/***************************************************************************** Copyright (c) 1997, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2016, 2017, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file ibuf/ibuf0ibuf.cc Insert buffer Created 7/19/1997 Heikki Tuuri *******************************************************/ #include "ha_prototypes.h" #include "ibuf0ibuf.h" #include "sync0sync.h" #include "btr0sea.h" #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG my_bool srv_ibuf_disable_background_merge; #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /** Number of bits describing a single page */ #define IBUF_BITS_PER_PAGE 4 #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE must be an even number!" #endif /** The start address for an insert buffer bitmap page bitmap */ #define IBUF_BITMAP PAGE_DATA #include "buf0buf.h" #include "buf0rea.h" #include "fsp0fsp.h" #include "trx0sys.h" #include "fil0fil.h" #include "rem0rec.h" #include "btr0cur.h" #include "btr0pcur.h" #include "btr0btr.h" #include "row0upd.h" #include "dict0boot.h" #include "fut0lst.h" #include "lock0lock.h" #include "log0recv.h" #include "que0que.h" #include "srv0start.h" /* srv_shutdown_state */ #include "fsp0sysspace.h" #include "rem0cmp.h" /* STRUCTURE OF AN INSERT BUFFER RECORD In versions < 4.1.x: 1. The first field is the page number. 2. The second field is an array which stores type info for each subsequent field. We store the information which affects the ordering of records, and also the physical storage size of an SQL NULL value. E.g., for CHAR(10) it is 10 bytes. 3. Next we have the fields of the actual index record. In versions >= 4.1.x: Note that contary to what we planned in the 1990's, there will only be one insert buffer tree, and that is in the system tablespace of InnoDB. 1. The first field is the space id. 2. The second field is a one-byte marker (0) which differentiates records from the < 4.1.x storage format. 3. The third field is the page number. 4. The fourth field contains the type info, where we have also added 2 bytes to store the charset. In the compressed table format of 5.0.x we must add more information here so that we can build a dummy 'index' struct which 5.0.x can use in the binary search on the index page in the ibuf merge phase. 5. The rest of the fields contain the fields of the actual index record. In versions >= 5.0.3: The first byte of the fourth field is an additional marker (0) if the record is in the compact format. The presence of this marker can be detected by looking at the length of the field modulo DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE. The high-order bit of the character set field in the type info is the "nullable" flag for the field. In versions >= 5.5: The optional marker byte at the start of the fourth field is replaced by mandatory 3 fields, totaling 4 bytes: 1. 2 bytes: Counter field, used to sort records within a (space id, page no) in the order they were added. This is needed so that for example the sequence of operations "INSERT x, DEL MARK x, INSERT x" is handled correctly. 2. 1 byte: Operation type (see ibuf_op_t). 3. 1 byte: Flags. Currently only one flag exists, IBUF_REC_COMPACT. To ensure older records, which do not have counters to enforce correct sorting, are merged before any new records, ibuf_insert checks if we're trying to insert to a position that contains old-style records, and if so, refuses the insert. Thus, ibuf pages are gradually converted to the new format as their corresponding buffer pool pages are read into memory. */ /* PREVENTING DEADLOCKS IN THE INSERT BUFFER SYSTEM If an OS thread performs any operation that brings in disk pages from non-system tablespaces into the buffer pool, or creates such a page there, then the operation may have as a side effect an insert buffer index tree compression. Thus, the tree latch of the insert buffer tree may be acquired in the x-mode, and also the file space latch of the system tablespace may be acquired in the x-mode. Also, an insert to an index in a non-system tablespace can have the same effect. How do we know this cannot lead to a deadlock of OS threads? There is a problem with the i\o-handler threads: they break the latching order because they own x-latches to pages which are on a lower level than the insert buffer tree latch, its page latches, and the tablespace latch an insert buffer operation can reserve. The solution is the following: Let all the tree and page latches connected with the insert buffer be later in the latching order than the fsp latch and fsp page latches. Insert buffer pages must be such that the insert buffer is never invoked when these pages are accessed as this would result in a recursion violating the latching order. We let a special i/o-handler thread take care of i/o to the insert buffer pages and the ibuf bitmap pages, as well as the fsp bitmap pages and the first inode page, which contains the inode of the ibuf tree: let us call all these ibuf pages. To prevent deadlocks, we do not let a read-ahead access both non-ibuf and ibuf pages. Then an i/o-handler for the insert buffer never needs to access recursively the insert buffer tree and thus obeys the latching order. On the other hand, other i/o-handlers for other tablespaces may require access to the insert buffer, but because all kinds of latches they need to access there are later in the latching order, no violation of the latching order occurs in this case, either. A problem is how to grow and contract an insert buffer tree. As it is later in the latching order than the fsp management, we have to reserve the fsp latch first, before adding or removing pages from the insert buffer tree. We let the insert buffer tree have its own file space management: a free list of pages linked to the tree root. To prevent recursive using of the insert buffer when adding pages to the tree, we must first load these pages to memory, obtaining a latch on them, and only after that add them to the free list of the insert buffer tree. More difficult is removing of pages from the free list. If there is an excess of pages in the free list of the ibuf tree, they might be needed if some thread reserves the fsp latch, intending to allocate more file space. So we do the following: if a thread reserves the fsp latch, we check the writer count field of the latch. If this field has value 1, it means that the thread did not own the latch before entering the fsp system, and the mtr of the thread contains no modifications to the fsp pages. Now we are free to reserve the ibuf latch, and check if there is an excess of pages in the free list. We can then, in a separate mini-transaction, take them out of the free list and free them to the fsp system. To avoid deadlocks in the ibuf system, we divide file pages into three levels: (1) non-ibuf pages, (2) ibuf tree pages and the pages in the ibuf tree free list, and (3) ibuf bitmap pages. No OS thread is allowed to access higher level pages if it has latches to lower level pages; even if the thread owns a B-tree latch it must not access the B-tree non-leaf pages if it has latches on lower level pages. Read-ahead is only allowed for level 1 and 2 pages. Dedicated i/o-handler threads handle exclusively level 1 i/o. A dedicated i/o handler thread handles exclusively level 2 i/o. However, if an OS thread does the i/o handling for itself, i.e., it uses synchronous aio, it can access any pages, as long as it obeys the access order rules. */ /** Operations that can currently be buffered. */ ibuf_use_t ibuf_use = IBUF_USE_ALL; #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /** Flag to control insert buffer debugging. */ uint ibuf_debug; #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /** The insert buffer control structure */ ibuf_t* ibuf = NULL; #ifdef UNIV_IBUF_COUNT_DEBUG /** Number of tablespaces in the ibuf_counts array */ #define IBUF_COUNT_N_SPACES 4 /** Number of pages within each tablespace in the ibuf_counts array */ #define IBUF_COUNT_N_PAGES 130000 /** Buffered entry counts for file pages, used in debugging */ static ulint ibuf_counts[IBUF_COUNT_N_SPACES][IBUF_COUNT_N_PAGES]; /** Checks that the indexes to ibuf_counts[][] are within limits. @param[in] page_id page id */ UNIV_INLINE void ibuf_count_check( const page_id_t& page_id) { if (page_id.space() < IBUF_COUNT_N_SPACES && page_id.page_no() < IBUF_COUNT_N_PAGES) { return; } ib::fatal() << "UNIV_IBUF_COUNT_DEBUG limits space_id and page_no" " and breaks crash recovery. space_id=" << page_id.space() << ", should be 0<=space_id<" << IBUF_COUNT_N_SPACES << ". page_no=" << page_id.page_no() << ", should be 0<=page_no<" << IBUF_COUNT_N_PAGES; } #endif /** @name Offsets to the per-page bits in the insert buffer bitmap */ /* @{ */ #define IBUF_BITMAP_FREE 0 /*!< Bits indicating the amount of free space */ #define IBUF_BITMAP_BUFFERED 2 /*!< TRUE if there are buffered changes for the page */ #define IBUF_BITMAP_IBUF 3 /*!< TRUE if page is a part of the ibuf tree, excluding the root page, or is in the free list of the ibuf */ /* @} */ #define IBUF_REC_FIELD_SPACE 0 /*!< in the pre-4.1 format, the page number. later, the space_id */ #define IBUF_REC_FIELD_MARKER 1 /*!< starting with 4.1, a marker consisting of 1 byte that is 0 */ #define IBUF_REC_FIELD_PAGE 2 /*!< starting with 4.1, the page number */ #define IBUF_REC_FIELD_METADATA 3 /* the metadata field */ #define IBUF_REC_FIELD_USER 4 /* first user field */ /* Various constants for checking the type of an ibuf record and extracting data from it. For details, see the description of the record format at the top of this file. */ /** @name Format of the IBUF_REC_FIELD_METADATA of an insert buffer record The fourth column in the MySQL 5.5 format contains an operation type, counter, and some flags. */ /* @{ */ #define IBUF_REC_INFO_SIZE 4 /*!< Combined size of info fields at the beginning of the fourth field */ #if IBUF_REC_INFO_SIZE >= DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE # error "IBUF_REC_INFO_SIZE >= DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE" #endif /* Offsets for the fields at the beginning of the fourth field */ #define IBUF_REC_OFFSET_COUNTER 0 /*!< Operation counter */ #define IBUF_REC_OFFSET_TYPE 2 /*!< Type of operation */ #define IBUF_REC_OFFSET_FLAGS 3 /*!< Additional flags */ /* Record flag masks */ #define IBUF_REC_COMPACT 0x1 /*!< Set in IBUF_REC_OFFSET_FLAGS if the user index is in COMPACT format or later */ /** The mutex used to block pessimistic inserts to ibuf trees */ static ib_mutex_t ibuf_pessimistic_insert_mutex; /** The mutex protecting the insert buffer structs */ static ib_mutex_t ibuf_mutex; /** The mutex protecting the insert buffer bitmaps */ static ib_mutex_t ibuf_bitmap_mutex; /** The area in pages from which contract looks for page numbers for merge */ const ulint IBUF_MERGE_AREA = 8; /** Inside the merge area, pages which have at most 1 per this number less buffered entries compared to maximum volume that can buffered for a single page are merged along with the page whose buffer became full */ const ulint IBUF_MERGE_THRESHOLD = 4; /** In ibuf_contract at most this number of pages is read to memory in one batch, in order to merge the entries for them in the insert buffer */ const ulint IBUF_MAX_N_PAGES_MERGED = IBUF_MERGE_AREA; /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it in connection to inserts there, using non-synchronous contract */ const ulint IBUF_CONTRACT_ON_INSERT_NON_SYNC = 0; /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it in connection to inserts there, using synchronous contract */ const ulint IBUF_CONTRACT_ON_INSERT_SYNC = 5; /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it synchronous contract, but do not insert */ const ulint IBUF_CONTRACT_DO_NOT_INSERT = 10; /* TODO: how to cope with drop table if there are records in the insert buffer for the indexes of the table? Is there actually any problem, because ibuf merge is done to a page when it is read in, and it is still physically like the index page even if the index would have been dropped! So, there seems to be no problem. */ /******************************************************************//** Sets the flag in the current mini-transaction record indicating we're inside an insert buffer routine. */ UNIV_INLINE void ibuf_enter( /*=======*/ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(!mtr->is_inside_ibuf()); mtr->enter_ibuf(); } /******************************************************************//** Sets the flag in the current mini-transaction record indicating we're exiting an insert buffer routine. */ UNIV_INLINE void ibuf_exit( /*======*/ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(mtr->is_inside_ibuf()); mtr->exit_ibuf(); } /**************************************************************//** Commits an insert buffer mini-transaction and sets the persistent cursor latch mode to BTR_NO_LATCHES, that is, detaches the cursor. */ UNIV_INLINE void ibuf_btr_pcur_commit_specify_mtr( /*=============================*/ btr_pcur_t* pcur, /*!< in/out: persistent cursor */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_d(ibuf_exit(mtr)); btr_pcur_commit_specify_mtr(pcur, mtr); } /******************************************************************//** Gets the ibuf header page and x-latches it. @return insert buffer header page */ static page_t* ibuf_header_page_get( /*=================*/ mtr_t* mtr) /*!