/***************************************************************************** Copyright (c) 1995, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2013, 2018, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file buf/buf0buf.cc The database buffer buf_pool Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "mtr0types.h" #include "mach0data.h" #include "page0size.h" #include "buf0buf.h" #include #ifdef UNIV_NONINL #include "buf0buf.ic" #endif #ifndef UNIV_INNOCHECKSUM #include "mem0mem.h" #include "btr0btr.h" #include "fil0fil.h" #include "fil0crypt.h" #include "buf0buddy.h" #include "lock0lock.h" #include "sync0rw.h" #include "btr0sea.h" #include "ibuf0ibuf.h" #include "trx0undo.h" #include "trx0purge.h" #include "log0log.h" #include "dict0stats_bg.h" #include "srv0srv.h" #include "srv0start.h" #include "dict0dict.h" #include "log0recv.h" #include "srv0mon.h" #endif /* !UNIV_INNOCHECKSUM */ #include "page0zip.h" #include "sync0sync.h" #include "buf0dump.h" #include #include #include #ifndef UNIV_INNOCHECKSUM #include "fil0pagecompress.h" #include "fsp0pagecompress.h" #endif #include "ut0byte.h" #include #ifdef UNIV_LINUX #include #endif #ifdef HAVE_LZO #include "lzo/lzo1x.h" #endif #ifdef HAVE_LIBNUMA #include #include struct set_numa_interleave_t { set_numa_interleave_t() { if (srv_numa_interleave) { struct bitmask *numa_mems_allowed = numa_get_mems_allowed(); ib::info() << "Setting NUMA memory policy to" " MPOL_INTERLEAVE"; if (set_mempolicy(MPOL_INTERLEAVE, numa_mems_allowed->maskp, numa_mems_allowed->size) != 0) { ib::warn() << "Failed to set NUMA memory" " policy to MPOL_INTERLEAVE: " << strerror(errno); } } } ~set_numa_interleave_t() { if (srv_numa_interleave) { ib::info() << "Setting NUMA memory policy to" " MPOL_DEFAULT"; if (set_mempolicy(MPOL_DEFAULT, NULL, 0) != 0) { ib::warn() << "Failed to set NUMA memory" " policy to MPOL_DEFAULT: " << strerror(errno); } } } }; #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE set_numa_interleave_t scoped_numa #else #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE #endif /* HAVE_LIBNUMA */ #ifdef HAVE_SNAPPY #include "snappy-c.h" #endif inline void* aligned_malloc(size_t size, size_t align) { void *result; #ifdef _MSC_VER result = _aligned_malloc(size, align); #elif defined (HAVE_POSIX_MEMALIGN) if(posix_memalign(&result, align, size)) { result = 0; } #else /* Use unaligned malloc as fallback */ result = malloc(size); #endif return result; } inline void aligned_free(void *ptr) { #ifdef _MSC_VER _aligned_free(ptr); #else free(ptr); #endif } /* IMPLEMENTATION OF THE BUFFER POOL ================================= Performance improvement: ------------------------ Thread scheduling in NT may be so slow that the OS wait mechanism should not be used even in waiting for disk reads to complete. Rather, we should put waiting query threads to the queue of waiting jobs, and let the OS thread do something useful while the i/o is processed. In this way we could remove most OS thread switches in an i/o-intensive benchmark like TPC-C. A possibility is to put a user space thread library between the database and NT. User space thread libraries might be very fast. SQL Server 7.0 can be configured to use 'fibers' which are lightweight threads in NT. These should be studied. Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains a single mutex which protects all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. These locks can be locked and unlocked without owning the buf_pool->mutex. The OS events in the buf_pool struct can be waited for without owning the buf_pool->mutex. The buf_pool->mutex is a hot-spot in main memory, causing a lot of memory bus traffic on multiprocessor systems when processors alternately access the mutex. On our Pentium, the mutex is accessed maybe every 10 microseconds. We gave up the solution to have mutexes for each control block, for instance, because it seemed to be complicated. A solution to reduce mutex contention of the buf_pool->mutex is to create a separate mutex for the page hash table. On Pentium, accessing the hash table takes 2 microseconds, about half of the total buf_pool->mutex hold time. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. We intend to make the buffer buf_pool size on-line reconfigurable, that is, the buf_pool size can be changed without closing the database. Then the database administarator may adjust it to be bigger at night, for example. The control block array must contain enough control blocks for the maximum buffer buf_pool size which is used in the particular database. If the buf_pool size is cut, we exploit the virtual memory mechanism of the OS, and just refrain from using frames at high addresses. Then the OS can swap them to disk. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list (buf_pool->free) contains blocks which are currently not used. The common LRU list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would normally be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the end of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The unzip_LRU list contains a subset of the common LRU list. The blocks on the unzip_LRU list hold a compressed file page and the corresponding uncompressed page frame. A block is in unzip_LRU if and only if the predicate buf_page_belongs_to_unzip_LRU(&block->page) holds. The blocks in unzip_LRU will be in same order as they are in the common LRU list. That is, each manipulation of the common LRU list will result in the same manipulation of the unzip_LRU list. The chain of modified blocks (buf_pool->flush_list) contains the blocks holding file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. The access to this list is protected by buf_pool->flush_list_mutex. The chain of unmodified compressed blocks (buf_pool->zip_clean) contains the control blocks (buf_page_t) of those compressed pages that are not in buf_pool->flush_list and for which no uncompressed page has been allocated in the buffer pool. The control blocks for uncompressed pages are accessible via buf_block_t objects that are reachable via buf_pool->chunks[]. The chains of free memory blocks (buf_pool->zip_free[]) are used by the buddy allocator (buf0buddy.cc) to keep track of currently unused memory blocks of size sizeof(buf_page_t)..UNIV_PAGE_SIZE / 2. These blocks are inside the UNIV_PAGE_SIZE-sized memory blocks of type BUF_BLOCK_MEMORY that the buddy allocator requests from the buffer pool. The buddy allocator is solely used for allocating control blocks for compressed pages (buf_page_t) and compressed page frames. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix field is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and resets the io_fix field when the io operation completes. A thread may request the above operation using the function buf_page_get(). It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. */ #ifndef UNIV_INNOCHECKSUM /** Value in microseconds */ static const int WAIT_FOR_READ = 100; static const int WAIT_FOR_WRITE = 100; /** Number of attempts made to read in a page in the buffer pool */ static const ulint BUF_PAGE_READ_MAX_RETRIES = 100; /** Number of pages to read ahead */ static const ulint BUF_READ_AHEAD_PAGES = 64; /** The maximum portion of the buffer pool that can be used for the read-ahead buffer. (Divide buf_pool size by this amount) */ static const ulint BUF_READ_AHEAD_PORTION = 32; /** The buffer pools of the database */ buf_pool_t* buf_pool_ptr; /** true when resizing buffer pool is in the critical path. */ volatile bool buf_pool_resizing; /** true when withdrawing buffer pool pages might cause page relocation */ volatile bool buf_pool_withdrawing; /** the clock is incremented every time a pointer to a page may become obsolete; if the withdrwa clock has not changed, the pointer is still valid in buffer pool. if changed, the pointer might not be in buffer pool any more. */ volatile ulint buf_withdraw_clock; /** Map of buffer pool chunks by its first frame address This is newly made by initialization of buffer pool and buf_resize_thread. Currently, no need mutex protection for update. */ typedef std::map< const byte*, buf_chunk_t*, std::less, ut_allocator > > buf_pool_chunk_map_t; static buf_pool_chunk_map_t* buf_chunk_map_reg; /** Chunk map to be used to lookup. The map pointed by this should not be updated */ static buf_pool_chunk_map_t* buf_chunk_map_ref = NULL; #ifdef UNIV_DEBUG /** Disable resizing buffer pool to make assertion code not expensive. */ my_bool buf_disable_resize_buffer_pool_debug = TRUE; #endif /* UNIV_DEBUG */ #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /** This is used to insert validation operations in execution in the debug version */ static ulint buf_dbg_counter = 0; #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #if defined UNIV_PFS_MUTEX || defined UNIV_PFS_RWLOCK # ifndef PFS_SKIP_BUFFER_MUTEX_RWLOCK /* Buffer block mutexes and rwlocks can be registered in one group rather than individually. If PFS_GROUP_BUFFER_SYNC is defined, register buffer block mutex and rwlock in one group after their initialization. */ # define PFS_GROUP_BUFFER_SYNC /* This define caps the number of mutexes/rwlocks can be registered with performance schema. Developers can modify this define if necessary. Please note, this would be effective only if PFS_GROUP_BUFFER_SYNC is defined. */ # define PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER ULINT_MAX # endif /* !PFS_SKIP_BUFFER_MUTEX_RWLOCK */ #endif /* UNIV_PFS_MUTEX || UNIV_PFS_RWLOCK */ /** Macro to determine whether the read of write counter is used depending on the io_type */ #define MONITOR_RW_COUNTER(io_type, counter) \ ((io_type == BUF_IO_READ) \ ? (counter##_READ) \ : (counter##_WRITTEN)) /** Reserve a buffer slot for encryption, decryption or page compression. @param[in,out] buf_pool buffer pool @return reserved buffer slot */ static buf_tmp_buffer_t* buf_pool_reserve_tmp_slot(buf_pool_t* buf_pool) { for (ulint i = 0; i < buf_pool->tmp_arr->n_slots; i++) { buf_tmp_buffer_t* slot = &buf_pool->tmp_arr->slots[i]; if (slot->acquire()) { return slot; } } /* We assume that free slot is found */ ut_error; return NULL; } /** Reserve a buffer for encryption, decryption or decompression. @param[in,out] slot reserved slot */ static void buf_tmp_reserve_crypt_buf(buf_tmp_buffer_t* slot) { if (!slot->crypt_buf) { slot->crypt_buf = static_cast( aligned_malloc(srv_page_size, srv_page_size)); } } /** Reserve a buffer for compression. @param[in,out] slot reserved slot */ static void buf_tmp_reserve_compression_buf(buf_tmp_buffer_t* slot) { if (!slot->comp_buf) { /* Both snappy and lzo compression methods require that output buffer used for compression is bigger than input buffer. Increase the allocated buffer size accordingly. */ ulint size = srv_page_size; #ifdef HAVE_LZO size += LZO1X_1_15_MEM_COMPRESS; #elif defined HAVE_SNAPPY size = snappy_max_compressed_length(size); #endif slot->comp_buf = static_cast( aligned_malloc(size, srv_page_size)); } } /** Registers a chunk to buf_pool_chunk_map @param[in] chunk chunk of buffers */ static void buf_pool_register_chunk( buf_chunk_t* chunk) { buf_chunk_map_reg->insert(buf_pool_chunk_map_t::value_type( chunk->blocks->frame, chunk)); } /** Decrypt a page. @param[in,out] bpage Page control block @param[in,out] space tablespace @return whether the operation was successful */ static bool buf_page_decrypt_after_read(buf_page_t* bpage, fil_space_t* space) { ut_ad(space->n_pending_ios > 0); ut_ad(space->id == bpage->id.space()); byte* dst_frame = bpage->zip.data ? bpage->zip.data : ((buf_block_t*) bpage)->frame; bool page_compressed = fil_page_is_compressed(dst_frame); buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); if (bpage->id.page_no() == 0) { /* File header pages are not encrypted/compressed */ return (true); } /* Page is encrypted if encryption information is found from tablespace and page contains used key_version. This is true also for pages first compressed and then encrypted. */ buf_tmp_buffer_t* slot; if (page_compressed) { /* the page we read is unencrypted */ /* Find free slot from temporary memory array */ decompress: slot = buf_pool_reserve_tmp_slot(buf_pool); /* For decompression, use crypt_buf. */ buf_tmp_reserve_crypt_buf(slot); decompress_with_slot: ut_d(fil_page_type_validate(dst_frame)); bpage->write_size = fil_page_decompress(slot->crypt_buf, dst_frame); slot->release(); ut_ad(!bpage->write_size || fil_page_type_validate(dst_frame)); ut_ad(space->n_pending_ios > 0); return bpage->write_size != 0; } if (space->crypt_data && mach_read_from_4(FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION + dst_frame)) { /* Verify encryption checksum before we even try to decrypt. */ if (!fil_space_verify_crypt_checksum(dst_frame, bpage->size)) { decrypt_failed: ib::error() << "Encrypted page " << bpage->id << " in file " << space->chain.start->name << " looks corrupted; key_version=" << mach_read_from_4( FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION + dst_frame); /* Mark page encrypted in case it should be. */ if (space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED) { bpage->encrypted = true; } return false; } /* Find free slot from temporary memory array */ slot = buf_pool_reserve_tmp_slot(buf_pool); buf_tmp_reserve_crypt_buf(slot); ut_d(fil_page_type_validate(dst_frame)); /* decrypt using crypt_buf to dst_frame */ if (!fil_space_decrypt(space, slot->crypt_buf, dst_frame, &bpage->encrypted)) { slot->release(); goto decrypt_failed; } ut_d(fil_page_type_validate(dst_frame)); if (fil_page_is_compressed_encrypted(dst_frame)) { goto decompress_with_slot; } slot->release(); } else if (fil_page_is_compressed_encrypted(dst_frame)) { goto decompress; } ut_ad(space->n_pending_ios > 0); return true; } /* prototypes for new functions added to ha_innodb.cc */ trx_t* innobase_get_trx(); /********************************************************************//** Gets the smallest oldest_modification lsn for any page in the pool. Returns zero if all modified pages have been flushed to disk. @return oldest modification in pool, zero if none */ lsn_t buf_pool_get_oldest_modification(void) /*==================================*/ { lsn_t lsn = 0; lsn_t oldest_lsn = 0; /* When we traverse all the flush lists we don't want another thread to add a dirty page to any flush list. */ log_flush_order_mutex_enter(); for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); buf_page_t* bpage; /* We don't let log-checkpoint halt because pages from system temporary are not yet flushed to the disk. Anyway, object residing in system temporary doesn't generate REDO logging. */ for (bpage = UT_LIST_GET_LAST(buf_pool->flush_list); bpage != NULL && fsp_is_system_temporary(bpage->id.space()); bpage = UT_LIST_GET_PREV(list, bpage)) { /* Do nothing. */ } if (bpage != NULL) { ut_ad(bpage->in_flush_list); lsn = bpage->oldest_modification; } buf_flush_list_mutex_exit(buf_pool); if (!oldest_lsn || oldest_lsn > lsn) { oldest_lsn = lsn; } } log_flush_order_mutex_exit(); /* The returned answer may be out of date: the flush_list can change after the mutex has been released. */ return(oldest_lsn); } /********************************************************************//** Get total buffer pool statistics. */ void buf_get_total_list_len( /*===================*/ ulint* LRU_len, /*!< out: length of all LRU lists */ ulint* free_len, /*!< out: length of all free lists */ ulint* flush_list_len) /*!< out: length of all flush lists */ { ulint i; *LRU_len = 0; *free_len = 0; *flush_list_len = 0; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); *LRU_len += UT_LIST_GET_LEN(buf_pool->LRU); *free_len += UT_LIST_GET_LEN(buf_pool->free); *flush_list_len += UT_LIST_GET_LEN(buf_pool->flush_list); } } /********************************************************************//** Get total list size in bytes from all buffer pools. */ void buf_get_total_list_size_in_bytes( /*=============================*/ buf_pools_list_size_t* buf_pools_list_size) /*!< out: list sizes in all buffer pools */ { ut_ad(buf_pools_list_size); memset(buf_pools_list_size, 0, sizeof(*buf_pools_list_size)); for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); /* We don't need mutex protection since this is for statistics purpose */ buf_pools_list_size->LRU_bytes += buf_pool->stat.LRU_bytes; buf_pools_list_size->unzip_LRU_bytes += UT_LIST_GET_LEN(buf_pool->unzip_LRU) * UNIV_PAGE_SIZE; buf_pools_list_size->flush_list_bytes += buf_pool->stat.flush_list_bytes; } } /********************************************************************//** Get total buffer pool statistics. */ void buf_get_total_stat( /*===============*/ buf_pool_stat_t* tot_stat) /*!< out: buffer pool stats */ { ulint i; memset(tot_stat, 0, sizeof(*tot_stat)); for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_stat_t*buf_stat; buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_stat = &buf_pool->stat; tot_stat->n_page_gets += buf_stat->n_page_gets; tot_stat->n_pages_read += buf_stat->n_pages_read; tot_stat->n_pages_written += buf_stat->n_pages_written; tot_stat->n_pages_created += buf_stat->n_pages_created; tot_stat->n_ra_pages_read_rnd += buf_stat->n_ra_pages_read_rnd; tot_stat->n_ra_pages_read += buf_stat->n_ra_pages_read; tot_stat->n_ra_pages_evicted += buf_stat->n_ra_pages_evicted; tot_stat->n_pages_made_young += buf_stat->n_pages_made_young; tot_stat->n_pages_not_made_young += buf_stat->n_pages_not_made_young; } } /********************************************************************//** Allocates a buffer block. @return own: the allocated block, in state BUF_BLOCK_MEMORY */ buf_block_t* buf_block_alloc( /*============*/ buf_pool_t* buf_pool) /*!< in/out: buffer pool instance, or NULL for round-robin selection of the buffer pool */ { buf_block_t* block; ulint index; static ulint buf_pool_index; if (buf_pool == NULL) { /* We are allocating memory from any buffer pool, ensure we spread the grace on all buffer pool instances. */ index = buf_pool_index++ % srv_buf_pool_instances; buf_pool = buf_pool_from_array(index); } block = buf_LRU_get_free_block(buf_pool); buf_block_set_state(block, BUF_BLOCK_MEMORY); return(block); } #endif /* !UNIV_INNOCHECKSUM */ /** Checks if the page is in crc32 checksum format. @param[in] read_buf database page @param[in] checksum_field1 new checksum field @param[in] checksum_field2 old checksum field @return true if the page is in crc32 checksum format. */ bool buf_page_is_checksum_valid_crc32( const byte* read_buf, ulint checksum_field1, ulint checksum_field2) { const uint32_t crc32 = buf_calc_page_crc32(read_buf); #ifdef UNIV_INNOCHECKSUM if (log_file && srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_STRICT_CRC32) { fprintf(log_file, "page::%llu;" " crc32 calculated = %u;" " recorded checksum field1 = " ULINTPF " recorded" " checksum field2 =" ULINTPF "\n", cur_page_num, crc32, checksum_field1, checksum_field2); } #endif /* UNIV_INNOCHECKSUM */ if (checksum_field1 != checksum_field2) { return false; } return checksum_field1 == crc32 #ifdef INNODB_BUG_ENDIAN_CRC32 || checksum_field1 == buf_calc_page_crc32(read_buf, true) #endif ; } /** Checks if the page is in innodb checksum format. @param[in] read_buf database page @param[in] checksum_field1 new checksum field @param[in] checksum_field2 old checksum field @return true if the page is in innodb checksum format. */ bool buf_page_is_checksum_valid_innodb( const byte* read_buf, ulint checksum_field1, ulint checksum_field2) { /* There are 2 valid formulas for checksum_field2 (old checksum field) which algo=innodb could have written to the page: 1. Very old versions of InnoDB only stored 8 byte lsn to the start and the end of the page. 2. Newer InnoDB versions store the old formula checksum (buf_calc_page_old_checksum()). */ ulint old_checksum = buf_calc_page_old_checksum(read_buf); ulint new_checksum = buf_calc_page_new_checksum(read_buf); #ifdef UNIV_INNOCHECKSUM if (log_file && srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_INNODB) { fprintf(log_file, "page::%llu;" " old style: calculated =" " " ULINTPF "; recorded = " ULINTPF "\n", cur_page_num, old_checksum, checksum_field2); fprintf(log_file, "page::%llu;" " new style: calculated =" " " ULINTPF "; crc32 = %u; recorded = " ULINTPF "\n", cur_page_num, new_checksum, buf_calc_page_crc32(read_buf), checksum_field1); } if (log_file && srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_STRICT_INNODB) { fprintf(log_file, "page::%llu;" " old style: calculated =" " " ULINTPF "; recorded checksum = " ULINTPF "\n", cur_page_num, old_checksum, checksum_field2); fprintf(log_file, "page::%llu;" " new style: calculated =" " " ULINTPF "; recorded checksum = " ULINTPF "\n", cur_page_num, new_checksum, checksum_field1); } #endif /* UNIV_INNOCHECKSUM */ if (checksum_field2 != mach_read_from_4(read_buf + FIL_PAGE_LSN) && checksum_field2 != old_checksum) { DBUG_LOG("checksum", "Page checksum crc32 not valid" << " field1 " << checksum_field1 << " field2 " << checksum_field2 << " crc32 " << buf_calc_page_old_checksum(read_buf) << " lsn " << mach_read_from_4( read_buf + FIL_PAGE_LSN)); return(false); } /* old field is fine, check the new field */ /* InnoDB versions < 4.0.14 and < 4.1.1 stored the space id (always equal to 0), to FIL_PAGE_SPACE_OR_CHKSUM */ if (checksum_field1 != 0 && checksum_field1 != new_checksum) { DBUG_LOG("checksum", "Page checksum crc32 not valid" << " field1 " << checksum_field1 << " field2 " << checksum_field2 << " crc32 " << buf_calc_page_new_checksum(read_buf) << " lsn " << mach_read_from_4( read_buf + FIL_PAGE_LSN)); return(false); } return(true); } /** Checks if the page is in none checksum format. @param[in] read_buf database page @param[in] checksum_field1 new checksum field @param[in] checksum_field2 old checksum field @return true if the page is in none checksum format. */ bool buf_page_is_checksum_valid_none( const byte* read_buf, ulint checksum_field1, ulint checksum_field2) { #ifndef DBUG_OFF if (checksum_field1 != checksum_field2 && checksum_field1 != BUF_NO_CHECKSUM_MAGIC) { DBUG_LOG("checksum", "Page checksum crc32 not valid" << " field1 " << checksum_field1 << " field2 " << checksum_field2 << " crc32 " << BUF_NO_CHECKSUM_MAGIC << " lsn " << mach_read_from_4(read_buf + FIL_PAGE_LSN)); } #endif /* DBUG_OFF */ #ifdef UNIV_INNOCHECKSUM if (log_file && srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_STRICT_NONE) { fprintf(log_file, "page::%llu; none checksum: calculated" " = %lu; recorded checksum_field1 = " ULINTPF " recorded checksum_field2 = " ULINTPF "\n", cur_page_num, BUF_NO_CHECKSUM_MAGIC, checksum_field1, checksum_field2); } #endif /* UNIV_INNOCHECKSUM */ return(checksum_field1 == checksum_field2 && checksum_field1 == BUF_NO_CHECKSUM_MAGIC); } #ifdef INNODB_BUG_ENDIAN_CRC32 /** Validate the CRC-32C checksum of a page. @param[in] page buffer page (srv_page_size bytes) @param[in] checksum CRC-32C checksum stored on page @return computed checksum */ static uint32_t buf_page_check_crc32(const byte* page, uint32_t checksum) { uint32_t crc32 = buf_calc_page_crc32(page); if (checksum != crc32) { crc32 = buf_calc_page_crc32(page, true); } return crc32; } #else /* INNODB_BUG_ENDIAN_CRC32 */ /** Validate the CRC-32C checksum of a page. @param[in] page buffer page (srv_page_size bytes) @param[in] checksum CRC-32C checksum stored on page @return computed checksum */ # define buf_page_check_crc32(page, checksum) buf_calc_page_crc32(page) #endif /* INNODB_BUG_ENDIAN_CRC32 */ /** Check if a page is corrupt. @param[in] check_lsn whether the LSN should be checked @param[in] read_buf database page @param[in] page_size page size @param[in] space tablespace @return whether the page is corrupted */ bool buf_page_is_corrupted( bool check_lsn, const byte* read_buf, const page_size_t& page_size, #ifndef UNIV_INNOCHECKSUM const fil_space_t* space) #else const void* space) #endif { #ifndef UNIV_INNOCHECKSUM DBUG_EXECUTE_IF("buf_page_import_corrupt_failure", return(true); ); #endif size_t checksum_field1 = 0; size_t checksum_field2 = 0; uint32_t crc32 = 0; bool crc32_inited = false; ulint page_type = mach_read_from_2(read_buf + FIL_PAGE_TYPE); /* We can trust page type if page compression is set on tablespace flags because page compression flag means file must have been created with 10.1 (later than 5.5 code base). In 10.1 page compressed tables do not contain post compression checksum and FIL_PAGE_END_LSN_OLD_CHKSUM field stored. Note that space can be null if we are in fil_check_first_page() and first page is not compressed or encrypted. Page checksum is verified after decompression (i.e. normally pages are already decompressed at this stage). */ if ((page_type == FIL_PAGE_PAGE_COMPRESSED || page_type == FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED) #ifndef UNIV_INNOCHECKSUM && space && FSP_FLAGS_HAS_PAGE_COMPRESSION(space->flags) #endif ) { return(false); } if (!page_size.is_compressed() && memcmp(read_buf + FIL_PAGE_LSN + 4, read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM + 4, 4)) { /* Stored log sequence numbers at the start and the end of page do not match */ return(true); } #ifndef UNIV_INNOCHECKSUM if (check_lsn && recv_lsn_checks_on) { lsn_t current_lsn; const lsn_t page_lsn = mach_read_from_8(read_buf + FIL_PAGE_LSN); /* Since we are going to reset the page LSN during the import phase it makes no sense to spam the log with error messages. */ if (log_peek_lsn(¤t_lsn) && current_lsn < page_lsn) { const ulint space_id = mach_read_from_4( read_buf + FIL_PAGE_SPACE_ID); const ulint page_no = mach_read_from_4( read_buf + FIL_PAGE_OFFSET); ib::error() << "Page " << page_id_t(space_id, page_no) << " log sequence number " << page_lsn << " is in the future! Current system" << " log sequence number " << current_lsn << "."; ib::error() << "Your database may be corrupt or" " you may have copied the InnoDB" " tablespace but not the InnoDB" " log files. " << FORCE_RECOVERY_MSG; } } #endif /* !UNIV_INNOCHECKSUM */ /* Check whether the checksum fields have correct values */ if (srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_NONE) { return(false); } if (page_size.is_compressed()) { return(!page_zip_verify_checksum(read_buf, page_size.physical())); } checksum_field1 = mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM); checksum_field2 = mach_read_from_4( read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM); #if FIL_PAGE_LSN % 8 #error "FIL_PAGE_LSN must be 64 bit aligned" #endif /* declare empty pages non-corrupted */ if (checksum_field1 == 0 && checksum_field2 == 0 && *reinterpret_cast( read_buf + FIL_PAGE_LSN) == 0) { /* make sure that the page is really empty */ for (ulint i = 0; i < page_size.logical(); i++) { if (read_buf[i] != 0) { return(true); } } #ifdef UNIV_INNOCHECKSUM if (log_file) { fprintf(log_file, "Page::%llu" " is empty and uncorrupted\n", cur_page_num); } #endif /* UNIV_INNOCHECKSUM */ return(false); } const srv_checksum_algorithm_t curr_algo = static_cast(srv_checksum_algorithm); switch (curr_algo) { case SRV_CHECKSUM_ALGORITHM_STRICT_CRC32: return !buf_page_is_checksum_valid_crc32( read_buf, checksum_field1, checksum_field2); case SRV_CHECKSUM_ALGORITHM_STRICT_INNODB: return !buf_page_is_checksum_valid_innodb( read_buf, checksum_field1, checksum_field2); case SRV_CHECKSUM_ALGORITHM_STRICT_NONE: return !buf_page_is_checksum_valid_none( read_buf, checksum_field1, checksum_field2); case SRV_CHECKSUM_ALGORITHM_CRC32: case SRV_CHECKSUM_ALGORITHM_INNODB: if (buf_page_is_checksum_valid_none(read_buf, checksum_field1, checksum_field2)) { #ifdef UNIV_INNOCHECKSUM if (log_file) { fprintf(log_file, "page::%llu;" " old style: calculated = %u;" " recorded = " ULINTPF ";\n", cur_page_num, buf_calc_page_old_checksum(read_buf), checksum_field2); fprintf(log_file, "page::%llu;" " new style: calculated = %u;" " crc32 = %u; recorded = " ULINTPF ";\n", cur_page_num, buf_calc_page_new_checksum(read_buf), buf_calc_page_crc32(read_buf), checksum_field1); } #endif /* UNIV_INNOCHECKSUM */ return false; } /* Very old versions of InnoDB only stored 8 byte lsn to the start and the end of the page. */ /* Since innodb_checksum_algorithm is not strict_* allow any of the algos to match for the old field */ if (checksum_field2 != mach_read_from_4(read_buf + FIL_PAGE_LSN) && checksum_field2 != BUF_NO_CHECKSUM_MAGIC) { if (srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_CRC32) { DBUG_EXECUTE_IF( "page_intermittent_checksum_mismatch", { static int page_counter; if (page_counter++ == 2) { checksum_field2++; } }); crc32 = buf_page_check_crc32(read_buf, checksum_field2); crc32_inited = true; if (checksum_field2 != crc32 && checksum_field2 != buf_calc_page_old_checksum(read_buf)) { return true; } } else { ut_ad(srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_INNODB); if (checksum_field2 != buf_calc_page_old_checksum(read_buf)) { crc32 = buf_page_check_crc32( read_buf, checksum_field2); crc32_inited = true; if (checksum_field2 != crc32) { return true; } } } } if (checksum_field1 == 0 || checksum_field1 == BUF_NO_CHECKSUM_MAGIC) { } else if (srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_CRC32) { if (!crc32_inited) { crc32 = buf_page_check_crc32( read_buf, checksum_field2); crc32_inited = true; } if (checksum_field1 != crc32 && checksum_field1 != buf_calc_page_new_checksum(read_buf)) { return true; } } else { ut_ad(srv_checksum_algorithm == SRV_CHECKSUM_ALGORITHM_INNODB); if (checksum_field1 != buf_calc_page_new_checksum(read_buf)) { if (!crc32_inited) { crc32 = buf_page_check_crc32( read_buf, checksum_field2); crc32_inited = true; } if (checksum_field1 != crc32) { return true; } } } if (crc32_inited && ((checksum_field1 == crc32 && checksum_field2 != crc32) || (checksum_field1 != crc32 && checksum_field2 == crc32))) { return true; } break; case SRV_CHECKSUM_ALGORITHM_NONE: /* should have returned false earlier */ break; } return false; } #ifndef UNIV_INNOCHECKSUM /** Dump a page to stderr. @param[in] read_buf database page @param[in] page_size page size */ UNIV_INTERN void buf_page_print(const byte* read_buf, const page_size_t& page_size) { dict_index_t* index; ib::info() << "Page dump in ascii and hex (" << page_size.physical() << " bytes):"; ut_print_buf(stderr, read_buf, page_size.physical()); fputs("\nInnoDB: End of page dump\n", stderr); if (page_size.is_compressed()) { /* Print compressed page. */ ib::info() << "Compressed page type (" << fil_page_get_type(read_buf) << "); stored checksum in field1 " << mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM) << "; calculated checksums for field1: " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_CRC32) << " " << page_zip_calc_checksum( read_buf, page_size.physical(), SRV_CHECKSUM_ALGORITHM_CRC32) #ifdef INNODB_BUG_ENDIAN_CRC32 << "/" << page_zip_calc_checksum( read_buf, page_size.physical(), SRV_CHECKSUM_ALGORITHM_CRC32, true) #endif << ", " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_INNODB) << " " << page_zip_calc_checksum( read_buf, page_size.physical(), SRV_CHECKSUM_ALGORITHM_INNODB) << ", " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_NONE) << " " << page_zip_calc_checksum( read_buf, page_size.physical(), SRV_CHECKSUM_ALGORITHM_NONE) << "; page LSN " << mach_read_from_8(read_buf + FIL_PAGE_LSN) << "; page number (if stored to page" << " already) " << mach_read_from_4(read_buf + FIL_PAGE_OFFSET) << "; space id (if stored to page already) " << mach_read_from_4( read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); } else { const uint32_t crc32 = buf_calc_page_crc32(read_buf); #ifdef INNODB_BUG_ENDIAN_CRC32 const uint32_t crc32_legacy = buf_calc_page_crc32(read_buf, true); #endif /* INNODB_BUG_ENDIAN_CRC32 */ ulint page_type = fil_page_get_type(read_buf); ib::info() << "Uncompressed page, stored checksum in field1 " << mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM) << ", calculated checksums for field1: " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_CRC32) << " " << crc32 #ifdef INNODB_BUG_ENDIAN_CRC32 << "/" << crc32_legacy #endif << ", " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_INNODB) << " " << buf_calc_page_new_checksum(read_buf) << ", " << " page type " << page_type << " == " << fil_get_page_type_name(page_type) << "." << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_NONE) << " " << BUF_NO_CHECKSUM_MAGIC << ", stored checksum in field2 " << mach_read_from_4(read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM) << ", calculated checksums for field2: " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_CRC32) << " " << crc32 #ifdef INNODB_BUG_ENDIAN_CRC32 << "/" << crc32_legacy #endif << ", " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_INNODB) << " " << buf_calc_page_old_checksum(read_buf) << ", " << buf_checksum_algorithm_name( SRV_CHECKSUM_ALGORITHM_NONE) << " " << BUF_NO_CHECKSUM_MAGIC << ", page LSN " << mach_read_from_4(read_buf + FIL_PAGE_LSN) << " " << mach_read_from_4(read_buf + FIL_PAGE_LSN + 4) << ", low 4 bytes of LSN at page end " << mach_read_from_4(read_buf + page_size.logical() - FIL_PAGE_END_LSN_OLD_CHKSUM + 4) << ", page number (if stored to page already) " << mach_read_from_4(read_buf + FIL_PAGE_OFFSET) << ", space id (if created with >= MySQL-4.1.1" " and stored already) " << mach_read_from_4( read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); } if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT) { fprintf(stderr, "InnoDB: Page may be an insert undo log page\n"); } else if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_UPDATE) { fprintf(stderr, "InnoDB: Page may be an update undo log page\n"); } switch (fil_page_get_type(read_buf)) { index_id_t index_id; case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: index_id = btr_page_get_index_id(read_buf); ib::info() << "Page may be an index page where" " index id is " << index_id; index = dict_index_find_on_id_low(index_id); if (index) { ib::info() << "Index " << index_id << " is " << index->name << " in table " << index->table->name; } break; case FIL_PAGE_INODE: fputs("InnoDB: Page may be an 'inode' page\n", stderr); break; case FIL_PAGE_IBUF_FREE_LIST: fputs("InnoDB: Page may be an insert buffer free list page\n", stderr); break; case FIL_PAGE_TYPE_ALLOCATED: fputs("InnoDB: Page may be a freshly allocated page\n", stderr); break; case FIL_PAGE_IBUF_BITMAP: fputs("InnoDB: Page may be an insert buffer bitmap page\n", stderr); break; case FIL_PAGE_TYPE_SYS: fputs("InnoDB: Page may be a system page\n", stderr); break; case FIL_PAGE_TYPE_TRX_SYS: fputs("InnoDB: Page may be a transaction system page\n", stderr); break; case FIL_PAGE_TYPE_FSP_HDR: fputs("InnoDB: Page may be a file space header page\n", stderr); break; case FIL_PAGE_TYPE_XDES: fputs("InnoDB: Page may be an extent descriptor page\n", stderr); break; case FIL_PAGE_TYPE_BLOB: fputs("InnoDB: Page may be a BLOB page\n", stderr); break; case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: fputs("InnoDB: Page may be a compressed BLOB page\n", stderr); break; } } # ifdef PFS_GROUP_BUFFER_SYNC extern mysql_pfs_key_t buffer_block_mutex_key; /********************************************************************//** This function registers mutexes and rwlocks in buffer blocks with performance schema. If PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER is defined to be a value less than chunk->size, then only mutexes and rwlocks in the first PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER blocks are registered. */ static void pfs_register_buffer_block( /*======================*/ buf_chunk_t* chunk) /*!< in/out: chunk of buffers */ { buf_block_t* block; ulint num_to_register; block = chunk->blocks; num_to_register = ut_min( chunk->size, PFS_MAX_BUFFER_MUTEX_LOCK_REGISTER); for (ulint i = 0; i < num_to_register; i++) { # ifdef UNIV_PFS_MUTEX BPageMutex* mutex; mutex = &block->mutex; mutex->pfs_add(buffer_block_mutex_key); # endif /* UNIV_PFS_MUTEX */ rw_lock_t* rwlock; # ifdef UNIV_PFS_RWLOCK rwlock = &block->lock; ut_a(!rwlock->pfs_psi); rwlock->pfs_psi = (PSI_server) ? PSI_server->init_rwlock(buf_block_lock_key, rwlock) : NULL; # ifdef UNIV_DEBUG rwlock = &block->debug_latch; ut_a(!rwlock->pfs_psi); rwlock->pfs_psi = (PSI_server) ? PSI_server->init_rwlock(buf_block_debug_latch_key, rwlock) : NULL; # endif /* UNIV_DEBUG */ # endif /* UNIV_PFS_RWLOCK */ block++; } } # endif /* PFS_GROUP_BUFFER_SYNC */ /********************************************************************//** Initializes a buffer control block when the buf_pool is created. */ static void buf_block_init( /*===========*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_block_t* block, /*!< in: pointer to control block */ byte* frame) /*!< in: pointer to buffer frame */ { UNIV_MEM_DESC(frame, UNIV_PAGE_SIZE); /* This function should only be executed at database startup or by buf_pool_resize(). Either way, adaptive hash index must not exist. */ assert_block_ahi_empty_on_init(block); block->frame = frame; block->page.buf_pool_index = buf_pool_index(buf_pool); block->page.flush_type = BUF_FLUSH_LRU; block->page.state = BUF_BLOCK_NOT_USED; block->page.buf_fix_count = 0; block->page.io_fix = BUF_IO_NONE; block->page.flush_observer = NULL; block->page.encrypted = false; block->page.real_size = 0; block->page.write_size = 0; block->modify_clock = 0; block->page.slot = NULL; ut_d(block->page.file_page_was_freed = FALSE); #ifdef BTR_CUR_HASH_ADAPT block->index = NULL; #endif /* BTR_CUR_HASH_ADAPT */ block->skip_flush_check = false; ut_d(block->page.in_page_hash = FALSE); ut_d(block->page.in_zip_hash = FALSE); ut_d(block->page.in_flush_list = FALSE); ut_d(block->page.in_free_list = FALSE); ut_d(block->page.in_LRU_list = FALSE); ut_d(block->in_unzip_LRU_list = FALSE); ut_d(block->in_withdraw_list = FALSE); page_zip_des_init(&block->page.zip); mutex_create(LATCH_ID_BUF_BLOCK_MUTEX, &block->mutex); #if defined PFS_SKIP_BUFFER_MUTEX_RWLOCK || defined PFS_GROUP_BUFFER_SYNC /* If PFS_SKIP_BUFFER_MUTEX_RWLOCK is defined, skip registration of buffer block rwlock with performance schema. If PFS_GROUP_BUFFER_SYNC is defined, skip the registration since buffer block rwlock will be registered later in pfs_register_buffer_block(). */ rw_lock_create(PFS_NOT_INSTRUMENTED, &block->lock, SYNC_LEVEL_VARYING); ut_d(rw_lock_create(PFS_NOT_INSTRUMENTED, &block->debug_latch, SYNC_LEVEL_VARYING)); #else /* PFS_SKIP_BUFFER_MUTEX_RWLOCK || PFS_GROUP_BUFFER_SYNC */ rw_lock_create(buf_block_lock_key, &block->lock, SYNC_LEVEL_VARYING); ut_d(rw_lock_create(buf_block_debug_latch_key, &block->debug_latch, SYNC_LEVEL_VARYING)); #endif /* PFS_SKIP_BUFFER_MUTEX_RWLOCK || PFS_GROUP_BUFFER_SYNC */ block->lock.is_block_lock = 1; ut_ad(rw_lock_validate(&(block->lock))); } /********************************************************************//** Allocates a chunk of buffer frames. @return chunk, or NULL on failure */ static buf_chunk_t* buf_chunk_init( /*===========*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_chunk_t* chunk, /*!< out: chunk of buffers */ ulint mem_size) /*!< in: requested size in bytes */ { buf_block_t* block; byte* frame; ulint i; /* Round down to a multiple of page size, although it already should be. */ mem_size = ut_2pow_round(mem_size, UNIV_PAGE_SIZE); /* Reserve space for the block descriptors. */ mem_size += ut_2pow_round((mem_size / UNIV_PAGE_SIZE) * (sizeof *block) + (UNIV_PAGE_SIZE - 1), UNIV_PAGE_SIZE); DBUG_EXECUTE_IF("ib_buf_chunk_init_fails", return(NULL);); chunk->mem = buf_pool->allocator.allocate_large(mem_size, &chunk->mem_pfx); if (UNIV_UNLIKELY(chunk->mem == NULL)) { return(NULL); } #ifdef HAVE_LIBNUMA if (srv_numa_interleave) { struct bitmask *numa_mems_allowed = numa_get_mems_allowed(); int st = mbind(chunk->mem, chunk->mem_size(), MPOL_INTERLEAVE, numa_mems_allowed->maskp, numa_mems_allowed->size, MPOL_MF_MOVE); if (st != 0) { ib::warn() << "Failed to set NUMA memory policy of" " buffer pool page frames to MPOL_INTERLEAVE" " (error: " << strerror(errno) << ")."; } } #endif /* HAVE_LIBNUMA */ /* Allocate the block descriptors from the start of the memory block. */ chunk->blocks = (buf_block_t*) chunk->mem; /* Align a pointer to the first frame. Note that when os_large_page_size is smaller than UNIV_PAGE_SIZE, we may allocate one fewer block than requested. When it is bigger, we may allocate more blocks than requested. */ frame = (byte*) ut_align(chunk->mem, UNIV_PAGE_SIZE); chunk->size = chunk->mem_pfx.m_size / UNIV_PAGE_SIZE - (frame != chunk->mem); /* Subtract the space needed for block descriptors. */ { ulint size = chunk->size; while (frame < (byte*) (chunk->blocks + size)) { frame += UNIV_PAGE_SIZE; size--; } chunk->size = size; } /* Init block structs and assign frames for them. Then we assign the frames to the first blocks (we already mapped the memory above). */ block = chunk->blocks; for (i = chunk->size; i--; ) { buf_block_init(buf_pool, block, frame); UNIV_MEM_INVALID(block->frame, UNIV_PAGE_SIZE); /* Add the block to the free list */ UT_LIST_ADD_LAST(buf_pool->free, &block->page); ut_d(block->page.in_free_list = TRUE); ut_ad(buf_pool_from_block(block) == buf_pool); block++; frame += UNIV_PAGE_SIZE; } buf_pool_register_chunk(chunk); #ifdef PFS_GROUP_BUFFER_SYNC pfs_register_buffer_block(chunk); #endif /* PFS_GROUP_BUFFER_SYNC */ return(chunk); } #ifdef UNIV_DEBUG /*********************************************************************//** Finds a block in the given buffer chunk that points to a given compressed page. @return buffer block pointing to the compressed page, or NULL */ static buf_block_t* buf_chunk_contains_zip( /*===================*/ buf_chunk_t* chunk, /*!< in: chunk being checked */ const void* data) /*!< in: pointer to compressed page */ { buf_block_t* block; ulint i; block = chunk->blocks; for (i = chunk->size; i--; block++) { if (block->page.zip.data == data) { return(block); } } return(NULL); } /*********************************************************************//** Finds a block in the buffer pool that points to a given compressed page. @return buffer block pointing to the compressed page, or NULL */ buf_block_t* buf_pool_contains_zip( /*==================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ const void* data) /*!< in: pointer to compressed page */ { ulint n; buf_chunk_t* chunk = buf_pool->chunks; ut_ad(buf_pool); ut_ad(buf_pool_mutex_own(buf_pool)); for (n = buf_pool->n_chunks; n--; chunk++) { buf_block_t* block = buf_chunk_contains_zip(chunk, data); if (block) { return(block); } } return(NULL); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Checks that all file pages in the buffer chunk are in a replaceable state. @return address of a non-free block, or NULL if all freed */ static const buf_block_t* buf_chunk_not_freed( /*================*/ buf_chunk_t* chunk) /*!< in: chunk being checked */ { buf_block_t* block; ulint i; block = chunk->blocks; for (i = chunk->size; i--; block++) { ibool ready; switch (buf_block_get_state(block)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* The uncompressed buffer pool should never contain compressed block descriptors. */ ut_error; break; case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* Skip blocks that are not being used for file pages. */ break; case BUF_BLOCK_FILE_PAGE: if (srv_read_only_mode) { /* The page cleaner is disabled in read-only mode. No pages can be dirtied, so all of them must be clean. */ ut_ad(block->page.oldest_modification == block->page.newest_modification); ut_ad(block->page.oldest_modification == 0 || block->page.oldest_modification == recv_sys->recovered_lsn || srv_force_recovery == SRV_FORCE_NO_LOG_REDO); ut_ad(block->page.buf_fix_count == 0); ut_ad(block->page.io_fix == BUF_IO_NONE); break; } buf_page_mutex_enter(block); ready = buf_flush_ready_for_replace(&block->page); buf_page_mutex_exit(block); if (!ready) { return(block); } break; } } return(NULL); } /********************************************************************//** Set buffer pool size variables after resizing it */ static void buf_pool_set_sizes(void) /*====================*/ { ulint i; ulint curr_size = 0; buf_pool_mutex_enter_all(); for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); curr_size += buf_pool->curr_pool_size; } srv_buf_pool_curr_size = curr_size; srv_buf_pool_old_size = srv_buf_pool_size; srv_buf_pool_base_size = srv_buf_pool_size; buf_pool_mutex_exit_all(); } /********************************************************************//** Initialize a buffer pool instance. @return DB_SUCCESS if all goes well. */ static ulint buf_pool_init_instance( /*===================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint buf_pool_size, /*!< in: size in bytes */ ulint instance_no) /*!