view) return 0; for (TABLE_LIST *tbl= view->select_lex.get_table_list(); tbl; tbl= tbl->next_local) { TABLE_LIST *result; if ((result= tbl->find_underlying_table(table_to_find))) return result; } return 0; } /* cleanup items belonged to view fields translation table SYNOPSIS TABLE_LIST::cleanup_items() */ void TABLE_LIST::cleanup_items() { if (!field_translation) return; for (Field_translator *transl= field_translation; transl < field_translation_end; transl++) transl->item->walk(&Item::cleanup_processor, 0, 0); } /* check CHECK OPTION condition SYNOPSIS TABLE_LIST::view_check_option() ignore_failure ignore check option fail RETURN VIEW_CHECK_OK OK VIEW_CHECK_ERROR FAILED VIEW_CHECK_SKIP FAILED, but continue */ int TABLE_LIST::view_check_option(THD *thd, bool ignore_failure) { if (check_option && check_option->val_int() == 0) { TABLE_LIST *main_view= top_table(); if (ignore_failure) { push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_VIEW_CHECK_FAILED, ER(ER_VIEW_CHECK_FAILED), main_view->view_db.str, main_view->view_name.str); return(VIEW_CHECK_SKIP); } my_error(ER_VIEW_CHECK_FAILED, MYF(0), main_view->view_db.str, main_view->view_name.str); return(VIEW_CHECK_ERROR); } return(VIEW_CHECK_OK); } /* Find table in underlying tables by mask and check that only this table belong to given mask SYNOPSIS TABLE_LIST::check_single_table() table_arg reference on variable where to store found table (should be 0 on call, to find table, or point to table for unique test) map bit mask of tables view_arg view for which we are looking table RETURN FALSE table not found or found only one TRUE found several tables */ bool TABLE_LIST::check_single_table(TABLE_LIST **table_arg, table_map map, TABLE_LIST *view_arg) { if (!select_lex) return FALSE; DBUG_ASSERT(is_merged_derived()); for (TABLE_LIST *tbl= get_single_select()->get_table_list(); tbl; tbl= tbl->next_local) { /* Merged view has also temporary table attached (in 5.2 if it has table then it was real table), so we have filter such temporary tables out by checking that it is not merged view */ if (tbl->table && !(tbl->is_view() && tbl->is_merged_derived())) { if (tbl->table->map & map) { if (*table_arg) return TRUE; *table_arg= tbl; tbl->check_option= view_arg->check_option; } } else if (tbl->check_single_table(table_arg, map, view_arg)) return TRUE; } return FALSE; } /* Set insert_values buffer SYNOPSIS set_insert_values() mem_root memory pool for allocating RETURN FALSE - OK TRUE - out of memory */ bool TABLE_LIST::set_insert_values(MEM_ROOT *mem_root) { if (table) { if (!table->insert_values && !(table->insert_values= (uchar *)alloc_root(mem_root, table->s->rec_buff_length))) return TRUE; } else { DBUG_ASSERT(is_view_or_derived() && is_merged_derived()); for (TABLE_LIST *tbl= (TABLE_LIST*)view->select_lex.table_list.first; tbl; tbl= tbl->next_local) if (tbl->set_insert_values(mem_root)) return TRUE; } return FALSE; } /* Test if this is a leaf with respect to name resolution. SYNOPSIS TABLE_LIST::is_leaf_for_name_resolution() DESCRIPTION A table reference is a leaf with respect to name resolution if it is either a leaf node in a nested join tree (table, view, schema table, subquery), or an inner node that represents a NATURAL/USING join, or a nested join with materialized join columns. RETURN TRUE if a leaf, FALSE otherwise. */ bool TABLE_LIST::is_leaf_for_name_resolution() { return (is_merged_derived() || is_natural_join || is_join_columns_complete || !nested_join); } /* Retrieve the first (left-most) leaf in a nested join tree with respect to name resolution. SYNOPSIS TABLE_LIST::first_leaf_for_name_resolution() DESCRIPTION Given that 'this' is a nested table reference, recursively walk down the left-most children of 'this' until we reach a leaf table reference with respect to name resolution. IMPLEMENTATION The left-most child of a nested table reference is the last element in the list of children because the children are inserted in reverse order. RETURN If 'this' is a nested table reference - the left-most child of the tree rooted in 'this', else return 'this' */ TABLE_LIST *TABLE_LIST::first_leaf_for_name_resolution() { TABLE_LIST *cur_table_ref; NESTED_JOIN *cur_nested_join; LINT_INIT(cur_table_ref); if (is_leaf_for_name_resolution()) return this; DBUG_ASSERT(nested_join); for (cur_nested_join= nested_join; cur_nested_join; cur_nested_join= cur_table_ref->nested_join) { List_iterator_fast it(cur_nested_join->join_list); cur_table_ref= it++; /* If the current nested join is a RIGHT JOIN, the operands in 'join_list' are in reverse order, thus the first operand is already at the front of the list. Otherwise the first operand is in the end of the list of join operands. */ if (!(cur_table_ref->outer_join & JOIN_TYPE_RIGHT)) { TABLE_LIST *next; while ((next= it++)) cur_table_ref= next; } if (cur_table_ref->is_leaf_for_name_resolution()) break; } return cur_table_ref; } /* Retrieve the last (right-most) leaf in a nested join tree with respect to name resolution. SYNOPSIS TABLE_LIST::last_leaf_for_name_resolution() DESCRIPTION Given that 'this' is a nested table reference, recursively walk down the right-most children of 'this' until we reach a leaf table reference with respect to name resolution. IMPLEMENTATION The right-most child of a nested table reference is the first element in the list of children because the children are inserted in reverse order. RETURN - If 'this' is a nested table reference - the right-most child of the tree rooted in 'this', - else - 'this' */ TABLE_LIST *TABLE_LIST::last_leaf_for_name_resolution() { TABLE_LIST *cur_table_ref= this; NESTED_JOIN *cur_nested_join; if (is_leaf_for_name_resolution()) return this; DBUG_ASSERT(nested_join); for (cur_nested_join= nested_join; cur_nested_join; cur_nested_join= cur_table_ref->nested_join) { cur_table_ref= cur_nested_join->join_list.head(); /* If the current nested is a RIGHT JOIN, the operands in 'join_list' are in reverse order, thus the last operand is in the end of the list. */ if ((cur_table_ref->outer_join & JOIN_TYPE_RIGHT)) { List_iterator_fast it(cur_nested_join->join_list); TABLE_LIST *next; cur_table_ref= it++; while ((next= it++)) cur_table_ref= next; } if (cur_table_ref->is_leaf_for_name_resolution()) break; } return cur_table_ref; } /* Register access mode which we need for underlying tables SYNOPSIS register_want_access() want_access Acess which we require */ void TABLE_LIST::register_want_access(ulong want_access) { /* Remove SHOW_VIEW_ACL, because it will be checked during making view */ want_access&= ~SHOW_VIEW_ACL; if (belong_to_view) { grant.want_privilege= want_access; if (table) table->grant.want_privilege= want_access; } if (!view) return; for (TABLE_LIST *tbl= view->select_lex.get_table_list(); tbl; tbl= tbl->next_local) tbl->register_want_access(want_access); } /* Load security context information for this view SYNOPSIS TABLE_LIST::prepare_view_security_context() thd [in] thread handler RETURN FALSE OK TRUE Error */ #ifndef NO_EMBEDDED_ACCESS_CHECKS bool TABLE_LIST::prepare_view_security_context(THD *thd) { DBUG_ENTER("TABLE_LIST::prepare_view_security_context"); DBUG_PRINT("enter", ("table: %s", alias)); DBUG_ASSERT(!prelocking_placeholder && view); if (view_suid) { DBUG_PRINT("info", ("This table is suid view => load contest")); DBUG_ASSERT(view && view_sctx); if (acl_getroot(view_sctx, definer.user.str, definer.host.str, definer.host.str, thd->db)) { if ((thd->lex->sql_command == SQLCOM_SHOW_CREATE) || (thd->lex->sql_command == SQLCOM_SHOW_FIELDS)) { push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_NO_SUCH_USER, ER(ER_NO_SUCH_USER), definer.user.str, definer.host.str); } else { if (thd->security_ctx->master_access & SUPER_ACL) { my_error(ER_NO_SUCH_USER, MYF(0), definer.user.str, definer.host.str); } else { if (thd->password == 2) my_error(ER_ACCESS_DENIED_NO_PASSWORD_ERROR, MYF(0), thd->security_ctx->priv_user, thd->security_ctx->priv_host); else my_error(ER_ACCESS_DENIED_ERROR, MYF(0), thd->security_ctx->priv_user, thd->security_ctx->priv_host, (thd->password ? ER(ER_YES) : ER(ER_NO))); } DBUG_RETURN(TRUE); } } } DBUG_RETURN(FALSE); } #endif /* Find security context of current view SYNOPSIS TABLE_LIST::find_view_security_context() thd [in] thread handler */ #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *TABLE_LIST::find_view_security_context(THD *thd) { Security_context *sctx; TABLE_LIST *upper_view= this; DBUG_ENTER("TABLE_LIST::find_view_security_context"); DBUG_ASSERT(view); while (upper_view && !upper_view->view_suid) { DBUG_ASSERT(!upper_view->prelocking_placeholder); upper_view= upper_view->referencing_view; } if (upper_view) { DBUG_PRINT("info", ("Securety context of view %s will be used", upper_view->alias)); sctx= upper_view->view_sctx; DBUG_ASSERT(sctx); } else { DBUG_PRINT("info", ("Current global context will be used")); sctx= thd->security_ctx; } DBUG_RETURN(sctx); } #endif /* Prepare security context and load underlying tables priveleges for view SYNOPSIS TABLE_LIST::prepare_security() thd [in] thread handler RETURN FALSE OK TRUE Error */ bool TABLE_LIST::prepare_security(THD *thd) { List_iterator_fast tb(*view_tables); TABLE_LIST *tbl; DBUG_ENTER("TABLE_LIST::prepare_security"); #ifndef NO_EMBEDDED_ACCESS_CHECKS Security_context *save_security_ctx= thd->security_ctx; DBUG_ASSERT(!prelocking_placeholder); if (prepare_view_security_context(thd)) DBUG_RETURN(TRUE); thd->security_ctx= find_view_security_context(thd); while ((tbl= tb++)) { DBUG_ASSERT(tbl->referencing_view); char *local_db, *local_table_name; if (tbl->view) { local_db= tbl->view_db.str; local_table_name= tbl->view_name.str; } else { local_db= tbl->db; local_table_name= tbl->table_name; } fill_effective_table_privileges(thd, &tbl->grant, local_db, local_table_name); if (tbl->table) tbl->table->grant= grant; } thd->security_ctx= save_security_ctx; #else while ((tbl= tb++)) tbl->grant.privilege= ~NO_ACCESS; #endif DBUG_RETURN(FALSE); } #ifndef DBUG_OFF void TABLE_LIST::set_check_merged() { DBUG_ASSERT(derived); /* It is not simple to check all, but at least this should be checked: this select is not excluded or the exclusion came from above. */ DBUG_ASSERT(!derived->first_select()->exclude_from_table_unique_test || derived->outer_select()-> exclude_from_table_unique_test); } #endif void TABLE_LIST::set_check_materialized() { DBUG_ASSERT(derived); if (!derived->first_select()->exclude_from_table_unique_test) derived->set_unique_exclude(); else { /* The subtree should be already excluded */ DBUG_ASSERT(!derived->first_select()->first_inner_unit() || derived->first_select()->first_inner_unit()->first_select()-> exclude_from_table_unique_test); } } TABLE *TABLE_LIST::get_real_join_table() { TABLE_LIST *tbl= this; while (tbl->table == NULL || tbl->table->reginfo.join_tab == NULL) { if (tbl->view == NULL && tbl->derived == NULL) break; /* we do not support merging of union yet */ DBUG_ASSERT(tbl->view == NULL || tbl->view->select_lex.next_select() == NULL); DBUG_ASSERT(tbl->derived == NULL || tbl->derived->first_select()->next_select() == NULL); { List_iterator_fast ti; { List_iterator_fast ti(tbl->view != NULL ? tbl->view->select_lex.top_join_list : tbl->derived->first_select()->top_join_list); for (;;) { tbl= NULL; /* Find left table in outer join on this level (the list is reverted). */ for (TABLE_LIST *t= ti++; t; t= ti++) tbl= t; /* It is impossible that the list is empty so tbl can't be NULL after above loop. */ if (!tbl->nested_join) break; /* go deeper if we've found nested join */ ti= tbl->nested_join->join_list; } } } } return tbl->table; } Natural_join_column::Natural_join_column(Field_translator *field_param, TABLE_LIST *tab) { DBUG_ASSERT(tab->field_translation); view_field= field_param; table_field= NULL; table_ref= tab; is_common= FALSE; } Natural_join_column::Natural_join_column(Item_field *field_param, TABLE_LIST *tab) { DBUG_ASSERT(tab->table == field_param->field->table); table_field= field_param; view_field= NULL; table_ref= tab; is_common= FALSE; } const char *Natural_join_column::name() { if (view_field) { DBUG_ASSERT(table_field == NULL); return view_field->name; } return table_field->field_name; } Item *Natural_join_column::create_item(THD *thd) { if (view_field) { DBUG_ASSERT(table_field == NULL); return create_view_field(thd, table_ref, &view_field->item, view_field->name); } return table_field; } Field *Natural_join_column::field() { if (view_field) { DBUG_ASSERT(table_field == NULL); return NULL; } return table_field->field; } const char *Natural_join_column::table_name() { DBUG_ASSERT(table_ref); return table_ref->alias; } const char *Natural_join_column::db_name() { if (view_field) return table_ref->view_db.str; /* Test that TABLE_LIST::db is the same as TABLE_SHARE::db to ensure consistency. An exception are I_S schema tables, which are inconsistent in this respect. */ DBUG_ASSERT(!strcmp(table_ref->db, table_ref->table->s->db.str) || (table_ref->schema_table && is_infoschema_db(table_ref->table->s->db.str, table_ref->table->s->db.length)) || table_ref->is_materialized_derived()); return table_ref->db; } GRANT_INFO *Natural_join_column::grant() { /* if (view_field) return &(table_ref->grant); return &(table_ref->table->grant);*/ /* Have to check algorithm because merged derived also has field_translation. */ //if (table_ref->effective_algorithm == DTYPE_ALGORITHM_MERGE) if (table_ref->is_merged_derived()) return &(table_ref->grant); return &(table_ref->table->grant); } void Field_iterator_view::set(TABLE_LIST *table) { DBUG_ASSERT(table->field_translation); view= table; ptr= table->field_translation; array_end= table->field_translation_end; } const char *Field_iterator_table::name() { return (*ptr)->field_name; } Item *Field_iterator_table::create_item(THD *thd) { SELECT_LEX *select= thd->lex->current_select; Item_field *item= new Item_field(thd, &select->context, *ptr); if (item && thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY && !thd->lex->in_sum_func && select->cur_pos_in_select_list != UNDEF_POS) { select->non_agg_fields.push_back(item); item->marker= select->cur_pos_in_select_list; select->set_non_agg_field_used(true); } return item; } const char *Field_iterator_view::name() { return ptr->name; } Item *Field_iterator_view::create_item(THD *thd) { return create_view_field(thd, view, &ptr->item, ptr->name); } Item *create_view_field(THD *thd, TABLE_LIST *view, Item **field_ref, const char *name) { bool save_wrapper= thd->lex->select_lex.no_wrap_view_item; Item *field= *field_ref; DBUG_ENTER("create_view_field"); if (view->schema_table_reformed) { /* Translation table items are always Item_fields and already fixed ('mysql_schema_table' function). So we can return directly the field. This case happens only for 'show & where' commands. */ DBUG_ASSERT(field && field->fixed); DBUG_RETURN(field); } DBUG_ASSERT(field); thd->lex->current_select->no_wrap_view_item= TRUE; if (!field->fixed) { if (field->fix_fields(thd, field_ref)) { thd->lex->current_select->no_wrap_view_item= save_wrapper; DBUG_RETURN(0); } field= *field_ref; } thd->lex->current_select->no_wrap_view_item= save_wrapper; if (save_wrapper) { DBUG_RETURN(field); } Item *item= new Item_direct_view_ref(&view->view->select_lex.context, field_ref, view->alias, name, view); /* Force creation of nullable item for the result tmp table for outer joined views/derived tables. */ if (view->table && view->table->maybe_null) item->maybe_null= TRUE; /* Save item in case we will need to fall back to materialization. */ view->used_items.push_front(item); DBUG_RETURN(item); } void Field_iterator_natural_join::set(TABLE_LIST *table_ref) { DBUG_ASSERT(table_ref->join_columns); column_ref_it.init(*(table_ref->join_columns)); cur_column_ref= column_ref_it++; } void Field_iterator_natural_join::next() { cur_column_ref= column_ref_it++; DBUG_ASSERT(!cur_column_ref || ! cur_column_ref->table_field || cur_column_ref->table_ref->table == cur_column_ref->table_field->field->table); } void Field_iterator_table_ref::set_field_iterator() { DBUG_ENTER("Field_iterator_table_ref::set_field_iterator"); /* If the table reference we are iterating over is a natural join, or it is an operand of a natural join, and TABLE_LIST::join_columns contains all the columns of the join operand, then we pick the columns from TABLE_LIST::join_columns, instead of the orginial container of the columns of the join operator. */ if (table_ref->is_join_columns_complete) { /* Necesary, but insufficient conditions. */ DBUG_ASSERT(table_ref->is_natural_join || table_ref->nested_join || (table_ref->join_columns && /* This is a merge view. */ ((table_ref->field_translation && table_ref->join_columns->elements == (ulong)(table_ref->field_translation_end - table_ref->field_translation)) || /* This is stored table or a tmptable view. */ (!table_ref->field_translation && table_ref->join_columns->elements == table_ref->table->s->fields)))); field_it= &natural_join_it; DBUG_PRINT("info",("field_it for '%s' is Field_iterator_natural_join", table_ref->alias)); } /* This is a merge view, so use field_translation. */ else if (table_ref->field_translation) { DBUG_ASSERT(table_ref->is_merged_derived()); field_it= &view_field_it; DBUG_PRINT("info", ("field_it for '%s' is Field_iterator_view", table_ref->alias)); } /* This is a base table or stored view. */ else { DBUG_ASSERT(table_ref->table || table_ref->view); field_it= &table_field_it; DBUG_PRINT("info", ("field_it for '%s' is Field_iterator_table", table_ref->alias)); } field_it->set(table_ref); DBUG_VOID_RETURN; } void Field_iterator_table_ref::set(TABLE_LIST *table) { DBUG_ASSERT(table); first_leaf= table->first_leaf_for_name_resolution(); last_leaf= table->last_leaf_for_name_resolution(); DBUG_ASSERT(first_leaf && last_leaf); table_ref= first_leaf; set_field_iterator(); } void Field_iterator_table_ref::next() { /* Move to the next field in the current table reference. */ field_it->next(); /* If all fields of the current table reference are exhausted, move to the next leaf table reference. */ if (field_it->end_of_fields() && table_ref != last_leaf) { table_ref= table_ref->next_name_resolution_table; DBUG_ASSERT(table_ref); set_field_iterator(); } } const char *Field_iterator_table_ref::get_table_name() { if (table_ref->view) return table_ref->view_name.str; else if (table_ref->is_natural_join) return natural_join_it.column_ref()->table_name(); DBUG_ASSERT(!strcmp(table_ref->table_name, table_ref->table->s->table_name.str)); return table_ref->table_name; } const char *Field_iterator_table_ref::get_db_name() { if (table_ref->view) return table_ref->view_db.str; else if (table_ref->is_natural_join) return natural_join_it.column_ref()->db_name(); /* Test that TABLE_LIST::db is the same as TABLE_SHARE::db to ensure consistency. An exception are I_S schema tables, which are inconsistent in this respect. */ DBUG_ASSERT(!strcmp(table_ref->db, table_ref->table->s->db.str) || (table_ref->schema_table && is_infoschema_db(table_ref->table->s->db.str, table_ref->table->s->db.length))); return table_ref->db; } GRANT_INFO *Field_iterator_table_ref::grant() { if (table_ref->view) return &(table_ref->grant); else if (table_ref->is_natural_join) return natural_join_it.column_ref()->grant(); return &(table_ref->table->grant); } /* Create new or return existing column reference to a column of a natural/using join. SYNOPSIS Field_iterator_table_ref::get_or_create_column_ref() parent_table_ref the parent table reference over which the iterator is iterating DESCRIPTION Create a new natural join column for the current field of the iterator if no such column was created, or return an already created natural join column. The former happens for base tables or views, and the latter for natural/using joins. If a new field is created, then the field is added to 'parent_table_ref' if it is given, or to the original table referene of the field if parent_table_ref == NULL. NOTES This method is designed so that when a Field_iterator_table_ref walks through the fields of a table reference, all its fields are created and stored as follows: - If the table reference being iterated is a stored table, view or natural/using join, store all natural join columns in a list attached to that table reference. - If the table reference being iterated is a nested join that is not natural/using join, then do not materialize its result fields. This is OK because for such table references Field_iterator_table_ref iterates over the fields of the nested table references (recursively). In this way we avoid the storage of unnecessay copies of result columns of nested joins. RETURN # Pointer to a column of a natural join (or its operand) NULL No memory to allocate the column */ Natural_join_column * Field_iterator_table_ref::get_or_create_column_ref(THD *thd, TABLE_LIST *parent_table_ref) { Natural_join_column *nj_col; bool is_created= TRUE; uint field_count; TABLE_LIST *add_table_ref= parent_table_ref ? parent_table_ref : table_ref; LINT_INIT(field_count); if (field_it == &table_field_it) { /* The field belongs to a stored table. */ Field *tmp_field= table_field_it.field(); Item_field *tmp_item= new Item_field(thd, &thd->lex->current_select->context, tmp_field); if (!tmp_item) return NULL; nj_col= new Natural_join_column(tmp_item, table_ref); field_count= table_ref->table->s->fields; } else if (field_it == &view_field_it) { /* The field belongs to a merge view or information schema table. */ Field_translator *translated_field= view_field_it.field_translator(); nj_col= new Natural_join_column(translated_field, table_ref); field_count= table_ref->field_translation_end - table_ref->field_translation; } else { /* The field belongs to a NATURAL join, therefore the column reference was already created via one of the two constructor calls above. In this case we just return the already created column reference. */ DBUG_ASSERT(table_ref->is_join_columns_complete); is_created= FALSE; nj_col= natural_join_it.column_ref(); DBUG_ASSERT(nj_col); } DBUG_ASSERT(!nj_col->table_field || nj_col->table_ref->table == nj_col->table_field->field->table); /* If the natural join column was just created add it to the list of natural join columns of either 'parent_table_ref' or to the table reference that directly contains the original field. */ if (is_created) { /* Make sure not all columns were materialized. */ DBUG_ASSERT(!add_table_ref->is_join_columns_complete); if (!add_table_ref->join_columns) { /* Create a list of natural join columns on demand. */ if (!