< in/out: mini-transaction */ { buf_block_t* block; ut_ad(!ibuf_inside(mtr)); page_t* page = NULL; block = buf_page_get( page_id_t(IBUF_SPACE_ID, FSP_IBUF_HEADER_PAGE_NO), univ_page_size, RW_X_LATCH, mtr); if (!block->page.encrypted) { buf_block_dbg_add_level(block, SYNC_IBUF_HEADER); page = buf_block_get_frame(block); } return page; } /******************************************************************//** Gets the root page and sx-latches it. @return insert buffer tree root page */ static page_t* ibuf_tree_root_get( /*===============*/ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; page_t* root; ut_ad(ibuf_inside(mtr)); ut_ad(mutex_own(&ibuf_mutex)); mtr_sx_lock(dict_index_get_lock(ibuf->index), mtr); /* only segment list access is exclusive each other */ block = buf_page_get( page_id_t(IBUF_SPACE_ID, FSP_IBUF_TREE_ROOT_PAGE_NO), univ_page_size, RW_SX_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE_NEW); root = buf_block_get_frame(block); ut_ad(page_get_space_id(root) == IBUF_SPACE_ID); ut_ad(page_get_page_no(root) == FSP_IBUF_TREE_ROOT_PAGE_NO); ut_ad(ibuf->empty == page_is_empty(root)); return(root); } #ifdef UNIV_IBUF_COUNT_DEBUG /** Gets the ibuf count for a given page. @param[in] page_id page id @return number of entries in the insert buffer currently buffered for this page */ ulint ibuf_count_get( const page_id_t& page_id) { ibuf_count_check(page_id); return(ibuf_counts[page_id.space()][page_id.page_no()]); } /** Sets the ibuf count for a given page. @param[in] page_id page id @param[in] val value to set */ static void ibuf_count_set( const page_id_t& page_id, ulint val) { ibuf_count_check(page_id); ut_a(val < UNIV_PAGE_SIZE); ibuf_counts[page_id.space()][page_id.page_no()] = val; } #endif /******************************************************************//** Closes insert buffer and frees the data structures. */ void ibuf_close(void) /*============*/ { mutex_free(&ibuf_pessimistic_insert_mutex); mutex_free(&ibuf_mutex); mutex_free(&ibuf_bitmap_mutex); dict_table_t* ibuf_table = ibuf->index->table; rw_lock_free(&ibuf->index->lock); dict_mem_index_free(ibuf->index); dict_mem_table_free(ibuf_table); ut_free(ibuf); ibuf = NULL; } /******************************************************************//** Updates the size information of the ibuf, assuming the segment size has not changed. */ static void ibuf_size_update( /*=============*/ const page_t* root) /*!< in: ibuf tree root */ { ut_ad(mutex_own(&ibuf_mutex)); ibuf->free_list_len = flst_get_len(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST); ibuf->height = 1 + btr_page_get_level_low(root); /* the '1 +' is the ibuf header page */ ibuf->size = ibuf->seg_size - (1 + ibuf->free_list_len); } /******************************************************************//** Creates the insert buffer data structure at a database startup and initializes the data structures for the insert buffer. @return DB_SUCCESS or failure */ dberr_t ibuf_init_at_db_start(void) /*=======================*/ { page_t* root; mtr_t mtr; ulint n_used; page_t* header_page; dberr_t error= DB_SUCCESS; ibuf = static_cast(ut_zalloc_nokey(sizeof(ibuf_t))); /* At startup we intialize ibuf to have a maximum of CHANGE_BUFFER_DEFAULT_SIZE in terms of percentage of the buffer pool size. Once ibuf struct is initialized this value is updated with the user supplied size by calling ibuf_max_size_update(). */ ibuf->max_size = ((buf_pool_get_curr_size() / UNIV_PAGE_SIZE) * CHANGE_BUFFER_DEFAULT_SIZE) / 100; mutex_create(LATCH_ID_IBUF, &ibuf_mutex); mutex_create(LATCH_ID_IBUF_BITMAP, &ibuf_bitmap_mutex); mutex_create(LATCH_ID_IBUF_PESSIMISTIC_INSERT, &ibuf_pessimistic_insert_mutex); mtr_start(&mtr); mtr_x_lock_space(IBUF_SPACE_ID, &mtr); mutex_enter(&ibuf_mutex); header_page = ibuf_header_page_get(&mtr); if (!header_page) { return (DB_DECRYPTION_FAILED); } fseg_n_reserved_pages(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, &n_used, &mtr); ibuf_enter(&mtr); ut_ad(n_used >= 2); ibuf->seg_size = n_used; { buf_block_t* block; block = buf_page_get( page_id_t(IBUF_SPACE_ID, FSP_IBUF_TREE_ROOT_PAGE_NO), univ_page_size, RW_X_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE); root = buf_block_get_frame(block); } ibuf_size_update(root); mutex_exit(&ibuf_mutex); ibuf->empty = page_is_empty(root); ibuf_mtr_commit(&mtr); ibuf->index = dict_mem_index_create( "innodb_change_buffer", "CLUST_IND", IBUF_SPACE_ID, DICT_CLUSTERED | DICT_UNIVERSAL | DICT_IBUF, 1); ibuf->index->id = DICT_IBUF_ID_MIN + IBUF_SPACE_ID; ibuf->index->table = dict_mem_table_create( "innodb_change_buffer", IBUF_SPACE_ID, 1, 0, 0, 0); ibuf->index->n_uniq = REC_MAX_N_FIELDS; rw_lock_create(index_tree_rw_lock_key, &ibuf->index->lock, SYNC_IBUF_INDEX_TREE); #ifdef BTR_CUR_ADAPT ibuf->index->search_info = btr_search_info_create(ibuf->index->heap); #endif /* BTR_CUR_ADAPT */ ibuf->index->page = FSP_IBUF_TREE_ROOT_PAGE_NO; ut_d(ibuf->index->cached = TRUE); return (error); } /*********************************************************************//** Updates the max_size value for ibuf. */ void ibuf_max_size_update( /*=================*/ ulint new_val) /*!< in: new value in terms of percentage of the buffer pool size */ { ulint new_size = ((buf_pool_get_curr_size() / UNIV_PAGE_SIZE) * new_val) / 100; mutex_enter(&ibuf_mutex); ibuf->max_size = new_size; mutex_exit(&ibuf_mutex); } /*********************************************************************//** Initializes an ibuf bitmap page. */ void ibuf_bitmap_page_init( /*==================*/ buf_block_t* block, /*!< in: bitmap page */ mtr_t* mtr) /*!< in: mtr */ { page_t* page; ulint byte_offset; page = buf_block_get_frame(block); fil_page_set_type(page, FIL_PAGE_IBUF_BITMAP); /* Write all zeros to the bitmap */ byte_offset = UT_BITS_IN_BYTES(block->page.size.physical() * IBUF_BITS_PER_PAGE); memset(page + IBUF_BITMAP, 0, byte_offset); /* The remaining area (up to the page trailer) is uninitialized. */ mlog_write_initial_log_record(page, MLOG_IBUF_BITMAP_INIT, mtr); } /*********************************************************************//** Parses a redo log record of an ibuf bitmap page init. @return end of log record or NULL */ byte* ibuf_parse_bitmap_init( /*===================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr MY_ATTRIBUTE((unused)), /*!< in: buffer end */ buf_block_t* block, /*!< in: block or NULL */ mtr_t* mtr) /*!< in: mtr or NULL */ { ut_ad(ptr != NULL); ut_ad(end_ptr != NULL); if (block) { ibuf_bitmap_page_init(block, mtr); } return(ptr); } # ifdef UNIV_DEBUG /** Gets the desired bits for a given page from a bitmap page. @param[in] page bitmap page @param[in] page_id page id whose bits to get @param[in] page_size page id whose bits to get @param[in] bit IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... @param[in,out] mtr mini-transaction holding an x-latch on the bitmap page @return value of bits */ # define ibuf_bitmap_page_get_bits(page, page_id, page_size, bit, mtr) \ ibuf_bitmap_page_get_bits_low(page, page_id, page_size, \ MTR_MEMO_PAGE_X_FIX, mtr, bit) # else /* UNIV_DEBUG */ /** Gets the desired bits for a given page from a bitmap page. @param[in] page bitmap page @param[in] page_id page id whose bits to get @param[in] page_size page id whose bits to get @param[in] bit IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... @param[in,out] mtr mini-transaction holding an x-latch on the bitmap page @return value of bits */ # define ibuf_bitmap_page_get_bits(page, page_id, page_size, bit, mtr) \ ibuf_bitmap_page_get_bits_low(page, page_id, page_size, bit) # endif /* UNIV_DEBUG */ /** Gets the desired bits for a given page from a bitmap page. @param[in] page bitmap page @param[in] page_id page id whose bits to get @param[in] page_size page size @param[in] latch_type MTR_MEMO_PAGE_X_FIX, MTR_MEMO_BUF_FIX, ... @param[in,out] mtr mini-transaction holding latch_type on the bitmap page @param[in] bit IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... @return value of bits */ UNIV_INLINE ulint ibuf_bitmap_page_get_bits_low( const page_t* page, const page_id_t& page_id, const page_size_t& page_size, #ifdef UNIV_DEBUG ulint latch_type, mtr_t* mtr, #endif /* UNIV_DEBUG */ ulint bit) { ulint byte_offset; ulint bit_offset; ulint map_byte; ulint value; ut_ad(bit < IBUF_BITS_PER_PAGE); #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE % 2 != 0" #endif ut_ad(mtr_memo_contains_page(mtr, page, latch_type)); bit_offset = (page_id.page_no() % page_size.physical()) * IBUF_BITS_PER_PAGE + bit; byte_offset = bit_offset / 8; bit_offset = bit_offset % 8; ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE); map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset); value = ut_bit_get_nth(map_byte, bit_offset); if (bit == IBUF_BITMAP_FREE) { ut_ad(bit_offset + 1 < 8); value = value * 2 + ut_bit_get_nth(map_byte, bit_offset + 1); } return(value); } /** Sets the desired bit for a given page in a bitmap page. @param[in,out] page bitmap page @param[in] page_id page id whose bits to set @param[in] page_size page size @param[in] bit IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... @param[in] val value to set @param[in,out] mtr mtr containing an x-latch to the bitmap page */ static void ibuf_bitmap_page_set_bits( page_t* page, const page_id_t& page_id, const page_size_t& page_size, ulint bit, ulint val, mtr_t* mtr) { ulint byte_offset; ulint bit_offset; ulint map_byte; ut_ad(bit < IBUF_BITS_PER_PAGE); #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE % 2 != 0" #endif ut_ad(mtr_memo_contains_page(mtr, page, MTR_MEMO_PAGE_X_FIX)); ut_ad(mtr->is_named_space(page_id.space())); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((bit != IBUF_BITMAP_BUFFERED) || (val != FALSE) || (0 == ibuf_count_get(page_id))); #endif bit_offset = (page_id.page_no() % page_size.physical()) * IBUF_BITS_PER_PAGE + bit; byte_offset = bit_offset / 8; bit_offset = bit_offset % 8; ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE); map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset); if (bit == IBUF_BITMAP_FREE) { ut_ad(bit_offset + 1 < 8); ut_ad(val <= 3); map_byte = ut_bit_set_nth(map_byte, bit_offset, val / 2); map_byte = ut_bit_set_nth(map_byte, bit_offset + 1, val % 2); } else { ut_ad(val <= 1); map_byte = ut_bit_set_nth(map_byte, bit_offset, val); } mlog_write_ulint(page + IBUF_BITMAP + byte_offset, map_byte, MLOG_1BYTE, mtr); } /** Calculates the bitmap page number for a given page number. @param[in] page_id page id @param[in] page_size page size @return the bitmap page id where the file page is mapped */ UNIV_INLINE const page_id_t ibuf_bitmap_page_no_calc( const page_id_t& page_id, const page_size_t& page_size) { ulint bitmap_page_no; bitmap_page_no = FSP_IBUF_BITMAP_OFFSET + (page_id.page_no() & ~(page_size.physical() - 1)); return(page_id_t(page_id.space(), bitmap_page_no)); } /** Gets the ibuf bitmap page where the bits describing a given file page are stored. @param[in] page_id page id of the file page @param[in] page_size page size of the file page @param[in] file file name @param[in] line line where called @param[in,out] mtr mini-transaction @return bitmap page where the file page is mapped, that is, the bitmap page containing the descriptor bits for the file page; the bitmap page is x-latched */ static page_t* ibuf_bitmap_get_map_page_func( const page_id_t& page_id, const page_size_t& page_size, const char* file, unsigned line, mtr_t* mtr) { buf_block_t* block = NULL; dberr_t err = DB_SUCCESS; block = buf_page_get_gen(ibuf_bitmap_page_no_calc(page_id, page_size), page_size, RW_X_LATCH, NULL, BUF_GET, file, line, mtr, &err); if (err != DB_SUCCESS) { return NULL; } buf_block_dbg_add_level(block, SYNC_IBUF_BITMAP); return(buf_block_get_frame(block)); } /** Gets the ibuf bitmap page where the bits describing a given file page are stored. @param[in] page_id page id of the file page @param[in] page_size page size of the file page @param[in,out] mtr mini-transaction @return bitmap page where the file page is mapped, that is, the bitmap page containing the descriptor bits for the file page; the bitmap page is x-latched */ #define ibuf_bitmap_get_map_page(page_id, page_size, mtr) \ ibuf_bitmap_get_map_page_func(page_id, page_size, \ __FILE__, __LINE__, mtr) /************************************************************************//** Sets the free bits of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. */ UNIV_INLINE void ibuf_set_free_bits_low( /*===================*/ const buf_block_t* block, /*!< in: index page; free bits are set if the index is non-clustered and page level is 0 */ ulint val, /*!< in: value to set: < 4 */ mtr_t* mtr) /*!< in/out: mtr */ { page_t* bitmap_page; buf_frame_t* frame; ut_ad(mtr->is_named_space(block->page.id.space())); if (!block) { return; } frame = buf_block_get_frame(block); if (!frame || !page_is_leaf(frame)) { return; } bitmap_page = ibuf_bitmap_get_map_page(block->page.id, block->page.size, mtr); #ifdef UNIV_IBUF_DEBUG ut_a(val <= ibuf_index_page_calc_free(block)); #endif /* UNIV_IBUF_DEBUG */ ibuf_bitmap_page_set_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_FREE, val, mtr); } /************************************************************************//** Sets the free bit of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. */ void ibuf_set_free_bits_func( /*====================*/ buf_block_t* block, /*!< in: index page of a non-clustered index; free bit is reset if page level is 0 */ #ifdef UNIV_IBUF_DEBUG ulint max_val,/*!< in: ULINT_UNDEFINED or a maximum value which the bits must have before setting; this is for debugging */ #endif /* UNIV_IBUF_DEBUG */ ulint val) /*!< in: value to set: < 4 */ { mtr_t mtr; page_t* page; page_t* bitmap_page; page = buf_block_get_frame(block); if (!page_is_leaf(page)) { return; } mtr_start(&mtr); const fil_space_t* space = mtr.set_named_space(block->page.id.space()); bitmap_page = ibuf_bitmap_get_map_page(block->page.id, block->page.size, &mtr); switch (space->purpose) { case FIL_TYPE_LOG: ut_ad(0); break; case FIL_TYPE_TABLESPACE: /* Avoid logging while fixing up truncate of table. */ if (!srv_is_tablespace_truncated(block->page.id.space())) { break; } /* fall through */ case FIL_TYPE_TEMPORARY: case FIL_TYPE_IMPORT: mtr_set_log_mode(&mtr, MTR_LOG_NO_REDO); } #ifdef UNIV_IBUF_DEBUG if (max_val != ULINT_UNDEFINED) { ulint old_val; old_val = ibuf_bitmap_page_get_bits( bitmap_page, block->page.id, IBUF_BITMAP_FREE, &mtr); # if 0 if (old_val != max_val) { fprintf(stderr, "Ibuf: page %lu old val %lu max val %lu\n", page_get_page_no(page), old_val, max_val); } # endif ut_a(old_val <= max_val); } # if 0 fprintf(stderr, "Setting page no %lu free bits to %lu should be %lu\n", page_get_page_no(page), val, ibuf_index_page_calc_free(block)); # endif ut_a(val <= ibuf_index_page_calc_free(block)); #endif /* UNIV_IBUF_DEBUG */ ibuf_bitmap_page_set_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_FREE, val, &mtr); mtr_commit(&mtr); } /************************************************************************//** Resets the free bits of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to decrement or reset the bits in the bitmap in a mini-transaction that is committed before the mini-transaction that affects the free space. */ void ibuf_reset_free_bits( /*=================*/ buf_block_t* block) /*!