/***************************************************************************** Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. Copyright (c) 2013, 2022, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /******************************************************************//** @file dict/dict0mem.cc Data dictionary memory object creation Created 1/8/1996 Heikki Tuuri ***********************************************************************/ #include "ha_prototypes.h" #include #include "dict0mem.h" #include "rem0rec.h" #include "data0type.h" #include "mach0data.h" #include "dict0dict.h" #include "fts0priv.h" #include "lock0lock.h" #include "row0row.h" #include "sql_string.h" #include #define DICT_HEAP_SIZE 100 /*!< initial memory heap size when creating a table or index object */ /** System databases */ static const char* innobase_system_databases[] = { "mysql/", "information_schema/", "performance_schema/", NullS }; /** Determine if a table belongs to innobase_system_databases[] @param[in] name database_name/table_name @return whether the database_name is in innobase_system_databases[] */ static bool dict_mem_table_is_system(const char *name) { /* table has the following format: database/table and some system table are of the form SYS_* */ if (!strchr(name, '/')) { return true; } size_t table_len = strlen(name); const char *system_db; int i = 0; while ((system_db = innobase_system_databases[i++]) && (system_db != NullS)) { size_t len = strlen(system_db); if (table_len > len && !strncmp(name, system_db, len)) { return true; } } return false; } /** The start of the table basename suffix for partitioned tables */ const char table_name_t::part_suffix[4] #ifdef _WIN32 = "#p#"; #else = "#P#"; #endif /** Display an identifier. @param[in,out] s output stream @param[in] id_name SQL identifier (other than table name) @return the output stream */ std::ostream& operator<<( std::ostream& s, const id_name_t& id_name) { const char q = '`'; const char* c = id_name; s << q; for (; *c != 0; c++) { if (*c == q) { s << *c; } s << *c; } s << q; return(s); } /** Display a table name. @param[in,out] s output stream @param[in] table_name table name @return the output stream */ std::ostream& operator<<( std::ostream& s, const table_name_t& table_name) { return(s << ut_get_name(NULL, table_name.m_name)); } bool dict_col_t::same_encoding(uint16_t a, uint16_t b) { if (const CHARSET_INFO *acs= get_charset(a, MYF(MY_WME))) if (const CHARSET_INFO *bcs= get_charset(b, MYF(MY_WME))) return Charset(bcs).encoding_allows_reinterpret_as(acs); return false; } /** Create metadata. @param name table name @param space tablespace @param n_cols total number of columns (both virtual and non-virtual) @param n_v_cols number of virtual columns @param flags table flags @param flags2 table flags2 @return newly allocated table object */ dict_table_t *dict_table_t::create(const span &name, fil_space_t *space, ulint n_cols, ulint n_v_cols, ulint flags, ulint flags2) { ut_ad(!space || space->purpose == FIL_TYPE_TABLESPACE || space->purpose == FIL_TYPE_TEMPORARY || space->purpose == FIL_TYPE_IMPORT); ut_a(dict_tf2_is_valid(flags, flags2)); ut_a(!(flags2 & DICT_TF2_UNUSED_BIT_MASK)); mem_heap_t *heap= mem_heap_create(DICT_HEAP_SIZE); dict_table_t *table= static_cast (mem_heap_zalloc(heap, sizeof(*table))); lock_table_lock_list_init(&table->locks); UT_LIST_INIT(table->indexes, &dict_index_t::indexes); #ifdef BTR_CUR_HASH_ADAPT UT_LIST_INIT(table->freed_indexes, &dict_index_t::indexes); #endif /* BTR_CUR_HASH_ADAPT */ table->heap= heap; ut_d(table->magic_n= DICT_TABLE_MAGIC_N); table->flags= static_cast(flags) & ((1U << DICT_TF_BITS) - 1); table->flags2= static_cast(flags2) & ((1U << DICT_TF2_BITS) - 1); table->name.m_name= mem_strdupl(name.data(), name.size()); table->mdl_name.m_name= table->name.m_name; table->is_system_db= dict_mem_table_is_system(table->name.m_name); table->space= space; table->space_id= space ? space->id : UINT32_MAX; table->n_t_cols= static_cast(n_cols + DATA_N_SYS_COLS) & dict_index_t::MAX_N_FIELDS; table->n_v_cols= static_cast(n_v_cols) & dict_index_t::MAX_N_FIELDS; table->n_cols= static_cast(table->n_t_cols - table->n_v_cols) & dict_index_t::MAX_N_FIELDS; table->cols= static_cast (mem_heap_alloc(heap, table->n_cols * sizeof *table->cols)); table->v_cols= static_cast (mem_heap_alloc(heap, n_v_cols * sizeof *table->v_cols)); for (ulint i = n_v_cols; i--; ) new (&table->v_cols[i]) dict_v_col_t(); table->autoinc_lock= static_cast (mem_heap_alloc(heap, sizeof *table->autoinc_lock)); /* If the table has an FTS index or we are in the process of building one, create the table->fts */ if (dict_table_has_fts_index(table) || DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID | DICT_TF2_FTS_ADD_DOC_ID)) { table->fts= fts_create(table); table->fts->cache= fts_cache_create(table); } new (&table->foreign_set) dict_foreign_set(); new (&table->referenced_set) dict_foreign_set(); return table; } /****************************************************************//** Free a table memory object. */ void dict_mem_table_free( /*================*/ dict_table_t* table) /*!< in: table */ { ut_ad(table); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(UT_LIST_GET_LEN(table->indexes) == 0); #ifdef BTR_CUR_HASH_ADAPT ut_ad(UT_LIST_GET_LEN(table->freed_indexes) == 0); #endif /* BTR_CUR_HASH_ADAPT */ ut_d(table->cached = FALSE); if (dict_table_has_fts_index(table) || DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID) || DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)) { if (table->fts) { fts_free(table); } } dict_mem_table_free_foreign_vcol_set(table); table->foreign_set.~dict_foreign_set(); table->referenced_set.~dict_foreign_set(); ut_free(table->name.m_name); /* Clean up virtual index info structures that are registered with virtual columns */ for (ulint i = 0; i < table->n_v_def; i++) { dict_table_get_nth_v_col(table, i)->~dict_v_col_t(); } UT_DELETE(table->s_cols); mem_heap_free(table->heap); } /****************************************************************//** Append 'name' to 'col_names'. @see dict_table_t::col_names @return new column names array */ static const char* dict_add_col_name( /*==============*/ const char* col_names, /*!< in: existing column names, or NULL */ ulint cols, /*!< in: number of existing columns */ const char* name, /*!< in: new column name */ mem_heap_t* heap) /*!< in: heap */ { ulint old_len; ulint new_len; ulint total_len; char* res; ut_ad(!cols == !col_names); /* Find out length of existing array. */ if (col_names) { const char* s = col_names; ulint i; for (i = 0; i < cols; i++) { s += strlen(s) + 1; } old_len = unsigned(s - col_names); } else { old_len = 0; } new_len = strlen(name) + 1; total_len = old_len + new_len; res = static_cast(mem_heap_alloc(heap, total_len)); if (old_len > 0) { memcpy(res, col_names, old_len); } memcpy(res + old_len, name, new_len); return(res); } /**********************************************************************//** Adds a column definition to a table. */ void dict_mem_table_add_col( /*===================*/ dict_table_t* table, /*!< in: table */ mem_heap_t* heap, /*!< in: temporary memory heap, or NULL */ const char* name, /*!< in: column name, or NULL */ ulint mtype, /*!< in: main datatype */ ulint prtype, /*!< in: precise type */ ulint len) /*!< in: precision */ { dict_col_t* col; unsigned i; ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(!heap == !name); ut_ad(!(prtype & DATA_VIRTUAL)); i = table->n_def++; table->n_t_def++; if (name) { if (table->n_def == table->n_cols) { heap = table->heap; } if (i && !table->col_names) { /* All preceding column names are empty. */ char* s = static_cast( mem_heap_zalloc(heap, table->n_def)); table->col_names = s; } table->col_names = dict_add_col_name(table->col_names, i, name, heap); } col = dict_table_get_nth_col(table, i); dict_mem_fill_column_struct(col, i, mtype, prtype, len); switch (prtype & DATA_VERSIONED) { case DATA_VERS_START: ut_ad(!table->vers_start); table->vers_start = i & dict_index_t::MAX_N_FIELDS; break; case DATA_VERS_END: ut_ad(!table->vers_end); table->vers_end = i & dict_index_t::MAX_N_FIELDS; } } /** Adds a virtual column definition to a table. @param[in,out] table table @param[in,out] heap temporary memory