/* Copyright (c) 2000, 2016, Oracle and/or its affiliates. Copyright (c) 2009, 2019, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "mariadb.h" #include "sql_class.h" #include "transaction.h" /*************************************************************************** Handling of XA id cacheing ***************************************************************************/ enum xa_states { XA_ACTIVE= 0, XA_IDLE, XA_PREPARED, XA_ROLLBACK_ONLY }; struct XID_cache_insert_element { enum xa_states xa_state; XID *xid; XID_cache_element *xid_cache_element; XID_cache_insert_element(enum xa_states xa_state_arg, XID *xid_arg): xa_state(xa_state_arg), xid(xid_arg) {} }; class XID_cache_element { /* m_state is used to prevent elements from being deleted while XA RECOVER iterates xid cache and to prevent recovered elments from being acquired by multiple threads. bits 1..29 are reference counter bit 30 is RECOVERED flag bit 31 is ACQUIRED flag (thread owns this xid) bit 32 is unused Newly allocated and deleted elements have m_state set to 0. On lock() m_state is atomically incremented. It also creates load-ACQUIRE memory barrier to make sure m_state is actually updated before furhter memory accesses. Attempting to lock an element that has neither ACQUIRED nor RECOVERED flag set returns failure and further accesses to element memory are forbidden. On unlock() m_state is decremented. It also creates store-RELEASE memory barrier to make sure m_state is actually updated after preceding memory accesses. ACQUIRED flag is set when thread registers it's xid or when thread acquires recovered xid. RECOVERED flag is set for elements found during crash recovery. ACQUIRED and RECOVERED flags are cleared before element is deleted from hash in a spin loop, after last reference is released. */ std::atomic m_state; public: static const int32 ACQUIRED= 1 << 30; static const int32 RECOVERED= 1 << 29; /* Error reported by the Resource Manager (RM) to the Transaction Manager. */ uint rm_error; enum xa_states xa_state; XID xid; bool is_set(int32_t flag) { return m_state.load(std::memory_order_relaxed) & flag; } void set(int32_t flag) { DBUG_ASSERT(!is_set(ACQUIRED | RECOVERED)); m_state.fetch_add(flag, std::memory_order_relaxed); } bool lock() { int32_t old= m_state.fetch_add(1, std::memory_order_acquire); if (old & (ACQUIRED | RECOVERED)) return true; unlock(); return false; } void unlock() { m_state.fetch_sub(1, std::memory_order_release); } void mark_uninitialized() { int32_t old= ACQUIRED; while (!m_state.compare_exchange_weak(old, 0, std::memory_order_relaxed, std::memory_order_relaxed)) { old&= ACQUIRED | RECOVERED; (void) LF_BACKOFF(); } } void acquired_to_recovered() { m_state.fetch_or(RECOVERED, std::memory_order_relaxed); m_state.fetch_and(~ACQUIRED, std::memory_order_release); } bool acquire_recovered() { int32_t old= RECOVERED; while (!m_state.compare_exchange_weak(old, ACQUIRED | RECOVERED, std::memory_order_acquire, std::memory_order_relaxed)) { if (!