< in: index page; free bits are set to 0 if the index is a non-clustered non-unique, and page level is 0 */ { ibuf_set_free_bits(block, 0, ULINT_UNDEFINED); } /**********************************************************************//** Updates the free bits for an uncompressed page to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations for this OS thread until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the page. */ void ibuf_update_free_bits_low( /*======================*/ const buf_block_t* block, /*!< in: index page */ ulint max_ins_size, /*!< in: value of maximum insert size with reorganize before the latest operation performed to the page */ mtr_t* mtr) /*!< in/out: mtr */ { ulint before; ulint after; ut_a(!buf_block_get_page_zip(block)); ut_ad(mtr->is_named_space(block->page.id.space())); before = ibuf_index_page_calc_free_bits(block->page.size.logical(), max_ins_size); after = ibuf_index_page_calc_free(block); /* This approach cannot be used on compressed pages, since the computed value of "before" often does not match the current state of the bitmap. This is because the free space may increase or decrease when a compressed page is reorganized. */ if (before != after) { ibuf_set_free_bits_low(block, after, mtr); } } /**********************************************************************//** Updates the free bits for a compressed page to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations for this OS thread until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the page. */ void ibuf_update_free_bits_zip( /*======================*/ buf_block_t* block, /*!< in/out: index page */ mtr_t* mtr) /*!< in/out: mtr */ { page_t* bitmap_page; ulint after; ut_a(block); buf_frame_t* frame = buf_block_get_frame(block); ut_a(frame); ut_a(page_is_leaf(frame)); ut_a(block->page.size.is_compressed()); bitmap_page = ibuf_bitmap_get_map_page(block->page.id, block->page.size, mtr); after = ibuf_index_page_calc_free_zip(block); if (after == 0) { /* We move the page to the front of the buffer pool LRU list: the purpose of this is to prevent those pages to which we cannot make inserts using the insert buffer from slipping out of the buffer pool */ buf_page_make_young(&block->page); } ibuf_bitmap_page_set_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_FREE, after, mtr); } /**********************************************************************//** Updates the free bits for the two pages to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the pages. */ void ibuf_update_free_bits_for_two_pages_low( /*====================================*/ buf_block_t* block1, /*!< in: index page */ buf_block_t* block2, /*!< in: index page */ mtr_t* mtr) /*!< in: mtr */ { ulint state; ut_ad(mtr->is_named_space(block1->page.id.space())); ut_ad(block1->page.id.space() == block2->page.id.space()); /* As we have to x-latch two random bitmap pages, we have to acquire the bitmap mutex to prevent a deadlock with a similar operation performed by another OS thread. */ mutex_enter(&ibuf_bitmap_mutex); state = ibuf_index_page_calc_free(block1); ibuf_set_free_bits_low(block1, state, mtr); state = ibuf_index_page_calc_free(block2); ibuf_set_free_bits_low(block2, state, mtr); mutex_exit(&ibuf_bitmap_mutex); } /** Returns TRUE if the page is one of the fixed address ibuf pages. @param[in] page_id page id @param[in] page_size page size @return TRUE if a fixed address ibuf i/o page */ UNIV_INLINE ibool ibuf_fixed_addr_page( const page_id_t& page_id, const page_size_t& page_size) { return((page_id.space() == IBUF_SPACE_ID && page_id.page_no() == IBUF_TREE_ROOT_PAGE_NO) || ibuf_bitmap_page(page_id, page_size)); } /** Checks if a page is a level 2 or 3 page in the ibuf hierarchy of pages. Must not be called when recv_no_ibuf_operations==true. @param[in] page_id page id @param[in] page_size page size @param[in] x_latch FALSE if relaxed check (avoid latching the bitmap page) @param[in] file file name @param[in] line line where called @param[in,out] mtr mtr which will contain an x-latch to the bitmap page if the page is not one of the fixed address ibuf pages, or NULL, in which case a new transaction is created. @return TRUE if level 2 or level 3 page */ ibool ibuf_page_low( const page_id_t& page_id, const page_size_t& page_size, #ifdef UNIV_DEBUG ibool x_latch, #endif /* UNIV_DEBUG */ const char* file, unsigned line, mtr_t* mtr) { ibool ret; mtr_t local_mtr; page_t* bitmap_page; ut_ad(!recv_no_ibuf_operations); ut_ad(x_latch || mtr == NULL); if (ibuf_fixed_addr_page(page_id, page_size)) { return(TRUE); } else if (page_id.space() != IBUF_SPACE_ID) { return(FALSE); } ut_ad(fil_space_get_type(IBUF_SPACE_ID) == FIL_TYPE_TABLESPACE); #ifdef UNIV_DEBUG if (!x_latch) { mtr_start(&local_mtr); /* Get the bitmap page without a page latch, so that we will not be violating the latching order when another bitmap page has already been latched by this thread. The page will be buffer-fixed, and thus it cannot be removed or relocated while we are looking at it. The contents of the page could change, but the IBUF_BITMAP_IBUF bit that we are interested in should not be modified by any other thread. Nobody should be calling ibuf_add_free_page() or ibuf_remove_free_page() while the page is linked to the insert buffer b-tree. */ dberr_t err = DB_SUCCESS; buf_block_t* block = buf_page_get_gen( ibuf_bitmap_page_no_calc(page_id, page_size), page_size, RW_NO_LATCH, NULL, BUF_GET_NO_LATCH, file, line, &local_mtr, &err); bitmap_page = buf_block_get_frame(block); ret = ibuf_bitmap_page_get_bits_low( bitmap_page, page_id, page_size, MTR_MEMO_BUF_FIX, &local_mtr, IBUF_BITMAP_IBUF); mtr_commit(&local_mtr); return(ret); } #endif /* UNIV_DEBUG */ if (mtr == NULL) { mtr = &local_mtr; mtr_start(mtr); } bitmap_page = ibuf_bitmap_get_map_page_func(page_id, page_size, file, line, mtr); ret = ibuf_bitmap_page_get_bits(bitmap_page, page_id, page_size, IBUF_BITMAP_IBUF, mtr); if (mtr == &local_mtr) { mtr_commit(mtr); } return(ret); } #ifdef UNIV_DEBUG # define ibuf_rec_get_page_no(mtr,rec) ibuf_rec_get_page_no_func(mtr,rec) #else /* UNIV_DEBUG */ # define ibuf_rec_get_page_no(mtr,rec) ibuf_rec_get_page_no_func(rec) #endif /* UNIV_DEBUG */ /********************************************************************//** Returns the page number field of an ibuf record. @return page number */ static ulint ibuf_rec_get_page_no_func( /*======================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* rec) /*!< in: ibuf record */ { const byte* field; ulint len; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); ut_ad(rec_get_n_fields_old(rec) > 2); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_MARKER, &len); ut_a(len == 1); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_PAGE, &len); ut_a(len == 4); return(mach_read_from_4(field)); } #ifdef UNIV_DEBUG # define ibuf_rec_get_space(mtr,rec) ibuf_rec_get_space_func(mtr,rec) #else /* UNIV_DEBUG */ # define ibuf_rec_get_space(mtr,rec) ibuf_rec_get_space_func(rec) #endif /* UNIV_DEBUG */ /********************************************************************//** Returns the space id field of an ibuf record. For < 4.1.x format records returns 0. @return space id */ static ulint ibuf_rec_get_space_func( /*====================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* rec) /*!< in: ibuf record */ { const byte* field; ulint len; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); ut_ad(rec_get_n_fields_old(rec) > 2); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_MARKER, &len); ut_a(len == 1); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_SPACE, &len); ut_a(len == 4); return(mach_read_from_4(field)); } #ifdef UNIV_DEBUG # define ibuf_rec_get_info(mtr,rec,op,comp,info_len,counter) \ ibuf_rec_get_info_func(mtr,rec,op,comp,info_len,counter) #else /* UNIV_DEBUG */ # define ibuf_rec_get_info(mtr,rec,op,comp,info_len,counter) \ ibuf_rec_get_info_func(rec,op,comp,info_len,counter) #endif /****************************************************************//** Get various information about an ibuf record in >= 4.1.x format. */ static void ibuf_rec_get_info_func( /*===================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* rec, /*!< in: ibuf record */ ibuf_op_t* op, /*!< out: operation type, or NULL */ ibool* comp, /*!< out: compact flag, or NULL */ ulint* info_len, /*!< out: length of info fields at the start of the fourth field, or NULL */ ulint* counter) /*!< in: counter value, or NULL */ { const byte* types; ulint fields; ulint len; /* Local variables to shadow arguments. */ ibuf_op_t op_local; ibool comp_local; ulint info_len_local; ulint counter_local; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); fields = rec_get_n_fields_old(rec); ut_a(fields > IBUF_REC_FIELD_USER); types = rec_get_nth_field_old(rec, IBUF_REC_FIELD_METADATA, &len); info_len_local = len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE; switch (info_len_local) { case 0: case 1: op_local = IBUF_OP_INSERT; comp_local = info_len_local; ut_ad(!counter); counter_local = ULINT_UNDEFINED; break; case IBUF_REC_INFO_SIZE: op_local = (ibuf_op_t) types[IBUF_REC_OFFSET_TYPE]; comp_local = types[IBUF_REC_OFFSET_FLAGS] & IBUF_REC_COMPACT; counter_local = mach_read_from_2( types + IBUF_REC_OFFSET_COUNTER); break; default: ut_error; } ut_a(op_local < IBUF_OP_COUNT); ut_a((len - info_len_local) == (fields - IBUF_REC_FIELD_USER) * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); if (op) { *op = op_local; } if (comp) { *comp = comp_local; } if (info_len) { *info_len = info_len_local; } if (counter) { *counter = counter_local; } } #ifdef UNIV_DEBUG # define ibuf_rec_get_op_type(mtr,rec) ibuf_rec_get_op_type_func(mtr,rec) #else /* UNIV_DEBUG */ # define ibuf_rec_get_op_type(mtr,rec) ibuf_rec_get_op_type_func(rec) #endif /****************************************************************//** Returns the operation type field of an ibuf record. @return operation type */ static ibuf_op_t ibuf_rec_get_op_type_func( /*======================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* rec) /*!< in: ibuf record */ { ulint len; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); ut_ad(rec_get_n_fields_old(rec) > 2); (void) rec_get_nth_field_old(rec, IBUF_REC_FIELD_MARKER, &len); if (len > 1) { /* This is a < 4.1.x format record */ return(IBUF_OP_INSERT); } else { ibuf_op_t op; ibuf_rec_get_info(mtr, rec, &op, NULL, NULL, NULL); return(op); } } /****************************************************************//** Read the first two bytes from a record's fourth field (counter field in new records; something else in older records). @return "counter" field, or ULINT_UNDEFINED if for some reason it can't be read */ ulint ibuf_rec_get_counter( /*=================*/ const rec_t* rec) /*!< in: ibuf record */ { const byte* ptr; ulint len; if (rec_get_n_fields_old(rec) <= IBUF_REC_FIELD_METADATA) { return(ULINT_UNDEFINED); } ptr = rec_get_nth_field_old(rec, IBUF_REC_FIELD_METADATA, &len); if (len >= 2) { return(mach_read_from_2(ptr)); } else { return(ULINT_UNDEFINED); } } /****************************************************************//** Add accumulated operation counts to a permanent array. Both arrays must be of size IBUF_OP_COUNT. */ static void ibuf_add_ops( /*=========*/ ulint* arr, /*!< in/out: array to modify */ const ulint* ops) /*!< in: operation counts */ { ulint i; for (i = 0; i < IBUF_OP_COUNT; i++) { my_atomic_addlint(&arr[i], ops[i]); } } /****************************************************************//** Print operation counts. The array must be of size IBUF_OP_COUNT. */ static void ibuf_print_ops( /*===========*/ const ulint* ops, /*!< in: operation counts */ FILE* file) /*!< in: file where to print */ { static const char* op_names[] = { "insert", "delete mark", "delete" }; ulint i; ut_a(UT_ARR_SIZE(op_names) == IBUF_OP_COUNT); for (i = 0; i < IBUF_OP_COUNT; i++) { fprintf(file, "%s " ULINTPF "%s", op_names[i], ops[i], (i < (IBUF_OP_COUNT - 1)) ? ", " : ""); } putc('\n', file); } /********************************************************************//** Creates a dummy index for inserting a record to a non-clustered index. @return dummy index */ static dict_index_t* ibuf_dummy_index_create( /*====================*/ ulint n, /*!< in: number of fields */ ibool comp) /*!< in: TRUE=use compact record format */ { dict_table_t* table; dict_index_t* index; table = dict_mem_table_create("IBUF_DUMMY", DICT_HDR_SPACE, n, 0, comp ? DICT_TF_COMPACT : 0, 0); index = dict_mem_index_create("IBUF_DUMMY", "IBUF_DUMMY", DICT_HDR_SPACE, 0, n); index->table = table; /* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */ index->cached = TRUE; return(index); } /********************************************************************//** Add a column to the dummy index */ static void ibuf_dummy_index_add_col( /*=====================*/ dict_index_t* index, /*!< in: dummy index */ const dtype_t* type, /*!< in: the data type of the column */ ulint len) /*!< in: length of the column */ { ulint i = index->table->n_def; dict_mem_table_add_col(index->table, NULL, NULL, dtype_get_mtype(type), dtype_get_prtype(type), dtype_get_len(type)); dict_index_add_col(index, index->table, dict_table_get_nth_col(index->table, i), len); } /********************************************************************//** Deallocates a dummy index for inserting a record to a non-clustered index. */ static void ibuf_dummy_index_free( /*==================*/ dict_index_t* index) /*!