heap, or NULL. It is used to store name when we have not finished adding all columns. When all columns are added, the whole name will copy to memory from table->heap @param[in] name column name @param[in] mtype main datatype @param[in] prtype precise type @param[in] len length @param[in] pos position in a table @param[in] num_base number of base columns @return the virtual column definition */ dict_v_col_t* dict_mem_table_add_v_col( dict_table_t* table, mem_heap_t* heap, const char* name, ulint mtype, ulint prtype, ulint len, ulint pos, ulint num_base) { dict_v_col_t* v_col; ut_ad(table); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(!heap == !name); ut_ad(prtype & DATA_VIRTUAL); unsigned i = table->n_v_def++; table->n_t_def++; if (name != NULL) { if (table->n_v_def == table->n_v_cols) { heap = table->heap; } if (i && !table->v_col_names) { /* All preceding column names are empty. */ char* s = static_cast( mem_heap_zalloc(heap, table->n_v_def)); table->v_col_names = s; } table->v_col_names = dict_add_col_name(table->v_col_names, i, name, heap); } v_col = &table->v_cols[i]; dict_mem_fill_column_struct(&v_col->m_col, pos, mtype, prtype, len); v_col->v_pos = i & dict_index_t::MAX_N_FIELDS; if (num_base != 0) { v_col->base_col = static_cast(mem_heap_zalloc( table->heap, num_base * sizeof( *v_col->base_col))); } else { v_col->base_col = NULL; } v_col->num_base = static_cast(num_base) & dict_index_t::MAX_N_FIELDS; /* Initialize the index list for virtual columns */ ut_ad(v_col->v_indexes.empty()); return(v_col); } /** Adds a stored column definition to a table. @param[in] table table @param[in] num_base number of base columns. */ void dict_mem_table_add_s_col( dict_table_t* table, ulint num_base) { unsigned i = unsigned(table->n_def) - 1; dict_col_t* col = dict_table_get_nth_col(table, i); dict_s_col_t s_col; ut_ad(col != NULL); if (table->s_cols == NULL) { table->s_cols = UT_NEW_NOKEY(dict_s_col_list()); } s_col.m_col = col; s_col.s_pos = i + table->n_v_def; if (num_base != 0) { s_col.base_col = static_cast(mem_heap_zalloc( table->heap, num_base * sizeof(dict_col_t*))); } else { s_col.base_col = NULL; } s_col.num_base = num_base; table->s_cols->push_front(s_col); } /**********************************************************************//** Renames a column of a table in the data dictionary cache. */ static MY_ATTRIBUTE((nonnull)) void dict_mem_table_col_rename_low( /*==========================*/ dict_table_t* table, /*!< in/out: table */ unsigned i, /*!< in: column offset corresponding to s */ const char* to, /*!< in: new column name */ const char* s, /*!< in: pointer to table->col_names */ bool is_virtual) /*!< in: if this is a virtual column */ { char* t_col_names = const_cast( is_virtual ? table->v_col_names : table->col_names); ulint n_col = is_virtual ? table->n_v_def : table->n_def; size_t from_len = strlen(s), to_len = strlen(to); ut_ad(i < table->n_def || is_virtual); ut_ad(i < table->n_v_def || !is_virtual); ut_ad(from_len <= NAME_LEN); ut_ad(to_len <= NAME_LEN); char from[NAME_LEN + 1]; strncpy(from, s, sizeof from - 1); from[sizeof from - 1] = '\0'; if (from_len == to_len) { /* The easy case: simply replace the column name in table->col_names. */ strcpy(const_cast(s), to); } else { /* We need to adjust all affected index->field pointers, as in dict_index_add_col(). First, copy table->col_names. */ ulint prefix_len = ulint(s - t_col_names); for (; i < n_col; i++) { s += strlen(s) + 1; } ulint full_len = ulint(s - t_col_names); char* col_names; if (to_len > from_len) { col_names = static_cast( mem_heap_alloc( table->heap, full_len + to_len - from_len)); memcpy(col_names, t_col_names, prefix_len); } else { col_names = const_cast(t_col_names); } memcpy(col_names + prefix_len, to, to_len); memmove(col_names + prefix_len + to_len, t_col_names + (prefix_len + from_len), full_len - (prefix_len + from_len)); /* Replace the field names in every index. */ for (dict_index_t* index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { ulint n_fields = dict_index_get_n_fields(index); for (ulint i = 0; i < n_fields; i++) { dict_field_t* field = dict_index_get_nth_field( index, i); ut_ad(!field->name == field->col->is_dropped()); if (!field->name) { /* dropped columns lack a name */ ut_ad(index->is_instant()); continue; } /* if is_virtual and that in field->col does not match, continue */ if ((!is_virtual) != (!field->col->is_virtual())) { continue; } ulint name_ofs = ulint(field->name - t_col_names); if (name_ofs <= prefix_len) { field->name = col_names + name_ofs; } else { ut_a(name_ofs < full_len); field->name = col_names + name_ofs + to_len - from_len; } } } if (is_virtual) { table->v_col_names = col_names; } else { table->col_names = col_names; } } /* Virtual columns are not allowed for foreign key */ if (is_virtual) { return; } dict_foreign_t* foreign; /* Replace the field names in every foreign key constraint. */ for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (foreign->foreign_index == NULL) { /* We may go here when we set foreign_key_checks to 0, and then try to rename a column and modify the corresponding foreign key constraint. The index would have been dropped, we have to find an equivalent one */ for (unsigned f = 0; f < foreign->n_fields; f++) { if (strcmp(foreign->foreign_col_names[f], from) == 0) { char** rc = const_cast( foreign->foreign_col_names + f); if (to_len <= strlen(*rc)) { memcpy(*rc, to, to_len + 1); } else { *rc = static_cast( mem_heap_dup( foreign->heap, to, to_len + 1)); } } } /* New index can be null if InnoDB already dropped the foreign index when FOREIGN_KEY_CHECKS is disabled */ foreign->foreign_index = dict_foreign_find_index( foreign->foreign_table, NULL, foreign->foreign_col_names, foreign->n_fields, NULL, true, false, NULL, NULL, NULL); } else { for (unsigned f = 0; f < foreign->n_fields; f++) { /* These can point straight to table->col_names, because the foreign key constraints will be freed at the same time when the table object is freed. */ foreign->foreign_col_names[f] = dict_index_get_nth_field( foreign->foreign_index, f)->name; } } } for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; if (!foreign->referenced_index) { /* Referenced index could have been dropped when foreign_key_checks is disabled. In that case, rename the corresponding referenced_col_names and find the equivalent referenced index also */ for (unsigned f = 0; f < foreign->n_fields; f++) { const char*& rc = foreign->referenced_col_names[f]; if (strcmp(rc, from)) { continue; } if (to_len <= strlen(rc)) { memcpy(const_cast(rc), to, to_len + 1); } else { rc = static_cast( mem_heap_dup( foreign->heap, to, to_len + 1)); } } /* New index can be null if InnoDB already dropped the referenced index when FOREIGN_KEY_CHECKS is disabled */ foreign->referenced_index = dict_foreign_find_index( foreign->referenced_table, NULL, foreign->referenced_col_names, foreign->n_fields, NULL, true, false, NULL, NULL, NULL); return; } for (unsigned f = 0; f < foreign->n_fields; f++) { /* foreign->referenced_col_names[] need to be copies, because the constraint may become orphan when foreign_key_checks=0 and the parent table is dropped. */ const char* col_name = dict_index_get_nth_field( foreign->referenced_index, f)->name; if (strcmp(foreign->referenced_col_names[f], col_name)) { char** rc = const_cast( foreign->referenced_col_names + f); size_t col_name_len_1 = strlen(col_name) + 1; if (col_name_len_1 <= strlen(*rc) + 1) { memcpy(*rc, col_name, col_name_len_1); } else { *rc = static_cast( mem_heap_dup( foreign->heap, col_name, col_name_len_1)); } } } } } /**********************************************************************//** Renames a column of a table in the data dictionary cache. */ void dict_mem_table_col_rename( /*======================*/ dict_table_t* table, /*!< in/out: table */ ulint nth_col,/*!< in: column index */ const char* from, /*!< in: old column name */ const char* to, /*!< in: new column name */ bool is_virtual) /*!