(old & RECOVERED) || (old & ACQUIRED)) return false; old= RECOVERED; (void) LF_BACKOFF(); } return true; } static void lf_hash_initializer(LF_HASH *hash __attribute__((unused)), XID_cache_element *element, XID_cache_insert_element *new_element) { DBUG_ASSERT(!element->is_set(ACQUIRED | RECOVERED)); element->rm_error= 0; element->xa_state= new_element->xa_state; element->xid.set(new_element->xid); new_element->xid_cache_element= element; } static void lf_alloc_constructor(uchar *ptr) { XID_cache_element *element= (XID_cache_element*) (ptr + LF_HASH_OVERHEAD); element->m_state= 0; } static void lf_alloc_destructor(uchar *ptr) { XID_cache_element *element= (XID_cache_element*) (ptr + LF_HASH_OVERHEAD); DBUG_ASSERT(!element->is_set(ACQUIRED)); } static uchar *key(const XID_cache_element *element, size_t *length, my_bool not_used __attribute__((unused))) { *length= element->xid.key_length(); return element->xid.key(); } }; static LF_HASH xid_cache; static bool xid_cache_inited; bool THD::fix_xid_hash_pins() { if (!xid_hash_pins) xid_hash_pins= lf_hash_get_pins(&xid_cache); return !xid_hash_pins; } void XID_STATE::set_error(uint error) { if (is_explicit_XA()) xid_cache_element->rm_error= error; } void XID_STATE::er_xaer_rmfail() const { static const char *xa_state_names[]= { "ACTIVE", "IDLE", "PREPARED", "ROLLBACK ONLY" }; my_error(ER_XAER_RMFAIL, MYF(0), is_explicit_XA() ? xa_state_names[xid_cache_element->xa_state] : "NON-EXISTING"); } /** Check that XA transaction has an uncommitted work. Report an error to the user in case when there is an uncommitted work for XA transaction. @return result of check @retval false XA transaction is NOT in state IDLE, PREPARED or ROLLBACK_ONLY. @retval true XA transaction is in state IDLE or PREPARED or ROLLBACK_ONLY. */ bool XID_STATE::check_has_uncommitted_xa() const { if (is_explicit_XA() && xid_cache_element->xa_state != XA_ACTIVE) { er_xaer_rmfail(); return true; } return false; } XID *XID_STATE::get_xid() const { DBUG_ASSERT(is_explicit_XA()); return &xid_cache_element->xid; } void xid_cache_init() { xid_cache_inited= true; lf_hash_init(&xid_cache, sizeof(XID_cache_element), LF_HASH_UNIQUE, 0, 0, (my_hash_get_key) XID_cache_element::key, &my_charset_bin); xid_cache.alloc.constructor= XID_cache_element::lf_alloc_constructor; xid_cache.alloc.destructor= XID_cache_element::lf_alloc_destructor; xid_cache.initializer= (lf_hash_initializer) XID_cache_element::lf_hash_initializer; } void xid_cache_free() { if (xid_cache_inited) { lf_hash_destroy(&xid_cache); xid_cache_inited= false; } } /** Find recovered XA transaction by XID. */ static XID_cache_element *xid_cache_search(THD *thd, XID *xid) { DBUG_ASSERT(thd->xid_hash_pins); XID_cache_element *element= (XID_cache_element*) lf_hash_search(&xid_cache, thd->xid_hash_pins, xid->key(), xid->key_length()); if (element) { if (!element->acquire_recovered()) element= 0; lf_hash_search_unpin(thd->xid_hash_pins); DEBUG_SYNC(thd, "xa_after_search"); } return element; } bool xid_cache_insert(XID *xid) { XID_cache_insert_element new_element(XA_PREPARED, xid); LF_PINS *pins; if (!