< in: id of the instance */ { ulint i; ulint chunk_size; buf_chunk_t* chunk; ut_ad(buf_pool_size % srv_buf_pool_chunk_unit == 0); /* 1. Initialize general fields ------------------------------- */ mutex_create(LATCH_ID_BUF_POOL, &buf_pool->mutex); mutex_create(LATCH_ID_BUF_POOL_ZIP, &buf_pool->zip_mutex); new(&buf_pool->allocator) ut_allocator(mem_key_buf_buf_pool); buf_pool_mutex_enter(buf_pool); if (buf_pool_size > 0) { buf_pool->n_chunks = buf_pool_size / srv_buf_pool_chunk_unit; chunk_size = srv_buf_pool_chunk_unit; buf_pool->chunks = reinterpret_cast(ut_zalloc_nokey( buf_pool->n_chunks * sizeof(*chunk))); buf_pool->chunks_old = NULL; UT_LIST_INIT(buf_pool->LRU, &buf_page_t::LRU); UT_LIST_INIT(buf_pool->free, &buf_page_t::list); UT_LIST_INIT(buf_pool->withdraw, &buf_page_t::list); buf_pool->withdraw_target = 0; UT_LIST_INIT(buf_pool->flush_list, &buf_page_t::list); UT_LIST_INIT(buf_pool->unzip_LRU, &buf_block_t::unzip_LRU); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG UT_LIST_INIT(buf_pool->zip_clean, &buf_page_t::list); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ for (i = 0; i < UT_ARR_SIZE(buf_pool->zip_free); ++i) { UT_LIST_INIT( buf_pool->zip_free[i], &buf_buddy_free_t::list); } buf_pool->curr_size = 0; chunk = buf_pool->chunks; do { if (!buf_chunk_init(buf_pool, chunk, chunk_size)) { while (--chunk >= buf_pool->chunks) { buf_block_t* block = chunk->blocks; for (i = chunk->size; i--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free( &block->debug_latch)); } buf_pool->allocator.deallocate_large( chunk->mem, &chunk->mem_pfx); } ut_free(buf_pool->chunks); buf_pool_mutex_exit(buf_pool); return(DB_ERROR); } buf_pool->curr_size += chunk->size; } while (++chunk < buf_pool->chunks + buf_pool->n_chunks); buf_pool->instance_no = instance_no; buf_pool->read_ahead_area = ut_min(BUF_READ_AHEAD_PAGES, ut_2_power_up(buf_pool->curr_size / BUF_READ_AHEAD_PORTION)); buf_pool->curr_pool_size = buf_pool->curr_size * UNIV_PAGE_SIZE; buf_pool->old_size = buf_pool->curr_size; buf_pool->n_chunks_new = buf_pool->n_chunks; /* Number of locks protecting page_hash must be a power of two */ srv_n_page_hash_locks = static_cast( ut_2_power_up(srv_n_page_hash_locks)); ut_a(srv_n_page_hash_locks != 0); ut_a(srv_n_page_hash_locks <= MAX_PAGE_HASH_LOCKS); buf_pool->page_hash = ib_create( 2 * buf_pool->curr_size, LATCH_ID_HASH_TABLE_RW_LOCK, srv_n_page_hash_locks, MEM_HEAP_FOR_PAGE_HASH); buf_pool->page_hash_old = NULL; buf_pool->zip_hash = hash_create(2 * buf_pool->curr_size); buf_pool->last_printout_time = ut_time(); } /* 2. Initialize flushing fields -------------------------------- */ mutex_create(LATCH_ID_FLUSH_LIST, &buf_pool->flush_list_mutex); for (i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { buf_pool->no_flush[i] = os_event_create(0); } buf_pool->watch = (buf_page_t*) ut_zalloc_nokey( sizeof(*buf_pool->watch) * BUF_POOL_WATCH_SIZE); for (i = 0; i < BUF_POOL_WATCH_SIZE; i++) { buf_pool->watch[i].buf_pool_index = unsigned(buf_pool->instance_no); } /* All fields are initialized by ut_zalloc_nokey(). */ buf_pool->try_LRU_scan = TRUE; /* Initialize the hazard pointer for flush_list batches */ new(&buf_pool->flush_hp) FlushHp(buf_pool, &buf_pool->flush_list_mutex); /* Initialize the hazard pointer for LRU batches */ new(&buf_pool->lru_hp) LRUHp(buf_pool, &buf_pool->mutex); /* Initialize the iterator for LRU scan search */ new(&buf_pool->lru_scan_itr) LRUItr(buf_pool, &buf_pool->mutex); /* Initialize the iterator for single page scan search */ new(&buf_pool->single_scan_itr) LRUItr(buf_pool, &buf_pool->mutex); /* Initialize the temporal memory array and slots */ buf_pool->tmp_arr = (buf_tmp_array_t *)ut_malloc_nokey(sizeof(buf_tmp_array_t)); memset(buf_pool->tmp_arr, 0, sizeof(buf_tmp_array_t)); ulint n_slots = (srv_n_read_io_threads + srv_n_write_io_threads) * (8 * OS_AIO_N_PENDING_IOS_PER_THREAD); buf_pool->tmp_arr->n_slots = n_slots; buf_pool->tmp_arr->slots = (buf_tmp_buffer_t*)ut_malloc_nokey(sizeof(buf_tmp_buffer_t) * n_slots); memset(buf_pool->tmp_arr->slots, 0, (sizeof(buf_tmp_buffer_t) * n_slots)); buf_pool_mutex_exit(buf_pool); DBUG_EXECUTE_IF("buf_pool_init_instance_force_oom", return(DB_ERROR); ); return(DB_SUCCESS); } /********************************************************************//** free one buffer pool instance */ static void buf_pool_free_instance( /*===================*/ buf_pool_t* buf_pool) /* in,own: buffer pool instance to free */ { buf_chunk_t* chunk; buf_chunk_t* chunks; buf_page_t* bpage; buf_page_t* prev_bpage = 0; mutex_free(&buf_pool->mutex); mutex_free(&buf_pool->zip_mutex); mutex_free(&buf_pool->flush_list_mutex); if (buf_pool->flush_rbt) { rbt_free(buf_pool->flush_rbt); buf_pool->flush_rbt = NULL; } for (bpage = UT_LIST_GET_LAST(buf_pool->LRU); bpage != NULL; bpage = prev_bpage) { prev_bpage = UT_LIST_GET_PREV(LRU, bpage); buf_page_state state = buf_page_get_state(bpage); ut_ad(buf_page_in_file(bpage)); ut_ad(bpage->in_LRU_list); if (state != BUF_BLOCK_FILE_PAGE) { /* We must not have any dirty block except when doing a fast shutdown. */ ut_ad(state == BUF_BLOCK_ZIP_PAGE || srv_fast_shutdown == 2); buf_page_free_descriptor(bpage); } } ut_free(buf_pool->watch); buf_pool->watch = NULL; chunks = buf_pool->chunks; chunk = chunks + buf_pool->n_chunks; while (--chunk >= chunks) { buf_block_t* block = chunk->blocks; for (ulint i = chunk->size; i--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free(&block->debug_latch)); } buf_pool->allocator.deallocate_large( chunk->mem, &chunk->mem_pfx); } for (ulint i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; ++i) { os_event_destroy(buf_pool->no_flush[i]); } ut_free(buf_pool->chunks); ha_clear(buf_pool->page_hash); hash_table_free(buf_pool->page_hash); hash_table_free(buf_pool->zip_hash); /* Free all used temporary slots */ if (buf_pool->tmp_arr) { for(ulint i = 0; i < buf_pool->tmp_arr->n_slots; i++) { buf_tmp_buffer_t* slot = &(buf_pool->tmp_arr->slots[i]); if (slot && slot->crypt_buf) { aligned_free(slot->crypt_buf); slot->crypt_buf = NULL; } if (slot && slot->comp_buf) { aligned_free(slot->comp_buf); slot->comp_buf = NULL; } } ut_free(buf_pool->tmp_arr->slots); ut_free(buf_pool->tmp_arr); buf_pool->tmp_arr = NULL; } buf_pool->allocator.~ut_allocator(); } /********************************************************************//** Creates the buffer pool. @return DB_SUCCESS if success, DB_ERROR if not enough memory or error */ dberr_t buf_pool_init( /*==========*/ ulint total_size, /*!< in: size of the total pool in bytes */ ulint n_instances) /*!< in: number of instances */ { ulint i; const ulint size = total_size / n_instances; ut_ad(n_instances > 0); ut_ad(n_instances <= MAX_BUFFER_POOLS); ut_ad(n_instances == srv_buf_pool_instances); NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; buf_pool_resizing = false; buf_pool_withdrawing = false; buf_withdraw_clock = 0; buf_pool_ptr = (buf_pool_t*) ut_zalloc_nokey( n_instances * sizeof *buf_pool_ptr); buf_chunk_map_reg = UT_NEW_NOKEY(buf_pool_chunk_map_t()); for (i = 0; i < n_instances; i++) { buf_pool_t* ptr = &buf_pool_ptr[i]; if (buf_pool_init_instance(ptr, size, i) != DB_SUCCESS) { /* Free all the instances created so far. */ buf_pool_free(i); return(DB_ERROR); } } buf_chunk_map_ref = buf_chunk_map_reg; buf_pool_set_sizes(); buf_LRU_old_ratio_update(100 * 3/ 8, FALSE); btr_search_sys_create(buf_pool_get_curr_size() / sizeof(void*) / 64); return(DB_SUCCESS); } /********************************************************************//** Frees the buffer pool at shutdown. This must not be invoked before freeing all mutexes. */ void buf_pool_free( /*==========*/ ulint n_instances) /*!< in: numbere of instances to free */ { for (ulint i = 0; i < n_instances; i++) { buf_pool_free_instance(buf_pool_from_array(i)); } UT_DELETE(buf_chunk_map_reg); buf_chunk_map_reg = buf_chunk_map_ref = NULL; ut_free(buf_pool_ptr); buf_pool_ptr = NULL; } /** Reallocate a control block. @param[in] buf_pool buffer pool instance @param[in] block pointer to control block @retval false if failed because of no free blocks. */ static bool buf_page_realloc( buf_pool_t* buf_pool, buf_block_t* block) { buf_block_t* new_block; ut_ad(buf_pool_withdrawing); ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); new_block = buf_LRU_get_free_only(buf_pool); if (new_block == NULL) { return(false); /* free_list was not enough */ } rw_lock_t* hash_lock = buf_page_hash_lock_get(buf_pool, block->page.id); rw_lock_x_lock(hash_lock); mutex_enter(&block->mutex); if (buf_page_can_relocate(&block->page)) { mutex_enter(&new_block->mutex); memcpy(new_block->frame, block->frame, srv_page_size); new (&new_block->page) buf_page_t(block->page); /* relocate LRU list */ ut_ad(block->page.in_LRU_list); ut_ad(!block->page.in_zip_hash); ut_d(block->page.in_LRU_list = FALSE); buf_LRU_adjust_hp(buf_pool, &block->page); buf_page_t* prev_b = UT_LIST_GET_PREV(LRU, &block->page); UT_LIST_REMOVE(buf_pool->LRU, &block->page); if (prev_b != NULL) { UT_LIST_INSERT_AFTER(buf_pool->LRU, prev_b, &new_block->page); } else { UT_LIST_ADD_FIRST(buf_pool->LRU, &new_block->page); } if (buf_pool->LRU_old == &block->page) { buf_pool->LRU_old = &new_block->page; } ut_ad(new_block->page.in_LRU_list); /* relocate unzip_LRU list */ if (block->page.zip.data != NULL) { ut_ad(block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = TRUE); UNIV_MEM_DESC(&new_block->page.zip.data, page_zip_get_size(&new_block->page.zip)); buf_block_t* prev_block = UT_LIST_GET_PREV(unzip_LRU, block); UT_LIST_REMOVE(buf_pool->unzip_LRU, block); ut_d(block->in_unzip_LRU_list = FALSE); block->page.zip.data = NULL; page_zip_set_size(&block->page.zip, 0); if (prev_block != NULL) { UT_LIST_INSERT_AFTER(buf_pool->unzip_LRU, prev_block, new_block); } else { UT_LIST_ADD_FIRST(buf_pool->unzip_LRU, new_block); } } else { ut_ad(!block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = FALSE); } /* relocate buf_pool->page_hash */ ut_ad(block->page.in_page_hash); ut_ad(&block->page == buf_page_hash_get_low(buf_pool, block->page.id)); ut_d(block->page.in_page_hash = FALSE); ulint fold = block->page.id.fold(); ut_ad(fold == new_block->page.id.fold()); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, fold, (&block->page)); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, fold, (&new_block->page)); ut_ad(new_block->page.in_page_hash); buf_block_modify_clock_inc(block); memset(block->frame + FIL_PAGE_OFFSET, 0xff, 4); memset(block->frame + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID, 0xff, 4); UNIV_MEM_INVALID(block->frame, UNIV_PAGE_SIZE); buf_block_set_state(block, BUF_BLOCK_REMOVE_HASH); block->page.id = page_id_t(ULINT32_UNDEFINED, ULINT32_UNDEFINED); /* Relocate buf_pool->flush_list. */ if (block->page.oldest_modification) { buf_flush_relocate_on_flush_list( &block->page, &new_block->page); } /* set other flags of buf_block_t */ #ifdef BTR_CUR_HASH_ADAPT /* This code should only be executed by buf_pool_resize(), while the adaptive hash index is disabled. */ assert_block_ahi_empty(block); assert_block_ahi_empty_on_init(new_block); ut_ad(!block->index); new_block->index = NULL; new_block->n_hash_helps = 0; new_block->n_fields = 1; new_block->left_side = TRUE; #endif /* BTR_CUR_HASH_ADAPT */ new_block->lock_hash_val = block->lock_hash_val; ut_ad(new_block->lock_hash_val == lock_rec_hash( new_block->page.id.space(), new_block->page.id.page_no())); rw_lock_x_unlock(hash_lock); mutex_exit(&new_block->mutex); /* free block */ buf_block_set_state(block, BUF_BLOCK_MEMORY); buf_LRU_block_free_non_file_page(block); mutex_exit(&block->mutex); } else { rw_lock_x_unlock(hash_lock); mutex_exit(&block->mutex); /* free new_block */ mutex_enter(&new_block->mutex); buf_LRU_block_free_non_file_page(new_block); mutex_exit(&new_block->mutex); } return(true); /* free_list was enough */ } /** Sets the global variable that feeds MySQL's innodb_buffer_pool_resize_status to the specified string. The format and the following parameters are the same as the ones used for printf(3). @param[in] fmt format @param[in] ... extra parameters according to fmt */ static void buf_resize_status( const char* fmt, ...) { va_list ap; va_start(ap, fmt); vsnprintf( export_vars.innodb_buffer_pool_resize_status, sizeof(export_vars.innodb_buffer_pool_resize_status), fmt, ap); va_end(ap); ib::info() << export_vars.innodb_buffer_pool_resize_status; } /** Determines if a block is intended to be withdrawn. @param[in] buf_pool buffer pool instance @param[in] block pointer to control block @retval true if will be withdrawn */ bool buf_block_will_withdrawn( buf_pool_t* buf_pool, const buf_block_t* block) { ut_ad(buf_pool->curr_size < buf_pool->old_size); ut_ad(!buf_pool_resizing || buf_pool_mutex_own(buf_pool)); const buf_chunk_t* chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t* echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { if (block >= chunk->blocks && block < chunk->blocks + chunk->size) { return(true); } ++chunk; } return(false); } /** Determines if a frame is intended to be withdrawn. @param[in] buf_pool buffer pool instance @param[in] ptr pointer to a frame @retval true if will be withdrawn */ bool buf_frame_will_withdrawn( buf_pool_t* buf_pool, const byte* ptr) { ut_ad(buf_pool->curr_size < buf_pool->old_size); ut_ad(!buf_pool_resizing || buf_pool_mutex_own(buf_pool)); const buf_chunk_t* chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t* echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { if (ptr >= chunk->blocks->frame && ptr < (chunk->blocks + chunk->size - 1)->frame + UNIV_PAGE_SIZE) { return(true); } ++chunk; } return(false); } /** Withdraw the buffer pool blocks from end of the buffer pool instance until withdrawn by buf_pool->withdraw_target. @param[in] buf_pool buffer pool instance @retval true if retry is needed */ static bool buf_pool_withdraw_blocks( buf_pool_t* buf_pool) { buf_block_t* block; ulint loop_count = 0; ulint i = buf_pool_index(buf_pool); ib::info() << "buffer pool " << i << " : start to withdraw the last " << buf_pool->withdraw_target << " blocks."; /* Minimize buf_pool->zip_free[i] lists */ buf_pool_mutex_enter(buf_pool); buf_buddy_condense_free(buf_pool); buf_pool_mutex_exit(buf_pool); while (UT_LIST_GET_LEN(buf_pool->withdraw) < buf_pool->withdraw_target) { /* try to withdraw from free_list */ ulint count1 = 0; buf_pool_mutex_enter(buf_pool); block = reinterpret_cast( UT_LIST_GET_FIRST(buf_pool->free)); while (block != NULL && UT_LIST_GET_LEN(buf_pool->withdraw) < buf_pool->withdraw_target) { ut_ad(block->page.in_free_list); ut_ad(!block->page.in_flush_list); ut_ad(!block->page.in_LRU_list); ut_a(!buf_page_in_file(&block->page)); buf_block_t* next_block; next_block = reinterpret_cast( UT_LIST_GET_NEXT( list, &block->page)); if (buf_block_will_withdrawn(buf_pool, block)) { /* This should be withdrawn */ UT_LIST_REMOVE( buf_pool->free, &block->page); UT_LIST_ADD_LAST( buf_pool->withdraw, &block->page); ut_d(block->in_withdraw_list = TRUE); count1++; } block = next_block; } buf_pool_mutex_exit(buf_pool); /* reserve free_list length */ if (UT_LIST_GET_LEN(buf_pool->withdraw) < buf_pool->withdraw_target) { ulint scan_depth; flush_counters_t n; /* cap scan_depth with current LRU size. */ buf_pool_mutex_enter(buf_pool); scan_depth = UT_LIST_GET_LEN(buf_pool->LRU); buf_pool_mutex_exit(buf_pool); scan_depth = ut_min( ut_max(buf_pool->withdraw_target - UT_LIST_GET_LEN(buf_pool->withdraw), static_cast(srv_LRU_scan_depth)), scan_depth); buf_flush_do_batch(buf_pool, BUF_FLUSH_LRU, scan_depth, 0, &n); buf_flush_wait_batch_end(buf_pool, BUF_FLUSH_LRU); if (n.flushed) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_LRU_BATCH_FLUSH_TOTAL_PAGE, MONITOR_LRU_BATCH_FLUSH_COUNT, MONITOR_LRU_BATCH_FLUSH_PAGES, n.flushed); } } /* relocate blocks/buddies in withdrawn area */ ulint count2 = 0; buf_pool_mutex_enter(buf_pool); buf_page_t* bpage; bpage = UT_LIST_GET_FIRST(buf_pool->LRU); while (bpage != NULL) { BPageMutex* block_mutex; buf_page_t* next_bpage; block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); next_bpage = UT_LIST_GET_NEXT(LRU, bpage); if (bpage->zip.data != NULL && buf_frame_will_withdrawn( buf_pool, static_cast(bpage->zip.data))) { if (buf_page_can_relocate(bpage)) { mutex_exit(block_mutex); buf_pool_mutex_exit_forbid(buf_pool); if(!buf_buddy_realloc( buf_pool, bpage->zip.data, page_zip_get_size( &bpage->zip))) { /* failed to allocate block */ buf_pool_mutex_exit_allow( buf_pool); break; } buf_pool_mutex_exit_allow(buf_pool); mutex_enter(block_mutex); count2++; } /* NOTE: if the page is in use, not reallocated yet */ } if (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE && buf_block_will_withdrawn( buf_pool, reinterpret_cast(bpage))) { if (buf_page_can_relocate(bpage)) { mutex_exit(block_mutex); buf_pool_mutex_exit_forbid(buf_pool); if(!buf_page_realloc( buf_pool, reinterpret_cast( bpage))) { /* failed to allocate block */ buf_pool_mutex_exit_allow( buf_pool); break; } buf_pool_mutex_exit_allow(buf_pool); count2++; } else { mutex_exit(block_mutex); } /* NOTE: if the page is in use, not reallocated yet */ } else { mutex_exit(block_mutex); } bpage = next_bpage; } buf_pool_mutex_exit(buf_pool); buf_resize_status( "buffer pool %lu : withdrawing blocks. (%lu/%lu)", i, UT_LIST_GET_LEN(buf_pool->withdraw), buf_pool->withdraw_target); ib::info() << "buffer pool " << i << " : withdrew " << count1 << " blocks from free list." << " Tried to relocate " << count2 << " pages (" << UT_LIST_GET_LEN(buf_pool->withdraw) << "/" << buf_pool->withdraw_target << ")."; if (++loop_count >= 10) { /* give up for now. retried after user threads paused. */ ib::info() << "buffer pool " << i << " : will retry to withdraw later."; /* need retry later */ return(true); } } /* confirm withdrawn enough */ const buf_chunk_t* chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t* echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { /* If !=BUF_BLOCK_NOT_USED block in the withdrawn area, it means corruption something */ ut_a(buf_block_get_state(block) == BUF_BLOCK_NOT_USED); ut_ad(block->in_withdraw_list); } ++chunk; } ib::info() << "buffer pool " << i << " : withdrawn target " << UT_LIST_GET_LEN(buf_pool->withdraw) << " blocks."; /* retry is not needed */ ++buf_withdraw_clock; return(false); } /** resize page_hash and zip_hash for a buffer pool instance. @param[in] buf_pool buffer pool instance */ static void buf_pool_resize_hash( buf_pool_t* buf_pool) { hash_table_t* new_hash_table; ut_ad(buf_pool->page_hash_old == NULL); /* recreate page_hash */ new_hash_table = ib_recreate( buf_pool->page_hash, 2 * buf_pool->curr_size); for (ulint i = 0; i < hash_get_n_cells(buf_pool->page_hash); i++) { buf_page_t* bpage; bpage = static_cast( HASH_GET_FIRST( buf_pool->page_hash, i)); while (bpage) { buf_page_t* prev_bpage = bpage; ulint fold; bpage = static_cast( HASH_GET_NEXT( hash, prev_bpage)); fold = prev_bpage->id.fold(); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, fold, prev_bpage); HASH_INSERT(buf_page_t, hash, new_hash_table, fold, prev_bpage); } } buf_pool->page_hash_old = buf_pool->page_hash; buf_pool->page_hash = new_hash_table; /* recreate zip_hash */ new_hash_table = hash_create(2 * buf_pool->curr_size); for (ulint i = 0; i < hash_get_n_cells(buf_pool->zip_hash); i++) { buf_page_t* bpage; bpage = static_cast( HASH_GET_FIRST(buf_pool->zip_hash, i)); while (bpage) { buf_page_t* prev_bpage = bpage; ulint fold; bpage = static_cast( HASH_GET_NEXT( hash, prev_bpage)); fold = BUF_POOL_ZIP_FOLD( reinterpret_cast( prev_bpage)); HASH_DELETE(buf_page_t, hash, buf_pool->zip_hash, fold, prev_bpage); HASH_INSERT(buf_page_t, hash, new_hash_table, fold, prev_bpage); } } hash_table_free(buf_pool->zip_hash); buf_pool->zip_hash = new_hash_table; } #ifndef DBUG_OFF /** This is a debug routine to inject an memory allocation failure error. */ static void buf_pool_resize_chunk_make_null(buf_chunk_t** new_chunks) { static int count = 0; if (count == 1) { ut_free(*new_chunks); *new_chunks = NULL; } count++; } #endif // DBUG_OFF /** Resize the buffer pool based on srv_buf_pool_size from srv_buf_pool_old_size. */ static void buf_pool_resize() { buf_pool_t* buf_pool; ulint new_instance_size; bool warning = false; NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; ut_ad(!buf_pool_resizing); ut_ad(!buf_pool_withdrawing); ut_ad(srv_buf_pool_chunk_unit > 0); new_instance_size = srv_buf_pool_size / srv_buf_pool_instances; new_instance_size /= UNIV_PAGE_SIZE; buf_resize_status("Resizing buffer pool from " ULINTPF " to " ULINTPF " (unit=" ULINTPF ").", srv_buf_pool_old_size, srv_buf_pool_size, srv_buf_pool_chunk_unit); /* set new limit for all buffer pool for resizing */ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); buf_pool_mutex_enter(buf_pool); ut_ad(buf_pool->curr_size == buf_pool->old_size); ut_ad(buf_pool->n_chunks_new == buf_pool->n_chunks); ut_ad(UT_LIST_GET_LEN(buf_pool->withdraw) == 0); ut_ad(buf_pool->flush_rbt == NULL); buf_pool->curr_size = new_instance_size; buf_pool->n_chunks_new = new_instance_size * UNIV_PAGE_SIZE / srv_buf_pool_chunk_unit; buf_pool_mutex_exit(buf_pool); } #ifdef BTR_CUR_HASH_ADAPT /* disable AHI if needed */ bool btr_search_disabled = false; buf_resize_status("Disabling adaptive hash index."); btr_search_s_lock_all(); if (btr_search_enabled) { btr_search_s_unlock_all(); btr_search_disabled = true; } else { btr_search_s_unlock_all(); } btr_search_disable(true); if (btr_search_disabled) { ib::info() << "disabled adaptive hash index."; } #endif /* BTR_CUR_HASH_ADAPT */ /* set withdraw target */ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); if (buf_pool->curr_size < buf_pool->old_size) { ulint withdraw_target = 0; const buf_chunk_t* chunk = buf_pool->chunks + buf_pool->n_chunks_new; const buf_chunk_t* echunk = buf_pool->chunks + buf_pool->n_chunks; while (chunk < echunk) { withdraw_target += chunk->size; ++chunk; } ut_ad(buf_pool->withdraw_target == 0); buf_pool->withdraw_target = withdraw_target; buf_pool_withdrawing = true; } } buf_resize_status("Withdrawing blocks to be shrunken."); ib_time_t withdraw_started = ut_time(); ulint message_interval = 60; ulint retry_interval = 1; withdraw_retry: bool should_retry_withdraw = false; /* wait for the number of blocks fit to the new size (if needed)*/ for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); if (buf_pool->curr_size < buf_pool->old_size) { should_retry_withdraw |= buf_pool_withdraw_blocks(buf_pool); } } if (srv_shutdown_state != SRV_SHUTDOWN_NONE) { /* abort to resize for shutdown. */ buf_pool_withdrawing = false; return; } /* abort buffer pool load */ buf_load_abort(); if (should_retry_withdraw && ut_difftime(ut_time(), withdraw_started) >= message_interval) { if (message_interval > 900) { message_interval = 1800; } else { message_interval *= 2; } lock_mutex_enter(); trx_sys_mutex_enter(); bool found = false; for (trx_t* trx = UT_LIST_GET_FIRST(trx_sys->mysql_trx_list); trx != NULL; trx = UT_LIST_GET_NEXT(mysql_trx_list, trx)) { if (trx->state != TRX_STATE_NOT_STARTED && trx->mysql_thd != NULL && ut_difftime(withdraw_started, trx->start_time) > 0) { if (!found) { ib::warn() << "The following trx might hold" " the blocks in buffer pool to" " be withdrawn. Buffer pool" " resizing can complete only" " after