< in: if this is a virtual column */ { const char* s = is_virtual ? table->v_col_names : table->col_names; ut_ad((!is_virtual && nth_col < table->n_def) || (is_virtual && nth_col < table->n_v_def)); for (ulint i = 0; i < nth_col; i++) { size_t len = strlen(s); ut_ad(len > 0); s += len + 1; } ut_ad(!my_strcasecmp(system_charset_info, from, s)); dict_mem_table_col_rename_low(table, static_cast(nth_col), to, s, is_virtual); } /**********************************************************************//** This function populates a dict_col_t memory structure with supplied information. */ void dict_mem_fill_column_struct( /*========================*/ dict_col_t* column, /*!< out: column struct to be filled */ ulint col_pos, /*!< in: column position */ ulint mtype, /*!< in: main data type */ ulint prtype, /*!< in: precise type */ ulint col_len) /*!< in: column length */ { unsigned mbminlen, mbmaxlen; column->ind = static_cast(col_pos) & dict_index_t::MAX_N_FIELDS; column->ord_part = 0; column->max_prefix = 0; column->mtype = static_cast(mtype); column->prtype = static_cast(prtype); column->len = static_cast(col_len); dtype_get_mblen(mtype, prtype, &mbminlen, &mbmaxlen); column->mbminlen = mbminlen & 7; column->mbmaxlen = mbmaxlen & 7; column->def_val.data = NULL; column->def_val.len = UNIV_SQL_DEFAULT; ut_ad(!column->is_dropped()); } /**********************************************************************//** Creates an index memory object. @return own: index object */ dict_index_t* dict_mem_index_create( /*==================*/ dict_table_t* table, /*!< in: table */ const char* index_name, /*!< in: index name */ ulint type, /*!< in: DICT_UNIQUE, DICT_CLUSTERED, ... ORed */ ulint n_fields) /*!< in: number of fields */ { dict_index_t* index; mem_heap_t* heap; ut_ad(!table || table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(index_name); heap = mem_heap_create(DICT_HEAP_SIZE); index = static_cast( mem_heap_zalloc(heap, sizeof(*index))); index->table = table; dict_mem_fill_index_struct(index, heap, index_name, type, n_fields); new (&index->zip_pad.mutex) std::mutex(); if (type & DICT_SPATIAL) { index->rtr_track = new (mem_heap_alloc(heap, sizeof *index->rtr_track)) rtr_info_track_t(); mysql_mutex_init(rtr_active_mutex_key, &index->rtr_track->rtr_active_mutex, nullptr); } return(index); } /**********************************************************************//** Creates and initializes a foreign constraint memory object. @return own: foreign constraint struct */ dict_foreign_t* dict_mem_foreign_create(void) /*=========================*/ { dict_foreign_t* foreign; mem_heap_t* heap; DBUG_ENTER("dict_mem_foreign_create"); heap = mem_heap_create(100); foreign = static_cast( mem_heap_zalloc(heap, sizeof(dict_foreign_t))); foreign->heap = heap; foreign->v_cols = NULL; DBUG_PRINT("dict_mem_foreign_create", ("heap: %p", heap)); DBUG_RETURN(foreign); } /**********************************************************************//** Sets the foreign_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, foreign_table_name_lookup will point to foreign_table_name. If 2, then another string is allocated from foreign->heap and set to lower case. */ void dict_mem_foreign_table_name_lookup_set( /*===================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc) /*!< in: is an alloc needed */ { if (lower_case_table_names == 2) { if (do_alloc) { ulint len; len = strlen(foreign->foreign_table_name) + 1; foreign->foreign_table_name_lookup = static_cast( mem_heap_alloc(foreign->heap, len)); } strcpy(foreign->foreign_table_name_lookup, foreign->foreign_table_name); innobase_casedn_str(foreign->foreign_table_name_lookup); } else { foreign->foreign_table_name_lookup = foreign->foreign_table_name; } } /**********************************************************************//** Sets the referenced_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, referenced_table_name_lookup will point to referenced_table_name. If 2, then another string is allocated from foreign->heap and set to lower case. */ void dict_mem_referenced_table_name_lookup_set( /*======================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc) /*!