< in, own: dummy index */ { dict_table_t* table = index->table; dict_mem_index_free(index); dict_mem_table_free(table); } #ifdef UNIV_DEBUG # define ibuf_build_entry_from_ibuf_rec(mtr,ibuf_rec,heap,pindex) \ ibuf_build_entry_from_ibuf_rec_func(mtr,ibuf_rec,heap,pindex) #else /* UNIV_DEBUG */ # define ibuf_build_entry_from_ibuf_rec(mtr,ibuf_rec,heap,pindex) \ ibuf_build_entry_from_ibuf_rec_func(ibuf_rec,heap,pindex) #endif /*********************************************************************//** Builds the entry used to 1) IBUF_OP_INSERT: insert into a non-clustered index 2) IBUF_OP_DELETE_MARK: find the record whose delete-mark flag we need to activate 3) IBUF_OP_DELETE: find the record we need to delete when we have the corresponding record in an ibuf index. NOTE that as we copy pointers to fields in ibuf_rec, the caller must hold a latch to the ibuf_rec page as long as the entry is used! @return own: entry to insert to a non-clustered index */ static dtuple_t* ibuf_build_entry_from_ibuf_rec_func( /*================================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* ibuf_rec, /*!< in: record in an insert buffer */ mem_heap_t* heap, /*!< in: heap where built */ dict_index_t** pindex) /*!< out, own: dummy index that describes the entry */ { dtuple_t* tuple; dfield_t* field; ulint n_fields; const byte* types; const byte* data; ulint len; ulint info_len; ulint i; ulint comp; dict_index_t* index; ut_ad(mtr_memo_contains_page_flagged(mtr, ibuf_rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); data = rec_get_nth_field_old(ibuf_rec, IBUF_REC_FIELD_MARKER, &len); ut_a(len == 1); ut_a(*data == 0); ut_a(rec_get_n_fields_old(ibuf_rec) > IBUF_REC_FIELD_USER); n_fields = rec_get_n_fields_old(ibuf_rec) - IBUF_REC_FIELD_USER; tuple = dtuple_create(heap, n_fields); types = rec_get_nth_field_old(ibuf_rec, IBUF_REC_FIELD_METADATA, &len); ibuf_rec_get_info(mtr, ibuf_rec, NULL, &comp, &info_len, NULL); index = ibuf_dummy_index_create(n_fields, comp); len -= info_len; types += info_len; ut_a(len == n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(tuple, i); data = rec_get_nth_field_old( ibuf_rec, i + IBUF_REC_FIELD_USER, &len); dfield_set_data(field, data, len); dtype_new_read_for_order_and_null_size( dfield_get_type(field), types + i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); ibuf_dummy_index_add_col(index, dfield_get_type(field), len); } /* Prevent an ut_ad() failure in page_zip_write_rec() by adding system columns to the dummy table pointed to by the dummy secondary index. The insert buffer is only used for secondary indexes, whose records never contain any system columns, such as DB_TRX_ID. */ ut_d(dict_table_add_system_columns(index->table, index->table->heap)); *pindex = index; return(tuple); } /******************************************************************//** Get the data size. @return size of fields */ UNIV_INLINE ulint ibuf_rec_get_size( /*==============*/ const rec_t* rec, /*!< in: ibuf record */ const byte* types, /*!< in: fields */ ulint n_fields, /*!< in: number of fields */ ulint comp) /*!< in: 0=ROW_FORMAT=REDUNDANT, nonzero=ROW_FORMAT=COMPACT */ { ulint i; ulint field_offset; ulint types_offset; ulint size = 0; field_offset = IBUF_REC_FIELD_USER; types_offset = DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE; for (i = 0; i < n_fields; i++) { ulint len; dtype_t dtype; rec_get_nth_field_offs_old(rec, i + field_offset, &len); if (len != UNIV_SQL_NULL) { size += len; } else { dtype_new_read_for_order_and_null_size(&dtype, types); size += dtype_get_sql_null_size(&dtype, comp); } types += types_offset; } return(size); } #ifdef UNIV_DEBUG # define ibuf_rec_get_volume(mtr,rec) ibuf_rec_get_volume_func(mtr,rec) #else /* UNIV_DEBUG */ # define ibuf_rec_get_volume(mtr,rec) ibuf_rec_get_volume_func(rec) #endif /********************************************************************//** Returns the space taken by a stored non-clustered index entry if converted to an index record. @return size of index record in bytes + an upper limit of the space taken in the page directory */ static ulint ibuf_rec_get_volume_func( /*=====================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* ibuf_rec)/*!< in: ibuf record */ { ulint len; const byte* data; const byte* types; ulint n_fields; ulint data_size; ulint comp; ibuf_op_t op; ulint info_len; ut_ad(mtr_memo_contains_page_flagged(mtr, ibuf_rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); ut_ad(rec_get_n_fields_old(ibuf_rec) > 2); data = rec_get_nth_field_old(ibuf_rec, IBUF_REC_FIELD_MARKER, &len); ut_a(len == 1); ut_a(*data == 0); types = rec_get_nth_field_old( ibuf_rec, IBUF_REC_FIELD_METADATA, &len); ibuf_rec_get_info(mtr, ibuf_rec, &op, &comp, &info_len, NULL); if (op == IBUF_OP_DELETE_MARK || op == IBUF_OP_DELETE) { /* Delete-marking a record doesn't take any additional space, and while deleting a record actually frees up space, we have to play it safe and pretend it takes no additional space (the record might not exist, etc.). */ return(0); } else if (comp) { dtuple_t* entry; ulint volume; dict_index_t* dummy_index; mem_heap_t* heap = mem_heap_create(500); entry = ibuf_build_entry_from_ibuf_rec(mtr, ibuf_rec, heap, &dummy_index); volume = rec_get_converted_size(dummy_index, entry, 0); ibuf_dummy_index_free(dummy_index); mem_heap_free(heap); return(volume + page_dir_calc_reserved_space(1)); } types += info_len; n_fields = rec_get_n_fields_old(ibuf_rec) - IBUF_REC_FIELD_USER; data_size = ibuf_rec_get_size(ibuf_rec, types, n_fields, comp); return(data_size + rec_get_converted_extra_size(data_size, n_fields, 0) + page_dir_calc_reserved_space(1)); } /*********************************************************************//** Builds the tuple to insert to an ibuf tree when we have an entry for a non-clustered index. NOTE that the original entry must be kept because we copy pointers to its fields. @return own: entry to insert into an ibuf index tree */ static dtuple_t* ibuf_entry_build( /*=============*/ ibuf_op_t op, /*!< in: operation type */ dict_index_t* index, /*!< in: non-clustered index */ const dtuple_t* entry, /*!< in: entry for a non-clustered index */ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number where entry should be inserted */ ulint counter,/*!< in: counter value; ULINT_UNDEFINED=not used */ mem_heap_t* heap) /*!< in: heap into which to build */ { dtuple_t* tuple; dfield_t* field; const dfield_t* entry_field; ulint n_fields; byte* buf; byte* ti; byte* type_info; ulint i; ut_ad(counter != ULINT_UNDEFINED || op == IBUF_OP_INSERT); ut_ad(counter == ULINT_UNDEFINED || counter <= 0xFFFF); ut_ad(op < IBUF_OP_COUNT); /* We have to build a tuple with the following fields: 1-4) These are described at the top of this file. 5) The rest of the fields are copied from the entry. All fields in the tuple are ordered like the type binary in our insert buffer tree. */ n_fields = dtuple_get_n_fields(entry); tuple = dtuple_create(heap, n_fields + IBUF_REC_FIELD_USER); /* 1) Space Id */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_SPACE); buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, space); dfield_set_data(field, buf, 4); /* 2) Marker byte */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_MARKER); buf = static_cast(mem_heap_alloc(heap, 1)); /* We set the marker byte zero */ mach_write_to_1(buf, 0); dfield_set_data(field, buf, 1); /* 3) Page number */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_PAGE); buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, page_no); dfield_set_data(field, buf, 4); /* 4) Type info, part #1 */ if (counter == ULINT_UNDEFINED) { i = dict_table_is_comp(index->table) ? 1 : 0; } else { ut_ad(counter <= 0xFFFF); i = IBUF_REC_INFO_SIZE; } ti = type_info = static_cast( mem_heap_alloc( heap, i + n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE)); switch (i) { default: ut_error; break; case 1: /* set the flag for ROW_FORMAT=COMPACT */ *ti++ = 0; /* fall through */ case 0: /* the old format does not allow delete buffering */ ut_ad(op == IBUF_OP_INSERT); break; case IBUF_REC_INFO_SIZE: mach_write_to_2(ti + IBUF_REC_OFFSET_COUNTER, counter); ti[IBUF_REC_OFFSET_TYPE] = (byte) op; ti[IBUF_REC_OFFSET_FLAGS] = dict_table_is_comp(index->table) ? IBUF_REC_COMPACT : 0; ti += IBUF_REC_INFO_SIZE; break; } /* 5+) Fields from the entry */ for (i = 0; i < n_fields; i++) { ulint fixed_len; const dict_field_t* ifield; field = dtuple_get_nth_field(tuple, i + IBUF_REC_FIELD_USER); entry_field = dtuple_get_nth_field(entry, i); dfield_copy(field, entry_field); ifield = dict_index_get_nth_field(index, i); /* Prefix index columns of fixed-length columns are of fixed length. However, in the function call below, dfield_get_type(entry_field) contains the fixed length of the column in the clustered index. Replace it with the fixed length of the secondary index column. */ fixed_len = ifield->fixed_len; #ifdef UNIV_DEBUG if (fixed_len) { /* dict_index_add_col() should guarantee these */ ut_ad(fixed_len <= (ulint) dfield_get_type(entry_field)->len); if (ifield->prefix_len) { ut_ad(ifield->prefix_len == fixed_len); } else { ut_ad(fixed_len == (ulint) dfield_get_type(entry_field)->len); } } #endif /* UNIV_DEBUG */ dtype_new_store_for_order_and_null_size( ti, dfield_get_type(entry_field), fixed_len); ti += DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE; } /* 4) Type info, part #2 */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_METADATA); dfield_set_data(field, type_info, ti - type_info); /* Set all the types in the new tuple binary */ dtuple_set_types_binary(tuple, n_fields + IBUF_REC_FIELD_USER); return(tuple); } /*********************************************************************//** Builds a search tuple used to search buffered inserts for an index page. This is for >= 4.1.x format records. @return own: search tuple */ static dtuple_t* ibuf_search_tuple_build( /*====================*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number */ mem_heap_t* heap) /*!< in: heap into which to build */ { dtuple_t* tuple; dfield_t* field; byte* buf; tuple = dtuple_create(heap, IBUF_REC_FIELD_METADATA); /* Store the space id in tuple */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_SPACE); buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, space); dfield_set_data(field, buf, 4); /* Store the new format record marker byte */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_MARKER); buf = static_cast(mem_heap_alloc(heap, 1)); mach_write_to_1(buf, 0); dfield_set_data(field, buf, 1); /* Store the page number in tuple */ field = dtuple_get_nth_field(tuple, IBUF_REC_FIELD_PAGE); buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, page_no); dfield_set_data(field, buf, 4); dtuple_set_types_binary(tuple, IBUF_REC_FIELD_METADATA); return(tuple); } /*********************************************************************//** Checks if there are enough pages in the free list of the ibuf tree that we dare to start a pessimistic insert to the insert buffer. @return TRUE if enough free pages in list */ UNIV_INLINE ibool ibuf_data_enough_free_for_insert(void) /*==================================*/ { ut_ad(mutex_own(&ibuf_mutex)); /* We want a big margin of free pages, because a B-tree can sometimes grow in size also if records are deleted from it, as the node pointers can change, and we must make sure that we are able to delete the inserts buffered for pages that we read to the buffer pool, without any risk of running out of free space in the insert buffer. */ return(ibuf->free_list_len >= (ibuf->size / 2) + 3 * ibuf->height); } /*********************************************************************//** Checks if there are enough pages in the free list of the ibuf tree that we should remove them and free to the file space management. @return TRUE if enough free pages in list */ UNIV_INLINE ibool ibuf_data_too_much_free(void) /*=========================*/ { ut_ad(mutex_own(&ibuf_mutex)); return(ibuf->free_list_len >= 3 + (ibuf->size / 2) + 3 * ibuf->height); } /*********************************************************************//** Allocates a new page from the ibuf file segment and adds it to the free list. @return TRUE on success, FALSE if no space left */ static ibool ibuf_add_free_page(void) /*====================*/ { mtr_t mtr; page_t* header_page; buf_block_t* block; page_t* page; page_t* root; page_t* bitmap_page; mtr_start(&mtr); fil_space_t* space = mtr.set_sys_modified(); /* Acquire the fsp latch before the ibuf header, obeying the latching order */ mtr_x_lock(&space->latch, &mtr); header_page = ibuf_header_page_get(&mtr); /* Allocate a new page: NOTE that if the page has been a part of a non-clustered index which has subsequently been dropped, then the page may have buffered inserts in the insert buffer, and these should be deleted from there. These get deleted when the page allocation creates the page in buffer. Thus the call below may end up calling the insert buffer routines and, as we yet have no latches to insert buffer tree pages, these routines can run without a risk of a deadlock. This is the reason why we created a special ibuf header page apart from the ibuf tree. */ block = fseg_alloc_free_page( header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, 0, FSP_UP, &mtr); if (block == NULL) { mtr_commit(&mtr); return(FALSE); } ut_ad(rw_lock_get_x_lock_count(&block->lock) == 1); ibuf_enter(&mtr); mutex_enter(&ibuf_mutex); root = ibuf_tree_root_get(&mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE_NEW); page = buf_block_get_frame(block); /* Add the page to the free list and update the ibuf size data */ flst_add_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr); mlog_write_ulint(page + FIL_PAGE_TYPE, FIL_PAGE_IBUF_FREE_LIST, MLOG_2BYTES, &mtr); ibuf->seg_size++; ibuf->free_list_len++; /* Set the bit indicating that this page is now an ibuf tree page (level 2 page) */ const page_id_t page_id(IBUF_SPACE_ID, block->page.id.page_no()); const page_size_t page_size(space->flags); bitmap_page = ibuf_bitmap_get_map_page(page_id, page_size, &mtr); mutex_exit(&ibuf_mutex); ibuf_bitmap_page_set_bits(bitmap_page, page_id, page_size, IBUF_BITMAP_IBUF, TRUE, &mtr); ibuf_mtr_commit(&mtr); return(TRUE); } /*********************************************************************//** Removes a page from the free list and frees it to the fsp system. */ static void ibuf_remove_free_page(void) /*=======================*/ { mtr_t mtr; mtr_t mtr2; page_t* header_page; ulint page_no; page_t* page; page_t* root; page_t* bitmap_page; mtr_start(&mtr); fil_space_t* space = mtr.set_sys_modified(); const page_size_t page_size(space->flags); /* Acquire the fsp latch before the ibuf header, obeying the latching order */ mtr_x_lock(&space->latch, &mtr); header_page = ibuf_header_page_get(&mtr); /* Prevent pessimistic inserts to insert buffer trees for a while */ ibuf_enter(&mtr); mutex_enter(&ibuf_pessimistic_insert_mutex); mutex_enter(&ibuf_mutex); if (!ibuf_data_too_much_free()) { mutex_exit(&ibuf_mutex); mutex_exit(&ibuf_pessimistic_insert_mutex); ibuf_mtr_commit(&mtr); return; } ibuf_mtr_start(&mtr2); root = ibuf_tree_root_get(&mtr2); mutex_exit(&ibuf_mutex); page_no = flst_get_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, &mtr2).page; /* NOTE that we must release the latch on the ibuf tree root because in fseg_free_page we access level 1 pages, and the root is a level 2 page. */ ibuf_mtr_commit(&mtr2); ibuf_exit(&mtr); /* Since pessimistic inserts were prevented, we know that the page is still in the free list. NOTE that also deletes may take pages from the free list, but they take them from the start, and the free list was so long that they cannot have taken the last page from it. */ fseg_free_page(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, IBUF_SPACE_ID, page_no, false, &mtr); const page_id_t page_id(IBUF_SPACE_ID, page_no); ut_d(buf_page_reset_file_page_was_freed(page_id)); ibuf_enter(&mtr); mutex_enter(&ibuf_mutex); root = ibuf_tree_root_get(&mtr); ut_ad(page_no == flst_get_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, &mtr).page); { buf_block_t* block; block = buf_page_get(page_id, univ_page_size, RW_X_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE); page = buf_block_get_frame(block); } /* Remove the page from the free list and update the ibuf size data */ flst_remove(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr); mutex_exit(&ibuf_pessimistic_insert_mutex); ibuf->seg_size--; ibuf->free_list_len--; /* Set the bit indicating that this page is no more an ibuf tree page (level 2 page) */ bitmap_page = ibuf_bitmap_get_map_page(page_id, page_size, &mtr); mutex_exit(&ibuf_mutex); ibuf_bitmap_page_set_bits( bitmap_page, page_id, page_size, IBUF_BITMAP_IBUF, FALSE, &mtr); ut_d(buf_page_set_file_page_was_freed(page_id)); ibuf_mtr_commit(&mtr); } /***********************************************************************//** Frees excess pages from the ibuf free list. This function is called when an OS thread calls fsp services to allocate a new file segment, or a new page to a file segment, and the thread did not own the fsp latch before this call. */ void ibuf_free_excess_pages(void) /*========================*/ { ut_ad(rw_lock_own(fil_space_get_latch(IBUF_SPACE_ID, NULL), RW_LOCK_X)); ut_ad(rw_lock_get_x_lock_count( fil_space_get_latch(IBUF_SPACE_ID, NULL)) == 1); /* NOTE: We require that the thread did not own the latch before, because then we know that we can obey the correct latching order for ibuf latches */ if (!ibuf) { /* Not yet initialized; not sure if this is possible, but does no harm to check for it. */ return; } /* Free at most a few pages at a time, so that we do not delay the requested service too much */ for (ulint i = 0; i < 4; i++) { ibool too_much_free; mutex_enter(&ibuf_mutex); too_much_free = ibuf_data_too_much_free(); mutex_exit(&ibuf_mutex); if (!too_much_free) { return; } ibuf_remove_free_page(); } } #ifdef UNIV_DEBUG # define ibuf_get_merge_page_nos(contract,rec,mtr,ids,pages,n_stored) \ ibuf_get_merge_page_nos_func(contract,rec,mtr,ids,pages,n_stored) #else /* UNIV_DEBUG */ # define ibuf_get_merge_page_nos(contract,rec,mtr,ids,pages,n_stored) \ ibuf_get_merge_page_nos_func(contract,rec,ids,pages,n_stored) #endif /* UNIV_DEBUG */ /*********************************************************************//** Reads page numbers from a leaf in an ibuf tree. @return a lower limit for the combined volume of records which will be merged */ static ulint ibuf_get_merge_page_nos_func( /*=========================*/ ibool contract,/*!< in: TRUE if this function is called to contract the tree, FALSE if this is called when a single page becomes full and we look if it pays to read also nearby pages */ const rec_t* rec, /*!< in: insert buffer record */ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction holding rec */ #endif /* UNIV_DEBUG */ ulint* space_ids,/*!< in/out: space id's of the pages */ ulint* page_nos,/*!< in/out: buffer for at least IBUF_MAX_N_PAGES_MERGED many page numbers; the page numbers are in an ascending order */ ulint* n_stored)/*!< out: number of page numbers stored to page_nos in this function */ { ulint prev_page_no; ulint prev_space_id; ulint first_page_no; ulint first_space_id; ulint rec_page_no; ulint rec_space_id; ulint sum_volumes; ulint volume_for_page; ulint rec_volume; ulint limit; ulint n_pages; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); *n_stored = 0; limit = ut_min(IBUF_MAX_N_PAGES_MERGED, buf_pool_get_curr_size() / 4); if (page_rec_is_supremum(rec)) { rec = page_rec_get_prev_const(rec); } if (page_rec_is_infimum(rec)) { rec = page_rec_get_next_const(rec); } if (page_rec_is_supremum(rec)) { return(0); } first_page_no = ibuf_rec_get_page_no(mtr, rec); first_space_id = ibuf_rec_get_space(mtr, rec); n_pages = 0; prev_page_no = 0; prev_space_id = 0; /* Go backwards from the first rec until we reach the border of the 'merge area', or the page start or the limit of storeable pages is reached */ while (!page_rec_is_infimum(rec) && UNIV_LIKELY(n_pages < limit)) { rec_page_no = ibuf_rec_get_page_no(mtr, rec); rec_space_id = ibuf_rec_get_space(mtr, rec); if (rec_space_id != first_space_id || (rec_page_no / IBUF_MERGE_AREA) != (first_page_no / IBUF_MERGE_AREA)) { break; } if (rec_page_no != prev_page_no || rec_space_id != prev_space_id) { n_pages++; } prev_page_no = rec_page_no; prev_space_id = rec_space_id; rec = page_rec_get_prev_const(rec); } rec = page_rec_get_next_const(rec); /* At the loop start there is no prev page; we mark this with a pair of space id, page no (0, 0) for which there can never be entries in the insert buffer */ prev_page_no = 0; prev_space_id = 0; sum_volumes = 0; volume_for_page = 0; while (*n_stored < limit) { if (page_rec_is_supremum(rec)) { /* When no more records available, mark this with another 'impossible' pair of space id, page no */ rec_page_no = 1; rec_space_id = 0; } else { rec_page_no = ibuf_rec_get_page_no(mtr, rec); rec_space_id = ibuf_rec_get_space(mtr, rec); /* In the system tablespace the smallest possible secondary index leaf page number is bigger than FSP_DICT_HDR_PAGE_NO (7). In all tablespaces, pages 0 and 1 are reserved for the allocation bitmap and the change buffer bitmap. In file-per-table tablespaces, a file segment inode page will be created at page 2 and the clustered index tree is created at page 3. So for file-per-table tablespaces, page 4 is the smallest possible secondary index leaf page. CREATE TABLESPACE also initially uses pages 2 and 3 for the first created table, but that table may be dropped, allowing page 2 to be reused for a secondary index leaf page. To keep this assertion simple, just make sure the page is >= 2. */ ut_ad(rec_page_no >= FSP_FIRST_INODE_PAGE_NO); } #ifdef UNIV_IBUF_DEBUG ut_a(*n_stored < IBUF_MAX_N_PAGES_MERGED); #endif if ((rec_space_id != prev_space_id || rec_page_no != prev_page_no) && (prev_space_id != 0 || prev_page_no != 0)) { if (contract || (prev_page_no == first_page_no && prev_space_id == first_space_id) || (volume_for_page > ((IBUF_MERGE_THRESHOLD - 1) * 4 * UNIV_PAGE_SIZE / IBUF_PAGE_SIZE_PER_FREE_SPACE) / IBUF_MERGE_THRESHOLD)) { space_ids[*n_stored] = prev_space_id; page_nos[*n_stored] = prev_page_no; (*n_stored)++; sum_volumes += volume_for_page; } if (rec_space_id != first_space_id || rec_page_no / IBUF_MERGE_AREA != first_page_no / IBUF_MERGE_AREA) { break; } volume_for_page = 0; } if (rec_page_no == 1 && rec_space_id == 0) { /* Supremum record */ break; } rec_volume = ibuf_rec_get_volume(mtr, rec); volume_for_page += rec_volume; prev_page_no = rec_page_no; prev_space_id = rec_space_id; rec = page_rec_get_next_const(rec); } #ifdef UNIV_IBUF_DEBUG ut_a(*n_stored <= IBUF_MAX_N_PAGES_MERGED); #endif #if 0 fprintf(stderr, "Ibuf merge batch %lu pages %lu volume\n", *n_stored, sum_volumes); #endif return(sum_volumes); } /*******************************************************************//** Get the matching records for space id. @return current rec or NULL */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) const rec_t* ibuf_get_user_rec( /*===============*/ btr_pcur_t* pcur, /*!< in: the current cursor */ mtr_t* mtr) /*!< in: mini transaction */ { do { const rec_t* rec = btr_pcur_get_rec(pcur); if (page_rec_is_user_rec(rec)) { return(rec); } } while (btr_pcur_move_to_next(pcur, mtr)); return(NULL); } /*********************************************************************//** Reads page numbers for a space id from an ibuf tree. @return a lower limit for the combined volume of records which will be merged */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) ulint ibuf_get_merge_pages( /*=================*/ btr_pcur_t* pcur, /*!< in/out: cursor */ ulint space, /*!< in: space for which to merge */ ulint limit, /*!< in: max page numbers to read */ ulint* pages, /*!< out: pages read */ ulint* spaces, /*!< out: spaces read */ ulint* n_pages,/*!< out: number of pages read */ mtr_t* mtr) /*!< in: mini transaction */ { const rec_t* rec; ulint volume = 0; ut_a(space != ULINT_UNDEFINED); *n_pages = 0; while ((rec = ibuf_get_user_rec(pcur, mtr)) != 0 && ibuf_rec_get_space(mtr, rec) == space && *n_pages < limit) { ulint page_no = ibuf_rec_get_page_no(mtr, rec); if (*n_pages == 0 || pages[*n_pages - 1] != page_no) { spaces[*n_pages] = space; pages[*n_pages] = page_no; ++*n_pages; } volume += ibuf_rec_get_volume(mtr, rec); btr_pcur_move_to_next(pcur, mtr); } return(volume); } /*********************************************************************//** Contracts insert buffer trees by reading pages to the buffer pool. @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ static ulint ibuf_merge_pages( /*=============*/ ulint* n_pages, /*!< out: number of pages to which merged */ bool sync) /*!< in: true if the caller wants to wait for the issued read with the highest tablespace address to complete */ { mtr_t mtr; btr_pcur_t pcur; ulint sum_sizes; ulint page_nos[IBUF_MAX_N_PAGES_MERGED]; ulint space_ids[IBUF_MAX_N_PAGES_MERGED]; *n_pages = 0; ibuf_mtr_start(&mtr); /* Open a cursor to a randomly chosen leaf of the tree, at a random position within the leaf */ bool available; available = btr_pcur_open_at_rnd_pos(ibuf->index, BTR_SEARCH_LEAF, &pcur, &mtr); /* No one should make this index unavailable when server is running */ ut_a(available); ut_ad(page_validate(btr_pcur_get_page(&pcur), ibuf->index)); if (page_is_empty(btr_pcur_get_page(&pcur))) { /* If a B-tree page is empty, it must be the root page and the whole B-tree must be empty. InnoDB does not allow empty B-tree pages other than the root. */ ut_ad(ibuf->empty); ut_ad(page_get_space_id(btr_pcur_get_page(&pcur)) == IBUF_SPACE_ID); ut_ad(page_get_page_no(btr_pcur_get_page(&pcur)) == FSP_IBUF_TREE_ROOT_PAGE_NO); ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); return(0); } sum_sizes = ibuf_get_merge_page_nos(TRUE, btr_pcur_get_rec(&pcur), &mtr, space_ids, page_nos, n_pages); #if 0 /* defined UNIV_IBUF_DEBUG */ fprintf(stderr, "Ibuf contract sync %lu pages %lu volume %lu\n", sync, *n_pages, sum_sizes); #endif ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); buf_read_ibuf_merge_pages( sync, space_ids, page_nos, *n_pages); return(sum_sizes + 1); } /*********************************************************************//** Contracts insert buffer trees by reading pages referring to space_id to the buffer pool. @returns number of pages merged.*/ ulint ibuf_merge_space( /*=============*/ ulint space) /*!< in: tablespace id to merge */ { mtr_t mtr; btr_pcur_t pcur; mem_heap_t* heap = mem_heap_create(512); dtuple_t* tuple = ibuf_search_tuple_build(space, 0, heap); ulint n_pages = 0; ut_ad(space < SRV_LOG_SPACE_FIRST_ID); ut_ad(space < SRV_LOG_SPACE_FIRST_ID); ibuf_mtr_start(&mtr); /* Position the cursor on the first matching record. */ btr_pcur_open( ibuf->index, tuple, PAGE_CUR_GE, BTR_SEARCH_LEAF, &pcur, &mtr); mem_heap_free(heap); ut_ad(page_validate(btr_pcur_get_page(&pcur), ibuf->index)); ulint sum_sizes = 0; ulint pages[IBUF_MAX_N_PAGES_MERGED]; ulint spaces[IBUF_MAX_N_PAGES_MERGED]; if (page_is_empty(btr_pcur_get_page(&pcur))) { /* If a B-tree page is empty, it must be the root page and the whole B-tree must be empty. InnoDB does not allow empty B-tree pages other than the root. */ ut_ad(ibuf->empty); ut_ad(page_get_space_id(btr_pcur_get_page(&pcur)) == IBUF_SPACE_ID); ut_ad(page_get_page_no(btr_pcur_get_page(&pcur)) == FSP_IBUF_TREE_ROOT_PAGE_NO); } else { sum_sizes = ibuf_get_merge_pages( &pcur, space, IBUF_MAX_N_PAGES_MERGED, &pages[0], &spaces[0], &n_pages, &mtr); ib::info() << "Size of pages merged " << sum_sizes; } ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); if (n_pages > 0) { ut_ad(n_pages <= UT_ARR_SIZE(pages)); #ifdef UNIV_DEBUG for (ulint i = 0; i < n_pages; ++i) { ut_ad(spaces[i] == space); } #endif /* UNIV_DEBUG */ buf_read_ibuf_merge_pages( true, spaces, pages, n_pages); } return(n_pages); } /** Contract the change buffer by reading pages to the buffer pool. @param[out] n_pages number of pages merged @param[in] sync whether the caller waits for the issued reads to complete @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ static MY_ATTRIBUTE((warn_unused_result)) ulint ibuf_merge( ulint* n_pages, bool sync) { *n_pages = 0; /* We perform a dirty read of ibuf->empty, without latching the insert buffer root page. We trust this dirty read except when a slow shutdown is being executed. During a slow shutdown, the insert buffer merge must be completed. */ if (ibuf->empty && !srv_shutdown_state) { return(0); #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG } else if (ibuf_debug) { return(0); #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ } else { return(ibuf_merge_pages(n_pages, sync)); } } /** Contract the change buffer by reading pages to the buffer pool. @param[in] sync whether the caller waits for the issued reads to complete @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ static ulint ibuf_contract( bool sync) { ulint n_pages; return(ibuf_merge_pages(&n_pages, sync)); } /** Contract the change buffer by reading pages to the buffer pool. @param[in] full If true, do a full contraction based on PCT_IO(100). If false, the size of contract batch is determined based on the current size of the change buffer. @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ ulint ibuf_merge_in_background( bool full) { ulint sum_bytes = 0; ulint sum_pages = 0; ulint n_pag2; ulint n_pages; #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG if (srv_ibuf_disable_background_merge) { return(0); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ if (full) { /* Caller has requested a full batch */ n_pages = PCT_IO(100); } else { /* By default we do a batch of 5% of the io_capacity */ n_pages = PCT_IO(5); mutex_enter(&ibuf_mutex); /* If the ibuf->size is more than half the max_size then we make more agreesive contraction. +1 is to avoid division by zero. */ if (ibuf->size > ibuf->max_size / 2) { ulint diff = ibuf->size - ibuf->max_size / 2; n_pages += PCT_IO((diff * 100) / (ibuf->max_size + 1)); } mutex_exit(&ibuf_mutex); } #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG if (ibuf_debug) { return(0); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ while (sum_pages < n_pages) { ulint n_bytes; n_bytes = ibuf_merge(&n_pag2, false); if (n_bytes == 0) { return(sum_bytes); } sum_bytes += n_bytes; sum_pages += n_pag2; } return(sum_bytes); } /*********************************************************************//** Contract insert buffer trees after insert if they are too big. */ UNIV_INLINE void ibuf_contract_after_insert( /*=======================*/ ulint entry_size) /*!