all the transactions" " below release the blocks."; found = true; } lock_trx_print_wait_and_mvcc_state( stderr, trx); } } trx_sys_mutex_exit(); lock_mutex_exit(); withdraw_started = ut_time(); } if (should_retry_withdraw) { ib::info() << "Will retry to withdraw " << retry_interval << " seconds later."; os_thread_sleep(retry_interval * 1000000); if (retry_interval > 5) { retry_interval = 10; } else { retry_interval *= 2; } goto withdraw_retry; } buf_pool_withdrawing = false; buf_resize_status("Latching whole of buffer pool."); #ifndef DBUG_OFF { bool should_wait = true; while (should_wait) { should_wait = false; DBUG_EXECUTE_IF( "ib_buf_pool_resize_wait_before_resize", should_wait = true; os_thread_sleep(10000);); } } #endif /* !DBUG_OFF */ if (srv_shutdown_state != SRV_SHUTDOWN_NONE) { return; } /* Indicate critical path */ buf_pool_resizing = true; /* Acquire all buf_pool_mutex/hash_lock */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); buf_pool_mutex_enter(buf_pool); } for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); hash_lock_x_all(buf_pool->page_hash); } buf_chunk_map_reg = UT_NEW_NOKEY(buf_pool_chunk_map_t()); /* add/delete chunks */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); buf_chunk_t* chunk; buf_chunk_t* echunk; buf_resize_status("buffer pool %lu :" " resizing with chunks %lu to %lu.", i, buf_pool->n_chunks, buf_pool->n_chunks_new); if (buf_pool->n_chunks_new < buf_pool->n_chunks) { /* delete chunks */ chunk = buf_pool->chunks + buf_pool->n_chunks_new; echunk = buf_pool->chunks + buf_pool->n_chunks; ulint sum_freed = 0; while (chunk < echunk) { buf_block_t* block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { mutex_free(&block->mutex); rw_lock_free(&block->lock); ut_d(rw_lock_free( &block->debug_latch)); } buf_pool->allocator.deallocate_large( chunk->mem, &chunk->mem_pfx); sum_freed += chunk->size; ++chunk; } /* discard withdraw list */ UT_LIST_INIT(buf_pool->withdraw, &buf_page_t::list); buf_pool->withdraw_target = 0; ib::info() << "buffer pool " << i << " : " << buf_pool->n_chunks - buf_pool->n_chunks_new << " chunks (" << sum_freed << " blocks) were freed."; buf_pool->n_chunks = buf_pool->n_chunks_new; } { /* reallocate buf_pool->chunks */ const ulint new_chunks_size = buf_pool->n_chunks_new * sizeof(*chunk); buf_chunk_t* new_chunks = reinterpret_cast( ut_zalloc_nokey_nofatal(new_chunks_size)); DBUG_EXECUTE_IF("buf_pool_resize_chunk_null", buf_pool_resize_chunk_make_null(&new_chunks);); if (new_chunks == NULL) { ib::error() << "buffer pool " << i << " : failed to allocate" " the chunk array."; buf_pool->n_chunks_new = buf_pool->n_chunks; warning = true; buf_pool->chunks_old = NULL; for (ulint j = 0; j < buf_pool->n_chunks_new; j++) { buf_pool_register_chunk(&(buf_pool->chunks[j])); } goto calc_buf_pool_size; } ulint n_chunks_copy = ut_min(buf_pool->n_chunks_new, buf_pool->n_chunks); memcpy(new_chunks, buf_pool->chunks, n_chunks_copy * sizeof(*chunk)); for (ulint j = 0; j < n_chunks_copy; j++) { buf_pool_register_chunk(&new_chunks[j]); } buf_pool->chunks_old = buf_pool->chunks; buf_pool->chunks = new_chunks; } if (buf_pool->n_chunks_new > buf_pool->n_chunks) { /* add chunks */ chunk = buf_pool->chunks + buf_pool->n_chunks; echunk = buf_pool->chunks + buf_pool->n_chunks_new; ulint sum_added = 0; ulint n_chunks = buf_pool->n_chunks; while (chunk < echunk) { ulong unit = srv_buf_pool_chunk_unit; if (!buf_chunk_init(buf_pool, chunk, unit)) { ib::error() << "buffer pool " << i << " : failed to allocate" " new memory."; warning = true; buf_pool->n_chunks_new = n_chunks; break; } sum_added += chunk->size; ++n_chunks; ++chunk; } ib::info() << "buffer pool " << i << " : " << buf_pool->n_chunks_new - buf_pool->n_chunks << " chunks (" << sum_added << " blocks) were added."; buf_pool->n_chunks = n_chunks; } calc_buf_pool_size: /* recalc buf_pool->curr_size */ ulint new_size = 0; chunk = buf_pool->chunks; do { new_size += chunk->size; } while (++chunk < buf_pool->chunks + buf_pool->n_chunks); buf_pool->curr_size = new_size; buf_pool->n_chunks_new = buf_pool->n_chunks; if (buf_pool->chunks_old) { ut_free(buf_pool->chunks_old); buf_pool->chunks_old = NULL; } } buf_pool_chunk_map_t* chunk_map_old = buf_chunk_map_ref; buf_chunk_map_ref = buf_chunk_map_reg; /* set instance sizes */ { ulint curr_size = 0; for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool = buf_pool_from_array(i); ut_ad(UT_LIST_GET_LEN(buf_pool->withdraw) == 0); buf_pool->read_ahead_area = ut_min(BUF_READ_AHEAD_PAGES, ut_2_power_up(buf_pool->curr_size / BUF_READ_AHEAD_PORTION)); buf_pool->curr_pool_size = buf_pool->curr_size * UNIV_PAGE_SIZE; curr_size += buf_pool->curr_pool_size; buf_pool->old_size = buf_pool->curr_size; } srv_buf_pool_curr_size = curr_size; innodb_set_buf_pool_size(buf_pool_size_align(curr_size)); } const bool new_size_too_diff = srv_buf_pool_base_size > srv_buf_pool_size * 2 || srv_buf_pool_base_size * 2 < srv_buf_pool_size; /* Normalize page_hash and zip_hash, if the new size is too different */ if (!warning && new_size_too_diff) { buf_resize_status("Resizing hash tables."); for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); buf_pool_resize_hash(buf_pool); ib::info() << "buffer pool " << i << " : hash tables were resized."; } } /* Release all buf_pool_mutex/page_hash */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); hash_unlock_x_all(buf_pool->page_hash); buf_pool_mutex_exit(buf_pool); if (buf_pool->page_hash_old != NULL) { hash_table_free(buf_pool->page_hash_old); buf_pool->page_hash_old = NULL; } } UT_DELETE(chunk_map_old); buf_pool_resizing = false; /* Normalize other components, if the new size is too different */ if (!warning && new_size_too_diff) { srv_buf_pool_base_size = srv_buf_pool_size; buf_resize_status("Resizing also other hash tables."); /* normalize lock_sys */ srv_lock_table_size = 5 * (srv_buf_pool_size / UNIV_PAGE_SIZE); lock_sys_resize(srv_lock_table_size); /* normalize btr_search_sys */ btr_search_sys_resize( buf_pool_get_curr_size() / sizeof(void*) / 64); /* normalize dict_sys */ dict_resize(); ib::info() << "Resized hash tables at lock_sys," #ifdef BTR_CUR_HASH_ADAPT " adaptive hash index," #endif /* BTR_CUR_HASH_ADAPT */ " dictionary."; } /* normalize ibuf->max_size */ ibuf_max_size_update(srv_change_buffer_max_size); if (srv_buf_pool_old_size != srv_buf_pool_size) { ib::info() << "Completed to resize buffer pool from " << srv_buf_pool_old_size << " to " << srv_buf_pool_size << "."; srv_buf_pool_old_size = srv_buf_pool_size; } #ifdef BTR_CUR_HASH_ADAPT /* enable AHI if needed */ if (btr_search_disabled) { btr_search_enable(); ib::info() << "Re-enabled adaptive hash index."; } #endif /* BTR_CUR_HASH_ADAPT */ char now[32]; ut_sprintf_timestamp(now); if (!warning) { buf_resize_status("Completed resizing buffer pool at %s.", now); } else { buf_resize_status("Resizing buffer pool failed," " finished resizing at %s.", now); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ return; } /** This is the thread for resizing buffer pool. It waits for an event and when waked up either performs a resizing and sleeps again. @return this function does not return, calls os_thread_exit() */ extern "C" os_thread_ret_t DECLARE_THREAD(buf_resize_thread)(void*) { my_thread_init(); while (srv_shutdown_state == SRV_SHUTDOWN_NONE) { os_event_wait(srv_buf_resize_event); os_event_reset(srv_buf_resize_event); if (srv_shutdown_state != SRV_SHUTDOWN_NONE) { break; } buf_pool_mutex_enter_all(); if (srv_buf_pool_old_size == srv_buf_pool_size) { buf_pool_mutex_exit_all(); std::ostringstream sout; sout << "Size did not change (old size = new size = " << srv_buf_pool_size << ". Nothing to do."; buf_resize_status(sout.str().c_str()); /* nothing to do */ continue; } buf_pool_mutex_exit_all(); buf_pool_resize(); } srv_buf_resize_thread_active = false; my_thread_end(); os_thread_exit(); OS_THREAD_DUMMY_RETURN; } #ifdef BTR_CUR_HASH_ADAPT /** Clear the adaptive hash index on all pages in the buffer pool. */ void buf_pool_clear_hash_index() { ulint p; ut_ad(btr_search_own_all(RW_LOCK_X)); ut_ad(!buf_pool_resizing); ut_ad(!btr_search_enabled); for (p = 0; p < srv_buf_pool_instances; p++) { buf_pool_t* buf_pool = buf_pool_from_array(p); buf_chunk_t* chunks = buf_pool->chunks; buf_chunk_t* chunk = chunks + buf_pool->n_chunks; while (--chunk >= chunks) { buf_block_t* block = chunk->blocks; ulint i = chunk->size; for (; i--; block++) { dict_index_t* index = block->index; assert_block_ahi_valid(block); /* We can set block->index = NULL and block->n_pointers = 0 when btr_search_own_all(RW_LOCK_X); see the comments in buf0buf.h */ if (!index) { # if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG ut_a(!block->n_pointers); # endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ continue; } ut_d(buf_page_state state = buf_block_get_state(block)); /* Another thread may have set the state to BUF_BLOCK_REMOVE_HASH in buf_LRU_block_remove_hashed(). The state change in buf_page_realloc() is not observable here, because in that case we would have !block->index. In the end, the entire adaptive hash index will be removed. */ ut_ad(state == BUF_BLOCK_FILE_PAGE || state == BUF_BLOCK_REMOVE_HASH); # if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG block->n_pointers = 0; # endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ block->index = NULL; } } } } #endif /* BTR_CUR_HASH_ADAPT */ /********************************************************************//** Relocate a buffer control block. Relocates the block on the LRU list and in buf_pool->page_hash. Does not relocate bpage->list. The caller must take care of relocating bpage->list. */ static void buf_relocate( /*=========*/ buf_page_t* bpage, /*!< in/out: control block being relocated; buf_page_get_state(bpage) must be BUF_BLOCK_ZIP_DIRTY or BUF_BLOCK_ZIP_PAGE */ buf_page_t* dpage) /*!< in/out: destination control block */ { buf_page_t* b; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(buf_page_hash_lock_held_x(buf_pool, bpage)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_a(buf_page_get_io_fix(bpage) == BUF_IO_NONE); ut_a(bpage->buf_fix_count == 0); ut_ad(bpage->in_LRU_list); ut_ad(!bpage->in_zip_hash); ut_ad(bpage->in_page_hash); ut_ad(bpage == buf_page_hash_get_low(buf_pool, bpage->id)); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); #ifdef UNIV_DEBUG switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_FILE_PAGE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; case BUF_BLOCK_ZIP_DIRTY: case BUF_BLOCK_ZIP_PAGE: break; } #endif /* UNIV_DEBUG */ new (dpage) buf_page_t(*bpage); /* Important that we adjust the hazard pointer before removing bpage from LRU list. */ buf_LRU_adjust_hp(buf_pool, bpage); ut_d(bpage->in_LRU_list = FALSE); ut_d(bpage->in_page_hash = FALSE); /* relocate buf_pool->LRU */ b = UT_LIST_GET_PREV(LRU, bpage); UT_LIST_REMOVE(buf_pool->LRU, bpage); if (b != NULL) { UT_LIST_INSERT_AFTER(buf_pool->LRU, b, dpage); } else { UT_LIST_ADD_FIRST(buf_pool->LRU, dpage); } if (UNIV_UNLIKELY(buf_pool->LRU_old == bpage)) { buf_pool->LRU_old = dpage; #ifdef UNIV_LRU_DEBUG /* buf_pool->LRU_old must be the first item in the LRU list whose "old" flag is set. */ ut_a(buf_pool->LRU_old->old); ut_a(!UT_LIST_GET_PREV(LRU, buf_pool->LRU_old) || !UT_LIST_GET_PREV(LRU, buf_pool->LRU_old)->old); ut_a(!UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old) || UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old)->old); } else { /* Check that the "old" flag is consistent in the block and its neighbours. */ buf_page_set_old(dpage, buf_page_is_old(dpage)); #endif /* UNIV_LRU_DEBUG */ } ut_d(CheckInLRUList::validate(buf_pool)); /* relocate buf_pool->page_hash */ ulint fold = bpage->id.fold(); ut_ad(fold == dpage->id.fold()); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, fold, bpage); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, fold, dpage); } /** Hazard Pointer implementation. */ /** Set current value @param bpage buffer block to be set as hp */ void HazardPointer::set(buf_page_t* bpage) { ut_ad(mutex_own(m_mutex)); ut_ad(!bpage || buf_pool_from_bpage(bpage) == m_buf_pool); ut_ad(!bpage || buf_page_in_file(bpage)); m_hp = bpage; } /** Checks if a bpage is the hp @param bpage buffer block to be compared @return true if it is hp */ bool HazardPointer::is_hp(const buf_page_t* bpage) { ut_ad(mutex_own(m_mutex)); ut_ad(!m_hp || buf_pool_from_bpage(m_hp) == m_buf_pool); ut_ad(!bpage || buf_pool_from_bpage(bpage) == m_buf_pool); return(bpage == m_hp); } /** Adjust the value of hp. This happens when some other thread working on the same list attempts to remove the hp from the list. @param bpage buffer block to be compared */ void FlushHp::adjust(const buf_page_t* bpage) { ut_ad(bpage != NULL); /** We only support reverse traversal for now. */ if (is_hp(bpage)) { m_hp = UT_LIST_GET_PREV(list, m_hp); } ut_ad(!m_hp || m_hp->in_flush_list); } /** Adjust the value of hp. This happens when some other thread working on the same list attempts to remove the hp from the list. @param bpage buffer block to be compared */ void LRUHp::adjust(const buf_page_t* bpage) { ut_ad(bpage); /** We only support reverse traversal for now. */ if (is_hp(bpage)) { m_hp = UT_LIST_GET_PREV(LRU, m_hp); } ut_ad(!m_hp || m_hp->in_LRU_list); } /** Selects from where to start a scan. If we have scanned too deep into the LRU list it resets the value to the tail of the LRU list. @return buf_page_t from where to start scan. */ buf_page_t* LRUItr::start() { ut_ad(mutex_own(m_mutex)); if (!m_hp || m_hp->old) { m_hp = UT_LIST_GET_LAST(m_buf_pool->LRU); } return(m_hp); } /** Determine if a block is a sentinel for a buffer pool watch. @param[in] buf_pool buffer pool instance @param[in] bpage block @return TRUE if a sentinel for a buffer pool watch, FALSE if not */ ibool buf_pool_watch_is_sentinel( const buf_pool_t* buf_pool, const buf_page_t* bpage) { /* We must also own the appropriate hash lock. */ ut_ad(buf_page_hash_lock_held_s_or_x(buf_pool, bpage)); ut_ad(buf_page_in_file(bpage)); if (bpage < &buf_pool->watch[0] || bpage >= &buf_pool->watch[BUF_POOL_WATCH_SIZE]) { ut_ad(buf_page_get_state(bpage) != BUF_BLOCK_ZIP_PAGE || bpage->zip.data != NULL); return(FALSE); } ut_ad(buf_page_get_state(bpage) == BUF_BLOCK_ZIP_PAGE); ut_ad(!bpage->in_zip_hash); ut_ad(bpage->in_page_hash); ut_ad(bpage->zip.data == NULL); return(TRUE); } /** Add watch for the given page to be read in. Caller must have appropriate hash_lock for the bpage. This function may release the hash_lock and reacquire it. @param[in] page_id page id @param[in,out] hash_lock hash_lock currently latched @return NULL if watch set, block if the page is in the buffer pool */ static buf_page_t* buf_pool_watch_set( const page_id_t page_id, rw_lock_t** hash_lock) { buf_page_t* bpage; ulint i; buf_pool_t* buf_pool = buf_pool_get(page_id); ut_ad(*hash_lock == buf_page_hash_lock_get(buf_pool, page_id)); ut_ad(rw_lock_own(*hash_lock, RW_LOCK_X)); bpage = buf_page_hash_get_low(buf_pool, page_id); if (bpage != NULL) { page_found: if (!buf_pool_watch_is_sentinel(buf_pool, bpage)) { /* The page was loaded meanwhile. */ return(bpage); } /* Add to an existing watch. */ buf_block_fix(bpage); return(NULL); } /* From this point this function becomes fairly heavy in terms of latching. We acquire the buf_pool mutex as well as all the hash_locks. buf_pool mutex is needed because any changes to the page_hash must be covered by it and hash_locks are needed because we don't want to read any stale information in buf_pool->watch[]. However, it is not in the critical code path as this function will be called only by the purge thread. */ /* To obey latching order first release the hash_lock. */ rw_lock_x_unlock(*hash_lock); buf_pool_mutex_enter(buf_pool); hash_lock_x_all(buf_pool->page_hash); /* If not own buf_pool_mutex, page_hash can be changed. */ *hash_lock = buf_page_hash_lock_get(buf_pool, page_id); /* We have to recheck that the page was not loaded or a watch set by some other purge thread. This is because of the small time window between when we release the hash_lock to acquire buf_pool mutex above. */ bpage = buf_page_hash_get_low(buf_pool, page_id); if (UNIV_LIKELY_NULL(bpage)) { buf_pool_mutex_exit(buf_pool); hash_unlock_x_all_but(buf_pool->page_hash, *hash_lock); goto page_found; } /* The maximum number of purge threads should never exceed BUF_POOL_WATCH_SIZE. So there is no way for purge thread instance to hold a watch when setting another watch. */ for (i = 0; i < BUF_POOL_WATCH_SIZE; i++) { bpage = &buf_pool->watch[i]; ut_ad(bpage->access_time == 0); ut_ad(bpage->newest_modification == 0); ut_ad(bpage->oldest_modification == 0); ut_ad(bpage->zip.data == NULL); ut_ad(!bpage->in_zip_hash); switch (bpage->state) { case BUF_BLOCK_POOL_WATCH: ut_ad(!bpage->in_page_hash); ut_ad(bpage->buf_fix_count == 0); /* bpage is pointing to buf_pool->watch[], which is protected by buf_pool->mutex. Normally, buf_page_t objects are protected by buf_block_t::mutex or buf_pool->zip_mutex or both. */ bpage->state = BUF_BLOCK_ZIP_PAGE; bpage->id = page_id; bpage->buf_fix_count = 1; ut_d(bpage->in_page_hash = TRUE); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, page_id.fold(), bpage); buf_pool_mutex_exit(buf_pool); /* Once the sentinel is in the page_hash we can safely release all locks except just the relevant hash_lock */ hash_unlock_x_all_but(buf_pool->page_hash, *hash_lock); return(NULL); case BUF_BLOCK_ZIP_PAGE: ut_ad(bpage->in_page_hash); ut_ad(bpage->buf_fix_count > 0); break; default: ut_error; } } /* Allocation failed. Either the maximum number of purge threads should never exceed BUF_POOL_WATCH_SIZE, or this code should be modified to return a special non-NULL value and the caller should purge the record directly. */ ut_error; /* Fix compiler warning */ return(NULL); } /** Remove the sentinel block for the watch before replacing it with a real block. buf_page_watch_clear() or buf_page_watch_occurred() will notice that the block has been replaced with the real block. @param[in,out] buf_pool buffer pool instance @param[in,out] watch sentinel for watch @return reference count, to be added to the replacement block */ static void buf_pool_watch_remove( buf_pool_t* buf_pool, buf_page_t* watch) { #ifdef UNIV_DEBUG /* We must also own the appropriate hash_bucket mutex. */ rw_lock_t* hash_lock = buf_page_hash_lock_get(buf_pool, watch->id); ut_ad(rw_lock_own(hash_lock, RW_LOCK_X)); #endif /* UNIV_DEBUG */ ut_ad(buf_pool_mutex_own(buf_pool)); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, watch->id.fold(), watch); ut_d(watch->in_page_hash = FALSE); watch->buf_fix_count = 0; watch->state = BUF_BLOCK_POOL_WATCH; } /** Stop watching if the page has been read in. buf_pool_watch_set(same_page_id) must have returned NULL before. @param[in] page_id page id */ void buf_pool_watch_unset(const page_id_t page_id) { buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(page_id); /* We only need to have buf_pool mutex in case where we end up calling buf_pool_watch_remove but to obey latching order we acquire it here before acquiring hash_lock. This should not cause too much grief as this function is only ever called from the purge thread. */ buf_pool_mutex_enter(buf_pool); rw_lock_t* hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock); /* The page must exist because buf_pool_watch_set() increments buf_fix_count. */ bpage = buf_page_hash_get_low(buf_pool, page_id); if (buf_block_unfix(bpage) == 0 && buf_pool_watch_is_sentinel(buf_pool, bpage)) { buf_pool_watch_remove(buf_pool, bpage); } buf_pool_mutex_exit(buf_pool); rw_lock_x_unlock(hash_lock); } /** Check if the page has been read in. This may only be called after buf_pool_watch_set(same_page_id) has returned NULL and before invoking buf_pool_watch_unset(same_page_id). @param[in] page_id page id @return false if the given page was not read in, true if it was */ bool buf_pool_watch_occurred(const page_id_t page_id) { bool ret; buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(page_id); rw_lock_t* hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_s_lock(hash_lock); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_s_confirm(hash_lock, buf_pool, page_id); /* The page must exist because buf_pool_watch_set() increments buf_fix_count. */ bpage = buf_page_hash_get_low(buf_pool, page_id); ret = !buf_pool_watch_is_sentinel(buf_pool, bpage); rw_lock_s_unlock(hash_lock); return(ret); } /********************************************************************//** Moves a page to the start of the buffer pool LRU list. This high-level function can be used to prevent an important page from slipping out of the buffer pool. */ void buf_page_make_young( /*================*/ buf_page_t* bpage) /*!< in: buffer block of a file page */ { buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); buf_pool_mutex_enter(buf_pool); ut_a(buf_page_in_file(bpage)); buf_LRU_make_block_young(bpage); buf_pool_mutex_exit(buf_pool); } /********************************************************************//** Moves a page to the start of the buffer pool LRU list if it is too old. This high-level function can be used to prevent an important page from slipping out of the buffer pool. */ static void buf_page_make_young_if_needed( /*==========================*/ buf_page_t* bpage) /*!