(pins= lf_hash_get_pins(&xid_cache))) return true; int res= lf_hash_insert(&xid_cache, pins, &new_element); switch (res) { case 0: new_element.xid_cache_element->set(XID_cache_element::RECOVERED); break; case 1: res= 0; } lf_hash_put_pins(pins); return res; } bool xid_cache_insert(THD *thd, XID_STATE *xid_state, XID *xid) { XID_cache_insert_element new_element(XA_ACTIVE, xid); if (thd->fix_xid_hash_pins()) return true; int res= lf_hash_insert(&xid_cache, thd->xid_hash_pins, &new_element); switch (res) { case 0: xid_state->xid_cache_element= new_element.xid_cache_element; xid_state->xid_cache_element->set(XID_cache_element::ACQUIRED); break; case 1: my_error(ER_XAER_DUPID, MYF(0)); } return res; } static void xid_cache_delete(THD *thd, XID_cache_element *&element) { DBUG_ASSERT(thd->xid_hash_pins); element->mark_uninitialized(); lf_hash_delete(&xid_cache, thd->xid_hash_pins, element->xid.key(), element->xid.key_length()); } void xid_cache_delete(THD *thd, XID_STATE *xid_state) { DBUG_ASSERT(xid_state->is_explicit_XA()); xid_cache_delete(thd, xid_state->xid_cache_element); xid_state->xid_cache_element= 0; } struct xid_cache_iterate_arg { my_hash_walk_action action; void *argument; }; static my_bool xid_cache_iterate_callback(XID_cache_element *element, xid_cache_iterate_arg *arg) { my_bool res= FALSE; if (element->lock()) { res= arg->action(element, arg->argument); element->unlock(); } return res; } static int xid_cache_iterate(THD *thd, my_hash_walk_action action, void *arg) { xid_cache_iterate_arg argument= { action, arg }; return thd->fix_xid_hash_pins() ? -1 : lf_hash_iterate(&xid_cache, thd->xid_hash_pins, (my_hash_walk_action) xid_cache_iterate_callback, &argument); } /** Mark a XA transaction as rollback-only if the RM unilaterally rolled back the transaction branch. @note If a rollback was requested by the RM, this function sets the appropriate rollback error code and transits the state to XA_ROLLBACK_ONLY. @return TRUE if transaction was rolled back or if the transaction state is XA_ROLLBACK_ONLY. FALSE otherwise. */ static bool xa_trans_rolled_back(XID_cache_element *element) { if (element->rm_error) { switch (element->rm_error) { case ER_LOCK_WAIT_TIMEOUT: my_error(ER_XA_RBTIMEOUT, MYF(0)); break; case ER_LOCK_DEADLOCK: my_error(ER_XA_RBDEADLOCK, MYF(0)); break; default: my_error(ER_XA_RBROLLBACK, MYF(0)); } element->xa_state= XA_ROLLBACK_ONLY; } return element->xa_state == XA_ROLLBACK_ONLY; } /** Rollback the active XA transaction. @return TRUE if the rollback failed, FALSE otherwise. */ static bool xa_trans_force_rollback(THD *thd) { bool rc= false; if (ha_rollback_trans(thd, true)) { my_error(ER_XAER_RMERR, MYF(0)); rc= true; } thd->variables.option_bits&= ~(OPTION_BEGIN | OPTION_KEEP_LOG); thd->transaction.all.reset(); thd->server_status&= ~(SERVER_STATUS_IN_TRANS | SERVER_STATUS_IN_TRANS_READONLY); DBUG_PRINT("info", ("clearing SERVER_STATUS_IN_TRANS")); xid_cache_delete(thd, &thd->transaction.xid_state); trans_track_end_trx(thd); return rc; } /** Starts an XA transaction with the given xid value. @param thd Current thread @retval FALSE Success @retval TRUE Failure */ bool trans_xa_start(THD *thd) { DBUG_ENTER("trans_xa_start"); if (thd->transaction.xid_state.is_explicit_XA() && thd->transaction.xid_state.xid_cache_element->xa_state == XA_IDLE && thd->lex->xa_opt == XA_RESUME) { bool not_equal= !thd->transaction.xid_state.xid_cache_element->xid.eq(thd->lex->xid); if (not_equal) my_error(ER_XAER_NOTA, MYF(0)); else thd->transaction.xid_state.xid_cache_element->xa_state= XA_ACTIVE; DBUG_RETURN(not_equal); } /* TODO: JOIN is not supported yet. */ if (thd->lex->xa_opt != XA_NONE) my_error(ER_XAER_INVAL, MYF(0)); else if (thd->transaction.xid_state.is_explicit_XA()) thd->transaction.xid_state.er_xaer_rmfail(); else if (thd->locked_tables_mode || thd->in_active_multi_stmt_transaction()) my_error(ER_XAER_OUTSIDE, MYF(0)); else if (!trans_begin(thd)) { if (xid_cache_insert(thd, &thd->transaction.xid_state, thd->lex->xid)) { trans_rollback(thd); DBUG_RETURN(true); } DBUG_RETURN(FALSE); } DBUG_RETURN(TRUE); } /** Put a XA transaction in the IDLE state. @param thd Current thread @retval FALSE Success @retval TRUE Failure */ bool trans_xa_end(THD *thd) { DBUG_ENTER("trans_xa_end"); /* TODO: SUSPEND and FOR MIGRATE are not supported yet. */ if (thd->lex->xa_opt != XA_NONE) my_error(ER_XAER_INVAL, MYF(0)); else if (!thd->transaction.xid_state.is_explicit_XA() || thd->transaction.xid_state.xid_cache_element->xa_state != XA_ACTIVE) thd->transaction.xid_state.er_xaer_rmfail(); else if (!thd->transaction.xid_state.xid_cache_element->xid.eq(thd->lex->xid)) my_error(ER_XAER_NOTA, MYF(0)); else if (!xa_trans_rolled_back(thd->transaction.xid_state.xid_cache_element)) thd->transaction.xid_state.xid_cache_element->xa_state= XA_IDLE; DBUG_RETURN(thd->is_error() || thd->transaction.xid_state.xid_cache_element->xa_state != XA_IDLE); } /** Put a XA transaction in the PREPARED state. @param thd Current thread @retval FALSE Success @retval TRUE Failure */ bool trans_xa_prepare(THD *thd) { DBUG_ENTER("trans_xa_prepare"); if (!thd->transaction.xid_state.is_explicit_XA() || thd->transaction.xid_state.xid_cache_element->xa_state != XA_IDLE) thd->transaction.xid_state.er_xaer_rmfail(); else if (!thd->transaction.xid_state.xid_cache_element->xid.eq(thd->lex->xid)) my_error(ER_XAER_NOTA, MYF(0)); else if (ha_prepare(thd)) { xid_cache_delete(thd, &thd->transaction.xid_state); my_error(ER_XA_RBROLLBACK, MYF(0)); } else thd->transaction.xid_state.xid_cache_element->xa_state= XA_PREPARED; DBUG_RETURN(thd->is_error() || thd->transaction.xid_state.xid_cache_element->xa_state != XA_PREPARED); } /** Commit and terminate the a XA transaction. @param thd Current thread @retval FALSE Success @retval TRUE Failure */ bool trans_xa_commit(THD *thd) { bool res= TRUE; DBUG_ENTER("trans_xa_commit"); if (!thd->transaction.xid_state.is_explicit_XA() || !thd->transaction.xid_state.xid_cache_element->xid.eq(thd->lex->xid)) { if (thd->fix_xid_hash_pins()) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); DBUG_RETURN(TRUE); } if (auto xs= xid_cache_search(thd, thd->lex->xid)) { res= xa_trans_rolled_back(xs); ha_commit_or_rollback_by_xid(thd->lex->xid, !res); xid_cache_delete(thd, xs); } else my_error(ER_XAER_NOTA, MYF(0)); DBUG_RETURN(res); } if (xa_trans_rolled_back(thd->transaction.xid_state.xid_cache_element)) { xa_trans_force_rollback(thd); DBUG_RETURN(thd->is_error()); } else if (thd->transaction.xid_state.xid_cache_element->xa_state == XA_IDLE && thd->lex->xa_opt == XA_ONE_PHASE) { int r= ha_commit_trans(thd, TRUE); if ((res= MY_TEST(r))) my_error(r == 1 ? ER_XA_RBROLLBACK : ER_XAER_RMERR, MYF(0)); } else if (thd->transaction.xid_state.xid_cache_element->xa_state == XA_PREPARED && thd->lex->xa_opt == XA_NONE) { MDL_request mdl_request; /* Acquire metadata lock which will ensure that COMMIT is blocked by active FLUSH TABLES WITH READ LOCK (and vice versa COMMIT in progress blocks