/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2016, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file dict/dict0boot.cc Data dictionary creation and booting Created 4/18/1996 Heikki Tuuri *******************************************************/ #include "dict0boot.h" #include "dict0crea.h" #include "btr0btr.h" #include "dict0load.h" #include "trx0trx.h" #include "srv0srv.h" #include "ibuf0ibuf.h" #include "buf0flu.h" #include "log0recv.h" #include "os0file.h" /**********************************************************************//** Gets a pointer to the dictionary header and x-latches its page. @return pointer to the dictionary header, page x-latched */ dict_hdr_t* dict_hdr_get( /*=========*/ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; dict_hdr_t* header; block = buf_page_get(page_id_t(DICT_HDR_SPACE, DICT_HDR_PAGE_NO), univ_page_size, RW_X_LATCH, mtr); header = DICT_HDR + buf_block_get_frame(block); buf_block_dbg_add_level(block, SYNC_DICT_HEADER); return(header); } /**********************************************************************//** Returns a new table, index, or space id. */ void dict_hdr_get_new_id( /*================*/ table_id_t* table_id, /*!< out: table id (not assigned if NULL) */ index_id_t* index_id, /*!< out: index id (not assigned if NULL) */ ulint* space_id, /*!< out: space id (not assigned if NULL) */ const dict_table_t* table, /*!< in: table */ bool disable_redo) /*!< in: if true and table object is NULL then disable-redo */ { dict_hdr_t* dict_hdr; ib_id_t id; mtr_t mtr; mtr_start(&mtr); if (table) { if (table->is_temporary()) { mtr.set_log_mode(MTR_LOG_NO_REDO); } } else if (disable_redo) { /* In non-read-only mode we need to ensure that space-id header page is written to disk else if page is removed from buffer cache and re-loaded it would assign temporary tablespace id to another tablespace. This is not a case with read-only mode as there is no new object that is created except temporary tablespace. */ mtr.set_log_mode(srv_read_only_mode ? MTR_LOG_NONE : MTR_LOG_NO_REDO); } /* Server started and let's say space-id = x - table created with file-per-table - space-id = x + 1 - crash Case 1: If it was redo logged then we know that it will be restored to x + 1 Case 2: if not redo-logged Header will have the old space-id = x This is OK because on restart there is no object with space id = x + 1 Case 3: space-id = x (on start) space-id = x+1 (temp-table allocation) - no redo logging space-id = x+2 (non-temp-table allocation), this get's redo logged. If there is a crash there will be only 2 entries x (original) and x+2 (new) and disk hdr will be updated to reflect x + 2 entry. We cannot allocate the same space id to different objects. */ dict_hdr = dict_hdr_get(&mtr); if (table_id) { id = mach_read_from_8(dict_hdr + DICT_HDR_TABLE_ID); id++; mlog_write_ull(dict_hdr + DICT_HDR_TABLE_ID, id, &mtr); *table_id = id; } if (index_id) { id = mach_read_from_8(dict_hdr + DICT_HDR_INDEX_ID); id++; mlog_write_ull(dict_hdr + DICT_HDR_INDEX_ID, id, &mtr); *index_id = id; } if (space_id) { *space_id = mtr_read_ulint(dict_hdr + DICT_HDR_MAX_SPACE_ID, MLOG_4BYTES, &mtr); if (fil_assign_new_space_id(space_id)) { mlog_write_ulint(dict_hdr + DICT_HDR_MAX_SPACE_ID, *space_id, MLOG_4BYTES, &mtr); } } mtr_commit(&mtr); } /**********************************************************************//** Writes the current value of the row id counter to the dictionary header file page. */ void dict_hdr_flush_row_id(void) /*=======================*/ { dict_hdr_t* dict_hdr; row_id_t id; mtr_t mtr; ut_ad(mutex_own(&dict_sys->mutex)); id = dict_sys->row_id; mtr_start(&mtr); dict_hdr = dict_hdr_get(&mtr); mlog_write_ull(dict_hdr + DICT_HDR_ROW_ID, id, &mtr); mtr_commit(&mtr); } /*****************************************************************//** Creates the file page for the dictionary header. This function is called only at the database creation. @return TRUE if succeed */ static ibool dict_hdr_create( /*============*/ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; dict_hdr_t* dict_header; ulint root_page_no; ut_ad(mtr); /* Create the dictionary header file block in a new, allocated file segment in the system tablespace */ block = fseg_create(DICT_HDR_SPACE, 0, DICT_HDR + DICT_HDR_FSEG_HEADER, mtr); ut_a(DICT_HDR_PAGE_NO == block->page.id.page_no()); dict_header = dict_hdr_get(mtr); /* Start counting row, table, index, and tree ids from DICT_HDR_FIRST_ID */ mlog_write_ull(dict_header + DICT_HDR_ROW_ID, DICT_HDR_FIRST_ID, mtr); mlog_write_ull(dict_header + DICT_HDR_TABLE_ID, DICT_HDR_FIRST_ID, mtr); mlog_write_ull(dict_header + DICT_HDR_INDEX_ID, DICT_HDR_FIRST_ID, mtr); mlog_write_ulint(dict_header + DICT_HDR_MAX_SPACE_ID, 0, MLOG_4BYTES, mtr); /* Obsolete, but we must initialize it anyway. */ mlog_write_ulint(dict_header + DICT_HDR_MIX_ID_LOW, DICT_HDR_FIRST_ID, MLOG_4BYTES, mtr); /* Create the B-tree roots for the clustered indexes of the basic system tables */ /*--------------------------*/ root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE, DICT_HDR_SPACE, univ_page_size, DICT_TABLES_ID, dict_ind_redundant, NULL, mtr); if (root_page_no == FIL_NULL) { return(FALSE); } mlog_write_ulint(dict_header + DICT_HDR_TABLES, root_page_no, MLOG_4BYTES, mtr); /*--------------------------*/ root_page_no = btr_create(DICT_UNIQUE, DICT_HDR_SPACE, univ_page_size, DICT_TABLE_IDS_ID, dict_ind_redundant, NULL, mtr); if (root_page_no == FIL_NULL) { return(FALSE); } mlog_write_ulint(dict_header + DICT_HDR_TABLE_IDS, root_page_no, MLOG_4BYTES, mtr); /*--------------------------*/ root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE, DICT_HDR_SPACE, univ_page_size, DICT_COLUMNS_ID, dict_ind_redundant, NULL, mtr); if (root_page_no == FIL_NULL) { return(FALSE); } mlog_write_ulint(dict_header + DICT_HDR_COLUMNS, root_page_no, MLOG_4BYTES, mtr); /*--------------------------*/ root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE, DICT_HDR_SPACE, univ_page_size, DICT_INDEXES_ID, dict_ind_redundant, NULL, mtr); if (root_page_no == FIL_NULL) { return(FALSE); } mlog_write_ulint(dict_header + DICT_HDR_INDEXES, root_page_no, MLOG_4BYTES, mtr); /*--------------------------*/ root_page_no = btr_create(DICT_CLUSTERED | DICT_UNIQUE, DICT_HDR_SPACE, univ_page_size, DICT_FIELDS_ID, dict_ind_redundant, NULL, mtr); if (root_page_no == FIL_NULL) { return(FALSE); } mlog_write_ulint(dict_header + DICT_HDR_FIELDS, root_page_no, MLOG_4BYTES, mtr); /*--------------------------*/ return(TRUE); } /*****************************************************************//** Initializes the data dictionary memory structures when the database is started. This function is also called when the data dictionary is created. @return DB_SUCCESS or error code. */ dberr_t dict_boot(void) /*===========*/ { dict_table_t* table; dict_index_t* index; dict_hdr_t* dict_hdr; mem_heap_t* heap; mtr_t mtr; dberr_t error; /* Be sure these constants do not ever change. To avoid bloat, only check the *NUM_FIELDS* in each table */ ut_ad(DICT_NUM_COLS__SYS_TABLES == 8); ut_ad(DICT_NUM_FIELDS__SYS_TABLES == 10); ut_ad(DICT_NUM_FIELDS__SYS_TABLE_IDS == 2); ut_ad(DICT_NUM_COLS__SYS_COLUMNS == 7); ut_ad(DICT_NUM_FIELDS__SYS_COLUMNS == 9); ut_ad(DICT_NUM_COLS__SYS_INDEXES == 8); ut_ad(DICT_NUM_FIELDS__SYS_INDEXES == 10); ut_ad(DICT_NUM_COLS__SYS_FIELDS == 3); ut_ad(DICT_NUM_FIELDS__SYS_FIELDS == 