< in/out: buffer block of a file page */ { #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(!buf_pool_mutex_own(buf_pool)); #endif /* UNIV_DEBUG */ ut_a(buf_page_in_file(bpage)); if (buf_page_peek_if_too_old(bpage)) { buf_page_make_young(bpage); } } #ifdef UNIV_DEBUG /** Sets file_page_was_freed TRUE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @param[in] page_id page id @return control block if found in page hash table, otherwise NULL */ buf_page_t* buf_page_set_file_page_was_freed(const page_id_t page_id) { buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(page_id); rw_lock_t* hash_lock; bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { BPageMutex* block_mutex = buf_page_get_mutex(bpage); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); /* bpage->file_page_was_freed can already hold when this code is invoked from dict_drop_index_tree() */ bpage->file_page_was_freed = TRUE; mutex_exit(block_mutex); } return(bpage); } /** Sets file_page_was_freed FALSE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @param[in] page_id page id @return control block if found in page hash table, otherwise NULL */ buf_page_t* buf_page_reset_file_page_was_freed(const page_id_t page_id) { buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(page_id); rw_lock_t* hash_lock; bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { BPageMutex* block_mutex = buf_page_get_mutex(bpage); ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); bpage->file_page_was_freed = FALSE; mutex_exit(block_mutex); } return(bpage); } #endif /* UNIV_DEBUG */ /** Attempts to discard the uncompressed frame of a compressed page. The caller should not be holding any mutexes when this function is called. @param[in] page_id page id */ static void buf_block_try_discard_uncompressed(const page_id_t page_id) { buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(page_id); /* Since we need to acquire buf_pool mutex to discard the uncompressed frame and because page_hash mutex resides below buf_pool mutex in sync ordering therefore we must first release the page_hash mutex. This means that the block in question can move out of page_hash. Therefore we need to check again if the block is still in page_hash. */ buf_pool_mutex_enter(buf_pool); bpage = buf_page_hash_get(buf_pool, page_id); if (bpage) { buf_LRU_free_page(bpage, false); } buf_pool_mutex_exit(buf_pool); } /** Get read access to a compressed page (usually of type FIL_PAGE_TYPE_ZBLOB or FIL_PAGE_TYPE_ZBLOB2). The page must be released with buf_page_release_zip(). NOTE: the page is not protected by any latch. Mutual exclusion has to be implemented at a higher level. In other words, all possible accesses to a given page through this function must be protected by the same set of mutexes or latches. @param[in] page_id page id @param[in] page_size page size @return pointer to the block */ buf_page_t* buf_page_get_zip( const page_id_t page_id, const page_size_t& page_size) { buf_page_t* bpage; BPageMutex* block_mutex; rw_lock_t* hash_lock; ibool discard_attempted = FALSE; ibool must_read; buf_pool_t* buf_pool = buf_pool_get(page_id); buf_pool->stat.n_page_gets++; for (;;) { lookup: /* The following call will also grab the page_hash mutex if the page is found. */ bpage = buf_page_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (bpage) { ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); break; } /* Page not in buf_pool: needs to be read from file */ ut_ad(!hash_lock); dberr_t err = buf_read_page(page_id, page_size); if (err != DB_SUCCESS) { ib::error() << "Reading compressed page " << page_id << " failed with error: " << ut_strerr(err); goto err_exit; } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ } ut_ad(buf_page_hash_lock_held_s(buf_pool, bpage)); if (!bpage->zip.data) { /* There is no compressed page. */ err_exit: rw_lock_s_unlock(hash_lock); return(NULL); } ut_ad(!buf_pool_watch_is_sentinel(buf_pool, bpage)); switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: buf_block_fix(bpage); block_mutex = &buf_pool->zip_mutex; mutex_enter(block_mutex); goto got_block; case BUF_BLOCK_FILE_PAGE: /* Discard the uncompressed page frame if possible. */ if (!discard_attempted) { rw_lock_s_unlock(hash_lock); buf_block_try_discard_uncompressed(page_id); discard_attempted = TRUE; goto lookup; } buf_block_buf_fix_inc((buf_block_t*) bpage, __FILE__, __LINE__); block_mutex = &((buf_block_t*) bpage)->mutex; mutex_enter(block_mutex); goto got_block; } ut_error; goto err_exit; got_block: must_read = buf_page_get_io_fix(bpage) == BUF_IO_READ; rw_lock_s_unlock(hash_lock); ut_ad(!bpage->file_page_was_freed); buf_page_set_accessed(bpage); mutex_exit(block_mutex); buf_page_make_young_if_needed(bpage); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(bpage->buf_fix_count > 0); ut_a(buf_page_in_file(bpage)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ if (must_read) { /* Let us wait until the read operation completes */ for (;;) { enum buf_io_fix io_fix; mutex_enter(block_mutex); io_fix = buf_page_get_io_fix(bpage); mutex_exit(block_mutex); if (io_fix == BUF_IO_READ) { os_thread_sleep(WAIT_FOR_READ); } else { break; } } } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ return(bpage); } /********************************************************************//** Initialize some fields of a control block. */ UNIV_INLINE void buf_block_init_low( /*===============*/ buf_block_t* block) /*!< in: block to init */ { block->skip_flush_check = false; #ifdef BTR_CUR_HASH_ADAPT /* No adaptive hash index entries may point to a previously unused (and now freshly allocated) block. */ assert_block_ahi_empty_on_init(block); block->index = NULL; block->n_hash_helps = 0; block->n_fields = 1; block->n_bytes = 0; block->left_side = TRUE; #endif /* BTR_CUR_HASH_ADAPT */ } /********************************************************************//** Decompress a block. @return TRUE if successful */ ibool buf_zip_decompress( /*===============*/ buf_block_t* block, /*!< in/out: block */ ibool check) /*!< in: TRUE=verify the page checksum */ { const byte* frame = block->page.zip.data; ulint size = page_zip_get_size(&block->page.zip); /* The tablespace will not be found if this function is called during IMPORT. */ fil_space_t* space = fil_space_acquire_for_io(block->page.id.space()); const unsigned key_version = mach_read_from_4( frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION); fil_space_crypt_t* crypt_data = space ? space->crypt_data : NULL; const bool encrypted = crypt_data && crypt_data->type != CRYPT_SCHEME_UNENCRYPTED && (!crypt_data->is_default_encryption() || srv_encrypt_tables); ut_ad(block->page.size.is_compressed()); ut_a(block->page.id.space() != 0); if (UNIV_UNLIKELY(check && !page_zip_verify_checksum(frame, size))) { ib::error() << "Compressed page checksum mismatch for " << (space ? space->chain.start->name : "") << block->page.id << ": stored: " << mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM) << ", crc32: " << page_zip_calc_checksum( frame, size, SRV_CHECKSUM_ALGORITHM_CRC32) #ifdef INNODB_BUG_ENDIAN_CRC32 << "/" << page_zip_calc_checksum( frame, size, SRV_CHECKSUM_ALGORITHM_CRC32, true) #endif << " innodb: " << page_zip_calc_checksum( frame, size, SRV_CHECKSUM_ALGORITHM_INNODB) << ", none: " << page_zip_calc_checksum( frame, size, SRV_CHECKSUM_ALGORITHM_NONE); goto err_exit; } switch (fil_page_get_type(frame)) { case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: if (page_zip_decompress(&block->page.zip, block->frame, TRUE)) { if (space) { fil_space_release_for_io(space); } return(TRUE); } ib::error() << "Unable to decompress " << (space ? space->chain.start->name : "") << block->page.id; goto err_exit; case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: /* Copy to uncompressed storage. */ memcpy(block->frame, frame, block->page.size.physical()); if (space) { fil_space_release_for_io(space); } return(TRUE); } ib::error() << "Unknown compressed page type " << fil_page_get_type(frame) << " in " << (space ? space->chain.start->name : "") << block->page.id; err_exit: if (encrypted) { ib::info() << "Row compressed page could be encrypted" " with key_version " << key_version; block->page.encrypted = true; dict_set_encrypted_by_space(block->page.id.space()); } else { dict_set_corrupted_by_space(block->page.id.space()); } if (space) { fil_space_release_for_io(space); } return(FALSE); } #ifdef BTR_CUR_HASH_ADAPT /** Get a buffer block from an adaptive hash index pointer. This function does not return if the block is not identified. @param[in] ptr pointer to within a page frame @return pointer to block, never NULL */ buf_block_t* buf_block_from_ahi(const byte* ptr) { buf_pool_chunk_map_t::iterator it; buf_pool_chunk_map_t* chunk_map = buf_chunk_map_ref; ut_ad(buf_chunk_map_ref == buf_chunk_map_reg); ut_ad(!buf_pool_resizing); buf_chunk_t* chunk; it = chunk_map->upper_bound(ptr); ut_a(it != chunk_map->begin()); if (it == chunk_map->end()) { chunk = chunk_map->rbegin()->second; } else { chunk = (--it)->second; } ulint offs = ptr - chunk->blocks->frame; offs >>= UNIV_PAGE_SIZE_SHIFT; ut_a(offs < chunk->size); buf_block_t* block = &chunk->blocks[offs]; /* The function buf_chunk_init() invokes buf_block_init() so that block[n].frame == block->frame + n * UNIV_PAGE_SIZE. Check it. */ ut_ad(block->frame == page_align(ptr)); /* Read the state of the block without holding a mutex. A state transition from BUF_BLOCK_FILE_PAGE to BUF_BLOCK_REMOVE_HASH is possible during this execution. */ ut_d(const buf_page_state state = buf_block_get_state(block)); ut_ad(state == BUF_BLOCK_FILE_PAGE || state == BUF_BLOCK_REMOVE_HASH); return(block); } #endif /* BTR_CUR_HASH_ADAPT */ /********************************************************************//** Find out if a pointer belongs to a buf_block_t. It can be a pointer to the buf_block_t itself or a member of it. This functions checks one of the buffer pool instances. @return TRUE if ptr belongs to a buf_block_t struct */ static ibool buf_pointer_is_block_field_instance( /*================================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ const void* ptr) /*!< in: pointer not dereferenced */ { const buf_chunk_t* chunk = buf_pool->chunks; const buf_chunk_t* const echunk = chunk + ut_min( buf_pool->n_chunks, buf_pool->n_chunks_new); /* TODO: protect buf_pool->chunks with a mutex (the older pointer will currently remain while during buf_pool_resize()) */ while (chunk < echunk) { if (ptr >= (void*) chunk->blocks && ptr < (void*) (chunk->blocks + chunk->size)) { return(TRUE); } chunk++; } return(FALSE); } /********************************************************************//** Find out if a pointer belongs to a buf_block_t. It can be a pointer to the buf_block_t itself or a member of it @return TRUE if ptr belongs to a buf_block_t struct */ ibool buf_pointer_is_block_field( /*=======================*/ const void* ptr) /*!< in: pointer not dereferenced */ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { ibool found; found = buf_pointer_is_block_field_instance( buf_pool_from_array(i), ptr); if (found) { return(TRUE); } } return(FALSE); } /********************************************************************//** Find out if a buffer block was created by buf_chunk_init(). @return TRUE if "block" has been added to buf_pool->free by buf_chunk_init() */ static ibool buf_block_is_uncompressed( /*======================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ const buf_block_t* block) /*!< in: pointer to block, not dereferenced */ { if ((((ulint) block) % sizeof *block) != 0) { /* The pointer should be aligned. */ return(FALSE); } return(buf_pointer_is_block_field_instance(buf_pool, (void*) block)); } #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /********************************************************************//** Return true if probe is enabled. @return true if probe enabled. */ static bool buf_debug_execute_is_force_flush() /*==============================*/ { DBUG_EXECUTE_IF("ib_buf_force_flush", return(true); ); /* This is used during queisce testing, we want to ensure maximum buffering by the change buffer. */ if (srv_ibuf_disable_background_merge) { return(true); } return(false); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /** Wait for the block to be read in. @param[in] block The block to check */ static void buf_wait_for_read( buf_block_t* block) { /* Note: We are using the block->lock to check for IO state (and a dirty read). We set the IO_READ state under the protection of the hash_lock (and block->mutex). This is safe because another thread can only access the block (and check for IO state) after the block has been added to the page hashtable. */ if (buf_block_get_io_fix(block) == BUF_IO_READ) { /* Wait until the read operation completes */ BPageMutex* mutex = buf_page_get_mutex(&block->page); for (;;) { buf_io_fix io_fix; mutex_enter(mutex); io_fix = buf_block_get_io_fix(block); mutex_exit(mutex); if (io_fix == BUF_IO_READ) { /* Wait by temporaly s-latch */ rw_lock_s_lock(&block->lock); rw_lock_s_unlock(&block->lock); } else { break; } } } } /** This is the general function used to get access to a database page. @param[in] page_id page id @param[in] rw_latch RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH @param[in] guess guessed block or NULL @param[in] mode BUF_GET, BUF_GET_IF_IN_POOL, BUF_PEEK_IF_IN_POOL, BUF_GET_NO_LATCH, or BUF_GET_IF_IN_POOL_OR_WATCH @param[in] file file name @param[in] line line where called @param[in] mtr mini-transaction @return pointer to the block or NULL */ buf_block_t* buf_page_get_gen( const page_id_t page_id, const page_size_t& page_size, ulint rw_latch, buf_block_t* guess, ulint mode, const char* file, unsigned line, mtr_t* mtr, dberr_t* err) { buf_block_t* block; unsigned access_time; rw_lock_t* hash_lock; buf_block_t* fix_block; ulint retries = 0; buf_pool_t* buf_pool = buf_pool_get(page_id); ut_ad((mtr == NULL) == (mode == BUF_EVICT_IF_IN_POOL)); ut_ad(!mtr || mtr->is_active()); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH) || (rw_latch == RW_SX_LATCH) || (rw_latch == RW_NO_LATCH)); if (err) { *err = DB_SUCCESS; } #ifdef UNIV_DEBUG switch (mode) { case BUF_EVICT_IF_IN_POOL: case BUF_PEEK_IF_IN_POOL: /* After DISCARD TABLESPACE, the tablespace would not exist, but in IMPORT TABLESPACE, PageConverter::operator() must replace any old pages, which were not evicted during DISCARD. Similarly, btr_search_drop_page_hash_when_freed() must remove any old pages. Skip the assertion on page_size. */ break; default: ut_error; case BUF_GET_NO_LATCH: ut_ad(rw_latch == RW_NO_LATCH); /* fall through */ case BUF_GET: case BUF_GET_IF_IN_POOL: case BUF_GET_IF_IN_POOL_OR_WATCH: case BUF_GET_POSSIBLY_FREED: bool found; const page_size_t& space_page_size = fil_space_get_page_size(page_id.space(), &found); ut_ad(found); ut_ad(page_size.equals_to(space_page_size)); } #endif /* UNIV_DEBUG */ ut_ad(!mtr || !ibuf_inside(mtr) || ibuf_page_low(page_id, page_size, FALSE, file, line, NULL)); buf_pool->stat.n_page_gets++; hash_lock = buf_page_hash_lock_get(buf_pool, page_id); loop: block = guess; rw_lock_s_lock(hash_lock); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_s_confirm(hash_lock, buf_pool, page_id); if (block != NULL) { /* If the guess is a compressed page descriptor that has been allocated by buf_page_alloc_descriptor(), it may have been freed by buf_relocate(). */ if (!buf_block_is_uncompressed(buf_pool, block) || page_id != block->page.id || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { /* Our guess was bogus or things have changed since. */ block = guess = NULL; } else { ut_ad(!block->page.in_zip_hash); } } if (block == NULL) { block = (buf_block_t*) buf_page_hash_get_low(buf_pool, page_id); } if (!block || buf_pool_watch_is_sentinel(buf_pool, &block->page)) { rw_lock_s_unlock(hash_lock); block = NULL; } if (block == NULL) { /* Page not in buf_pool: needs to be read from file */ if (mode == BUF_GET_IF_IN_POOL_OR_WATCH) { rw_lock_x_lock(hash_lock); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_x_confirm( hash_lock, buf_pool, page_id); block = (buf_block_t*) buf_pool_watch_set( page_id, &hash_lock); if (block) { /* We can release hash_lock after we increment the fix count to make sure that no state change takes place. */ fix_block = block; if (fsp_is_system_temporary(page_id.space())) { /* For temporary tablespace, the mutex is being used for synchronization between user thread and flush thread, instead of block->lock. See buf_flush_page() for the flush thread counterpart. */ BPageMutex* fix_mutex = buf_page_get_mutex( &fix_block->page); mutex_enter(fix_mutex); buf_block_fix(fix_block); mutex_exit(fix_mutex); } else { buf_block_fix(fix_block); } /* Now safe to release page_hash mutex */ rw_lock_x_unlock(hash_lock); goto got_block; } rw_lock_x_unlock(hash_lock); } switch (mode) { case BUF_GET_IF_IN_POOL: case BUF_GET_IF_IN_POOL_OR_WATCH: case BUF_PEEK_IF_IN_POOL: case BUF_EVICT_IF_IN_POOL: ut_ad(!rw_lock_own_flagged( hash_lock, RW_LOCK_FLAG_X | RW_LOCK_FLAG_S)); return(NULL); } /* The call path is buf_read_page() -> buf_read_page_low() (fil_io()) -> buf_page_io_complete() -> buf_decrypt_after_read(). Here fil_space_t* is used and we decrypt -> buf_page_check_corrupt() where page checksums are compared. Decryption, decompression as well as error handling takes place at a lower level. Here we only need to know whether the page really is corrupted, or if an encrypted page with a valid checksum cannot be decypted. */ dberr_t local_err = buf_read_page(page_id, page_size); if (local_err == DB_SUCCESS) { buf_read_ahead_random(page_id, page_size, ibuf_inside(mtr)); retries = 0; } else if (mode == BUF_GET_POSSIBLY_FREED) { if (err) { *err = local_err; } return NULL; } else if (retries < BUF_PAGE_READ_MAX_RETRIES) { ++retries; DBUG_EXECUTE_IF( "innodb_page_corruption_retries", retries = BUF_PAGE_READ_MAX_RETRIES; ); } else { if (err) { *err = local_err; } /* Pages whose encryption key is unavailable or used key, encryption algorithm or encryption method is incorrect are marked as encrypted in buf_page_check_corrupt(). Unencrypted page could be corrupted in a way where the key_id field is nonzero. There is no checksum on field FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION. */ if (local_err == DB_DECRYPTION_FAILED) { return (NULL); } /* Try to set table as corrupted instead of asserting. */ if (page_id.space() != TRX_SYS_SPACE && dict_set_corrupted_by_space(page_id.space())) { return (NULL); } ib::fatal() << "Unable to read page " << page_id << " into the buffer pool after " << BUF_PAGE_READ_MAX_RETRIES << ". The most probable cause" " of this error may be that the" " table has been corrupted." " See https://mariadb.com/kb/en/library/innodb-recovery-modes/"; } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(page_id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ goto loop; } else { fix_block = block; } if (fsp_is_system_temporary(page_id.space())) { /* For temporary tablespace, the mutex is being used for synchronization between user thread and flush thread, instead of block->lock. See buf_flush_page() for the flush thread counterpart. */ BPageMutex* fix_mutex = buf_page_get_mutex( &fix_block->page); mutex_enter(fix_mutex); buf_block_fix(fix_block); mutex_exit(fix_mutex); } else { buf_block_fix(fix_block); } /* Now safe to release page_hash mutex */ rw_lock_s_unlock(hash_lock); got_block: switch (mode) { case BUF_GET_IF_IN_POOL: case BUF_PEEK_IF_IN_POOL: case BUF_EVICT_IF_IN_POOL: buf_page_t* fix_page = &fix_block->page; BPageMutex* fix_mutex = buf_page_get_mutex(fix_page); mutex_enter(fix_mutex); const bool must_read = (buf_page_get_io_fix(fix_page) == BUF_IO_READ); mutex_exit(fix_mutex); if (must_read) { /* The page is being read to buffer pool, but we cannot wait around for the read to complete. */ buf_block_unfix(fix_block); return(NULL); } } switch (buf_block_get_state(fix_block)) { buf_page_t* bpage; case BUF_BLOCK_FILE_PAGE: bpage = &block->page; if (fsp_is_system_temporary(page_id.space()) && buf_page_get_io_fix(bpage) != BUF_IO_NONE) { /* This suggests that the page is being flushed. Avoid returning reference to this page. Instead wait for the flush action to complete. */ buf_block_unfix(fix_block); os_thread_sleep(WAIT_FOR_WRITE); goto loop; } if (UNIV_UNLIKELY(mode == BUF_EVICT_IF_IN_POOL)) { evict_from_pool: ut_ad(!fix_block->page.oldest_modification); buf_pool_mutex_enter(buf_pool); buf_block_unfix(fix_block); if (!buf_LRU_free_page(&fix_block->page, true)) { ut_ad(0); } buf_pool_mutex_exit(buf_pool); return(NULL); } break; case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: if (mode == BUF_PEEK_IF_IN_POOL) { /* This mode is only used for dropping an adaptive hash index. There cannot be an adaptive hash index for a compressed-only page, so do not bother decompressing the page. */ buf_block_unfix(fix_block); return(NULL); } bpage = &block->page; /* Note: We have already buffer fixed this block. */ if (bpage->buf_fix_count > 1 || buf_page_get_io_fix(bpage) != BUF_IO_NONE) { /* This condition often occurs when the buffer is not buffer-fixed, but I/O-fixed by buf_page_init_for_read(). */ buf_block_unfix(fix_block); /* The block is buffer-fixed or I/O-fixed. Try again later. */ os_thread_sleep(WAIT_FOR_READ); goto loop; } if (UNIV_UNLIKELY(mode == BUF_EVICT_IF_IN_POOL)) { goto evict_from_pool; } /* Buffer-fix the block so that it cannot be evicted or relocated while we are attempting to allocate an uncompressed page. */ block = buf_LRU_get_free_block(buf_pool); buf_pool_mutex_enter(buf_pool); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock); /* Buffer-fixing prevents the page_hash from changing. */ ut_ad(bpage == buf_page_hash_get_low(buf_pool, page_id)); buf_block_unfix(fix_block); buf_page_mutex_enter(block); mutex_enter(&buf_pool->zip_mutex); fix_block = block; if (bpage->buf_fix_count > 0 || buf_page_get_io_fix(bpage) != BUF_IO_NONE) { mutex_exit(&buf_pool->zip_mutex); /* The block was buffer-fixed or I/O-fixed while buf_pool->mutex was not held by this thread. Free the block that was allocated and retry. This should be extremely unlikely, for example, if buf_page_get_zip() was invoked. */ buf_LRU_block_free_non_file_page(block); buf_pool_mutex_exit(buf_pool); rw_lock_x_unlock(hash_lock); buf_page_mutex_exit(block); /* Try again */ goto loop; } /* Move the compressed page from bpage to block, and uncompress it. */ /* Note: this is the uncompressed block and it is not accessible by other threads yet because it is not in any list or hash table */ buf_relocate(bpage, &block->page); buf_block_init_low(block); /* Set after buf_relocate(). */ block->page.buf_fix_count = 1; block->lock_hash_val = lock_rec_hash(page_id.space(), page_id.page_no()); UNIV_MEM_DESC(&block->page.zip.data, page_zip_get_size(&block->page.zip)); if (buf_page_get_state(&block->page) == BUF_BLOCK_ZIP_PAGE) { #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG UT_LIST_REMOVE(buf_pool->zip_clean, &block->page); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_ad(!block->page.in_flush_list); } else { /* Relocate buf_pool->flush_list. */ buf_flush_relocate_on_flush_list(bpage, &block->page); } /* Buffer-fix, I/O-fix, and X-latch the block for the duration of the decompression. Also add the block to the unzip_LRU list. */ block->page.state = BUF_BLOCK_FILE_PAGE; /* Insert at the front of unzip_LRU list */ buf_unzip_LRU_add_block(block, FALSE); buf_block_set_io_fix(block, BUF_IO_READ); rw_lock_x_lock_inline(&block->lock, 0, file, line); UNIV_MEM_INVALID(bpage, sizeof *bpage); rw_lock_x_unlock(hash_lock); buf_pool->n_pend_unzip++; mutex_exit(&buf_pool->zip_mutex); buf_pool_mutex_exit(buf_pool); access_time = buf_page_is_accessed(&block->page); buf_page_mutex_exit(block); buf_page_free_descriptor(bpage); /* Decompress the page while not holding buf_pool->mutex or block->mutex. */ { bool success = buf_zip_decompress(block, TRUE); if (!success) { buf_pool_mutex_enter(buf_pool); buf_page_mutex_enter(fix_block); buf_block_set_io_fix(fix_block, BUF_IO_NONE); buf_page_mutex_exit(fix_block); --buf_pool->n_pend_unzip; buf_block_unfix(fix_block); buf_pool_mutex_exit(buf_pool); rw_lock_x_unlock(&fix_block->lock); *err = DB_PAGE_CORRUPTED; return NULL; } } if (!recv_no_ibuf_operations) { if (access_time) { #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ } else { ibuf_merge_or_delete_for_page( block, page_id, &page_size, TRUE); } } buf_pool_mutex_enter(buf_pool); buf_page_mutex_enter(fix_block); buf_block_set_io_fix(fix_block, BUF_IO_NONE); buf_page_mutex_exit(fix_block); --buf_pool->n_pend_unzip; buf_pool_mutex_exit(buf_pool); rw_lock_x_unlock(&block->lock); break; case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } ut_ad(block == fix_block); ut_ad(fix_block->page.buf_fix_count > 0); ut_ad(!rw_lock_own_flagged(hash_lock, RW_LOCK_FLAG_X | RW_LOCK_FLAG_S)); ut_ad(buf_block_get_state(fix_block) == BUF_BLOCK_FILE_PAGE); #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG if ((mode == BUF_GET_IF_IN_POOL || mode == BUF_GET_IF_IN_POOL_OR_WATCH) && (ibuf_debug || buf_debug_execute_is_force_flush())) { /* Try to evict the block from the buffer pool, to use the insert buffer (change buffer) as much as possible. */ buf_pool_mutex_enter(buf_pool); buf_block_unfix(fix_block); /* Now we are only holding the buf_pool->mutex, not block->mutex or hash_lock. Blocks cannot be relocated or enter or exit the buf_pool while we are holding the buf_pool->mutex. */ if (buf_LRU_free_page(&fix_block->page, true)) { buf_pool_mutex_exit(buf_pool); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock); /* If not own buf_pool_mutex, page_hash can be changed. */ hash_lock = buf_page_hash_lock_x_confirm( hash_lock, buf_pool, page_id); if (mode == BUF_GET_IF_IN_POOL_OR_WATCH) { /* Set the watch, as it would have been set if the page were not in the buffer pool in the first place. */ block = (buf_block_t*) buf_pool_watch_set( page_id, &hash_lock); } else { block = (buf_block_t*) buf_page_hash_get_low( buf_pool, page_id); } rw_lock_x_unlock(hash_lock); if (block != NULL) { /* Either the page has been read in or a watch was set on that in the window where we released the buf_pool::mutex and before we acquire the hash_lock above. Try again. */ guess = block; goto loop; } return(NULL); } buf_page_mutex_enter(fix_block); if (buf_flush_page_try(buf_pool, fix_block)) { guess = fix_block; goto loop; } buf_page_mutex_exit(fix_block); buf_block_fix(fix_block); /* Failed to evict the page; change it directly */ buf_pool_mutex_exit(buf_pool); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ ut_ad(fix_block->page.buf_fix_count > 0); #ifdef UNIV_DEBUG /* We have already buffer fixed the page, and we are committed to returning this page to the caller. Register for debugging. Avoid debug latching if page/block belongs to system temporary tablespace (Not much needed for table with single threaded access.). */ if (!fsp_is_system_temporary(page_id.space())) { ibool ret; ret = rw_lock_s_lock_nowait( &fix_block->debug_latch, file, line); ut_a(ret); } #endif /* UNIV_DEBUG */ /* While tablespace is reinited the indexes are already freed but the blocks related to it still resides in buffer pool. Trying to remove such blocks from buffer pool would invoke removal of AHI entries associated with these blocks. Logic to remove AHI entry will try to load the block but block is already in free state. Handle the said case with mode = BUF_PEEK_IF_IN_POOL that is invoked from "btr_search_drop_page_hash_when_freed". */ ut_ad(mode == BUF_GET_POSSIBLY_FREED || mode == BUF_PEEK_IF_IN_POOL || !fix_block->page.file_page_was_freed); /* Check if this is the first access to the page */ access_time = buf_page_is_accessed(&fix_block->page); /* This is a heuristic and we don't care about ordering issues. */ if (access_time == 0) { buf_page_mutex_enter(fix_block); buf_page_set_accessed(&fix_block->page); buf_page_mutex_exit(fix_block); } if (mode != BUF_PEEK_IF_IN_POOL) { buf_page_make_young_if_needed(&fix_block->page); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(page_id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(buf_block_get_state(fix_block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ /* We have to wait here because the IO_READ state was set under the protection of the hash_lock and not the block->mutex and block->lock. */ buf_wait_for_read(fix_block); mtr_memo_type_t fix_type; switch (rw_latch) { case RW_NO_LATCH: fix_type = MTR_MEMO_BUF_FIX; break; case RW_S_LATCH: rw_lock_s_lock_inline(&fix_block->lock, 0, file, line); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_SX_LATCH: rw_lock_sx_lock_inline(&fix_block->lock, 0, file, line); fix_type = MTR_MEMO_PAGE_SX_FIX; break; default: ut_ad(rw_latch == RW_X_LATCH); rw_lock_x_lock_inline(&fix_block->lock, 0, file, line); fix_type = MTR_MEMO_PAGE_X_FIX; break; } mtr_memo_push(mtr, fix_block, fix_type); if (mode != BUF_PEEK_IF_IN_POOL && !access_time) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(page_id, page_size, ibuf_inside(mtr)); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(fix_block->page.id) == 0); #endif ut_ad(!rw_lock_own_flagged(hash_lock, RW_LOCK_FLAG_X | RW_LOCK_FLAG_S)); return(fix_block); } /********************************************************************//** This is the general function used to get optimistic access to a database page. @return TRUE if success */ ibool buf_page_optimistic_get( /*====================*/ ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH */ buf_block_t* block, /*!< in: guessed buffer block */ ib_uint64_t modify_clock,/*!< in: modify clock value */ const char* file, /*!< in: file name */ unsigned line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { buf_pool_t* buf_pool; unsigned access_time; ibool success; ut_ad(block); ut_ad(mtr); ut_ad(mtr->is_active()); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); buf_page_mutex_enter(block); if (UNIV_UNLIKELY(buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE)) { buf_page_mutex_exit(block); return(FALSE); } buf_block_buf_fix_inc(block, file, line); access_time = buf_page_is_accessed(&block->page); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); buf_page_make_young_if_needed(&block->page); ut_ad(!ibuf_inside(mtr) || ibuf_page(block->page.id, block->page.size, NULL)); mtr_memo_type_t fix_type; switch (rw_latch) { case RW_S_LATCH: success = rw_lock_s_lock_nowait(&block->lock, file, line); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_X_LATCH: success = rw_lock_x_lock_func_nowait_inline( &block->lock, file, line); fix_type = MTR_MEMO_PAGE_X_FIX; break; default: ut_error; /* RW_SX_LATCH is not implemented yet */ } if (!success) { buf_page_mutex_enter(block); buf_block_buf_fix_dec(block); buf_page_mutex_exit(block); return(FALSE); } if (modify_clock != block->modify_clock) { buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); if (rw_latch == RW_S_LATCH) { rw_lock_s_unlock(&block->lock); } else { rw_lock_x_unlock(&block->lock); } buf_page_mutex_enter(block); buf_block_buf_fix_dec(block); buf_page_mutex_exit(block); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(block->page.id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_d(buf_page_mutex_enter(block)); ut_ad(!block->page.file_page_was_freed); ut_d(buf_page_mutex_exit(block)); if (!access_time) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(block->page.id, block->page.size, ibuf_inside(mtr)); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ buf_pool = buf_pool_from_block(block); buf_pool->stat.n_page_gets++; return(TRUE); } /********************************************************************//** This is used to get access to a known database page, when no waiting can be done. For example, if a search in an adaptive hash index leads us to this frame. @return TRUE if success */ ibool buf_page_get_known_nowait( /*======================*/ ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH */ buf_block_t* block, /*!< in: the known page */ ulint mode, /*!< in: BUF_MAKE_YOUNG or BUF_KEEP_OLD */ const char* file, /*!< in: file name */ unsigned line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { buf_pool_t* buf_pool; ibool success; ut_ad(mtr->is_active()); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); buf_page_mutex_enter(block); if (buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH) { /* Another thread is just freeing the block from the LRU list of the buffer pool: do not try to access this page; this attempt to access the page can only come through the hash index because when the buffer block state is ..._REMOVE_HASH, we have already removed it from the page address hash table of the buffer pool. */ buf_page_mutex_exit(block); return(FALSE); } ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); buf_block_buf_fix_inc(block, file, line); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); buf_pool = buf_pool_from_block(block); if (mode == BUF_MAKE_YOUNG) { buf_page_make_young_if_needed(&block->page); } ut_ad(!ibuf_inside(mtr) || mode == BUF_KEEP_OLD); mtr_memo_type_t fix_type; switch (rw_latch) { case RW_S_LATCH: success = rw_lock_s_lock_nowait(&block->lock, file, line); fix_type = MTR_MEMO_PAGE_S_FIX; break; case RW_X_LATCH: success = rw_lock_x_lock_func_nowait_inline( &block->lock, file, line); fix_type = MTR_MEMO_PAGE_X_FIX; break; default: ut_error; /* RW_SX_LATCH is not implemented yet */ } if (!success) { buf_page_mutex_enter(block); buf_block_buf_fix_dec(block); buf_page_mutex_exit(block); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG if (mode != BUF_KEEP_OLD) { /* If mode == BUF_KEEP_OLD, we are executing an I/O completion routine. Avoid a bogus assertion failure when ibuf_merge_or_delete_for_page() is processing a page that was just freed due to DROP INDEX, or deleting a record from SYS_INDEXES. This check will be skipped in recv_recover_page() as well. */ buf_page_mutex_enter(block); ut_a(!block->page.file_page_was_freed); buf_page_mutex_exit(block); } #endif /* UNIV_DEBUG */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((mode == BUF_KEEP_OLD) || ibuf_count_get(block->page.id) == 0); #endif buf_pool->stat.n_page_gets++; return(TRUE); } /** Given a tablespace id and page number tries to get that page. If the page is not in the buffer pool it is not loaded and NULL is returned. Suitable for using when holding the lock_sys_t::mutex. @param[in] page_id page id @param[in] file file name @param[in] line line where called @param[in] mtr mini-transaction @return pointer to a page or NULL */ buf_block_t* buf_page_try_get_func( const page_id_t page_id, const char* file, unsigned line, mtr_t* mtr) { buf_block_t* block; ibool success; buf_pool_t* buf_pool = buf_pool_get(page_id); rw_lock_t* hash_lock; ut_ad(mtr); ut_ad(mtr->is_active()); block = buf_block_hash_get_s_locked(buf_pool, page_id, &hash_lock); if (!block || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { if (block) { rw_lock_s_unlock(hash_lock); } return(NULL); } ut_ad(!buf_pool_watch_is_sentinel(buf_pool, &block->page)); buf_page_mutex_enter(block); rw_lock_s_unlock(hash_lock); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_a(page_id == block->page.id); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_block_buf_fix_inc(block, file, line); buf_page_mutex_exit(block); mtr_memo_type_t fix_type = MTR_MEMO_PAGE_S_FIX; success = rw_lock_s_lock_nowait(&block->lock, file, line); if (!success) { /* Let us try to get an X-latch. If the current thread is holding an X-latch on the page, we cannot get an S-latch. */ fix_type = MTR_MEMO_PAGE_X_FIX; success = rw_lock_x_lock_func_nowait_inline(&block->lock, file, line); } if (!success) { buf_page_mutex_enter(block); buf_block_buf_fix_dec(block); buf_page_mutex_exit(block); return(NULL); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(fsp_skip_sanity_check(block->page.id.space()) || ++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_d(buf_page_mutex_enter(block)); ut_d(ut_a(!block->page.file_page_was_freed)); ut_d(buf_page_mutex_exit(block)); buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); buf_pool->stat.n_page_gets++; #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ return(block); } /********************************************************************//** Initialize some fields of a control block. */ UNIV_INLINE void buf_page_init_low( /*==============*/ buf_page_t* bpage) /*!< in: block to init */ { bpage->flush_type = BUF_FLUSH_LRU; bpage->io_fix = BUF_IO_NONE; bpage->buf_fix_count = 0; bpage->old = 0; bpage->freed_page_clock = 0; bpage->access_time = 0; bpage->newest_modification = 0; bpage->oldest_modification = 0; bpage->write_size = 0; bpage->encrypted = false; bpage->real_size = 0; bpage->slot = NULL; HASH_INVALIDATE(bpage, hash); ut_d(bpage->file_page_was_freed = FALSE); } /** Inits a page to the buffer buf_pool. @param[in,out] buf_pool buffer pool @param[in] page_id page id @param[in,out] block block to init */ static void buf_page_init( buf_pool_t* buf_pool, const page_id_t page_id, const page_size_t& page_size, buf_block_t* block) { buf_page_t* hash_page; ut_ad(buf_pool == buf_pool_get(page_id)); ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(buf_page_mutex_own(block)); ut_a(buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE); ut_ad(rw_lock_own(buf_page_hash_lock_get(buf_pool, page_id), RW_LOCK_X)); /* Set the state of the block */ buf_block_set_file_page(block, page_id); #ifdef UNIV_DEBUG_VALGRIND if (is_system_tablespace(page_id.space())) { /* Silence valid Valgrind warnings about uninitialized data being written to data files. There are some unused bytes on some pages that InnoDB does not initialize. */ UNIV_MEM_VALID(block->frame, UNIV_PAGE_SIZE); } #endif /* UNIV_DEBUG_VALGRIND */ buf_block_init_low(block); block->lock_hash_val = lock_rec_hash(page_id.space(), page_id.page_no()); buf_page_init_low(&block->page); /* Insert into the hash table of file pages */ hash_page = buf_page_hash_get_low(buf_pool, page_id); if (hash_page == NULL) { /* Block not found in hash table */ } else if (buf_pool_watch_is_sentinel(buf_pool, hash_page)) { /* Preserve the reference count. */ ib_uint32_t buf_fix_count = hash_page->buf_fix_count; ut_a(buf_fix_count > 0); my_atomic_add32((int32*) &block->page.buf_fix_count, buf_fix_count); buf_pool_watch_remove(buf_pool, hash_page); } else { ib::error() << "Page " << page_id << " already found in the hash table: " << hash_page << ", " << block; ut_d(buf_page_mutex_exit(block)); ut_d(buf_pool_mutex_exit(buf_pool)); ut_d(buf_print()); ut_d(buf_LRU_print()); ut_d(buf_validate()); ut_d(buf_LRU_validate()); ut_error; } ut_ad(!block->page.in_zip_hash); ut_ad(!block->page.in_page_hash); ut_d(block->page.in_page_hash = TRUE); block->page.id = page_id; block->page.size.copy_from(page_size); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, page_id.fold(), &block->page); if (page_size.is_compressed()) { page_zip_set_size(&block->page.zip, page_size.physical()); } } /** Initialize a page for read to the buffer buf_pool. If the page is (1) already in buf_pool, or (2) if we specify to read only ibuf pages and the page is not an ibuf page, or (3) if the space is deleted or being deleted, then this function does nothing. Sets the io_fix flag to BUF_IO_READ and sets a non-recursive exclusive lock on the buffer frame. The io-handler must take care that the flag is cleared and the lock released later. @param[out] err DB_SUCCESS or DB_TABLESPACE_DELETED @param[in] mode BUF_READ_IBUF_PAGES_ONLY, ... @param[in] page_id page id @param[in] unzip whether the uncompressed page is requested (for ROW_FORMAT=COMPRESSED) @return pointer to the block @retval NULL in case of an error */ buf_page_t* buf_page_init_for_read( dberr_t* err, ulint mode, const page_id_t page_id, const page_size_t& page_size, bool unzip) { buf_block_t* block; buf_page_t* bpage = NULL; buf_page_t* watch_page; rw_lock_t* hash_lock; mtr_t mtr; ibool lru = FALSE; void* data; buf_pool_t* buf_pool = buf_pool_get(page_id); ut_ad(buf_pool); *err = DB_SUCCESS; if (mode == BUF_READ_IBUF_PAGES_ONLY) { /* It is a read-ahead within an ibuf routine */ ut_ad(!ibuf_bitmap_page(page_id, page_size)); ibuf_mtr_start(&mtr); if (!recv_no_ibuf_operations && !ibuf_page(page_id, page_size, &mtr)) { ibuf_mtr_commit(&mtr); return(NULL); } } else { ut_ad(mode == BUF_READ_ANY_PAGE); } if (page_size.is_compressed() && !unzip && !recv_recovery_is_on()) { block = NULL; } else { block = buf_LRU_get_free_block(buf_pool); ut_ad(block); ut_ad(buf_pool_from_block(block) == buf_pool); } buf_pool_mutex_enter(buf_pool); hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock); watch_page = buf_page_hash_get_low(buf_pool, page_id); if (watch_page && !buf_pool_watch_is_sentinel(buf_pool, watch_page)) { /* The page is already in the buffer pool. */ watch_page = NULL; rw_lock_x_unlock(hash_lock); if (block) { buf_page_mutex_enter(block); buf_LRU_block_free_non_file_page(block); buf_page_mutex_exit(block); } bpage = NULL; goto func_exit; } if (block) { bpage = &block->page; buf_page_mutex_enter(block); ut_ad(buf_pool_from_bpage(bpage) == buf_pool); buf_page_init(buf_pool, page_id, page_size, block); /* Note: We are using the hash_lock for protection. This is safe because no other thread can lookup the block from the page hashtable yet. */ buf_page_set_io_fix(bpage, BUF_IO_READ); rw_lock_x_unlock(hash_lock); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(bpage, TRUE/* to old blocks */); /* We set a pass-type x-lock on the frame because then the same thread which called for the read operation (and is running now at this point of code) can wait for the read to complete by waiting for the x-lock on the frame; if the x-lock were recursive, the same thread would illegally get the x-lock before the page read is completed. The x-lock is cleared by the io-handler thread. */ rw_lock_x_lock_gen(&block->lock, BUF_IO_READ); if (page_size.is_compressed()) { /* buf_pool->mutex may be released and reacquired by buf_buddy_alloc(). Thus, we must release block->mutex in order not to break the latching order in the reacquisition of buf_pool->mutex. We also must defer this operation until after the block descriptor has been added to buf_pool->LRU and buf_pool->page_hash. */ buf_page_mutex_exit(block); data = buf_buddy_alloc(buf_pool, page_size.physical(), &lru); buf_page_mutex_enter(block); block->page.zip.data = (page_zip_t*) data; /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, TRUE); } buf_page_mutex_exit(block); } else { rw_lock_x_unlock(hash_lock); /* The compressed page must be allocated before the control block (bpage), in order to avoid the invocation of buf_buddy_relocate_block() on uninitialized data. */ data = buf_buddy_alloc(buf_pool, page_size.physical(), &lru); rw_lock_x_lock(hash_lock); /* If buf_buddy_alloc() allocated storage from the LRU list, it released and reacquired buf_pool->mutex. Thus, we must check the page_hash again, as it may have been modified. */ if (UNIV_UNLIKELY(lru)) { watch_page = buf_page_hash_get_low(buf_pool, page_id); if (UNIV_UNLIKELY(watch_page && !buf_pool_watch_is_sentinel(buf_pool, watch_page))) { /* The block was added by some other thread. */ rw_lock_x_unlock(hash_lock); watch_page = NULL; buf_buddy_free(buf_pool, data, page_size.physical()); bpage = NULL; goto func_exit; } } bpage = buf_page_alloc_descriptor(); /* Initialize the buf_pool pointer. */ bpage->buf_pool_index = buf_pool_index(buf_pool); page_zip_des_init(&bpage->zip); page_zip_set_size(&bpage->zip, page_size.physical()); bpage->zip.data = (page_zip_t*) data; bpage->size.copy_from(page_size); mutex_enter(&buf_pool->zip_mutex); UNIV_MEM_DESC(bpage->zip.data, bpage->size.physical()); buf_page_init_low(bpage); bpage->state = BUF_BLOCK_ZIP_PAGE; bpage->id = page_id; bpage->flush_observer = NULL; ut_d(bpage->in_page_hash = FALSE); ut_d(bpage->in_zip_hash = FALSE); ut_d(bpage->in_flush_list = FALSE); ut_d(bpage->in_free_list = FALSE); ut_d(bpage->in_LRU_list = FALSE); ut_d(bpage->in_page_hash = TRUE); if (watch_page != NULL) { /* Preserve the reference count. */ ib_uint32_t buf_fix_count; buf_fix_count = watch_page->buf_fix_count; ut_a(buf_fix_count > 0); my_atomic_add32((int32*) &bpage->buf_fix_count, buf_fix_count); ut_ad(buf_pool_watch_is_sentinel(buf_pool, watch_page)); buf_pool_watch_remove(buf_pool, watch_page); } HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, bpage->id.fold(), bpage); rw_lock_x_unlock(hash_lock); /* The block must be put to the LRU list, to the old blocks. The zip size is already set into the page zip */ buf_LRU_add_block(bpage, TRUE/* to old blocks */); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG buf_LRU_insert_zip_clean(bpage); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_page_set_io_fix(bpage, BUF_IO_READ); mutex_exit(&buf_pool->zip_mutex); } buf_pool->n_pend_reads++; func_exit: buf_pool_mutex_exit(buf_pool); if (mode == BUF_READ_IBUF_PAGES_ONLY) { ibuf_mtr_commit(&mtr); } ut_ad(!rw_lock_own_flagged(hash_lock, RW_LOCK_FLAG_X | RW_LOCK_FLAG_S)); ut_ad(!bpage || buf_page_in_file(bpage)); return(bpage); } /** Initializes a page to the buffer buf_pool. The page is usually not read from a file even if it cannot be found in the buffer buf_pool. This is one of the functions which perform to a block a state transition NOT_USED => FILE_PAGE (the other is buf_page_get_gen). @param[in] page_id page id @param[in] page_size page size @param[in] mtr mini-transaction @return pointer to the block, page bufferfixed */ buf_block_t* buf_page_create( const page_id_t page_id, const page_size_t& page_size, mtr_t* mtr) { buf_frame_t* frame; buf_block_t* block; buf_block_t* free_block = NULL; buf_pool_t* buf_pool = buf_pool_get(page_id); rw_lock_t* hash_lock; ut_ad(mtr->is_active()); ut_ad(page_id.space() != 0 || !page_size.is_compressed()); free_block = buf_LRU_get_free_block(buf_pool); buf_pool_mutex_enter(buf_pool); hash_lock = buf_page_hash_lock_get(buf_pool, page_id); rw_lock_x_lock(hash_lock); block = (buf_block_t*) buf_page_hash_get_low(buf_pool, page_id); if (block && buf_page_in_file(&block->page) && !buf_pool_watch_is_sentinel(buf_pool, &block->page)) { #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif /* UNIV_IBUF_COUNT_DEBUG */ ut_d(block->page.file_page_was_freed = FALSE); /* Page can be found in buf_pool */ buf_pool_mutex_exit(buf_pool); rw_lock_x_unlock(hash_lock); buf_block_free(free_block); return(buf_page_get_with_no_latch(page_id, page_size, mtr)); } /* If we get here, the page was not in buf_pool: init it there */ DBUG_PRINT("ib_buf", ("create page %u:%u", page_id.space(), page_id.page_no())); block = free_block; buf_page_mutex_enter(block); buf_page_init(buf_pool, page_id, page_size, block); rw_lock_x_unlock(hash_lock); /* The block must be put to the LRU list */ buf_LRU_add_block(&block->page, FALSE); buf_block_buf_fix_inc(block, __FILE__, __LINE__); buf_pool->stat.n_pages_created++; if (page_size.is_compressed()) { void* data; ibool lru; /* Prevent race conditions during buf_buddy_alloc(), which may release and reacquire buf_pool->mutex, by IO-fixing and X-latching the block. */ buf_page_set_io_fix(&block->page, BUF_IO_READ); rw_lock_x_lock(&block->lock); buf_page_mutex_exit(block); /* buf_pool->mutex may be released and reacquired by buf_buddy_alloc(). Thus, we must release block->mutex in order not to break the latching order in the reacquisition of buf_pool->mutex. We also must defer this operation until after the block descriptor has been added to buf_pool->LRU and buf_pool->page_hash. */ data = buf_buddy_alloc(buf_pool, page_size.physical(), &lru); buf_page_mutex_enter(block); block->page.zip.data = (page_zip_t*) data; /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, FALSE); buf_page_set_io_fix(&block->page, BUF_IO_NONE); rw_lock_x_unlock(&block->lock); } buf_pool_mutex_exit(buf_pool); mtr_memo_push(mtr, block, MTR_MEMO_BUF_FIX); buf_page_set_accessed(&block->page); buf_page_mutex_exit(block); /* Delete possible entries for the page from the insert buffer: such can exist if the page belonged to an index which was dropped */ ibuf_merge_or_delete_for_page(NULL, page_id, &page_size, TRUE); frame = block->frame; memset(frame + FIL_PAGE_PREV, 0xff, 4); memset(frame + FIL_PAGE_NEXT, 0xff, 4); mach_write_to_2(frame + FIL_PAGE_TYPE, FIL_PAGE_TYPE_ALLOCATED); /* FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is only used on the following pages: (1) The first page of the InnoDB system tablespace (page 0:0) (2) FIL_RTREE_SPLIT_SEQ_NUM on R-tree pages (3) key_version on encrypted pages (not page 0:0) */ memset(frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, 0, 8); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(block->page.id) == 0); #endif return(block); } /********************************************************************//** Monitor the buffer page read/write activity, and increment corresponding counter value if MONITOR_MODULE_BUF_PAGE (module_buf_page) module is enabled. */ static void buf_page_monitor( /*=============*/ const buf_page_t* bpage, /*!