FTWRL). We allow FLUSHer to COMMIT; we assume FLUSHer knows what it does. */ mdl_request.init(MDL_key::BACKUP, "", "", MDL_BACKUP_COMMIT, MDL_TRANSACTION); if (thd->mdl_context.acquire_lock(&mdl_request, thd->variables.lock_wait_timeout)) { ha_rollback_trans(thd, TRUE); my_error(ER_XAER_RMERR, MYF(0)); } else { DEBUG_SYNC(thd, "trans_xa_commit_after_acquire_commit_lock"); res= MY_TEST(ha_commit_one_phase(thd, 1)); if (res) my_error(ER_XAER_RMERR, MYF(0)); } } else { thd->transaction.xid_state.er_xaer_rmfail(); DBUG_RETURN(TRUE); } thd->variables.option_bits&= ~(OPTION_BEGIN | OPTION_KEEP_LOG); thd->transaction.all.reset(); thd->server_status&= ~(SERVER_STATUS_IN_TRANS | SERVER_STATUS_IN_TRANS_READONLY); DBUG_PRINT("info", ("clearing SERVER_STATUS_IN_TRANS")); xid_cache_delete(thd, &thd->transaction.xid_state); trans_track_end_trx(thd); DBUG_RETURN(res); } /** Roll back and terminate a XA transaction. @param thd Current thread @retval FALSE Success @retval TRUE Failure */ bool trans_xa_rollback(THD *thd) { DBUG_ENTER("trans_xa_rollback"); if (!thd->transaction.xid_state.is_explicit_XA() || !thd->transaction.xid_state.xid_cache_element->xid.eq(thd->lex->xid)) { if (thd->fix_xid_hash_pins()) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); DBUG_RETURN(TRUE); } if (auto xs= xid_cache_search(thd, thd->lex->xid)) { xa_trans_rolled_back(xs); ha_commit_or_rollback_by_xid(thd->lex->xid, 0); xid_cache_delete(thd, xs); } else my_error(ER_XAER_NOTA, MYF(0)); DBUG_RETURN(thd->get_stmt_da()->is_error()); } if (thd->transaction.xid_state.xid_cache_element->xa_state == XA_ACTIVE) { thd->transaction.xid_state.er_xaer_rmfail(); DBUG_RETURN(TRUE); } DBUG_RETURN(xa_trans_force_rollback(thd)); } bool trans_xa_detach(THD *thd) { DBUG_ASSERT(thd->transaction.xid_state.is_explicit_XA()); #if 1 return xa_trans_force_rollback(thd); #else if (thd->transaction.xid_state.xid_cache_element->xa_state != XA_PREPARED) return xa_trans_force_rollback(thd); thd->transaction.xid_state.xid_cache_element->acquired_to_recovered(); thd->transaction.xid_state.xid_cache_element= 0; thd->transaction.cleanup(); Ha_trx_info *ha_info, *ha_info_next; for (ha_info= thd->transaction.all.ha_list; ha_info; ha_info= ha_info_next) { ha_info_next= ha_info->next(); ha_info->reset(); /* keep it conveniently zero-filled */ } thd->transaction.all.ha_list= 0; thd->transaction.all.no_2pc= 0; return false; #endif } /** return the XID as it appears in the SQL function's arguments. So this string can be passed to XA START, XA PREPARE etc... @note the 'buf' has to have space for at least SQL_XIDSIZE bytes. */ /* 'a'..'z' 'A'..'Z', '0'..'9' and '-' '_' ' ' symbols don't have to be converted. */ static const char xid_needs_conv[128]= { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1, 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1 }; /* The size of XID string representation in the form 'gtrid', 'bqual', formatID see xid_t::get_sql_string() for details. */ #define SQL_XIDSIZE (XIDDATASIZE * 2 + 8 + MY_INT64_NUM_DECIMAL_DIGITS) /* The 'buf' has to have space for at least SQL_XIDSIZE bytes. */ static uint get_sql_xid(XID *xid, char *buf) { int tot_len= xid->gtrid_length + xid->bqual_length; int i; const char *orig_buf= buf; for (i=0; idata)[i]; if (c >= 128 || xid_needs_conv[c]) break; } if (i >= tot_len) { /* No need to convert characters to hexadecimals. */ *buf++= '\''; memcpy(buf, xid->data, xid->gtrid_length); buf+= xid->gtrid_length; *buf++= '\''; if (xid->bqual_length > 0 || xid->formatID != 1) { *buf++= ','; *buf++= '\''; memcpy(buf, xid->data+xid->gtrid_length, xid->bqual_length); buf+= xid->bqual_length; *buf++= '\''; } } else { *buf++= 'X'; *buf++= '\''; for (i= 0; i < xid->gtrid_length; i++) { *buf++=_dig_vec_lower[((uchar*) xid->data)[i] >> 4]; *buf++=_dig_vec_lower[((uchar*) xid->data)[i] & 0x0f]; } *buf++= '\''; if (xid->bqual_length > 0 || xid->formatID != 1) { *buf++= ','; *buf++= 'X'; *buf++= '\''; for (; i < tot_len; i++) { *buf++=_dig_vec_lower[((uchar*) xid->data)[i] >> 4]; *buf++=_dig_vec_lower[((uchar*) xid->data)[i] & 0x0f]; } *buf++= '\''; } } if (xid->formatID != 1) { *buf++= ','; buf+= my_longlong10_to_str_8bit(&my_charset_bin, buf, MY_INT64_NUM_DECIMAL_DIGITS, -10, xid->formatID); } return (uint)(buf - orig_buf); } /** return the list of XID's to a client, the same way SHOW commands do. @note I didn't find in XA specs that an RM cannot return the same XID twice, so mysql_xa_recover does not filter XID's to ensure uniqueness. It can be easily fixed later, if necessary. */ static my_bool xa_recover_callback(XID_cache_element *xs, Protocol *protocol, char *data, uint data_len, CHARSET_INFO *data_cs) { if (xs->xa_state == XA_PREPARED) { protocol->prepare_for_resend(); protocol->store_longlong((longlong) xs->xid.formatID, FALSE); protocol->store_longlong((longlong) xs->xid.gtrid_length, FALSE); protocol->store_longlong((longlong) xs->xid.bqual_length, FALSE); protocol->store(data, data_len, data_cs); if (protocol->write()) return TRUE; } return FALSE; } static my_bool xa_recover_callback_short(XID_cache_element *xs, Protocol *protocol) { return xa_recover_callback(xs, protocol, xs->xid.data, xs->xid.gtrid_length + xs->xid.bqual_length, &my_charset_bin); } static my_bool xa_recover_callback_verbose(XID_cache_element *xs, Protocol *protocol) { char buf[SQL_XIDSIZE]; uint len= get_sql_xid(&xs->xid, buf); return xa_recover_callback(xs, protocol, buf, len, &my_charset_utf8_general_ci); } bool mysql_xa_recover(THD *thd) { List field_list; Protocol *protocol= thd->protocol; MEM_ROOT *mem_root= thd->mem_root; my_hash_walk_action action; DBUG_ENTER("mysql_xa_recover"); field_list.push_back(new (mem_root) Item_int(thd, "formatID", 0, MY_INT32_NUM_DECIMAL_DIGITS), mem_root); field_list.push_back(new (mem_root) Item_int(thd, "gtrid_length", 0, MY_INT32_NUM_DECIMAL_DIGITS), mem_root); field_list.push_back(new (mem_root) Item_int(thd, "bqual_length", 0, MY_INT32_NUM_DECIMAL_DIGITS), mem_root); { uint len; CHARSET_INFO *cs; if (thd->lex->verbose) { len= SQL_XIDSIZE; cs= &my_charset_utf8_general_ci; action= (my_hash_walk_action) xa_recover_callback_verbose; } else { len= XIDDATASIZE; cs= &my_charset_bin; action= (my_hash_walk_action) xa_recover_callback_short; } field_list.push_back(new (mem_root) Item_empty_string(thd, "data", len, cs), mem_root); } if (protocol->send_result_set_metadata(&field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) DBUG_RETURN(1); if (xid_cache_iterate(thd, action, protocol)) DBUG_RETURN(1); my_eof(thd); DBUG_RETURN(0); }