(add_table_ref->join_columns= new List)) return NULL; add_table_ref->is_join_columns_complete= FALSE; } add_table_ref->join_columns->push_back(nj_col); /* If new fields are added to their original table reference, mark if all fields were added. We do it here as the caller has no easy way of knowing when to do it. If the fields are being added to parent_table_ref, then the caller must take care to mark when all fields are created/added. */ if (!parent_table_ref && add_table_ref->join_columns->elements == field_count) add_table_ref->is_join_columns_complete= TRUE; } return nj_col; } /* Return an existing reference to a column of a natural/using join. SYNOPSIS Field_iterator_table_ref::get_natural_column_ref() DESCRIPTION The method should be called in contexts where it is expected that all natural join columns are already created, and that the column being retrieved is a Natural_join_column. RETURN # Pointer to a column of a natural join (or its operand) NULL No memory to allocate the column */ Natural_join_column * Field_iterator_table_ref::get_natural_column_ref() { Natural_join_column *nj_col; DBUG_ASSERT(field_it == &natural_join_it); /* The field belongs to a NATURAL join, therefore the column reference was already created via one of the two constructor calls above. In this case we just return the already created column reference. */ nj_col= natural_join_it.column_ref(); DBUG_ASSERT(nj_col && (!nj_col->table_field || nj_col->table_ref->table == nj_col->table_field->field->table)); return nj_col; } /***************************************************************************** Functions to handle column usage bitmaps (read_set, write_set etc...) *****************************************************************************/ /* Reset all columns bitmaps */ void TABLE::clear_column_bitmaps() { /* Reset column read/write usage. It's identical to: bitmap_clear_all(&table->def_read_set); bitmap_clear_all(&table->def_write_set); bitmap_clear_all(&table->def_vcol_set); */ bzero((char*) def_read_set.bitmap, s->column_bitmap_size*3); column_bitmaps_set(&def_read_set, &def_write_set, &def_vcol_set); } /* Tell handler we are going to call position() and rnd_pos() later. NOTES: This is needed for handlers that uses the primary key to find the row. In this case we have to extend the read bitmap with the primary key fields. */ void TABLE::prepare_for_position() { DBUG_ENTER("TABLE::prepare_for_position"); if ((file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) && s->primary_key < MAX_KEY) { mark_columns_used_by_index_no_reset(s->primary_key, read_set); /* signal change */ file->column_bitmaps_signal(); } DBUG_VOID_RETURN; } /* Mark that only fields from one key is used NOTE: This changes the bitmap to use the tmp bitmap After this, you can't access any other columns in the table until bitmaps are reset, for example with TABLE::clear_column_bitmaps() or TABLE::restore_column_maps_after_mark_index() */ void TABLE::mark_columns_used_by_index(uint index) { MY_BITMAP *bitmap= &tmp_set; DBUG_ENTER("TABLE::mark_columns_used_by_index"); enable_keyread(); bitmap_clear_all(bitmap); mark_columns_used_by_index_no_reset(index, bitmap); column_bitmaps_set(bitmap, bitmap); DBUG_VOID_RETURN; } /* Add fields used by a specified index to the table's read_set. NOTE: The original state can be restored with restore_column_maps_after_mark_index(). */ void TABLE::add_read_columns_used_by_index(uint index) { MY_BITMAP *bitmap= &tmp_set; DBUG_ENTER("TABLE::add_read_columns_used_by_index"); enable_keyread(); bitmap_copy(bitmap, read_set); mark_columns_used_by_index_no_reset(index, bitmap); column_bitmaps_set(bitmap, write_set); DBUG_VOID_RETURN; } /* Restore to use normal column maps after key read NOTES This reverse the change done by mark_columns_used_by_index WARNING For this to work, one must have the normal table maps in place when calling mark_columns_used_by_index */ void TABLE::restore_column_maps_after_mark_index() { DBUG_ENTER("TABLE::restore_column_maps_after_mark_index"); disable_keyread(); default_column_bitmaps(); file->column_bitmaps_signal(); DBUG_VOID_RETURN; } /* mark columns used by key, but don't reset other fields */ void TABLE::mark_columns_used_by_index_no_reset(uint index, MY_BITMAP *bitmap) { KEY_PART_INFO *key_part= key_info[index].key_part; KEY_PART_INFO *key_part_end= (key_part + key_info[index].key_parts); for (;key_part != key_part_end; key_part++) { bitmap_set_bit(bitmap, key_part->fieldnr-1); if (key_part->field->vcol_info && key_part->field->vcol_info->expr_item) key_part->field->vcol_info-> expr_item->walk(&Item::register_field_in_bitmap, 1, (uchar *) bitmap); } } /* Mark auto-increment fields as used fields in both read and write maps NOTES This is needed in insert & update as the auto-increment field is always set and sometimes read. */ void TABLE::mark_auto_increment_column() { DBUG_ASSERT(found_next_number_field); /* We must set bit in read set as update_auto_increment() is using the store() to check overflow of auto_increment values */ bitmap_set_bit(read_set, found_next_number_field->field_index); bitmap_set_bit(write_set, found_next_number_field->field_index); if (s->next_number_keypart) mark_columns_used_by_index_no_reset(s->next_number_index, read_set); file->column_bitmaps_signal(); } /* Mark columns needed for doing an delete of a row DESCRIPTON Some table engines don't have a cursor on the retrieve rows so they need either to use the primary key or all columns to be able to delete a row. If the engine needs this, the function works as follows: - If primary key exits, mark the primary key columns to be read. - If not, mark all columns to be read If the engine has HA_REQUIRES_KEY_COLUMNS_FOR_DELETE, we will mark all key columns as 'to-be-read'. This allows the engine to loop over the given record to find all keys and doesn't have to retrieve the row again. */ void TABLE::mark_columns_needed_for_delete() { if (triggers) triggers->mark_fields_used(TRG_EVENT_DELETE); if (file->ha_table_flags() & HA_REQUIRES_KEY_COLUMNS_FOR_DELETE) { Field **reg_field; for (reg_field= field ; *reg_field ; reg_field++) { if ((*reg_field)->flags & PART_KEY_FLAG) bitmap_set_bit(read_set, (*reg_field)->field_index); } file->column_bitmaps_signal(); } if (file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) { /* If the handler has no cursor capabilites, we have to read either the primary key, the hidden primary key or all columns to be able to do an delete */ if (s->primary_key == MAX_KEY) file->use_hidden_primary_key(); else { mark_columns_used_by_index_no_reset(s->primary_key, read_set); file->column_bitmaps_signal(); } } } /* Mark columns needed for doing an update of a row DESCRIPTON Some engines needs to have all columns in an update (to be able to build a complete row). If this is the case, we mark all not updated columns to be read. If this is no the case, we do like in the delete case and mark if neeed, either the primary key column or all columns to be read. (see mark_columns_needed_for_delete() for details) If the engine has HA_REQUIRES_KEY_COLUMNS_FOR_DELETE, we will mark all USED key columns as 'to-be-read'. This allows the engine to loop over the given record to find all changed keys and doesn't have to retrieve the row again. */ void TABLE::mark_columns_needed_for_update() { DBUG_ENTER("mark_columns_needed_for_update"); if (triggers) triggers->mark_fields_used(TRG_EVENT_UPDATE); if (file->ha_table_flags() & HA_REQUIRES_KEY_COLUMNS_FOR_DELETE) { /* Mark all used key columns for read */ Field **reg_field; for (reg_field= field ; *reg_field ; reg_field++) { /* Merge keys is all keys that had a column