< in: pointer to the block */ enum buf_io_fix io_type)/*!< in: io_fix types */ { const byte* frame; monitor_id_t counter; /* If the counter module is not turned on, just return */ if (!MONITOR_IS_ON(MONITOR_MODULE_BUF_PAGE)) { return; } ut_a(io_type == BUF_IO_READ || io_type == BUF_IO_WRITE); frame = bpage->zip.data ? bpage->zip.data : ((buf_block_t*) bpage)->frame; switch (fil_page_get_type(frame)) { ulint level; case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: level = btr_page_get_level_low(frame); /* Check if it is an index page for insert buffer */ if (btr_page_get_index_id(frame) == (index_id_t)(DICT_IBUF_ID_MIN + IBUF_SPACE_ID)) { if (level == 0) { counter = MONITOR_RW_COUNTER( io_type, MONITOR_INDEX_IBUF_LEAF_PAGE); } else { counter = MONITOR_RW_COUNTER( io_type, MONITOR_INDEX_IBUF_NON_LEAF_PAGE); } } else { if (level == 0) { counter = MONITOR_RW_COUNTER( io_type, MONITOR_INDEX_LEAF_PAGE); } else { counter = MONITOR_RW_COUNTER( io_type, MONITOR_INDEX_NON_LEAF_PAGE); } } break; case FIL_PAGE_UNDO_LOG: counter = MONITOR_RW_COUNTER(io_type, MONITOR_UNDO_LOG_PAGE); break; case FIL_PAGE_INODE: counter = MONITOR_RW_COUNTER(io_type, MONITOR_INODE_PAGE); break; case FIL_PAGE_IBUF_FREE_LIST: counter = MONITOR_RW_COUNTER(io_type, MONITOR_IBUF_FREELIST_PAGE); break; case FIL_PAGE_IBUF_BITMAP: counter = MONITOR_RW_COUNTER(io_type, MONITOR_IBUF_BITMAP_PAGE); break; case FIL_PAGE_TYPE_SYS: counter = MONITOR_RW_COUNTER(io_type, MONITOR_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_TRX_SYS: counter = MONITOR_RW_COUNTER(io_type, MONITOR_TRX_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_FSP_HDR: counter = MONITOR_RW_COUNTER(io_type, MONITOR_FSP_HDR_PAGE); break; case FIL_PAGE_TYPE_XDES: counter = MONITOR_RW_COUNTER(io_type, MONITOR_XDES_PAGE); break; case FIL_PAGE_TYPE_BLOB: counter = MONITOR_RW_COUNTER(io_type, MONITOR_BLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB: counter = MONITOR_RW_COUNTER(io_type, MONITOR_ZBLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB2: counter = MONITOR_RW_COUNTER(io_type, MONITOR_ZBLOB2_PAGE); break; default: counter = MONITOR_RW_COUNTER(io_type, MONITOR_OTHER_PAGE); } MONITOR_INC_NOCHECK(counter); } /********************************************************************//** Mark a table with the specified space pointed by bpage->id.space() corrupted. Also remove the bpage from LRU list. @param[in,out] bpage Block */ static void buf_mark_space_corrupt(buf_page_t* bpage) { buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); const ibool uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); uint32_t space = bpage->id.space(); /* First unfix and release lock on the bpage */ buf_pool_mutex_enter(buf_pool); mutex_enter(buf_page_get_mutex(bpage)); ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_READ); ut_ad(bpage->buf_fix_count == 0); /* Set BUF_IO_NONE before we remove the block from LRU list */ buf_page_set_io_fix(bpage, BUF_IO_NONE); if (uncompressed) { rw_lock_x_unlock_gen( &((buf_block_t*) bpage)->lock, BUF_IO_READ); } mutex_exit(buf_page_get_mutex(bpage)); /* If block is not encrypted find the table with specified space id, and mark it corrupted. Encrypted tables are marked unusable later e.g. in ::open(). */ if (!bpage->encrypted) { dict_set_corrupted_by_space(space); } else { dict_set_encrypted_by_space(space); } /* After this point bpage can't be referenced. */ buf_LRU_free_one_page(bpage); ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads--; buf_pool_mutex_exit(buf_pool); } /** Check if page is maybe compressed, encrypted or both when we encounter corrupted page. Note that we can't be 100% sure if page is corrupted or decrypt/decompress just failed. @param[in,out] bpage page @param[in,out] space tablespace from fil_space_acquire_for_io() @return whether the operation succeeded @retval DB_SUCCESS if page has been read and is not corrupted @retval DB_PAGE_CORRUPTED if page based on checksum check is corrupted @retval DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. @retval DB_TABLESPACE_DELETED if accessed tablespace is not found */ static dberr_t buf_page_check_corrupt(buf_page_t* bpage, fil_space_t* space) { ut_ad(space->n_pending_ios > 0); byte* dst_frame = (bpage->zip.data) ? bpage->zip.data : ((buf_block_t*) bpage)->frame; dberr_t err = DB_SUCCESS; bool corrupted = false; /* In buf_decrypt_after_read we have either decrypted the page if page post encryption checksum matches and used key_id is found from the encryption plugin. If checksum did not match page was not decrypted and it could be either encrypted and corrupted or corrupted or good page. If we decrypted, there page could still be corrupted if used key does not match. */ const bool still_encrypted = mach_read_from_4( dst_frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION) && space->crypt_data && space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED && !bpage->encrypted && fil_space_verify_crypt_checksum(dst_frame, bpage->size); if (!still_encrypted) { /* If traditional checksums match, we assume that page is not anymore encrypted. */ corrupted = buf_page_is_corrupted( true, dst_frame, bpage->size, space); if (!corrupted) { bpage->encrypted = false; } else { err = DB_PAGE_CORRUPTED; } } /* Pages that we think are unencrypted but do not match the checksum checks could be corrupted or encrypted or both. */ if (corrupted && !bpage->encrypted) { /* An error will be reported by buf_page_io_complete(). */ } else if (still_encrypted || (bpage->encrypted && corrupted)) { bpage->encrypted = true; err = DB_DECRYPTION_FAILED; ib::error() << "The page " << bpage->id << " in file '" << space->chain.start->name << "' cannot be decrypted."; ib::info() << "However key management plugin or used key_version " << mach_read_from_4(dst_frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION) << " is not found or" " used encryption algorithm or method does not match."; if (bpage->id.space() != TRX_SYS_SPACE) { ib::info() << "Marking tablespace as missing." " You may drop this table or" " install correct key management plugin" " and key file."; } } return (err); } /** Complete a read or write request of a file page to or from the buffer pool. @param[in,out] bpage page to complete @param[in] dblwr whether the doublewrite buffer was used (on write) @param[in] evict whether or not to evict the page from LRU list @return whether the operation succeeded @retval DB_SUCCESS always when writing, or if a read page was OK @retval DB_TABLESPACE_DELETED if the tablespace does not exist @retval DB_PAGE_CORRUPTED if the checksum fails on a page read @retval DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match */ UNIV_INTERN dberr_t buf_page_io_complete(buf_page_t* bpage, bool dblwr, bool evict) { enum buf_io_fix io_type; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); const bool uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); ut_a(buf_page_in_file(bpage)); /* We do not need protect io_fix here by mutex to read it because this is the only function where we can change the value from BUF_IO_READ or BUF_IO_WRITE to some other value, and our code ensures that this is the only thread that handles the i/o for this block. */ io_type = buf_page_get_io_fix(bpage); ut_ad(io_type == BUF_IO_READ || io_type == BUF_IO_WRITE); ut_ad(bpage->size.is_compressed() == (bpage->zip.data != NULL)); ut_ad(uncompressed || bpage->zip.data); if (io_type == BUF_IO_READ) { ulint read_page_no = 0; ulint read_space_id = 0; uint key_version = 0; byte* frame = bpage->zip.data ? bpage->zip.data : reinterpret_cast(bpage)->frame; ut_ad(frame); fil_space_t* space = fil_space_acquire_for_io( bpage->id.space()); if (!space) { return DB_TABLESPACE_DELETED; } dberr_t err; if (!buf_page_decrypt_after_read(bpage, space)) { err = DB_DECRYPTION_FAILED; goto database_corrupted; } if (bpage->zip.data && uncompressed) { my_atomic_addlint(&buf_pool->n_pend_unzip, 1); ibool ok = buf_zip_decompress((buf_block_t*) bpage, FALSE); my_atomic_addlint(&buf_pool->n_pend_unzip, -1); if (!ok) { ib::info() << "Page " << bpage->id << " zip_decompress failure."; err = DB_PAGE_CORRUPTED; goto database_corrupted; } } /* If this page is not uninitialized and not in the doublewrite buffer, then the page number and space id should be the same as in block. */ read_page_no = mach_read_from_4(frame + FIL_PAGE_OFFSET); read_space_id = mach_read_from_4( frame + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); key_version = mach_read_from_4( frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION); if (bpage->id.space() == TRX_SYS_SPACE && buf_dblwr_page_inside(bpage->id.page_no())) { ib::error() << "Reading page " << bpage->id << ", which is in the doublewrite buffer!"; } else if (read_space_id == 0 && read_page_no == 0) { /* This is likely an uninitialized page. */ } else if ((bpage->id.space() != TRX_SYS_SPACE && bpage->id.space() != read_space_id) || bpage->id.page_no() != read_page_no) { /* We did not compare space_id to read_space_id in the system tablespace, because the field was written as garbage before MySQL 4.1.1, which did not support innodb_file_per_table. */ ib::error() << "Space id and page no stored in " "the page, read in are " << page_id_t(read_space_id, read_page_no) << ", should be " << bpage->id; } err = buf_page_check_corrupt(bpage, space); database_corrupted: if (err != DB_SUCCESS) { /* Not a real corruption if it was triggered by error injection */ DBUG_EXECUTE_IF( "buf_page_import_corrupt_failure", if (!is_predefined_tablespace( bpage->id.space())) { buf_mark_space_corrupt(bpage); ib::info() << "Simulated IMPORT " "corruption"; fil_space_release_for_io(space); return(err); } err = DB_SUCCESS; goto page_not_corrupt; ); if (err == DB_PAGE_CORRUPTED) { ib::error() << "Database page corruption on disk" " or a failed file read of tablespace " << space->name << " page " << bpage->id << ". You may have to recover from " << "a backup."; buf_page_print(frame, bpage->size); ib::info() << "It is also possible that your" " operating system has corrupted" " its own file cache and rebooting" " your computer removes the error." " If the corrupt page is an index page." " You can also try to fix the" " corruption by dumping, dropping," " and reimporting the corrupt table." " You can use CHECK TABLE to scan" " your table for corruption. " << FORCE_RECOVERY_MSG; } if (srv_force_recovery < SRV_FORCE_IGNORE_CORRUPT) { /* If page space id is larger than TRX_SYS_SPACE (0), we will attempt to mark the corresponding table as corrupted instead of crashing server */ if (bpage->id.space() == TRX_SYS_SPACE) { ib::fatal() << "Aborting because of" " a corrupt database page."; } buf_mark_space_corrupt(bpage); fil_space_release_for_io(space); return(err); } } DBUG_EXECUTE_IF("buf_page_import_corrupt_failure", page_not_corrupt: bpage = bpage; ); if (recv_recovery_is_on()) { /* Pages must be uncompressed for crash recovery. */ ut_a(uncompressed); recv_recover_page(TRUE, (buf_block_t*) bpage); } /* If space is being truncated then avoid ibuf operation. During re-init we have already freed ibuf entries. */ if (uncompressed && !recv_no_ibuf_operations && (bpage->id.space() == 0 || !is_predefined_tablespace(bpage->id.space())) && !srv_is_tablespace_truncated(bpage->id.space()) && fil_page_get_type(frame) == FIL_PAGE_INDEX && page_is_leaf(frame)) { if (bpage->encrypted) { ib::warn() << "Table in tablespace " << bpage->id.space() << " encrypted. However key " "management plugin or used " << "key_version " << key_version << "is not found or" " used encryption algorithm or method does not match." " Can't continue opening the table."; } else { ibuf_merge_or_delete_for_page( (buf_block_t*) bpage, bpage->id, &bpage->size, TRUE); } } fil_space_release_for_io(space); } else { /* io_type == BUF_IO_WRITE */ if (bpage->slot) { /* Mark slot free */ bpage->slot->release(); bpage->slot = NULL; } } BPageMutex* block_mutex = buf_page_get_mutex(bpage); buf_pool_mutex_enter(buf_pool); mutex_enter(block_mutex); #ifdef UNIV_IBUF_COUNT_DEBUG if (io_type == BUF_IO_WRITE || uncompressed) { /* For BUF_IO_READ of compressed-only blocks, the buffered operations will be merged by buf_page_get_gen() after the block has been uncompressed. */ ut_a(ibuf_count_get(bpage->id) == 0); } #endif /* Because this thread which does the unlocking is not the same that did the locking, we use a pass value != 0 in unlock, which simply removes the newest lock debug record, without checking the thread id. */ buf_page_set_io_fix(bpage, BUF_IO_NONE); buf_page_monitor(bpage, io_type); if (io_type == BUF_IO_READ) { /* NOTE that the call to ibuf may have moved the ownership of the x-latch to this OS thread: do not let this confuse you in debugging! */ ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads--; buf_pool->stat.n_pages_read++; if (uncompressed) { rw_lock_x_unlock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_READ); } mutex_exit(block_mutex); } else { /* Write means a flush operation: call the completion routine in the flush system */ buf_flush_write_complete(bpage, dblwr); if (uncompressed) { rw_lock_sx_unlock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_WRITE); } buf_pool->stat.n_pages_written++; /* We decide whether or not to evict the page from the LRU list based on the flush_type. * BUF_FLUSH_LIST: don't evict * BUF_FLUSH_LRU: always evict * BUF_FLUSH_SINGLE_PAGE: eviction preference is passed by the caller explicitly. */ if (buf_page_get_flush_type(bpage) == BUF_FLUSH_LRU) { evict = true; } mutex_exit(block_mutex); if (evict) { buf_LRU_free_page(bpage, true); } } DBUG_PRINT("ib_buf", ("%s page %u:%u", io_type == BUF_IO_READ ? "read" : "wrote", bpage->id.space(), bpage->id.page_no())); buf_pool_mutex_exit(buf_pool); return DB_SUCCESS; } /*********************************************************************//** Asserts that all file pages in the buffer are in a replaceable state. @return TRUE */ static ibool buf_all_freed_instance( /*===================*/ buf_pool_t* buf_pool) /*!< in: buffer pool instancce */ { ulint i; buf_chunk_t* chunk; ut_ad(buf_pool); buf_pool_mutex_enter(buf_pool); chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { if (const buf_block_t* block = buf_chunk_not_freed(chunk)) { ib::fatal() << "Page " << block->page.id << " still fixed or dirty"; } } buf_pool_mutex_exit(buf_pool); return(TRUE); } /** Refreshes the statistics used to print per-second averages. @param[in,out] buf_pool buffer pool instance */ static void buf_refresh_io_stats( buf_pool_t* buf_pool) { buf_pool->last_printout_time = ut_time(); buf_pool->old_stat = buf_pool->stat; } /*********************************************************************//** Invalidates file pages in one buffer pool instance */ static void buf_pool_invalidate_instance( /*=========================*/ buf_pool_t* buf_pool) /*!< in: buffer pool instance */ { ulint i; buf_pool_mutex_enter(buf_pool); for (i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { /* As this function is called during startup and during redo application phase during recovery, InnoDB is single threaded (apart from IO helper threads) at this stage. No new write batch can be in intialization stage at this point. */ ut_ad(buf_pool->init_flush[i] == FALSE); /* However, it is possible that a write batch that has been posted earlier is still not complete. For buffer pool invalidation to proceed we must ensure there is NO write activity happening. */ if (buf_pool->n_flush[i] > 0) { buf_flush_t type = static_cast(i); buf_pool_mutex_exit(buf_pool); buf_flush_wait_batch_end(buf_pool, type); buf_pool_mutex_enter(buf_pool); } } buf_pool_mutex_exit(buf_pool); ut_ad(buf_all_freed_instance(buf_pool)); buf_pool_mutex_enter(buf_pool); while (buf_LRU_scan_and_free_block(buf_pool, true)) { } ut_ad(UT_LIST_GET_LEN(buf_pool->LRU) == 0); ut_ad(UT_LIST_GET_LEN(buf_pool->unzip_LRU) == 0); buf_pool->freed_page_clock = 0; buf_pool->LRU_old = NULL; buf_pool->LRU_old_len = 0; memset(&buf_pool->stat, 0x00, sizeof(buf_pool->stat)); buf_refresh_io_stats(buf_pool); buf_pool_mutex_exit(buf_pool); } /*********************************************************************//** Invalidates the file pages in the buffer pool when an archive recovery is completed. All the file pages buffered must be in a replaceable state when this function is called: not latched and not modified. */ void buf_pool_invalidate(void) /*=====================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_invalidate_instance(buf_pool_from_array(i)); } } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /*********************************************************************//** Validates data in one buffer pool instance @return TRUE */ static ibool buf_pool_validate_instance( /*=======================*/ buf_pool_t* buf_pool) /*!< in: buffer pool instance */ { buf_page_t* b; buf_chunk_t* chunk; ulint i; ulint n_lru_flush = 0; ulint n_page_flush = 0; ulint n_list_flush = 0; ulint n_lru = 0; ulint n_flush = 0; ulint n_free = 0; ulint n_zip = 0; ut_ad(buf_pool); buf_pool_mutex_enter(buf_pool); hash_lock_x_all(buf_pool->page_hash); chunk = buf_pool->chunks; /* Check the uncompressed blocks. */ for (i = buf_pool->n_chunks; i--; chunk++) { ulint j; buf_block_t* block = chunk->blocks; for (j = chunk->size; j--; block++) { buf_page_mutex_enter(block); switch (buf_block_get_state(block)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* These should only occur on zip_clean, zip_free[], or flush_list. */ ut_error; break; case BUF_BLOCK_FILE_PAGE: ut_a(buf_page_hash_get_low( buf_pool, block->page.id) == &block->page); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(buf_page_get_io_fix(&block->page) == BUF_IO_READ || !ibuf_count_get(block->page.id)); #endif switch (buf_page_get_io_fix(&block->page)) { case BUF_IO_NONE: break; case BUF_IO_WRITE: switch (buf_page_get_flush_type( &block->page)) { case BUF_FLUSH_LRU: n_lru_flush++; goto assert_s_latched; case BUF_FLUSH_SINGLE_PAGE: n_page_flush++; assert_s_latched: ut_a(rw_lock_is_locked( &block->lock, RW_LOCK_S) || rw_lock_is_locked( &block->lock, RW_LOCK_SX)); break; case BUF_FLUSH_LIST: n_list_flush++; break; default: ut_error; } break; case BUF_IO_READ: ut_a(rw_lock_is_locked(&block->lock, RW_LOCK_X)); break; case BUF_IO_PIN: break; } n_lru++; break; case BUF_BLOCK_NOT_USED: n_free++; break; case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* do nothing */ break; } buf_page_mutex_exit(block); } } mutex_enter(&buf_pool->zip_mutex); /* Check clean compressed-only blocks. */ for (b = UT_LIST_GET_FIRST(buf_pool->zip_clean); b; b = UT_LIST_GET_NEXT(list, b)) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); switch (buf_page_get_io_fix(b)) { case BUF_IO_NONE: case BUF_IO_PIN: /* All clean blocks should be I/O-unfixed. */ break; case BUF_IO_READ: /* In buf_LRU_free_page(), we temporarily set b->io_fix = BUF_IO_READ for a newly allocated control block in order to prevent buf_page_get_gen() from decompressing the block. */ break; default: ut_error; break; } /* It is OK to read oldest_modification here because we have acquired buf_pool->zip_mutex above which acts as the 'block->mutex' for these bpages. */ ut_a(!b->oldest_modification); ut_a(buf_page_hash_get_low(buf_pool, b->id) == b); n_lru++; n_zip++; } /* Check dirty blocks. */ buf_flush_list_mutex_enter(buf_pool); for (b = UT_LIST_GET_FIRST(buf_pool->flush_list); b; b = UT_LIST_GET_NEXT(list, b)) { ut_ad(b->in_flush_list); ut_a(b->oldest_modification); n_flush++; switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: n_lru++; n_zip++; switch (buf_page_get_io_fix(b)) { case BUF_IO_NONE: case BUF_IO_READ: case BUF_IO_PIN: break; case BUF_IO_WRITE: switch (buf_page_get_flush_type(b)) { case BUF_FLUSH_LRU: n_lru_flush++; break; case BUF_FLUSH_SINGLE_PAGE: n_page_flush++; break; case BUF_FLUSH_LIST: n_list_flush++; break; default: ut_error; } break; } break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } ut_a(buf_page_hash_get_low(buf_pool, b->id) == b); } ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == n_flush); hash_unlock_x_all(buf_pool->page_hash); buf_flush_list_mutex_exit(buf_pool); mutex_exit(&buf_pool->zip_mutex); if (buf_pool->curr_size == buf_pool->old_size && n_lru + n_free > buf_pool->curr_size + n_zip) { ib::fatal() << "n_LRU " << n_lru << ", n_free " << n_free << ", pool " << buf_pool->curr_size << " zip " << n_zip << ". Aborting..."; } ut_a(UT_LIST_GET_LEN(buf_pool->LRU) == n_lru); if (buf_pool->curr_size == buf_pool->old_size && UT_LIST_GET_LEN(buf_pool->free) != n_free) { ib::fatal() << "Free list len " << UT_LIST_GET_LEN(buf_pool->free) << ", free blocks " << n_free << ". Aborting..."; } ut_a(buf_pool->n_flush[BUF_FLUSH_LIST] == n_list_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LRU] == n_lru_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] == n_page_flush); buf_pool_mutex_exit(buf_pool); ut_a(buf_LRU_validate()); ut_a(buf_flush_validate(buf_pool)); return(TRUE); } /*********************************************************************//** Validates the buffer buf_pool data structure. @return TRUE */ ibool buf_validate(void) /*==============*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_pool_validate_instance(buf_pool); } return(TRUE); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #if defined UNIV_DEBUG_PRINT || defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /*********************************************************************//** Prints info of the buffer buf_pool data structure for one instance. */ static void buf_print_instance( /*===============*/ buf_pool_t* buf_pool) { index_id_t* index_ids; ulint* counts; ulint size; ulint i; ulint j; index_id_t id; ulint n_found; buf_chunk_t* chunk; dict_index_t* index; ut_ad(buf_pool); size = buf_pool->curr_size; index_ids = static_cast( ut_malloc_nokey(size * sizeof *index_ids)); counts = static_cast(ut_malloc_nokey(sizeof(ulint) * size)); buf_pool_mutex_enter(buf_pool); buf_flush_list_mutex_enter(buf_pool); ib::info() << *buf_pool; buf_flush_list_mutex_exit(buf_pool); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t* block = chunk->blocks; ulint n_blocks = chunk->size; for (; n_blocks--; block++) { const buf_frame_t* frame = block->frame; if (fil_page_index_page_check(frame)) { id = btr_page_get_index_id(frame); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (index_ids[j] == id) { counts[j]++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } } buf_pool_mutex_exit(buf_pool); for (i = 0; i < n_found; i++) { index = dict_index_get_if_in_cache(index_ids[i]); if (!index) { ib::info() << "Block count for index " << index_ids[i] << " in buffer is about " << counts[i]; } else { ib::info() << "Block count for index " << index_ids[i] << " in buffer is about " << counts[i] << ", index " << index->name << " of table " << index->table->name; } } ut_free(index_ids); ut_free(counts); ut_a(buf_pool_validate_instance(buf_pool)); } /*********************************************************************//** Prints info of the buffer buf_pool data structure. */ void buf_print(void) /*===========*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_print_instance(buf_pool); } } #endif /* UNIV_DEBUG_PRINT || UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /*********************************************************************//** Returns the number of latched pages in the buffer pool. @return number of latched pages */ static ulint buf_get_latched_pages_number_instance( /*==================================*/ buf_pool_t* buf_pool) /*!