5); ut_ad(DICT_NUM_COLS__SYS_FOREIGN == 4); ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN == 6); ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN_FOR_NAME == 2); ut_ad(DICT_NUM_COLS__SYS_FOREIGN_COLS == 4); ut_ad(DICT_NUM_FIELDS__SYS_FOREIGN_COLS == 6); mtr_start(&mtr); /* Create the hash tables etc. */ dict_init(); heap = mem_heap_create(450); mutex_enter(&dict_sys->mutex); /* Get the dictionary header */ dict_hdr = dict_hdr_get(&mtr); /* Because we only write new row ids to disk-based data structure (dictionary header) when it is divisible by DICT_HDR_ROW_ID_WRITE_MARGIN, in recovery we will not recover the latest value of the row id counter. Therefore we advance the counter at the database startup to avoid overlapping values. Note that when a user after database startup first time asks for a new row id, then because the counter is now divisible by ..._MARGIN, it will immediately be updated to the disk-based header. */ dict_sys->row_id = DICT_HDR_ROW_ID_WRITE_MARGIN + ut_uint64_align_up(mach_read_from_8(dict_hdr + DICT_HDR_ROW_ID), DICT_HDR_ROW_ID_WRITE_MARGIN); /* Insert into the dictionary cache the descriptions of the basic system tables */ /*-------------------------*/ table = dict_mem_table_create("SYS_TABLES", DICT_HDR_SPACE, 8, 0, 0, 0); dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0, MAX_FULL_NAME_LEN); dict_mem_table_add_col(table, heap, "ID", DATA_BINARY, 0, 8); /* ROW_FORMAT = (N_COLS >> 31) ? COMPACT : REDUNDANT */ dict_mem_table_add_col(table, heap, "N_COLS", DATA_INT, 0, 4); /* The low order bit of TYPE is always set to 1. If the format is UNIV_FORMAT_B or higher, this field matches table->flags. */ dict_mem_table_add_col(table, heap, "TYPE", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "MIX_ID", DATA_BINARY, 0, 0); /* MIX_LEN may contain additional table flags when ROW_FORMAT!=REDUNDANT. */ dict_mem_table_add_col(table, heap, "MIX_LEN", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "CLUSTER_NAME", DATA_BINARY, 0, 0); dict_mem_table_add_col(table, heap, "SPACE", DATA_INT, 0, 4); table->id = DICT_TABLES_ID; dict_table_add_to_cache(table, FALSE, heap); dict_sys->sys_tables = table; mem_heap_empty(heap); index = dict_mem_index_create("SYS_TABLES", "CLUST_IND", DICT_HDR_SPACE, DICT_UNIQUE | DICT_CLUSTERED, 1); dict_mem_index_add_field(index, "NAME", 0); index->id = DICT_TABLES_ID; error = dict_index_add_to_cache(table, index, mtr_read_ulint(dict_hdr + DICT_HDR_TABLES, MLOG_4BYTES, &mtr), FALSE); ut_a(error == DB_SUCCESS); /*-------------------------*/ index = dict_mem_index_create("SYS_TABLES", "ID_IND", DICT_HDR_SPACE, DICT_UNIQUE, 1); dict_mem_index_add_field(index, "ID", 0); index->id = DICT_TABLE_IDS_ID; error = dict_index_add_to_cache(table, index, mtr_read_ulint(dict_hdr + DICT_HDR_TABLE_IDS, MLOG_4BYTES, &mtr), FALSE); ut_a(error == DB_SUCCESS); /*-------------------------*/ table = dict_mem_table_create("SYS_COLUMNS", DICT_HDR_SPACE, 7, 0, 0, 0); dict_mem_table_add_col(table, heap, "TABLE_ID", DATA_BINARY, 0, 8); dict_mem_table_add_col(table, heap, "POS", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0, 0); dict_mem_table_add_col(table, heap, "MTYPE", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "PRTYPE", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "LEN", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "PREC", DATA_INT, 0, 4); table->id = DICT_COLUMNS_ID; dict_table_add_to_cache(table, FALSE, heap); dict_sys->sys_columns = table; mem_heap_empty(heap); index = dict_mem_index_create("SYS_COLUMNS", "CLUST_IND", DICT_HDR_SPACE, DICT_UNIQUE | DICT_CLUSTERED, 2); dict_mem_index_add_field(index, "TABLE_ID", 0); dict_mem_index_add_field(index, "POS", 0); index->id = DICT_COLUMNS_ID; error = dict_index_add_to_cache(table, index, mtr_read_ulint(dict_hdr + DICT_HDR_COLUMNS, MLOG_4BYTES, &mtr), FALSE); ut_a(error == DB_SUCCESS); /*-------------------------*/ table = dict_mem_table_create("SYS_INDEXES", DICT_HDR_SPACE, DICT_NUM_COLS__SYS_INDEXES, 0, 0, 0); dict_mem_table_add_col(table, heap, "TABLE_ID", DATA_BINARY, 0, 8); dict_mem_table_add_col(table, heap, "ID", DATA_BINARY, 0, 8); dict_mem_table_add_col(table, heap, "NAME", DATA_BINARY, 0, 0); dict_mem_table_add_col(table, heap, "N_FIELDS", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "TYPE", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "SPACE", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "PAGE_NO", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "MERGE_THRESHOLD", DATA_INT, 0, 4); table->id = DICT_INDEXES_ID; dict_table_add_to_cache(table, FALSE, heap); dict_sys->sys_indexes = table; mem_heap_empty(heap); index = dict_mem_index_create("SYS_INDEXES", "CLUST_IND", DICT_HDR_SPACE, DICT_UNIQUE | DICT_CLUSTERED, 2); dict_mem_index_add_field(index, "TABLE_ID", 0); dict_mem_index_add_field(index, "ID", 0); index->id = DICT_INDEXES_ID; error = dict_index_add_to_cache(table, index, mtr_read_ulint(dict_hdr + DICT_HDR_INDEXES, MLOG_4BYTES, &mtr), FALSE); ut_a(error == DB_SUCCESS); /*-------------------------*/ table = dict_mem_table_create("SYS_FIELDS", DICT_HDR_SPACE, 3, 0, 0, 0); dict_mem_table_add_col(table, heap, "INDEX_ID", DATA_BINARY, 0, 8); dict_mem_table_add_col(table, heap, "POS", DATA_INT, 0, 4); dict_mem_table_add_col(table, heap, "COL_NAME", DATA_BINARY, 0, 0); table->id = DICT_FIELDS_ID; dict_table_add_to_cache(table, FALSE, heap); dict_sys->sys_fields = table; mem_heap_free(heap); index = dict_mem_index_create("SYS_FIELDS", "CLUST_IND", DICT_HDR_SPACE, DICT_UNIQUE | DICT_CLUSTERED, 2); dict_mem_index_add_field(index, "INDEX_ID", 0); dict_mem_index_add_field(index, "POS", 0); index->id = DICT_FIELDS_ID; error = dict_index_add_to_cache(table, index, mtr_read_ulint(dict_hdr + DICT_HDR_FIELDS, MLOG_4BYTES, &mtr), FALSE); ut_a(error == DB_SUCCESS); mtr_commit(&mtr); /*-------------------------*/ /* Initialize the insert buffer table and index for each tablespace */ dberr_t err = DB_SUCCESS; err = ibuf_init_at_db_start(); if (err == DB_SUCCESS) { if (srv_read_only_mode && srv_force_recovery != SRV_FORCE_NO_LOG_REDO && !ibuf_is_empty()) { if (srv_force_recovery < SRV_FORCE_NO_IBUF_MERGE) { ib::error() << "Change buffer must be empty when" " --innodb-read-only is set!" "You can try to recover the database with innodb_force_recovery=5"; err = DB_ERROR; } else { ib::warn() << "Change buffer not empty when --innodb-read-only " "is set! but srv_force_recovery = " << srv_force_recovery << " , ignoring."; } } if (err == DB_SUCCESS) { /* Load definitions of other indexes on system tables */ dict_load_sys_table(dict_sys->sys_tables); dict_load_sys_table(dict_sys->sys_columns); dict_load_sys_table(dict_sys->sys_indexes); dict_load_sys_table(dict_sys->sys_fields); } } mutex_exit(&dict_sys->mutex); return(err); } /*****************************************************************//** Inserts the basic system table data into themselves in the database creation. */ static void dict_insert_initial_data(void) /*==========================*/ { /* Does nothing yet */ } /*****************************************************************//** Creates and initializes the data dictionary at the server bootstrap. @return DB_SUCCESS or error code. */ dberr_t dict_create(void) /*=============*/ { mtr_t mtr; mtr_start(&mtr); dict_hdr_create(&mtr); mtr_commit(&mtr); dberr_t err = dict_boot(); if (err == DB_SUCCESS) { dict_insert_initial_data(); } return(err); }