< in: size of a record which was inserted into an ibuf tree */ { ibool sync; ulint sum_sizes; ulint size; ulint max_size; /* Perform dirty reads of ibuf->size and ibuf->max_size, to reduce ibuf_mutex contention. ibuf->max_size remains constant after ibuf_init_at_db_start(), but ibuf->size should be protected by ibuf_mutex. Given that ibuf->size fits in a machine word, this should be OK; at worst we are doing some excessive ibuf_contract() or occasionally skipping a ibuf_contract(). */ size = ibuf->size; max_size = ibuf->max_size; if (size < max_size + IBUF_CONTRACT_ON_INSERT_NON_SYNC) { return; } sync = (size >= max_size + IBUF_CONTRACT_ON_INSERT_SYNC); /* Contract at least entry_size many bytes */ sum_sizes = 0; size = 1; do { size = ibuf_contract(sync); sum_sizes += size; } while (size > 0 && sum_sizes < entry_size); } /*********************************************************************//** Determine if an insert buffer record has been encountered already. @return TRUE if a new record, FALSE if possible duplicate */ static ibool ibuf_get_volume_buffered_hash( /*==========================*/ const rec_t* rec, /*!< in: ibuf record in post-4.1 format */ const byte* types, /*!< in: fields */ const byte* data, /*!< in: start of user record data */ ulint comp, /*!< in: 0=ROW_FORMAT=REDUNDANT, nonzero=ROW_FORMAT=COMPACT */ ulint* hash, /*!< in/out: hash array */ ulint size) /*!< in: number of elements in hash array */ { ulint len; ulint fold; ulint bitmask; len = ibuf_rec_get_size( rec, types, rec_get_n_fields_old(rec) - IBUF_REC_FIELD_USER, comp); fold = ut_fold_binary(data, len); hash += (fold / (CHAR_BIT * sizeof *hash)) % size; bitmask = static_cast(1) << (fold % (CHAR_BIT * sizeof(*hash))); if (*hash & bitmask) { return(FALSE); } /* We have not seen this record yet. Insert it. */ *hash |= bitmask; return(TRUE); } #ifdef UNIV_DEBUG # define ibuf_get_volume_buffered_count(mtr,rec,hash,size,n_recs) \ ibuf_get_volume_buffered_count_func(mtr,rec,hash,size,n_recs) #else /* UNIV_DEBUG */ # define ibuf_get_volume_buffered_count(mtr,rec,hash,size,n_recs) \ ibuf_get_volume_buffered_count_func(rec,hash,size,n_recs) #endif /* UNIV_DEBUG */ /*********************************************************************//** Update the estimate of the number of records on a page, and get the space taken by merging the buffered record to the index page. @return size of index record in bytes + an upper limit of the space taken in the page directory */ static ulint ibuf_get_volume_buffered_count_func( /*================================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction owning rec */ #endif /* UNIV_DEBUG */ const rec_t* rec, /*!< in: insert buffer record */ ulint* hash, /*!< in/out: hash array */ ulint size, /*!< in: number of elements in hash array */ lint* n_recs) /*!< in/out: estimated number of records on the page that rec points to */ { ulint len; ibuf_op_t ibuf_op; const byte* types; ulint n_fields; ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(ibuf_inside(mtr)); n_fields = rec_get_n_fields_old(rec); ut_ad(n_fields > IBUF_REC_FIELD_USER); n_fields -= IBUF_REC_FIELD_USER; rec_get_nth_field_offs_old(rec, 1, &len); /* This function is only invoked when buffering new operations. All pre-4.1 records should have been merged when the database was started up. */ ut_a(len == 1); if (rec_get_deleted_flag(rec, 0)) { /* This record has been merged already, but apparently the system crashed before the change was discarded from the buffer. Pretend that the record does not exist. */ return(0); } types = rec_get_nth_field_old(rec, IBUF_REC_FIELD_METADATA, &len); switch (UNIV_EXPECT(len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE, IBUF_REC_INFO_SIZE)) { default: ut_error; case 0: /* This ROW_TYPE=REDUNDANT record does not include an operation counter. Exclude it from the *n_recs, because deletes cannot be buffered if there are old-style inserts buffered for the page. */ len = ibuf_rec_get_size(rec, types, n_fields, 0); return(len + rec_get_converted_extra_size(len, n_fields, 0) + page_dir_calc_reserved_space(1)); case 1: /* This ROW_TYPE=COMPACT record does not include an operation counter. Exclude it from the *n_recs, because deletes cannot be buffered if there are old-style inserts buffered for the page. */ goto get_volume_comp; case IBUF_REC_INFO_SIZE: ibuf_op = (ibuf_op_t) types[IBUF_REC_OFFSET_TYPE]; break; } switch (ibuf_op) { case IBUF_OP_INSERT: /* Inserts can be done by updating a delete-marked record. Because delete-mark and insert operations can be pointing to the same records, we must not count duplicates. */ case IBUF_OP_DELETE_MARK: /* There must be a record to delete-mark. See if this record has been already buffered. */ if (n_recs && ibuf_get_volume_buffered_hash( rec, types + IBUF_REC_INFO_SIZE, types + len, types[IBUF_REC_OFFSET_FLAGS] & IBUF_REC_COMPACT, hash, size)) { (*n_recs)++; } if (ibuf_op == IBUF_OP_DELETE_MARK) { /* Setting the delete-mark flag does not affect the available space on the page. */ return(0); } break; case IBUF_OP_DELETE: /* A record will be removed from the page. */ if (n_recs) { (*n_recs)--; } /* While deleting a record actually frees up space, we have to play it safe and pretend that it takes no additional space (the record might not exist, etc.). */ return(0); default: ut_error; } ut_ad(ibuf_op == IBUF_OP_INSERT); get_volume_comp: { dtuple_t* entry; ulint volume; dict_index_t* dummy_index; mem_heap_t* heap = mem_heap_create(500); entry = ibuf_build_entry_from_ibuf_rec( mtr, rec, heap, &dummy_index); volume = rec_get_converted_size(dummy_index, entry, 0); ibuf_dummy_index_free(dummy_index); mem_heap_free(heap); return(volume + page_dir_calc_reserved_space(1)); } } /*********************************************************************//** Gets an upper limit for the combined size of entries buffered in the insert buffer for a given page. @return upper limit for the volume of buffered inserts for the index page, in bytes; UNIV_PAGE_SIZE, if the entries for the index page span several pages in the insert buffer */ static ulint ibuf_get_volume_buffered( /*=====================*/ const btr_pcur_t*pcur, /*!< in: pcur positioned at a place in an insert buffer tree where we would insert an entry for the index page whose number is page_no, latch mode has to be BTR_MODIFY_PREV or BTR_MODIFY_TREE */ ulint space, /*!< in: space id */ ulint page_no,/*!< in: page number of an index page */ lint* n_recs, /*!< in/out: minimum number of records on the page after the buffered changes have been applied, or NULL to disable the counting */ mtr_t* mtr) /*!< in: mini-transaction of pcur */ { ulint volume; const rec_t* rec; const page_t* page; ulint prev_page_no; const page_t* prev_page; ulint next_page_no; const page_t* next_page; /* bitmap of buffered recs */ ulint hash_bitmap[128 / sizeof(ulint)]; ut_ad((pcur->latch_mode == BTR_MODIFY_PREV) || (pcur->latch_mode == BTR_MODIFY_TREE)); /* Count the volume of inserts earlier in the alphabetical order than pcur */ volume = 0; if (n_recs) { memset(hash_bitmap, 0, sizeof hash_bitmap); } rec = btr_pcur_get_rec(pcur); page = page_align(rec); ut_ad(page_validate(page, ibuf->index)); if (page_rec_is_supremum(rec)) { rec = page_rec_get_prev_const(rec); } for (; !page_rec_is_infimum(rec); rec = page_rec_get_prev_const(rec)) { ut_ad(page_align(rec) == page); if (page_no != ibuf_rec_get_page_no(mtr, rec) || space != ibuf_rec_get_space(mtr, rec)) { goto count_later; } volume += ibuf_get_volume_buffered_count( mtr, rec, hash_bitmap, UT_ARR_SIZE(hash_bitmap), n_recs); } /* Look at the previous page */ prev_page_no = btr_page_get_prev(page, mtr); if (prev_page_no == FIL_NULL) { goto count_later; } { buf_block_t* block; block = buf_page_get( page_id_t(IBUF_SPACE_ID, prev_page_no), univ_page_size, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE); prev_page = buf_block_get_frame(block); ut_ad(page_validate(prev_page, ibuf->index)); } #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_next(prev_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ rec = page_get_supremum_rec(prev_page); rec = page_rec_get_prev_const(rec); for (;; rec = page_rec_get_prev_const(rec)) { ut_ad(page_align(rec) == prev_page); if (page_rec_is_infimum(rec)) { /* We cannot go to yet a previous page, because we do not have the x-latch on it, and cannot acquire one because of the latching order: we have to give up */ return(UNIV_PAGE_SIZE); } if (page_no != ibuf_rec_get_page_no(mtr, rec) || space != ibuf_rec_get_space(mtr, rec)) { goto count_later; } volume += ibuf_get_volume_buffered_count( mtr, rec, hash_bitmap, UT_ARR_SIZE(hash_bitmap), n_recs); } count_later: rec = btr_pcur_get_rec(pcur); if (!page_rec_is_supremum(rec)) { rec = page_rec_get_next_const(rec); } for (; !page_rec_is_supremum(rec); rec = page_rec_get_next_const(rec)) { if (page_no != ibuf_rec_get_page_no(mtr, rec) || space != ibuf_rec_get_space(mtr, rec)) { return(volume); } volume += ibuf_get_volume_buffered_count( mtr, rec, hash_bitmap, UT_ARR_SIZE(hash_bitmap), n_recs); } /* Look at the next page */ next_page_no = btr_page_get_next(page, mtr); if (next_page_no == FIL_NULL) { return(volume); } { buf_block_t* block; block = buf_page_get( page_id_t(IBUF_SPACE_ID, next_page_no), univ_page_size, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE); next_page = buf_block_get_frame(block); ut_ad(page_validate(next_page, ibuf->index)); } #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_prev(next_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ rec = page_get_infimum_rec(next_page); rec = page_rec_get_next_const(rec); for (;; rec = page_rec_get_next_const(rec)) { ut_ad(page_align(rec) == next_page); if (page_rec_is_supremum(rec)) { /* We give up */ return(UNIV_PAGE_SIZE); } if (page_no != ibuf_rec_get_page_no(mtr, rec) || space != ibuf_rec_get_space(mtr, rec)) { return(volume); } volume += ibuf_get_volume_buffered_count( mtr, rec, hash_bitmap, UT_ARR_SIZE(hash_bitmap), n_recs); } } /*********************************************************************//** Reads the biggest tablespace id from the high end of the insert buffer tree and updates the counter in fil_system. */ void ibuf_update_max_tablespace_id(void) /*===============================*/ { ulint max_space_id; const rec_t* rec; const byte* field; ulint len; btr_pcur_t pcur; mtr_t mtr; ut_a(!dict_table_is_comp(ibuf->index->table)); ibuf_mtr_start(&mtr); btr_pcur_open_at_index_side( false, ibuf->index, BTR_SEARCH_LEAF, &pcur, true, 0, &mtr); ut_ad(page_validate(btr_pcur_get_page(&pcur), ibuf->index)); btr_pcur_move_to_prev(&pcur, &mtr); if (btr_pcur_is_before_first_on_page(&pcur)) { /* The tree is empty */ max_space_id = 0; } else { rec = btr_pcur_get_rec(&pcur); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_SPACE, &len); ut_a(len == 4); max_space_id = mach_read_from_4(field); } ibuf_mtr_commit(&mtr); /* printf("Maximum space id in insert buffer %lu\n", max_space_id); */ fil_set_max_space_id_if_bigger(max_space_id); } #ifdef UNIV_DEBUG # define ibuf_get_entry_counter_low(mtr,rec,space,page_no) \ ibuf_get_entry_counter_low_func(mtr,rec,space,page_no) #else /* UNIV_DEBUG */ # define ibuf_get_entry_counter_low(mtr,rec,space,page_no) \ ibuf_get_entry_counter_low_func(rec,space,page_no) #endif /****************************************************************//** Helper function for ibuf_get_entry_counter_func. Checks if rec is for (space, page_no), and if so, reads counter value from it and returns that + 1. @retval ULINT_UNDEFINED if the record does not contain any counter @retval 0 if the record is not for (space, page_no) @retval 1 + previous counter value, otherwise */ static ulint ibuf_get_entry_counter_low_func( /*============================*/ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction of rec */ #endif /* UNIV_DEBUG */ const rec_t* rec, /*!< in: insert buffer record */ ulint space, /*!< in: space id */ ulint page_no) /*!