refered to in the query */ if (merge_keys.is_overlapping((*reg_field)->part_of_key)) bitmap_set_bit(read_set, (*reg_field)->field_index); } file->column_bitmaps_signal(); } if (file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) { /* If the handler has no cursor capabilites, we have to read either the primary key, the hidden primary key or all columns to be able to do an update */ if (s->primary_key == MAX_KEY) file->use_hidden_primary_key(); else { mark_columns_used_by_index_no_reset(s->primary_key, read_set); file->column_bitmaps_signal(); } } /* Mark all virtual columns needed for update */ mark_virtual_columns_for_write(FALSE); DBUG_VOID_RETURN; } /* Mark columns the handler needs for doing an insert For now, this is used to mark fields used by the trigger as changed. */ void TABLE::mark_columns_needed_for_insert() { if (triggers) { /* We don't need to mark columns which are used by ON DELETE and ON UPDATE triggers, which may be invoked in case of REPLACE or INSERT ... ON DUPLICATE KEY UPDATE, since before doing actual row replacement or update write_record() will mark all table fields as used. */ triggers->mark_fields_used(TRG_EVENT_INSERT); } if (found_next_number_field) mark_auto_increment_column(); /* Mark virtual columns for insert */ mark_virtual_columns_for_write(TRUE); } /* @brief Mark a column as virtual used by the query @param field the field for the column to be marked @details The function marks the column for 'field' as virtual (computed) in the bitmap vcol_set. If the column is marked for the first time the expression to compute the column is traversed and all columns that are occurred there are marked in the read_set of the table. @retval TRUE if column is marked for the first time @retval FALSE otherwise */ bool TABLE::mark_virtual_col(Field *field) { bool res; DBUG_ASSERT(field->vcol_info); if (!(res= bitmap_fast_test_and_set(vcol_set, field->field_index))) { Item *vcol_item= field->vcol_info->expr_item; DBUG_ASSERT(vcol_item); vcol_item->walk(&Item::register_field_in_read_map, 1, (uchar *) 0); } return res; } /* @brief Mark virtual columns for update/insert commands @param insert_fl <-> virtual columns are marked for insert command @details The function marks virtual columns used in a update/insert commands in the vcol_set bitmap. For an insert command a virtual column is always marked in write_set if it is a stored column. If a virtual column is from write_set it is always marked in vcol_set. If a stored virtual column is not from write_set but it is computed through columns from write_set it is also marked in vcol_set, and, besides, it is added to write_set. @return void @note Let table t1 have columns a,b,c and let column c be a stored virtual column computed through columns a and b. Then for the query UPDATE t1 SET a=1 column c will be placed into vcol_set and into write_set while column b will be placed into read_set. If column c was a virtual column, but not a stored virtual column then it would not be added to any of the sets. Column b would not be added to read_set either. */ void TABLE::mark_virtual_columns_for_write(bool insert_fl) { Field **vfield_ptr, *tmp_vfield; bool bitmap_updated= FALSE; if (!vfield) return; if (!vfield) return; for (vfield_ptr= vfield; *vfield_ptr; vfield_ptr++) { tmp_vfield= *vfield_ptr; if (bitmap_is_set(write_set, tmp_vfield->field_index)) bitmap_updated= mark_virtual_col(tmp_vfield); else if (tmp_vfield->stored_in_db) { bool mark_fl= insert_fl; if (!mark_fl) { MY_BITMAP *save_read_set; Item *vcol_item= tmp_vfield->vcol_info->expr_item; DBUG_ASSERT(vcol_item); bitmap_clear_all(&tmp_set); save_read_set= read_set; read_set= &tmp_set; vcol_item->walk(&Item::register_field_in_read_map, 1, (uchar *) 0); read_set= save_read_set; bitmap_intersect(&tmp_set, write_set); mark_fl= !bitmap_is_clear_all(&tmp_set); } if (mark_fl) { bitmap_set_bit(write_set, tmp_vfield->field_index); mark_virtual_col(tmp_vfield); bitmap_updated= TRUE; } } } if (bitmap_updated) file->column_bitmaps_signal(); } /** Check if a table has a default function either for INSERT or UPDATE-like operation @retval true there is a default function @retval false there is no default function */ bool TABLE::has_default_function(bool is_update) { Field **dfield_ptr, *dfield; bool res= false; for (dfield_ptr= default_field; *dfield_ptr; dfield_ptr++) { dfield= (*dfield_ptr); if (is_update) res= dfield->has_update_default_function(); else res= dfield->has_insert_default_function(); if (res) return res; } return res; } /** Add all fields that have a default function to the table write set. */ void TABLE::mark_default_fields_for_write() { Field **dfield_ptr, *dfield; enum_sql_command cmd= in_use->lex->sql_command; for (dfield_ptr= default_field; *dfield_ptr; dfield_ptr++) { dfield= (*dfield_ptr); if (((sql_command_flags[cmd] & CF_INSERTS_DATA) && dfield->has_insert_default_function()) || ((sql_command_flags[cmd] & CF_UPDATES_DATA) && dfield->has_update_default_function())) bitmap_set_bit(write_set, dfield->field_index); } } /** @brief Allocate space for keys @param key_count number of keys to allocate additionally @details The function allocates memory to fit additionally 'key_count' keys for this table. @return FALSE space was successfully allocated @return TRUE an error occur */ bool TABLE::alloc_keys(uint key_count) { key_info= (KEY*) alloc_root(&mem_root, sizeof(KEY)*(s->keys+key_count)); if (s->keys) memmove(key_info, s->key_info, sizeof(KEY)*s->keys); s->key_info= key_info; max_keys= s->keys+key_count; return !(key_info); } void TABLE::create_key_part_by_field(KEY *keyinfo, KEY_PART_INFO *key_part_info, Field *field, uint fieldnr) { field->flags|= PART_KEY_FLAG; key_part_info->null_bit= field->null_bit; key_part_info->null_offset= (uint) (field->null_ptr - (uchar*) record[0]); key_part_info->field= field; key_part_info->fieldnr= fieldnr; key_part_info->offset= field->offset(record[0]); key_part_info->length= (uint16) field->pack_length(); keyinfo->key_length+= key_part_info->length; key_part_info->key_part_flag= 0; /* TODO: The below method of computing the key format length of the key part is a copy/paste from opt_range.cc, and table.cc. This should be factored out, e.g. as a method of Field. In addition it is not clear if any of the Field::*_length methods is supposed to compute the same length. If so, it might be reused. */ key_part_info->store_length= key_part_info->length; if (field->real_maybe_null()) { key_part_info->store_length+= HA_KEY_NULL_LENGTH; keyinfo->key_length+= HA_KEY_NULL_LENGTH; } if (field->type() == MYSQL_TYPE_BLOB || field->type() == MYSQL_TYPE_GEOMETRY || field->real_type() == MYSQL_TYPE_VARCHAR) { key_part_info->store_length+= HA_KEY_BLOB_LENGTH; keyinfo->key_length+= HA_KEY_BLOB_LENGTH; // ??? key_part_info->key_part_flag|= field->type() == MYSQL_TYPE_BLOB ? HA_BLOB_PART: HA_VAR_LENGTH_PART; } key_part_info->type= (uint8) field->key_type(); key_part_info->key_type = ((ha_base_keytype) key_part_info->type == HA_KEYTYPE_TEXT || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT1 || (ha_base_keytype) key_part_info->type == HA_KEYTYPE_VARTEXT2) ? 