< in: is an alloc needed */ { if (lower_case_table_names == 2) { if (do_alloc) { ulint len; len = strlen(foreign->referenced_table_name) + 1; foreign->referenced_table_name_lookup = static_cast( mem_heap_alloc(foreign->heap, len)); } strcpy(foreign->referenced_table_name_lookup, foreign->referenced_table_name); innobase_casedn_str(foreign->referenced_table_name_lookup); } else { foreign->referenced_table_name_lookup = foreign->referenced_table_name; } } /** Fill the virtual column set with virtual column information present in the given virtual index. @param[in] index virtual index @param[out] v_cols virtual column set. */ static void dict_mem_fill_vcol_has_index( const dict_index_t* index, dict_vcol_set** v_cols) { for (ulint i = 0; i < index->table->n_v_cols; i++) { dict_v_col_t* v_col = dict_table_get_nth_v_col( index->table, i); if (!v_col->m_col.ord_part) { continue; } for (const auto& v_idx : v_col->v_indexes) { if (v_idx.index != index) { continue; } if (*v_cols == NULL) { *v_cols = UT_NEW_NOKEY(dict_vcol_set()); } (*v_cols)->insert(v_col); } } } /** Fill the virtual column set with the virtual column of the index if the index contains given column name. @param[in] col_name column name @param[in] table innodb table object @param[out] v_cols set of virtual column information. */ static void dict_mem_fill_vcol_from_v_indexes( const char* col_name, const dict_table_t* table, dict_vcol_set** v_cols) { /* virtual column can't be Primary Key, so start with secondary index */ for (dict_index_t* index = dict_table_get_next_index( dict_table_get_first_index(table)); index; index = dict_table_get_next_index(index)) { /* Skip if the index have newly added virtual column because field name is NULL. Later virtual column set will be refreshed during loading of table. */ if (!dict_index_has_virtual(index) || index->has_new_v_col()) { continue; } for (ulint i = 0; i < index->n_fields; i++) { dict_field_t* field = dict_index_get_nth_field(index, i); if (strcmp(field->name, col_name) == 0) { dict_mem_fill_vcol_has_index( index, v_cols); } } } } /** Fill the virtual column set with virtual columns which have base columns as the given col_name @param[in] col_name column name @param[in] table table object @param[out] v_cols set of virtual columns. */ static void dict_mem_fill_vcol_set_for_base_col( const char* col_name, const dict_table_t* table, dict_vcol_set** v_cols) { for (ulint i = 0; i < table->n_v_cols; i++) { dict_v_col_t* v_col = dict_table_get_nth_v_col(table, i); if (!v_col->m_col.ord_part) { continue; } for (ulint j = 0; j < unsigned{v_col->num_base}; j++) { if (strcmp(col_name, dict_table_get_col_name( table, v_col->base_col[j]->ind)) == 0) { if (*v_cols == NULL) { *v_cols = UT_NEW_NOKEY(dict_vcol_set()); } (*v_cols)->insert(v_col); } } } } /** Fills the dependent virtual columns in a set. Reason for being dependent are 1) FK can be present on base column of virtual columns 2) FK can be present on column which is a part of virtual index @param[in,out] foreign foreign key information. */ void dict_mem_foreign_fill_vcol_set( dict_foreign_t* foreign) { ulint type = foreign->type; if (type == 0) { return; } for (ulint i = 0; i < foreign->n_fields; i++) { /** FK can be present on base columns of virtual columns. */ dict_mem_fill_vcol_set_for_base_col( foreign->foreign_col_names[i], foreign->foreign_table, &foreign->v_cols); /** FK can be present on the columns which can be a part of virtual index. */ dict_mem_fill_vcol_from_v_indexes( foreign->foreign_col_names[i], foreign->foreign_table, &foreign->v_cols); } } /** Fill virtual columns set in each fk constraint present in the table. @param[in,out] table innodb table object. */ void dict_mem_table_fill_foreign_vcol_set( dict_table_t* table) { dict_foreign_set fk_set = table->foreign_set; dict_foreign_t* foreign; dict_foreign_set::iterator it; for (it = fk_set.begin(); it != fk_set.end(); ++it) { foreign = *it; dict_mem_foreign_fill_vcol_set(foreign); } } /** Free the vcol_set from all foreign key constraint on the table. @param[in,out] table innodb table object. */ void dict_mem_table_free_foreign_vcol_set( dict_table_t* table) { dict_foreign_set fk_set = table->foreign_set; dict_foreign_t* foreign; dict_foreign_set::iterator it; for (it = fk_set.begin(); it != fk_set.end(); ++it) { foreign = *it; if (foreign->v_cols != NULL) { UT_DELETE(foreign->v_cols); foreign->v_cols = NULL; } } } /**********************************************************************//** Frees an index memory object. */ void dict_mem_index_free( /*================*/ dict_index_t* index) /*!