< in: page number */ { ulint counter; const byte* field; ulint len; ut_ad(ibuf_inside(mtr)); ut_ad(mtr_memo_contains_page_flagged(mtr, rec, MTR_MEMO_PAGE_X_FIX | MTR_MEMO_PAGE_S_FIX)); ut_ad(rec_get_n_fields_old(rec) > 2); field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_MARKER, &len); ut_a(len == 1); /* Check the tablespace identifier. */ field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_SPACE, &len); ut_a(len == 4); if (mach_read_from_4(field) != space) { return(0); } /* Check the page offset. */ field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_PAGE, &len); ut_a(len == 4); if (mach_read_from_4(field) != page_no) { return(0); } /* Check if the record contains a counter field. */ field = rec_get_nth_field_old(rec, IBUF_REC_FIELD_METADATA, &len); switch (len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE) { default: ut_error; case 0: /* ROW_FORMAT=REDUNDANT */ case 1: /* ROW_FORMAT=COMPACT */ return(ULINT_UNDEFINED); case IBUF_REC_INFO_SIZE: counter = mach_read_from_2(field + IBUF_REC_OFFSET_COUNTER); ut_a(counter < 0xFFFF); return(counter + 1); } } #ifdef UNIV_DEBUG # define ibuf_get_entry_counter(space,page_no,rec,mtr,exact_leaf) \ ibuf_get_entry_counter_func(space,page_no,rec,mtr,exact_leaf) #else /* UNIV_DEBUG */ # define ibuf_get_entry_counter(space,page_no,rec,mtr,exact_leaf) \ ibuf_get_entry_counter_func(space,page_no,rec,exact_leaf) #endif /* UNIV_DEBUG */ /****************************************************************//** Calculate the counter field for an entry based on the current last record in ibuf for (space, page_no). @return the counter field, or ULINT_UNDEFINED if we should abort this insertion to ibuf */ static ulint ibuf_get_entry_counter_func( /*========================*/ ulint space, /*!< in: space id of entry */ ulint page_no, /*!< in: page number of entry */ const rec_t* rec, /*!< in: the record preceding the insertion point */ #ifdef UNIV_DEBUG mtr_t* mtr, /*!< in: mini-transaction */ #endif /* UNIV_DEBUG */ ibool only_leaf) /*!< in: TRUE if this is the only leaf page that can contain entries for (space,page_no), that is, there was no exact match for (space,page_no) in the node pointer */ { ut_ad(ibuf_inside(mtr)); ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX)); ut_ad(page_validate(page_align(rec), ibuf->index)); if (page_rec_is_supremum(rec)) { /* This is just for safety. The record should be a page infimum or a user record. */ ut_ad(0); return(ULINT_UNDEFINED); } else if (!page_rec_is_infimum(rec)) { return(ibuf_get_entry_counter_low(mtr, rec, space, page_no)); } else if (only_leaf || fil_page_get_prev(page_align(rec)) == FIL_NULL) { /* The parent node pointer did not contain the searched for (space, page_no), which means that the search ended on the correct page regardless of the counter value, and since we're at the infimum record, there are no existing records. */ return(0); } else { /* We used to read the previous page here. It would break the latching order, because the caller has buffer-fixed an insert buffer bitmap page. */ return(ULINT_UNDEFINED); } } /** Buffer an operation in the insert/delete buffer, instead of doing it directly to the disk page, if this is possible. @param[in] mode BTR_MODIFY_PREV or BTR_MODIFY_TREE @param[in] op operation type @param[in] no_counter TRUE=use 5.0.3 format; FALSE=allow delete buffering @param[in] entry index entry to insert @param[in] entry_size rec_get_converted_size(index, entry) @param[in,out] index index where to insert; must not be unique or clustered @param[in] page_id page id where to insert @param[in] page_size page size @param[in,out] thr query thread @return DB_SUCCESS, DB_STRONG_FAIL or other error */ static MY_ATTRIBUTE((warn_unused_result)) dberr_t ibuf_insert_low( ulint mode, ibuf_op_t op, ibool no_counter, const dtuple_t* entry, ulint entry_size, dict_index_t* index, const page_id_t& page_id, const page_size_t& page_size, que_thr_t* thr) { big_rec_t* dummy_big_rec; btr_pcur_t pcur; btr_cur_t* cursor; dtuple_t* ibuf_entry; mem_heap_t* offsets_heap = NULL; mem_heap_t* heap; ulint* offsets = NULL; ulint buffered; lint min_n_recs; rec_t* ins_rec; ibool old_bit_value; page_t* bitmap_page; buf_block_t* block; page_t* root; dberr_t err; ibool do_merge; ulint space_ids[IBUF_MAX_N_PAGES_MERGED]; ulint page_nos[IBUF_MAX_N_PAGES_MERGED]; ulint n_stored; mtr_t mtr; mtr_t bitmap_mtr; ut_a(!dict_index_is_clust(index)); ut_ad(!dict_index_is_spatial(index)); ut_ad(dtuple_check_typed(entry)); ut_ad(!no_counter || op == IBUF_OP_INSERT); ut_a(op < IBUF_OP_COUNT); do_merge = FALSE; /* Perform dirty reads of ibuf->size and ibuf->max_size, to reduce ibuf_mutex contention. Given that ibuf->max_size and ibuf->size fit in a machine word, this should be OK; at worst we are doing some excessive ibuf_contract() or occasionally skipping an ibuf_contract(). */ if (ibuf->max_size == 0) { return(DB_STRONG_FAIL); } if (ibuf->size >= ibuf->max_size + IBUF_CONTRACT_DO_NOT_INSERT) { /* Insert buffer is now too big, contract it but do not try to insert */ #ifdef UNIV_IBUF_DEBUG fputs("Ibuf too big\n", stderr); #endif ibuf_contract(true); return(DB_STRONG_FAIL); } heap = mem_heap_create(1024); /* Build the entry which contains the space id and the page number as the first fields and the type information for other fields, and which will be inserted to the insert buffer. Using a counter value of 0xFFFF we find the last record for (space, page_no), from which we can then read the counter value N and use N + 1 in the record we insert. (We patch the ibuf_entry's counter field to the correct value just before actually inserting the entry.) */ ibuf_entry = ibuf_entry_build( op, index, entry, page_id.space(), page_id.page_no(), no_counter ? ULINT_UNDEFINED : 0xFFFF, heap); /* Open a cursor to the insert buffer tree to calculate if we can add the new entry to it without exceeding the free space limit for the page. */ if (BTR_LATCH_MODE_WITHOUT_INTENTION(mode) == BTR_MODIFY_TREE) { for (;;) { mutex_enter(&ibuf_pessimistic_insert_mutex); mutex_enter(&ibuf_mutex); if (UNIV_LIKELY(ibuf_data_enough_free_for_insert())) { break; } mutex_exit(&ibuf_mutex); mutex_exit(&ibuf_pessimistic_insert_mutex); if (!ibuf_add_free_page()) { mem_heap_free(heap); return(DB_STRONG_FAIL); } } } ibuf_mtr_start(&mtr); btr_pcur_open(ibuf->index, ibuf_entry, PAGE_CUR_LE, mode, &pcur, &mtr); ut_ad(page_validate(btr_pcur_get_page(&pcur), ibuf->index)); /* Find out the volume of already buffered inserts for the same index page */ min_n_recs = 0; buffered = ibuf_get_volume_buffered(&pcur, page_id.space(), page_id.page_no(), op == IBUF_OP_DELETE ? &min_n_recs : NULL, &mtr); if (op == IBUF_OP_DELETE && (min_n_recs < 2 || buf_pool_watch_occurred(page_id))) { /* The page could become empty after the record is deleted, or the page has been read in to the buffer pool. Refuse to buffer the operation. */ /* The buffer pool watch is needed for IBUF_OP_DELETE because of latching order considerations. We can check buf_pool_watch_occurred() only after latching the insert buffer B-tree pages that contain buffered changes for the page. We never buffer IBUF_OP_DELETE, unless some IBUF_OP_INSERT or IBUF_OP_DELETE_MARK have been previously buffered for the page. Because there are buffered operations for the page, the insert buffer B-tree page latches held by mtr will guarantee that no changes for the user page will be merged before mtr_commit(&mtr). We must not mtr_commit(&mtr) until after the IBUF_OP_DELETE has been buffered. */ fail_exit: if (BTR_LATCH_MODE_WITHOUT_INTENTION(mode) == BTR_MODIFY_TREE) { mutex_exit(&ibuf_mutex); mutex_exit(&ibuf_pessimistic_insert_mutex); } err = DB_STRONG_FAIL; goto func_exit; } /* After this point, the page could still be loaded to the buffer pool, but we do not have to care about it, since we are holding a latch on the insert buffer leaf page that contains buffered changes for (space, page_no). If the page enters the buffer pool, buf_page_io_complete() for (space, page_no) will have to acquire a latch on the same insert buffer leaf page, which it cannot do until we have buffered the IBUF_OP_DELETE and done mtr_commit(&mtr) to release the latch. */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((buffered == 0) || ibuf_count_get(page_id)); #endif ibuf_mtr_start(&bitmap_mtr); bitmap_mtr.set_named_space(page_id.space()); bitmap_page = ibuf_bitmap_get_map_page(page_id, page_size, &bitmap_mtr); /* We check if the index page is suitable for buffered entries */ if (buf_page_peek(page_id) || lock_rec_expl_exist_on_page(page_id.space(), page_id.page_no())) { ibuf_mtr_commit(&bitmap_mtr); goto fail_exit; } if (op == IBUF_OP_INSERT) { ulint bits = ibuf_bitmap_page_get_bits( bitmap_page, page_id, page_size, IBUF_BITMAP_FREE, &bitmap_mtr); if (buffered + entry_size + page_dir_calc_reserved_space(1) > ibuf_index_page_calc_free_from_bits(page_size, bits)) { /* Release the bitmap page latch early. */ ibuf_mtr_commit(&bitmap_mtr); /* It may not fit */ do_merge = TRUE; ibuf_get_merge_page_nos(FALSE, btr_pcur_get_rec(&pcur), &mtr, space_ids, page_nos, &n_stored); goto fail_exit; } } if (!no_counter) { /* Patch correct counter value to the entry to insert. This can change the insert position, which can result in the need to abort in some cases. */ ulint counter = ibuf_get_entry_counter( page_id.space(), page_id.page_no(), btr_pcur_get_rec(&pcur), &mtr, btr_pcur_get_btr_cur(&pcur)->low_match < IBUF_REC_FIELD_METADATA); dfield_t* field; if (counter == ULINT_UNDEFINED) { ibuf_mtr_commit(&bitmap_mtr); goto fail_exit; } field = dtuple_get_nth_field( ibuf_entry, IBUF_REC_FIELD_METADATA); mach_write_to_2( (byte*) dfield_get_data(field) + IBUF_REC_OFFSET_COUNTER, counter); } /* Set the bitmap bit denoting that the insert buffer contains buffered entries for this index page, if the bit is not set yet */ old_bit_value = ibuf_bitmap_page_get_bits( bitmap_page, page_id, page_size, IBUF_BITMAP_BUFFERED, &bitmap_mtr); if (!old_bit_value) { ibuf_bitmap_page_set_bits(bitmap_page, page_id, page_size, IBUF_BITMAP_BUFFERED, TRUE, &bitmap_mtr); } ibuf_mtr_commit(&bitmap_mtr); cursor = btr_pcur_get_btr_cur(&pcur); if (mode == BTR_MODIFY_PREV) { err = btr_cur_optimistic_insert( BTR_NO_LOCKING_FLAG, cursor, &offsets, &offsets_heap, ibuf_entry, &ins_rec, &dummy_big_rec, 0, thr, &mtr); block = btr_cur_get_block(cursor); ut_ad(block->page.id.space() == IBUF_SPACE_ID); /* If this is the root page, update ibuf->empty. */ if (block->page.id.page_no() == FSP_IBUF_TREE_ROOT_PAGE_NO) { const page_t* root = buf_block_get_frame(block); ut_ad(page_get_space_id(root) == IBUF_SPACE_ID); ut_ad(page_get_page_no(root) == FSP_IBUF_TREE_ROOT_PAGE_NO); ibuf->empty = page_is_empty(root); } } else { ut_ad(BTR_LATCH_MODE_WITHOUT_INTENTION(mode) == BTR_MODIFY_TREE); /* We acquire an sx-latch to the root page before the insert, because a pessimistic insert releases the tree x-latch, which would cause the sx-latching of the root after that to break the latching order. */ root = ibuf_tree_root_get(&mtr); err = btr_cur_optimistic_insert( BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG, cursor, &offsets, &offsets_heap, ibuf_entry, &ins_rec, &dummy_big_rec, 0, thr, &mtr); if (err == DB_FAIL) { err = btr_cur_pessimistic_insert( BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG, cursor, &offsets, &offsets_heap, ibuf_entry, &ins_rec, &dummy_big_rec, 0, thr, &mtr); } mutex_exit(&ibuf_pessimistic_insert_mutex); ibuf_size_update(root); mutex_exit(&ibuf_mutex); ibuf->empty = page_is_empty(root); block = btr_cur_get_block(cursor); ut_ad(block->page.id.space() == IBUF_SPACE_ID); } if (offsets_heap) { mem_heap_free(offsets_heap); } if (err == DB_SUCCESS && op != IBUF_OP_DELETE) { /* Update the page max trx id field */ page_update_max_trx_id(block, NULL, thr_get_trx(thr)->id, &mtr); } func_exit: #ifdef UNIV_IBUF_COUNT_DEBUG if (err == DB_SUCCESS) { ib::info() << "Incrementing ibuf count of page " << page_id << " from " << ibuf_count_get(space, page_no) << " by 1"; ibuf_count_set(page_id, ibuf_count_get(page_id) + 1); } #endif ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); mem_heap_free(heap); if (err == DB_SUCCESS && BTR_LATCH_MODE_WITHOUT_INTENTION(mode) == BTR_MODIFY_TREE) { ibuf_contract_after_insert(entry_size); } if (do_merge) { #ifdef UNIV_IBUF_DEBUG ut_a(n_stored <= IBUF_MAX_N_PAGES_MERGED); #endif buf_read_ibuf_merge_pages(false, space_ids, page_nos, n_stored); } return(err); } /** Buffer an operation in the insert/delete buffer, instead of doing it directly to the disk page, if this is possible. Does not do it if the index is clustered or unique. @param[in] op operation type @param[in] entry index entry to insert @param[in,out] index index where to insert @param[in] page_id page id where to insert @param[in] page_size page size @param[in,out] thr query thread @return TRUE if success */ ibool ibuf_insert( ibuf_op_t op, const dtuple_t* entry, dict_index_t* index, const page_id_t& page_id, const page_size_t& page_size, que_thr_t* thr) { dberr_t err; ulint entry_size; ibool no_counter; /* Read the settable global variable ibuf_use only once in this function, so that we will have a consistent view of it. */ ibuf_use_t use = ibuf_use; DBUG_ENTER("ibuf_insert"); DBUG_PRINT("ibuf", ("op: %d, space: " UINT32PF ", page_no: " UINT32PF, op, page_id.space(), page_id.page_no())); ut_ad(dtuple_check_typed(entry)); ut_ad(page_id.space() != SRV_TMP_SPACE_ID); ut_a(!dict_index_is_clust(index)); ut_ad(!dict_table_is_temporary(index->table)); no_counter = use <= IBUF_USE_INSERT; switch (op) { case IBUF_OP_INSERT: switch (use) { case IBUF_USE_NONE: case IBUF_USE_DELETE: case IBUF_USE_DELETE_MARK: DBUG_RETURN(FALSE); case IBUF_USE_INSERT: case IBUF_USE_INSERT_DELETE_MARK: case IBUF_USE_ALL: goto check_watch; case IBUF_USE_COUNT: break; } break; case IBUF_OP_DELETE_MARK: switch (use) { case IBUF_USE_NONE: case IBUF_USE_INSERT: DBUG_RETURN(FALSE); case IBUF_USE_DELETE_MARK: case IBUF_USE_DELETE: case IBUF_USE_INSERT_DELETE_MARK: case IBUF_USE_ALL: ut_ad(!no_counter); goto check_watch; case IBUF_USE_COUNT: break; } break; case IBUF_OP_DELETE: switch (use) { case IBUF_USE_NONE: case IBUF_USE_INSERT: case IBUF_USE_INSERT_DELETE_MARK: DBUG_RETURN(FALSE); case IBUF_USE_DELETE_MARK: case IBUF_USE_DELETE: case IBUF_USE_ALL: ut_ad(!no_counter); goto skip_watch; case IBUF_USE_COUNT: break; } break; case IBUF_OP_COUNT: break; } /* unknown op or use */ ut_error; check_watch: /* If a thread attempts to buffer an insert on a page while a purge is in progress on the same page, the purge must not be buffered, because it could remove a record that was re-inserted later. For simplicity, we block the buffering of all operations on a page that has a purge pending. We do not check this in the IBUF_OP_DELETE case, because that would always trigger the buffer pool watch during purge and thus prevent the buffering of delete operations. We assume that the issuer of IBUF_OP_DELETE has called buf_pool_watch_set(space, page_no). */ { buf_pool_t* buf_pool = buf_pool_get(page_id); buf_page_t* bpage = buf_page_get_also_watch(buf_pool, page_id); if (bpage != NULL) { /* A buffer pool watch has been set or the page has been read into the buffer pool. Do not buffer the request. If a purge operation is being buffered, have this request executed directly on the page in the buffer pool after the buffered entries for this page have been merged. */ DBUG_RETURN(FALSE); } } skip_watch: entry_size = rec_get_converted_size(index, entry, 0); if (entry_size >= page_get_free_space_of_empty(dict_table_is_comp(index->table)) / 2) { DBUG_RETURN(FALSE); } err = ibuf_insert_low(BTR_MODIFY_PREV, op, no_counter, entry, entry_size, index, page_id, page_size, thr); if (err == DB_FAIL) { err = ibuf_insert_low(BTR_MODIFY_TREE | BTR_LATCH_FOR_INSERT, op, no_counter, entry, entry_size, index, page_id, page_size, thr); } if (err == DB_SUCCESS) { #ifdef UNIV_IBUF_DEBUG /* fprintf(stderr, "Ibuf insert for page no %lu of index %s\n", page_no, index->name); */ #endif DBUG_RETURN(TRUE); } else { ut_a(err == DB_STRONG_FAIL || err == DB_TOO_BIG_RECORD); DBUG_RETURN(FALSE); } } /********************************************************************//** During merge, inserts to an index page a secondary index entry extracted from the insert buffer. @return newly inserted record */ static MY_ATTRIBUTE((nonnull)) rec_t* ibuf_insert_to_index_page_low( /*==========================*/ const dtuple_t* entry, /*!