0 : FIELDFLAG_BINARY; } /** @brief Add one key to a temporary table @param key the number of the key @param key_parts number of components of the key @param next_field_no the call-back function that returns the number of the field used as the next component of the key @param arg the argument for the above function @param unique TRUE <=> it is a unique index @details The function adds a new key to the table that is assumed to be a temporary table. At each its invocation the call-back function must return the number of the field that is used as the next component of this key. @return FALSE is a success @return TRUE if a failure */ bool TABLE::add_tmp_key(uint key, uint key_parts, uint (*next_field_no) (uchar *), uchar *arg, bool unique) { DBUG_ASSERT(key < max_keys); char buf[NAME_CHAR_LEN]; KEY* keyinfo; Field **reg_field; uint i; bool key_start= TRUE; KEY_PART_INFO* key_part_info= (KEY_PART_INFO*) alloc_root(&mem_root, sizeof(KEY_PART_INFO)*key_parts); if (!key_part_info) return TRUE; keyinfo= key_info + key; keyinfo->key_part= key_part_info; keyinfo->usable_key_parts= keyinfo->key_parts = key_parts; keyinfo->ext_key_parts= keyinfo->key_parts; keyinfo->key_length=0; keyinfo->algorithm= HA_KEY_ALG_UNDEF; keyinfo->flags= HA_GENERATED_KEY; keyinfo->ext_key_flags= keyinfo->flags; keyinfo->is_statistics_from_stat_tables= FALSE; if (unique) keyinfo->flags|= HA_NOSAME; sprintf(buf, "key%i", key); if (!(keyinfo->name= strdup_root(&mem_root, buf))) return TRUE; keyinfo->rec_per_key= (ulong*) alloc_root(&mem_root, sizeof(ulong)*key_parts); if (!keyinfo->rec_per_key) return TRUE; bzero(keyinfo->rec_per_key, sizeof(ulong)*key_parts); keyinfo->read_stats= NULL; keyinfo->collected_stats= NULL; for (i= 0; i < key_parts; i++) { uint fld_idx= next_field_no(arg); reg_field= field + fld_idx; if (key_start) (*reg_field)->key_start.set_bit(key); (*reg_field)->part_of_key.set_bit(key); create_key_part_by_field(keyinfo, key_part_info, *reg_field, fld_idx+1); key_start= FALSE; key_part_info++; } set_if_bigger(s->max_key_length, keyinfo->key_length); s->keys++; return FALSE; } /* @brief Drop all indexes except specified one. @param key_to_save the key to save @details Drop all indexes on this table except 'key_to_save'. The saved key becomes key #0. Memory occupied by key parts of dropped keys are freed. If the 'key_to_save' is negative then all keys are freed. */ void TABLE::use_index(int key_to_save) { uint i= 1; DBUG_ASSERT(!created && key_to_save < (int)s->keys); if (key_to_save >= 0) /* Save the given key. */ memmove(key_info, key_info + key_to_save, sizeof(KEY)); else /* Drop all keys; */ i= 0; s->keys= i; } /* Return TRUE if the table is filled at execution phase (and so, the optimizer must not do anything that depends on the contents of the table, like range analysis or constant table detection) */ bool TABLE::is_filled_at_execution() { /* pos_in_table_list == NULL for internal temporary tables because they do not have a corresponding table reference. Such tables are filled during execution. */ return test(!pos_in_table_list || pos_in_table_list->jtbm_subselect || pos_in_table_list->is_active_sjm()); } /** @brief Get actual number of key components @param keyinfo @details The function calculates actual number of key components, possibly including components of extended keys, taken into consideration by the optimizer for the key described by the parameter keyinfo. @return number of considered key components */ uint TABLE::actual_n_key_parts(KEY *keyinfo) { return optimizer_flag(in_use, OPTIMIZER_SWITCH_EXTENDED_KEYS) ? keyinfo->ext_key_parts : keyinfo->key_parts; } /** @brief Get actual key flags for a table key @param keyinfo @details The function finds out actual key flags taken into consideration by the optimizer for the key described by the parameter keyinfo. @return actual key flags */ ulong TABLE::actual_key_flags(KEY *keyinfo) { return optimizer_flag(in_use, OPTIMIZER_SWITCH_EXTENDED_KEYS) ? keyinfo->ext_key_flags : keyinfo->flags; } /* Cleanup this table for re-execution. SYNOPSIS TABLE_LIST::reinit_before_use() */ void TABLE_LIST::reinit_before_use(THD *thd) { /* Reset old pointers to TABLEs: they are not valid since the tables were closed in the end of previous prepare or execute call. */ table= 0; /* Reset is_schema_table_processed value(needed for I_S tables */ schema_table_state= NOT_PROCESSED; TABLE_LIST *embedded; /* The table at the current level of nesting. */ TABLE_LIST *parent_embedding= this; /* The parent nested table reference. */ do { embedded= parent_embedding; if (embedded->prep_on_expr) embedded->on_expr= embedded->prep_on_expr->copy_andor_structure(thd); parent_embedding= embedded->embedding; } while (parent_embedding && parent_embedding->nested_join->join_list.head() == embedded); mdl_request.ticket= NULL; } /* Return subselect that contains the FROM list this table is taken from SYNOPSIS TABLE_LIST::containing_subselect() RETURN Subselect item for the subquery that contains the FROM list this table is taken from if there is any 0 - otherwise */ Item_subselect *TABLE_LIST::containing_subselect() { return (select_lex ? select_lex->master_unit()->item : 0); } /* Compiles the tagged hints list and fills up the bitmasks. SYNOPSIS process_index_hints() table the TABLE to operate on. DESCRIPTION The parser collects the index hints for each table in a "tagged list" (TABLE_LIST::index_hints). Using the information in this tagged list this function sets the members TABLE::keys_in_use_for_query, TABLE::keys_in_use_for_group_by, TABLE::keys_in_use_for_order_by, TABLE::force_index, TABLE::force_index_order, TABLE::force_index_group and TABLE::covering_keys. Current implementation of the runtime does not allow mixing FORCE INDEX and USE INDEX, so this is checked here. Then the FORCE INDEX list (if non-empty) is appended to the USE INDEX list and a flag is set. Multiple hints of the same kind are processed so that each clause is applied to what is computed in the previous clause. For example: USE INDEX (i1) USE INDEX (i2) is equivalent to USE INDEX (i1,i2) and means "consider only i1 and i2". Similarly USE INDEX () USE INDEX (i1) is equivalent to USE INDEX (i1) and means "consider only the index i1" It is OK to have the same index several times, e.g. "USE INDEX (i1,i1)" is not an error. Different kind of hints (USE/FORCE/IGNORE) are processed in the following order: 1. All indexes in USE (or FORCE) INDEX are added to the mask. 2. All IGNORE INDEX e.g. "USE INDEX i1, IGNORE INDEX i1, USE INDEX i1" will not use i1 at all as if we had "USE INDEX i1, USE INDEX i1, IGNORE INDEX i1". As an optimization if there is a covering index, and we have IGNORE INDEX FOR GROUP/ORDER, and this index is used for the JOIN part, then we have to ignore the IGNORE INDEX FROM GROUP/ORDER. RETURN VALUE FALSE no errors found TRUE found and reported an error. */ bool TABLE_LIST::process_index_hints(TABLE *tbl) { /* initialize the result variables */ tbl->keys_in_use_for_query= tbl->keys_in_use_for_group_by= tbl->keys_in_use_for_order_by= tbl->s->keys_in_use; /* index hint list processing */ if (index_hints) { key_map index_join[INDEX_HINT_FORCE + 1]; key_map index_order[INDEX_HINT_FORCE + 1]; key_map index_group[INDEX_HINT_FORCE + 1]; Index_hint *hint; int type; bool have_empty_use_join= FALSE, have_empty_use_order= FALSE, have_empty_use_group= FALSE; List_iterator iter(*index_hints); /* initialize temporary variables used to collect hints of each kind */ for (type= INDEX_HINT_IGNORE; type <= INDEX_HINT_FORCE; type++) { index_join[type].clear_all(); index_order[type].clear_all(); index_group[type].clear_all(); } /* iterate over the hints list */ while ((hint= iter++)) { uint pos; /* process empty USE INDEX () */ if (hint->type == INDEX_HINT_USE && !hint->key_name.str) { if (hint->clause & INDEX_HINT_MASK_JOIN) { index_join[hint->type].clear_all(); have_empty_use_join= TRUE; } if (hint->clause & INDEX_HINT_MASK_ORDER) { index_order[hint->type].clear_all(); have_empty_use_order= TRUE; } if (hint->clause & INDEX_HINT_MASK_GROUP) { index_group[hint->type].clear_all(); have_empty_use_group= TRUE; } continue; } /* Check if an index with the given name exists and get his offset in the keys bitmask for the table */ if (tbl->s->keynames.type_names == 0 || (pos= find_type(&tbl->s->keynames, hint->key_name.str, hint->key_name.length, 1)) <= 0) { my_error(ER_KEY_DOES_NOT_EXITS, MYF(0), hint->key_name.str, alias); return 1; } pos--; /* add to the appropriate clause mask */ if (hint->clause & INDEX_HINT_MASK_JOIN) index_join[hint->type].set_bit (pos); if (hint->clause & INDEX_HINT_MASK_ORDER) index_order[hint->type].set_bit (pos); if (hint->clause & INDEX_HINT_MASK_GROUP) index_group[hint->type].set_bit (pos); } /* cannot mix USE INDEX and FORCE INDEX */ if ((!index_join[INDEX_HINT_FORCE].is_clear_all() || !index_order[INDEX_HINT_FORCE].is_clear_all() || !index_group[INDEX_HINT_FORCE].is_clear_all()) && (!index_join[INDEX_HINT_USE].is_clear_all() || have_empty_use_join || !index_order[INDEX_HINT_USE].is_clear_all() || have_empty_use_order || !index_group[INDEX_HINT_USE].is_clear_all() || have_empty_use_group)) { my_error(ER_WRONG_USAGE, MYF(0), index_hint_type_name[INDEX_HINT_USE], index_hint_type_name[INDEX_HINT_FORCE]); return 1; } /* process FORCE INDEX as USE INDEX with a flag */ if (!index_order[INDEX_HINT_FORCE].is_clear_all()) { tbl->force_index_order= TRUE; index_order[INDEX_HINT_USE].merge(index_order[INDEX_HINT_FORCE]); } if (!index_group[INDEX_HINT_FORCE].is_clear_all()) { tbl->force_index_group= TRUE; index_group[INDEX_HINT_USE].merge(index_group[INDEX_HINT_FORCE]); } /* TODO: get rid of tbl->force_index (on if any FORCE INDEX is specified) and create tbl->force_index_join instead. Then use the correct force_index_XX instead of the global one. */ if (!index_join[INDEX_HINT_FORCE].is_clear_all() || tbl->force_index_group || tbl->force_index_order) { tbl->force_index= TRUE; index_join[INDEX_HINT_USE].merge(index_join[INDEX_HINT_FORCE]); } /* apply USE INDEX */ if (!index_join[INDEX_HINT_USE].is_clear_all() || have_empty_use_join) tbl->keys_in_use_for_query.intersect(index_join[INDEX_HINT_USE]); if (!index_order[INDEX_HINT_USE].is_clear_all() || have_empty_use_order) tbl->keys_in_use_for_order_by.intersect (index_order[INDEX_HINT_USE]); if (!index_group[INDEX_HINT_USE].is_clear_all() || have_empty_use_group) tbl->keys_in_use_for_group_by.intersect (index_group[INDEX_HINT_USE]); /* apply IGNORE INDEX */ tbl->keys_in_use_for_query.subtract (index_join[INDEX_HINT_IGNORE]); tbl->keys_in_use_for_order_by.subtract (index_order[INDEX_HINT_IGNORE]); tbl->keys_in_use_for_group_by.subtract (index_group[INDEX_HINT_IGNORE]); } /* make sure covering_keys don't include indexes disabled with a hint */ tbl->covering_keys.intersect(tbl->keys_in_use_for_query); return 0; } size_t max_row_length(TABLE *table, const uchar *data) { TABLE_SHARE *table_s= table->s; size_t length= table_s->reclength + 2 * table_s->fields; uint *const beg= table_s->blob_field; uint *const end= beg + table_s->blob_fields; for (uint *ptr= beg ; ptr != end ; ++ptr) { Field_blob* const blob= (Field_blob*) table->field[*ptr]; length+= blob->get_length((const uchar*) (data + blob->offset(table->record[0]))) + HA_KEY_BLOB_LENGTH; } return length; } /** Helper function which allows to allocate metadata lock request objects for all elements of table list. */ void init_mdl_requests(TABLE_LIST *table_list) { for ( ; table_list ; table_list= table_list->next_global) table_list->mdl_request.init(MDL_key::TABLE, table_list->db, table_list->table_name, table_list->lock_type >= TL_WRITE_ALLOW_WRITE ? MDL_SHARED_WRITE : MDL_SHARED_READ, MDL_TRANSACTION); } /** Update TABLE::const_key_parts for single table UPDATE/DELETE query @param conds WHERE clause expression @retval TRUE error (OOM) @retval FALSE success @note Set const_key_parts bits if key fields are equal to constants in the WHERE expression. */ bool TABLE::update_const_key_parts(COND *conds) { bzero((char*) const_key_parts, sizeof(key_part_map) * s->keys); if (conds == NULL) return FALSE; for (uint index= 0; index < s->keys; index++) { KEY_PART_INFO *keyinfo= key_info[index].key_part; KEY_PART_INFO *keyinfo_end= keyinfo + key_info[index].key_parts; for (key_part_map part_map= (key_part_map)1; keyinfo < keyinfo_end; keyinfo++, part_map<<= 1) { if (const_expression_in_where(conds, NULL, keyinfo->field)) const_key_parts[index]|= part_map; } } return FALSE; } /** Test if the order list consists of simple field expressions @param order Linked list of ORDER BY arguments @return TRUE if @a order is empty or consist of simple field expressions */ bool is_simple_order(ORDER *order) { for (ORDER *ord= order; ord; ord= ord->next) { if (ord->item[0]->real_item()->type() != Item::FIELD_ITEM) return FALSE; } return TRUE; } /* @brief Compute values for virtual columns used in query @param thd Thread handle @param table The TABLE object @param vcol_update_mode Specifies what virtual column are computed @details The function computes the values of the virtual columns of the table and stores them in the table record buffer. If vcol_update_mode is set to VCOL_UPDATE_ALL then all virtual column are computed. Otherwise, only fields from vcol_set are computed: all of them, if vcol_update_mode is set to VCOL_UPDATE_FOR_WRITE, and, only those with the stored_in_db flag set to false, if vcol_update_mode is equal to VCOL_UPDATE_FOR_READ. @retval 0 Success @retval >0 Error occurred when storing a virtual field value */ int update_virtual_fields(THD *thd, TABLE *table, enum enum_vcol_update_mode vcol_update_mode) { DBUG_ENTER("update_virtual_fields"); Field **vfield_ptr, *vfield; int error __attribute__ ((unused))= 0; DBUG_ASSERT(table && table->vfield); thd->reset_arena_for_cached_items(table->expr_arena); /* Iterate over virtual fields in the table */ for (vfield_ptr= table->vfield; *vfield_ptr; vfield_ptr++) { vfield= (*vfield_ptr); DBUG_ASSERT(vfield->vcol_info && vfield->vcol_info->expr_item); if ((bitmap_is_set(table->vcol_set, vfield->field_index) && (vcol_update_mode == VCOL_UPDATE_FOR_WRITE || !vfield->stored_in_db)) || vcol_update_mode == VCOL_UPDATE_ALL) { /* Compute the actual value of the virtual fields */ error= vfield->vcol_info->expr_item->save_in_field(vfield, 0); DBUG_PRINT("info", ("field '%s' - updated", vfield->field_name)); } else { DBUG_PRINT("info", ("field '%s' - skipped", vfield->field_name)); } } thd->reset_arena_for_cached_items(0); DBUG_RETURN(0); } /** Update all DEFAULT and/or ON INSERT fields. @details Compute and set the default value of all fields with a default function. There are two kinds of default functions - one is used for INSERT-like operations, the other for UPDATE-like operations. Depending on the field definition and the current operation one or the other kind of update function is evaluated. @retval 0 Success @retval >0 Error occurred when storing a virtual field value */ int TABLE::update_default_fields() { DBUG_ENTER("update_default_fields"); Field **dfield_ptr, *dfield; int res= 0; enum_sql_command cmd= in_use->lex->sql_command; DBUG_ASSERT(default_field); /* Iterate over virtual fields in the table */ for (dfield_ptr= default_field; *dfield_ptr; dfield_ptr++) { dfield= (*dfield_ptr); /* If an explicit default value for a filed overrides the default, do not update the field with its automatic default value. */ if (!