< in: index */ { ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); index->zip_pad.mutex.~mutex(); if (dict_index_is_spatial(index)) { for (auto& rtr_info : index->rtr_track->rtr_active) { rtr_info->index = NULL; } mysql_mutex_destroy(&index->rtr_track->rtr_active_mutex); index->rtr_track->~rtr_info_track_t(); } index->detach_columns(); mem_heap_free(index->heap); } /** Create a temporary tablename like "#sql-ibNNN". @param[in] heap A memory heap @param[in] dbtab Table name in the form database/table name @param[in] id Table id @return A unique temporary tablename suitable for InnoDB use */ char* dict_mem_create_temporary_tablename( mem_heap_t* heap, const char* dbtab, table_id_t id) { size_t size; char* name; const char* dbend = strchr(dbtab, '/'); ut_ad(dbend); size_t dblen = size_t(dbend - dbtab) + 1; size = dblen + (sizeof(TEMP_FILE_PREFIX_INNODB) + 20); name = static_cast(mem_heap_alloc(heap, size)); memcpy(name, dbtab, dblen); snprintf(name + dblen, size - dblen, TEMP_FILE_PREFIX_INNODB UINT64PF, id); return(name); } /** Validate the search order in the foreign key set. @param[in] fk_set the foreign key set to be validated @return true if search order is fine in the set, false otherwise. */ bool dict_foreign_set_validate( const dict_foreign_set& fk_set) { dict_foreign_not_exists not_exists(fk_set); dict_foreign_set::const_iterator it = std::find_if( fk_set.begin(), fk_set.end(), not_exists); if (it == fk_set.end()) { return(true); } dict_foreign_t* foreign = *it; std::cerr << "Foreign key lookup failed: " << *foreign; std::cerr << fk_set; ut_ad(0); return(false); } /** Validate the search order in the foreign key sets of the table (foreign_set and referenced_set). @param[in] table table whose foreign key sets are to be validated @return true if foreign key sets are fine, false otherwise. */ bool dict_foreign_set_validate( const dict_table_t& table) { return(dict_foreign_set_validate(table.foreign_set) && dict_foreign_set_validate(table.referenced_set)); } std::ostream& operator<< (std::ostream& out, const dict_foreign_t& foreign) { out << "[dict_foreign_t: id='" << foreign.id << "'"; if (foreign.foreign_table_name != NULL) { out << ",for: '" << foreign.foreign_table_name << "'"; } out << "]"; return(out); } std::ostream& operator<< (std::ostream& out, const dict_foreign_set& fk_set) { out << "[dict_foreign_set:"; std::for_each(fk_set.begin(), fk_set.end(), dict_foreign_print(out)); out << "]" << std::endl; return(out); } /** Check whether fulltext index gets affected by foreign key constraint. */ bool dict_foreign_t::affects_fulltext() const { if (foreign_table == referenced_table || !foreign_table->fts) return false; for (ulint i= 0; i < n_fields; i++) { const dict_col_t *col= dict_index_get_nth_col(foreign_index, i); if (dict_table_is_fts_column(foreign_table->fts->indexes, col->ind, col->is_virtual()) != ULINT_UNDEFINED) return true; } return false; } /** Reconstruct the clustered index fields. @return whether metadata is incorrect */ inline bool dict_index_t::reconstruct_fields() { DBUG_ASSERT(is_primary()); const auto old_n_fields = n_fields; n_fields = (n_fields + table->instant->n_dropped) & dict_index_t::MAX_N_FIELDS; n_def = (n_def + table->instant->n_dropped) & dict_index_t::MAX_N_FIELDS; const unsigned n_first = first_user_field(); dict_field_t* tfields = static_cast( mem_heap_zalloc(heap, n_fields * sizeof *fields)); memcpy(tfields, fields, n_first * sizeof *fields); n_nullable = 0; ulint n_core_null = 0; const bool comp = dict_table_is_comp(table); const auto* field_map_it = table->instant->field_map; for (unsigned i = n_first, j = 0; i < n_fields; ) { dict_field_t& f = tfields[i++]; auto c = *field_map_it++; if (c.is_dropped()) { f.col = &table->instant->dropped[j++]; DBUG_ASSERT(f.col->is_dropped()); f.fixed_len = dict_col_get_fixed_size(f.col, comp) & ((1U << 10) - 1); } else { DBUG_ASSERT(!c.is_not_null()); const auto old = std::find_if( fields + n_first, fields + old_n_fields, [c](const dict_field_t& o) { return o.col->ind == c.ind(); }); if (old >= fields + old_n_fields || old->prefix_len || old->col != &table->cols[c.ind()]) { return true; } ut_ad(old >= &fields[n_first]); f = *old; } f.col->clear_instant(); if (f.col->is_nullable()) { n_nullable++; n_core_null += i <= n_core_fields; } } fields = tfields; n_core_null_bytes = static_cast(UT_BITS_IN_BYTES(n_core_null)); return false; } /** Reconstruct dropped or reordered columns. @param[in] metadata data from serialise_columns() @param[in] len length of the metadata, in bytes @return whether parsing the metadata failed */ bool dict_table_t::deserialise_columns(const byte* metadata, ulint len) { DBUG_ASSERT(!instant); unsigned num_non_pk_fields = mach_read_from_4(metadata); metadata += 4; if (num_non_pk_fields >= REC_MAX_N_FIELDS - 3) { return true; } dict_index_t* index = UT_LIST_GET_FIRST(indexes); if (num_non_pk_fields < unsigned(index->n_fields) - index->first_user_field()) { return true; } field_map_element_t* field_map = static_cast( mem_heap_alloc(heap, num_non_pk_fields * sizeof *field_map)); unsigned n_dropped_cols = 0; for (unsigned i = 0; i < num_non_pk_fields; i++) { auto c = field_map[i] = mach_read_from_2(metadata); metadata += 2; if (field_map[i].is_dropped()) { if (c.ind() > DICT_MAX_FIXED_COL_LEN + 1) { return true; } n_dropped_cols++; } else if (c >= n_cols) { return true; } } dict_col_t* dropped_cols = static_cast(mem_heap_zalloc( heap, n_dropped_cols * sizeof(dict_col_t))); instant = new (mem_heap_alloc(heap, sizeof *instant)) dict_instant_t(); instant->n_dropped = n_dropped_cols; instant->dropped = dropped_cols; instant->field_map = field_map; dict_col_t* col = dropped_cols; for (unsigned i = 0; i < num_non_pk_fields; i++) { if (field_map[i].is_dropped()) { auto fixed_len = field_map[i].ind(); DBUG_ASSERT(fixed_len <= DICT_MAX_FIXED_COL_LEN + 1); (col++)->set_dropped(field_map[i].is_not_null(), fixed_len == 1, fixed_len > 1 ? fixed_len - 1 : 0); } } DBUG_ASSERT(col == &dropped_cols[n_dropped_cols]); return UT_LIST_GET_FIRST(indexes)->reconstruct_fields(); } /** Check if record in clustered index is historical row. @param[in] rec clustered row @param[in] offsets offsets @return true if row is historical */ bool dict_index_t::vers_history_row( const rec_t* rec, const rec_offs* offsets) { ut_ad(is_primary()); ulint len; dict_col_t& col= table->cols[table->vers_end]; ut_ad(col.vers_sys_end()); ulint nfield = dict_col_get_clust_pos(&col, this); const byte *data = rec_get_nth_field(rec, offsets, nfield, &len); if (col.vers_native()) { ut_ad(len == sizeof trx_id_max_bytes); return 0 != memcmp(data, trx_id_max_bytes, len); } ut_ad(len == sizeof timestamp_max_bytes); return 0 != memcmp(data, timestamp_max_bytes, len); } /** Check if record in secondary index is historical row. @param[in] rec record in a secondary index @param[out] history_row true if row is historical @return true on error */ bool dict_index_t::vers_history_row( const rec_t* rec, bool &history_row) { ut_ad(!is_primary()); /* Get row_end from clustered index TODO (optimization): row_end can be taken from unique secondary index as well. For that dict_index_t::vers_end member should be added and updated at index init (dict_index_build_internal_non_clust()). Test case: create or replace table t1 (x int unique, y int unique, foreign key r (y) references t1 (x)) with system versioning engine innodb; insert into t1 values (1, 1); */ bool error = false; mem_heap_t* heap = NULL; dict_index_t* clust_index = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); mtr_t mtr; mtr.start(); rec_t* clust_rec = row_get_clust_rec(BTR_SEARCH_LEAF, rec, this, &clust_index, &mtr); if (clust_rec) { offsets = rec_get_offsets(clust_rec, clust_index, offsets, clust_index->n_core_fields, ULINT_UNDEFINED, &heap); history_row = clust_index->vers_history_row(clust_rec, offsets); } else { ib::error() << "foreign constraints: secondary index is out of " "sync"; ut_ad("secondary index is out of sync" == 0); error = true; } mtr.commit(); if (heap) { mem_heap_free(heap); } return(error); }