< in: buffer pool instance */ { buf_page_t* b; ulint i; buf_chunk_t* chunk; ulint fixed_pages_number = 0; buf_pool_mutex_enter(buf_pool); chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t* block; ulint j; block = chunk->blocks; for (j = chunk->size; j--; block++) { if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { continue; } buf_page_mutex_enter(block); if (block->page.buf_fix_count != 0 || buf_page_get_io_fix(&block->page) != BUF_IO_NONE) { fixed_pages_number++; } buf_page_mutex_exit(block); } } mutex_enter(&buf_pool->zip_mutex); /* Traverse the lists of clean and dirty compressed-only blocks. */ for (b = UT_LIST_GET_FIRST(buf_pool->zip_clean); b; b = UT_LIST_GET_NEXT(list, b)) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); ut_a(buf_page_get_io_fix(b) != BUF_IO_WRITE); if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } } buf_flush_list_mutex_enter(buf_pool); for (b = UT_LIST_GET_FIRST(buf_pool->flush_list); b; b = UT_LIST_GET_NEXT(list, b)) { ut_ad(b->in_flush_list); switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } } buf_flush_list_mutex_exit(buf_pool); mutex_exit(&buf_pool->zip_mutex); buf_pool_mutex_exit(buf_pool); return(fixed_pages_number); } /*********************************************************************//** Returns the number of latched pages in all the buffer pools. @return number of latched pages */ ulint buf_get_latched_pages_number(void) /*==============================*/ { ulint i; ulint total_latched_pages = 0; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); total_latched_pages += buf_get_latched_pages_number_instance( buf_pool); } return(total_latched_pages); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Returns the number of pending buf pool read ios. @return number of pending read I/O operations */ ulint buf_get_n_pending_read_ios(void) /*============================*/ { ulint pend_ios = 0; for (ulint i = 0; i < srv_buf_pool_instances; i++) { pend_ios += buf_pool_from_array(i)->n_pend_reads; } return(pend_ios); } /*********************************************************************//** Returns the ratio in percents of modified pages in the buffer pool / database pages in the buffer pool. @return modified page percentage ratio */ double buf_get_modified_ratio_pct(void) /*============================*/ { double ratio; ulint lru_len = 0; ulint free_len = 0; ulint flush_list_len = 0; buf_get_total_list_len(&lru_len, &free_len, &flush_list_len); ratio = static_cast(100 * flush_list_len) / (1 + lru_len + free_len); /* 1 + is there to avoid division by zero */ return(ratio); } /*******************************************************************//** Aggregates a pool stats information with the total buffer pool stats */ static void buf_stats_aggregate_pool_info( /*==========================*/ buf_pool_info_t* total_info, /*!< in/out: the buffer pool info to store aggregated result */ const buf_pool_info_t* pool_info) /*!< in: individual buffer pool stats info */ { ut_a(total_info && pool_info); /* Nothing to copy if total_info is the same as pool_info */ if (total_info == pool_info) { return; } total_info->pool_size += pool_info->pool_size; total_info->lru_len += pool_info->lru_len; total_info->old_lru_len += pool_info->old_lru_len; total_info->free_list_len += pool_info->free_list_len; total_info->flush_list_len += pool_info->flush_list_len; total_info->n_pend_unzip += pool_info->n_pend_unzip; total_info->n_pend_reads += pool_info->n_pend_reads; total_info->n_pending_flush_lru += pool_info->n_pending_flush_lru; total_info->n_pending_flush_list += pool_info->n_pending_flush_list; total_info->n_pages_made_young += pool_info->n_pages_made_young; total_info->n_pages_not_made_young += pool_info->n_pages_not_made_young; total_info->n_pages_read += pool_info->n_pages_read; total_info->n_pages_created += pool_info->n_pages_created; total_info->n_pages_written += pool_info->n_pages_written; total_info->n_page_gets += pool_info->n_page_gets; total_info->n_ra_pages_read_rnd += pool_info->n_ra_pages_read_rnd; total_info->n_ra_pages_read += pool_info->n_ra_pages_read; total_info->n_ra_pages_evicted += pool_info->n_ra_pages_evicted; total_info->page_made_young_rate += pool_info->page_made_young_rate; total_info->page_not_made_young_rate += pool_info->page_not_made_young_rate; total_info->pages_read_rate += pool_info->pages_read_rate; total_info->pages_created_rate += pool_info->pages_created_rate; total_info->pages_written_rate += pool_info->pages_written_rate; total_info->n_page_get_delta += pool_info->n_page_get_delta; total_info->page_read_delta += pool_info->page_read_delta; total_info->young_making_delta += pool_info->young_making_delta; total_info->not_young_making_delta += pool_info->not_young_making_delta; total_info->pages_readahead_rnd_rate += pool_info->pages_readahead_rnd_rate; total_info->pages_readahead_rate += pool_info->pages_readahead_rate; total_info->pages_evicted_rate += pool_info->pages_evicted_rate; total_info->unzip_lru_len += pool_info->unzip_lru_len; total_info->io_sum += pool_info->io_sum; total_info->io_cur += pool_info->io_cur; total_info->unzip_sum += pool_info->unzip_sum; total_info->unzip_cur += pool_info->unzip_cur; } /*******************************************************************//** Collect buffer pool stats information for a buffer pool. Also record aggregated stats if there are more than one buffer pool in the server */ void buf_stats_get_pool_info( /*====================*/ buf_pool_t* buf_pool, /*!< in: buffer pool */ ulint pool_id, /*!< in: buffer pool ID */ buf_pool_info_t* all_pool_info) /*!< in/out: buffer pool info to fill */ { buf_pool_info_t* pool_info; time_t current_time; double time_elapsed; /* Find appropriate pool_info to store stats for this buffer pool */ pool_info = &all_pool_info[pool_id]; buf_pool_mutex_enter(buf_pool); buf_flush_list_mutex_enter(buf_pool); pool_info->pool_unique_id = pool_id; pool_info->pool_size = buf_pool->curr_size; pool_info->lru_len = UT_LIST_GET_LEN(buf_pool->LRU); pool_info->old_lru_len = buf_pool->LRU_old_len; pool_info->free_list_len = UT_LIST_GET_LEN(buf_pool->free); pool_info->flush_list_len = UT_LIST_GET_LEN(buf_pool->flush_list); pool_info->n_pend_unzip = UT_LIST_GET_LEN(buf_pool->unzip_LRU); pool_info->n_pend_reads = buf_pool->n_pend_reads; pool_info->n_pending_flush_lru = (buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->init_flush[BUF_FLUSH_LRU]); pool_info->n_pending_flush_list = (buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->init_flush[BUF_FLUSH_LIST]); pool_info->n_pending_flush_single_page = (buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] + buf_pool->init_flush[BUF_FLUSH_SINGLE_PAGE]); buf_flush_list_mutex_exit(buf_pool); current_time = time(NULL); time_elapsed = 0.001 + difftime(current_time, buf_pool->last_printout_time); pool_info->n_pages_made_young = buf_pool->stat.n_pages_made_young; pool_info->n_pages_not_made_young = buf_pool->stat.n_pages_not_made_young; pool_info->n_pages_read = buf_pool->stat.n_pages_read; pool_info->n_pages_created = buf_pool->stat.n_pages_created; pool_info->n_pages_written = buf_pool->stat.n_pages_written; pool_info->n_page_gets = buf_pool->stat.n_page_gets; pool_info->n_ra_pages_read_rnd = buf_pool->stat.n_ra_pages_read_rnd; pool_info->n_ra_pages_read = buf_pool->stat.n_ra_pages_read; pool_info->n_ra_pages_evicted = buf_pool->stat.n_ra_pages_evicted; pool_info->page_made_young_rate = (buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young) / time_elapsed; pool_info->page_not_made_young_rate = (buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young) / time_elapsed; pool_info->pages_read_rate = (buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read) / time_elapsed; pool_info->pages_created_rate = (buf_pool->stat.n_pages_created - buf_pool->old_stat.n_pages_created) / time_elapsed; pool_info->pages_written_rate = (buf_pool->stat.n_pages_written - buf_pool->old_stat.n_pages_written) / time_elapsed; pool_info->n_page_get_delta = buf_pool->stat.n_page_gets - buf_pool->old_stat.n_page_gets; if (pool_info->n_page_get_delta) { pool_info->page_read_delta = buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read; pool_info->young_making_delta = buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young; pool_info->not_young_making_delta = buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young; } pool_info->pages_readahead_rnd_rate = (buf_pool->stat.n_ra_pages_read_rnd - buf_pool->old_stat.n_ra_pages_read_rnd) / time_elapsed; pool_info->pages_readahead_rate = (buf_pool->stat.n_ra_pages_read - buf_pool->old_stat.n_ra_pages_read) / time_elapsed; pool_info->pages_evicted_rate = (buf_pool->stat.n_ra_pages_evicted - buf_pool->old_stat.n_ra_pages_evicted) / time_elapsed; pool_info->unzip_lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU); pool_info->io_sum = buf_LRU_stat_sum.io; pool_info->io_cur = buf_LRU_stat_cur.io; pool_info->unzip_sum = buf_LRU_stat_sum.unzip; pool_info->unzip_cur = buf_LRU_stat_cur.unzip; buf_refresh_io_stats(buf_pool); buf_pool_mutex_exit(buf_pool); } /*********************************************************************//** Prints info of the buffer i/o. */ static void buf_print_io_instance( /*==================*/ buf_pool_info_t*pool_info, /*!< in: buffer pool info */ FILE* file) /*!< in/out: buffer where to print */ { ut_ad(pool_info); fprintf(file, "Buffer pool size " ULINTPF "\n" "Free buffers " ULINTPF "\n" "Database pages " ULINTPF "\n" "Old database pages " ULINTPF "\n" "Modified db pages " ULINTPF "\n" "Percent of dirty pages(LRU & free pages): %.3f\n" "Max dirty pages percent: %.3f\n" "Pending reads " ULINTPF "\n" "Pending writes: LRU " ULINTPF ", flush list " ULINTPF ", single page " ULINTPF "\n", pool_info->pool_size, pool_info->free_list_len, pool_info->lru_len, pool_info->old_lru_len, pool_info->flush_list_len, (((double) pool_info->flush_list_len) / (pool_info->lru_len + pool_info->free_list_len + 1.0)) * 100.0, srv_max_buf_pool_modified_pct, pool_info->n_pend_reads, pool_info->n_pending_flush_lru, pool_info->n_pending_flush_list, pool_info->n_pending_flush_single_page); fprintf(file, "Pages made young " ULINTPF ", not young " ULINTPF "\n" "%.2f youngs/s, %.2f non-youngs/s\n" "Pages read " ULINTPF ", created " ULINTPF ", written " ULINTPF "\n" "%.2f reads/s, %.2f creates/s, %.2f writes/s\n", pool_info->n_pages_made_young, pool_info->n_pages_not_made_young, pool_info->page_made_young_rate, pool_info->page_not_made_young_rate, pool_info->n_pages_read, pool_info->n_pages_created, pool_info->n_pages_written, pool_info->pages_read_rate, pool_info->pages_created_rate, pool_info->pages_written_rate); if (pool_info->n_page_get_delta) { double hit_rate = double(pool_info->page_read_delta) / pool_info->n_page_get_delta; if (hit_rate > 1) { hit_rate = 1; } fprintf(file, "Buffer pool hit rate " ULINTPF " / 1000," " young-making rate " ULINTPF " / 1000 not " ULINTPF " / 1000\n", ulint(1000 * (1 - hit_rate)), ulint(1000 * double(pool_info->young_making_delta) / pool_info->n_page_get_delta), ulint(1000 * double(pool_info->not_young_making_delta) / pool_info->n_page_get_delta)); } else { fputs("No buffer pool page gets since the last printout\n", file); } /* Statistics about read ahead algorithm */ fprintf(file, "Pages read ahead %.2f/s," " evicted without access %.2f/s," " Random read ahead %.2f/s\n", pool_info->pages_readahead_rate, pool_info->pages_evicted_rate, pool_info->pages_readahead_rnd_rate); /* Print some values to help us with visualizing what is happening with LRU eviction. */ fprintf(file, "LRU len: " ULINTPF ", unzip_LRU len: " ULINTPF "\n" "I/O sum[" ULINTPF "]:cur[" ULINTPF "], " "unzip sum[" ULINTPF "]:cur[" ULINTPF "]\n", pool_info->lru_len, pool_info->unzip_lru_len, pool_info->io_sum, pool_info->io_cur, pool_info->unzip_sum, pool_info->unzip_cur); } /*********************************************************************//** Prints info of the buffer i/o. */ void buf_print_io( /*=========*/ FILE* file) /*!< in/out: buffer where to print */ { ulint i; buf_pool_info_t* pool_info; buf_pool_info_t* pool_info_total; /* If srv_buf_pool_instances is greater than 1, allocate one extra buf_pool_info_t, the last one stores aggregated/total values from all pools */ if (srv_buf_pool_instances > 1) { pool_info = (buf_pool_info_t*) ut_zalloc_nokey(( srv_buf_pool_instances + 1) * sizeof *pool_info); pool_info_total = &pool_info[srv_buf_pool_instances]; } else { ut_a(srv_buf_pool_instances == 1); pool_info_total = pool_info = static_cast( ut_zalloc_nokey(sizeof *pool_info)); } for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); /* Fetch individual buffer pool info and calculate aggregated stats along the way */ buf_stats_get_pool_info(buf_pool, i, pool_info); /* If we have more than one buffer pool, store the aggregated stats */ if (srv_buf_pool_instances > 1) { buf_stats_aggregate_pool_info(pool_info_total, &pool_info[i]); } } /* Print the aggreate buffer pool info */ buf_print_io_instance(pool_info_total, file); /* If there are more than one buffer pool, print each individual pool info */ if (srv_buf_pool_instances > 1) { fputs("----------------------\n" "INDIVIDUAL BUFFER POOL INFO\n" "----------------------\n", file); for (i = 0; i < srv_buf_pool_instances; i++) { fprintf(file, "---BUFFER POOL " ULINTPF "\n", i); buf_print_io_instance(&pool_info[i], file); } } ut_free(pool_info); } /**********************************************************************//** Refreshes the statistics used to print per-second averages. */ void buf_refresh_io_stats_all(void) /*==========================*/ { for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_refresh_io_stats(buf_pool); } } /**********************************************************************//** Check if all pages in all buffer pools are in a replacable state. @return FALSE if not */ ibool buf_all_freed(void) /*===============*/ { for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); if (!buf_all_freed_instance(buf_pool)) { return(FALSE); } } return(TRUE); } /*********************************************************************//** Checks that there currently are no pending i/o-operations for the buffer pool. @return number of pending i/o */ ulint buf_pool_check_no_pending_io(void) /*==============================*/ { ulint i; ulint pending_io = 0; buf_pool_mutex_enter_all(); for (i = 0; i < srv_buf_pool_instances; i++) { const buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); pending_io += buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] + buf_pool->n_flush[BUF_FLUSH_LIST]; } buf_pool_mutex_exit_all(); return(pending_io); } /** Print the given page_id_t object. @param[in,out] out the output stream @param[in] page_id the page_id_t object to be printed @return the output stream */ std::ostream& operator<<( std::ostream& out, const page_id_t page_id) { out << "[page id: space=" << page_id.m_space << ", page number=" << page_id.m_page_no << "]"; return(out); } /** Print the given buf_pool_t object. @param[in,out] out the output stream @param[in] buf_pool the buf_pool_t object to be printed @return the output stream */ std::ostream& operator<<( std::ostream& out, const buf_pool_t& buf_pool) { out << "[buffer pool instance: " << "buf_pool size=" << buf_pool.curr_size << ", database pages=" << UT_LIST_GET_LEN(buf_pool.LRU) << ", free pages=" << UT_LIST_GET_LEN(buf_pool.free) << ", modified database pages=" << UT_LIST_GET_LEN(buf_pool.flush_list) << ", n pending decompressions=" << buf_pool.n_pend_unzip << ", n pending reads=" << buf_pool.n_pend_reads << ", n pending flush LRU=" << buf_pool.n_flush[BUF_FLUSH_LRU] << " list=" << buf_pool.n_flush[BUF_FLUSH_LIST] << " single page=" << buf_pool.n_flush[BUF_FLUSH_SINGLE_PAGE] << ", pages made young=" << buf_pool.stat.n_pages_made_young << ", not young=" << buf_pool.stat.n_pages_not_made_young << ", pages read=" << buf_pool.stat.n_pages_read << ", created=" << buf_pool.stat.n_pages_created << ", written=" << buf_pool.stat.n_pages_written << "]"; return(out); } /** Encryption and page_compression hook that is called just before a page is written to disk. @param[in,out] space tablespace @param[in,out] bpage buffer page @param[in] src_frame physical page frame that is being encrypted @return page frame to be written to file (may be src_frame or an encrypted/compressed copy of it) */ UNIV_INTERN byte* buf_page_encrypt_before_write( fil_space_t* space, buf_page_t* bpage, byte* src_frame) { ut_ad(space->id == bpage->id.space()); bpage->real_size = UNIV_PAGE_SIZE; fil_page_type_validate(src_frame); switch (bpage->id.page_no()) { case 0: /* Page 0 of a tablespace is not encrypted/compressed */ return src_frame; case TRX_SYS_PAGE_NO: if (bpage->id.space() == TRX_SYS_SPACE) { /* don't encrypt/compress page as it contains address to dblwr buffer */ return src_frame; } } fil_space_crypt_t* crypt_data = space->crypt_data; const bool encrypted = crypt_data && !crypt_data->not_encrypted() && crypt_data->type != CRYPT_SCHEME_UNENCRYPTED && (!crypt_data->is_default_encryption() || srv_encrypt_tables); bool page_compressed = FSP_FLAGS_HAS_PAGE_COMPRESSION(space->flags); if (!encrypted && !page_compressed) { /* No need to encrypt or page compress the page. Clear key-version & crypt-checksum. */ memset(src_frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, 0, 8); return src_frame; } ut_ad(!bpage->size.is_compressed() || !page_compressed); buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); /* Find free slot from temporary memory array */ buf_tmp_buffer_t* slot = buf_pool_reserve_tmp_slot(buf_pool); slot->out_buf = NULL; bpage->slot = slot; buf_tmp_reserve_crypt_buf(slot); byte *dst_frame = slot->crypt_buf; if (!page_compressed) { not_compressed: /* Encrypt page content */ byte* tmp = fil_space_encrypt(space, bpage->id.page_no(), bpage->newest_modification, src_frame, dst_frame); bpage->real_size = UNIV_PAGE_SIZE; slot->out_buf = dst_frame = tmp; ut_d(fil_page_type_validate(tmp)); } else { /* First we compress the page content */ buf_tmp_reserve_compression_buf(slot); byte* tmp = slot->comp_buf; ulint out_len = fil_page_compress( src_frame, tmp, fsp_flags_get_page_compression_level(space->flags), fil_space_get_block_size(space, bpage->id.page_no()), encrypted); if (!out_len) { goto not_compressed; } bpage->real_size = out_len; /* Workaround for MDEV-15527. */ memset(tmp + out_len, 0 , srv_page_size - out_len); ut_d(fil_page_type_validate(tmp)); if (encrypted) { /* And then we encrypt the page content */ tmp = fil_space_encrypt(space, bpage->id.page_no(), bpage->newest_modification, tmp, dst_frame); } slot->out_buf = dst_frame = tmp; } ut_d(fil_page_type_validate(dst_frame)); // return dst_frame which will be written return dst_frame; } /** Should we punch hole to deallocate unused portion of the page. @param[in] bpage Page control block @return true if punch hole should be used, false if not */ bool buf_page_should_punch_hole( const buf_page_t* bpage) { return (bpage->real_size != bpage->size.physical()); } /** Calculate the length of trim (punch_hole) operation. @param[in] bpage Page control block @param[in] write_length Write length @return length of the trim or zero. */ ulint buf_page_get_trim_length( const buf_page_t* bpage, ulint write_length) { return (bpage->size.physical() - write_length); } #endif /* !UNIV_INNOCHECKSUM */