(dfield->flags & HAS_EXPLICIT_VALUE)) { if (sql_command_flags[cmd] & CF_INSERTS_DATA) res= dfield->evaluate_insert_default_function(); if (sql_command_flags[cmd] & CF_UPDATES_DATA) res= dfield->evaluate_update_default_function(); if (res) DBUG_RETURN(res); } /* Unset the explicit default flag for the next record. */ dfield->flags&= ~HAS_EXPLICIT_VALUE; } DBUG_RETURN(res); } /* @brief Reset const_table flag @detail Reset const_table flag for this table. If this table is a merged derived table/view the flag is recursively reseted for all tables of the underlying select. */ void TABLE_LIST::reset_const_table() { table->const_table= 0; if (is_merged_derived()) { SELECT_LEX *select_lex= get_unit()->first_select(); TABLE_LIST *tl; List_iterator ti(select_lex->leaf_tables); while ((tl= ti++)) tl->reset_const_table(); } } /* @brief Run derived tables/view handling phases on underlying select_lex. @param lex LEX for this thread @param phases derived tables/views handling phases to run (set of DT_XXX constants) @details This function runs this derived table through specified 'phases'. Underlying tables of this select are handled prior to this derived. 'lex' is passed as an argument to called functions. @return TRUE on error @return FALSE ok */ bool TABLE_LIST::handle_derived(LEX *lex, uint phases) { SELECT_LEX_UNIT *unit= get_unit(); if (unit) { for (SELECT_LEX *sl= unit->first_select(); sl; sl= sl->next_select()) if (sl->handle_derived(lex, phases)) return TRUE; return mysql_handle_single_derived(lex, this, phases); } return FALSE; } /** @brief Return unit of this derived table/view @return reference to a unit if it's a derived table/view. @return 0 when it's not a derived table/view. */ st_select_lex_unit *TABLE_LIST::get_unit() { return (view ? &view->unit : derived); } /** @brief Return select_lex of this derived table/view @return select_lex of this derived table/view. @return 0 when it's not a derived table. */ st_select_lex *TABLE_LIST::get_single_select() { SELECT_LEX_UNIT *unit= get_unit(); return (unit ? unit->first_select() : 0); } /** @brief Attach a join table list as a nested join to this TABLE_LIST. @param join_list join table list to attach @details This function wraps 'join_list' into a nested_join of this table, thus turning it to a nested join leaf. */ void TABLE_LIST::wrap_into_nested_join(List &join_list) { TABLE_LIST *tl; /* Walk through derived table top list and set 'embedding' to point to the nesting table. */ nested_join->join_list.empty(); List_iterator_fast li(join_list); nested_join->join_list= join_list; while ((tl= li++)) { tl->embedding= this; tl->join_list= &nested_join->join_list; } } /** @brief Initialize this derived table/view @param thd Thread handle @details This function makes initial preparations of this derived table/view for further processing: if it's a derived table this function marks it either as mergeable or materializable creates temporary table for name resolution purposes creates field translation for mergeable derived table/view @return TRUE an error occur @return FALSE ok */ bool TABLE_LIST::init_derived(THD *thd, bool init_view) { SELECT_LEX *first_select= get_single_select(); SELECT_LEX_UNIT *unit= get_unit(); if (!unit) return FALSE; /* Check whether we can merge this derived table into main select. Depending on the result field translation will or will not be created. */ TABLE_LIST *first_table= (TABLE_LIST *) first_select->table_list.first; if (first_select->table_list.elements > 1 || (first_table && first_table->is_multitable())) set_multitable(); unit->derived= this; if (init_view && !view) { /* This is all what we can do for a derived table for now. */ set_derived(); } if (!is_view()) { /* A subquery might be forced to be materialized due to a side-effect. */ if (!is_materialized_derived() && first_select->is_mergeable() && optimizer_flag(thd, OPTIMIZER_SWITCH_DERIVED_MERGE) && !(thd->lex->sql_command == SQLCOM_UPDATE_MULTI || thd->lex->sql_command == SQLCOM_DELETE_MULTI)) set_merged_derived(); else set_materialized_derived(); } /* Derived tables/view are materialized prior to UPDATE, thus we can skip them from table uniqueness check */ if (is_materialized_derived()) { set_check_materialized(); } /* Create field translation for mergeable derived tables/views. For derived tables field translation can be created only after unit is prepared so all '*' are get unrolled. */ if (is_merged_derived()) { if (is_view() || unit->prepared) create_field_translation(thd); } return FALSE; } /** @brief Retrieve number of rows in the table @details Retrieve number of rows in the table referred by this TABLE_LIST and store it in the table's stats.records variable. If this TABLE_LIST refers to a materialized derived table/view then the estimated number of rows of the derived table/view is used instead. @return 0 ok @return non zero error */ int TABLE_LIST::fetch_number_of_rows() { int error= 0; if (jtbm_subselect) return 0; if (is_materialized_derived() && !fill_me) { table->file->stats.records= ((select_union*)derived->result)->records; set_if_bigger(table->file->stats.records, 2); table->used_stat_records= table->file->stats.records; } else error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); return error; } /* Procedure of keys generation for result tables of materialized derived tables/views. A key is generated for each equi-join pair derived table-another table. Each generated key consists of fields of derived table used in equi-join. Example: SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN t1 ON tt.f1=t1.f3 and tt.f2.=t1.f4; In this case for the derived table tt one key will be generated. It will consist of two parts f1 and f2. Example: SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN t1 ON tt.f1=t1.f3 JOIN t2 ON tt.f2=t2.f4; In this case for the derived table tt two keys will be generated. One key over f1 field, and another key over f2 field. Currently optimizer may choose to use only one such key, thus the second one will be dropped after range optimizer is finished. See also JOIN::drop_unused_derived_keys function. Example: SELECT * FROM (SELECT * FROM t1 GROUP BY 1) tt JOIN t1 ON tt.f1=a_function(t1.f3); In this case for the derived table tt one key will be generated. It will consist of one field - f1. */ /* @brief Change references to underlying items of a merged derived table/view for fields in derived table's result table. @return FALSE ok @return TRUE Out of memory */ bool TABLE_LIST::change_refs_to_fields() { List_iterator li(used_items); Item_direct_ref *ref; Field_iterator_view field_it; THD *thd= table->in_use; DBUG_ASSERT(is_merged_derived()); if (!used_items.elements) return FALSE; materialized_items= (Item**)thd->calloc(sizeof(void*) * table->s->fields); while ((ref= (Item_direct_ref*)li++)) { uint idx; Item *orig_item= *ref->ref; field_it.set(this); for (idx= 0; !field_it.end_of_fields(); field_it.next(), idx++) { if (field_it.item() == orig_item) break; } DBUG_ASSERT(!field_it.end_of_fields()); if (!materialized_items[idx]) { materialized_items[idx]= new Item_field(table->field[idx]); if (!materialized_items[idx]) return TRUE; } /* We need to restore the pointers after the execution of the prepared statement. */ thd->change_item_tree((Item **)&ref->ref, (Item*)(materialized_items + idx)); } return FALSE; } uint TABLE_SHARE::actual_n_key_parts(THD *thd) { return use_ext_keys && optimizer_flag(thd, OPTIMIZER_SWITCH_EXTENDED_KEYS) ? ext_key_parts : key_parts; } double KEY::actual_rec_per_key(uint i) { if (rec_per_key == 0) return 0; return (is_statistics_from_stat_tables ? read_stats->get_avg_frequency(i) : (double) rec_per_key[i]); }