< in: buffered entry to insert */ buf_block_t* block, /*!< in/out: index page where the buffered entry should be placed */ dict_index_t* index, /*!< in: record descriptor */ ulint** offsets,/*!< out: offsets on *rec */ mem_heap_t* heap, /*!< in/out: memory heap */ mtr_t* mtr, /*!< in/out: mtr */ page_cur_t* page_cur)/*!< in/out: cursor positioned on the record after which to insert the buffered entry */ { const page_t* page; const page_t* bitmap_page; ulint old_bits; rec_t* rec; DBUG_ENTER("ibuf_insert_to_index_page_low"); rec = page_cur_tuple_insert(page_cur, entry, index, offsets, &heap, 0, mtr); if (rec != NULL) { DBUG_RETURN(rec); } /* Page reorganization or recompression should already have been attempted by page_cur_tuple_insert(). Besides, per ibuf_index_page_calc_free_zip() the page should not have been recompressed or reorganized. */ ut_ad(!buf_block_get_page_zip(block)); /* If the record did not fit, reorganize */ btr_page_reorganize(page_cur, index, mtr); /* This time the record must fit */ rec = page_cur_tuple_insert(page_cur, entry, index, offsets, &heap, 0, mtr); if (rec != NULL) { DBUG_RETURN(rec); } page = buf_block_get_frame(block); ib::error() << "Insert buffer insert fails; page free " << page_get_max_insert_size(page, 1) << ", dtuple size " << rec_get_converted_size(index, entry, 0); fputs("InnoDB: Cannot insert index record ", stderr); dtuple_print(stderr, entry); fputs("\nInnoDB: The table where this index record belongs\n" "InnoDB: is now probably corrupt. Please run CHECK TABLE on\n" "InnoDB: that table.\n", stderr); bitmap_page = ibuf_bitmap_get_map_page(block->page.id, block->page.size, mtr); old_bits = ibuf_bitmap_page_get_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_FREE, mtr); ib::error() << "page " << block->page.id << ", size " << block->page.size.physical() << ", bitmap bits " << old_bits; ib::error() << BUG_REPORT_MSG; ut_ad(0); DBUG_RETURN(NULL); } /************************************************************************ During merge, inserts to an index page a secondary index entry extracted from the insert buffer. */ static void ibuf_insert_to_index_page( /*======================*/ const dtuple_t* entry, /*!< in: buffered entry to insert */ buf_block_t* block, /*!< in/out: index page where the buffered entry should be placed */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t page_cur; ulint low_match; page_t* page = buf_block_get_frame(block); rec_t* rec; ulint* offsets; mem_heap_t* heap; DBUG_ENTER("ibuf_insert_to_index_page"); DBUG_PRINT("ibuf", ("page " UINT32PF ":" UINT32PF, block->page.id.space(), block->page.id.page_no())); ut_ad(!dict_index_is_online_ddl(index));// this is an ibuf_dummy index ut_ad(ibuf_inside(mtr)); ut_ad(dtuple_check_typed(entry)); #ifdef BTR_CUR_HASH_ADAPT /* A change buffer merge must occur before users are granted any access to the page. No adaptive hash index entries may point to a freshly read page. */ ut_ad(!block->index); assert_block_ahi_empty(block); #endif /* BTR_CUR_HASH_ADAPT */ ut_ad(mtr->is_named_space(block->page.id.space())); if (UNIV_UNLIKELY(dict_table_is_comp(index->table) != (ibool)!!page_is_comp(page))) { ib::warn() << "Trying to insert a record from the insert" " buffer to an index page but the 'compact' flag does" " not match!"; goto dump; } rec = page_rec_get_next(page_get_infimum_rec(page)); if (page_rec_is_supremum(rec)) { ib::warn() << "Trying to insert a record from the insert" " buffer to an index page but the index page" " is empty!"; goto dump; } if (!rec_n_fields_is_sane(index, rec, entry)) { ib::warn() << "Trying to insert a record from the insert" " buffer to an index page but the number of fields" " does not match!"; rec_print(stderr, rec, index); dump: dtuple_print(stderr, entry); ut_ad(0); ib::warn() << "The table where this index record belongs" " is now probably corrupt. Please run CHECK TABLE on" " your tables. " << BUG_REPORT_MSG; DBUG_VOID_RETURN; } low_match = page_cur_search(block, index, entry, &page_cur); heap = mem_heap_create( sizeof(upd_t) + REC_OFFS_HEADER_SIZE * sizeof(*offsets) + dtuple_get_n_fields(entry) * (sizeof(upd_field_t) + sizeof *offsets)); if (UNIV_UNLIKELY(low_match == dtuple_get_n_fields(entry))) { upd_t* update; page_zip_des_t* page_zip; rec = page_cur_get_rec(&page_cur); /* This is based on row_ins_sec_index_entry_by_modify(BTR_MODIFY_LEAF). */ ut_ad(rec_get_deleted_flag(rec, page_is_comp(page))); offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap); update = row_upd_build_sec_rec_difference_binary( rec, index, offsets, entry, heap); page_zip = buf_block_get_page_zip(block); if (update->n_fields == 0) { /* The records only differ in the delete-mark. Clear the delete-mark, like we did before Bug #56680 was fixed. */ btr_cur_set_deleted_flag_for_ibuf( rec, page_zip, FALSE, mtr); goto updated_in_place; } /* Copy the info bits. Clear the delete-mark. */ update->info_bits = rec_get_info_bits(rec, page_is_comp(page)); update->info_bits &= ~REC_INFO_DELETED_FLAG; /* We cannot invoke btr_cur_optimistic_update() here, because we do not have a btr_cur_t or que_thr_t, as the insert buffer merge occurs at a very low level. */ if (!row_upd_changes_field_size_or_external(index, offsets, update) && (!page_zip || btr_cur_update_alloc_zip( page_zip, &page_cur, index, offsets, rec_offs_size(offsets), false, mtr))) { /* This is the easy case. Do something similar to btr_cur_update_in_place(). */ rec = page_cur_get_rec(&page_cur); row_upd_rec_in_place(rec, index, offsets, update, page_zip); /* Log the update in place operation. During recovery MLOG_COMP_REC_UPDATE_IN_PLACE/MLOG_REC_UPDATE_IN_PLACE expects trx_id, roll_ptr for secondary indexes. So we just write dummy trx_id(0), roll_ptr(0) */ btr_cur_update_in_place_log(BTR_KEEP_SYS_FLAG, rec, index, update, 0, 0, mtr); DBUG_EXECUTE_IF( "crash_after_log_ibuf_upd_inplace", log_buffer_flush_to_disk(); ib::info() << "Wrote log record for ibuf" " update in place operation"; DBUG_SUICIDE(); ); goto updated_in_place; } /* btr_cur_update_alloc_zip() may have changed this */ rec = page_cur_get_rec(&page_cur); /* A collation may identify values that differ in storage length. Some examples (1 or 2 bytes): utf8_turkish_ci: I = U+0131 LATIN SMALL LETTER DOTLESS I utf8_general_ci: S = U+00DF LATIN SMALL LETTER SHARP S utf8_general_ci: A = U+00E4 LATIN SMALL LETTER A WITH DIAERESIS latin1_german2_ci: SS = U+00DF LATIN SMALL LETTER SHARP S Examples of a character (3-byte UTF-8 sequence) identified with 2 or 4 characters (1-byte UTF-8 sequences): utf8_unicode_ci: 'II' = U+2171 SMALL ROMAN NUMERAL TWO utf8_unicode_ci: '(10)' = U+247D PARENTHESIZED NUMBER TEN */ /* Delete the different-length record, and insert the buffered one. */ lock_rec_store_on_page_infimum(block, rec); page_cur_delete_rec(&page_cur, index, offsets, mtr); page_cur_move_to_prev(&page_cur); rec = ibuf_insert_to_index_page_low(entry, block, index, &offsets, heap, mtr, &page_cur); ut_ad(!cmp_dtuple_rec(entry, rec, offsets)); lock_rec_restore_from_page_infimum(block, rec, block); } else { offsets = NULL; ibuf_insert_to_index_page_low(entry, block, index, &offsets, heap, mtr, &page_cur); } updated_in_place: mem_heap_free(heap); DBUG_VOID_RETURN; } /****************************************************************//** During merge, sets the delete mark on a record for a secondary index entry. */ static void ibuf_set_del_mark( /*==============*/ const dtuple_t* entry, /*!< in: entry */ buf_block_t* block, /*!< in/out: block */ const dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t page_cur; ulint low_match; ut_ad(ibuf_inside(mtr)); ut_ad(dtuple_check_typed(entry)); low_match = page_cur_search(block, index, entry, &page_cur); if (low_match == dtuple_get_n_fields(entry)) { rec_t* rec; page_zip_des_t* page_zip; rec = page_cur_get_rec(&page_cur); page_zip = page_cur_get_page_zip(&page_cur); /* Delete mark the old index record. According to a comment in row_upd_sec_index_entry(), it can already have been delete marked if a lock wait occurred in row_ins_sec_index_entry() in a previous invocation of row_upd_sec_index_entry(). */ if (UNIV_LIKELY (!rec_get_deleted_flag( rec, dict_table_is_comp(index->table)))) { btr_cur_set_deleted_flag_for_ibuf(rec, page_zip, TRUE, mtr); } } else { const page_t* page = page_cur_get_page(&page_cur); const buf_block_t* block = page_cur_get_block(&page_cur); ib::error() << "Unable to find a record to delete-mark"; fputs("InnoDB: tuple ", stderr); dtuple_print(stderr, entry); fputs("\n" "InnoDB: record ", stderr); rec_print(stderr, page_cur_get_rec(&page_cur), index); ib::error() << "page " << block->page.id << " (" << page_get_n_recs(page) << " records, index id " << btr_page_get_index_id(page) << ")."; ib::error() << BUG_REPORT_MSG; ut_ad(0); } } /****************************************************************//** During merge, delete a record for a secondary index entry. */ static void ibuf_delete( /*========*/ const dtuple_t* entry, /*!< in: entry */ buf_block_t* block, /*!< in/out: block */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in/out: mtr; must be committed before latching any further pages */ { page_cur_t page_cur; ulint low_match; ut_ad(ibuf_inside(mtr)); ut_ad(dtuple_check_typed(entry)); ut_ad(!dict_index_is_spatial(index)); low_match = page_cur_search(block, index, entry, &page_cur); if (low_match == dtuple_get_n_fields(entry)) { page_zip_des_t* page_zip= buf_block_get_page_zip(block); page_t* page = buf_block_get_frame(block); rec_t* rec = page_cur_get_rec(&page_cur); /* TODO: the below should probably be a separate function, it's a bastardized version of btr_cur_optimistic_delete. */ ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; mem_heap_t* heap = NULL; ulint max_ins_size = 0; rec_offs_init(offsets_); offsets = rec_get_offsets( rec, index, offsets, ULINT_UNDEFINED, &heap); if (page_get_n_recs(page) <= 1 || !(REC_INFO_DELETED_FLAG & rec_get_info_bits(rec, page_is_comp(page)))) { /* Refuse to purge the last record or a record that has not been marked for deletion. */ ib::error() << "Unable to purge a record"; fputs("InnoDB: tuple ", stderr); dtuple_print(stderr, entry); fputs("\n" "InnoDB: record ", stderr); rec_print_new(stderr, rec, offsets); fprintf(stderr, "\nspace " UINT32PF " offset " UINT32PF " (%u records, index id %llu)\n" "InnoDB: Submit a detailed bug report" " to http://bugs.mysql.com\n", block->page.id.space(), block->page.id.page_no(), (unsigned) page_get_n_recs(page), (ulonglong) btr_page_get_index_id(page)); ut_ad(0); return; } lock_update_delete(block, rec); if (!page_zip) { max_ins_size = page_get_max_insert_size_after_reorganize( page, 1); } #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ page_cur_delete_rec(&page_cur, index, offsets, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ if (page_zip) { ibuf_update_free_bits_zip(block, mtr); } else { ibuf_update_free_bits_low(block, max_ins_size, mtr); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } else { /* The record must have been purged already. */ } } /*********************************************************************//** Restores insert buffer tree cursor position @return TRUE if the position was restored; FALSE if not */ static MY_ATTRIBUTE((nonnull)) ibool ibuf_restore_pos( /*=============*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number where the record should belong */ const dtuple_t* search_tuple, /*!< in: search tuple for entries of page_no */ ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE */ btr_pcur_t* pcur, /*!< in/out: persistent cursor whose position is to be restored */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(mode == BTR_MODIFY_LEAF || BTR_LATCH_MODE_WITHOUT_INTENTION(mode) == BTR_MODIFY_TREE); if (btr_pcur_restore_position(mode, pcur, mtr)) { return(TRUE); } if (fil_space_get_flags(space) == ULINT_UNDEFINED) { /* The tablespace has been dropped. It is possible that another thread has deleted the insert buffer entry. Do not complain. */ ibuf_btr_pcur_commit_specify_mtr(pcur, mtr); } else { ib::error() << "ibuf cursor restoration fails!." " ibuf record inserted to page " << space << ":" << page_no; ib::error() << BUG_REPORT_MSG; rec_print_old(stderr, btr_pcur_get_rec(pcur)); rec_print_old(stderr, pcur->old_rec); dtuple_print(stderr, search_tuple); rec_print_old(stderr, page_rec_get_next(btr_pcur_get_rec(pcur))); ib::fatal() << "Failed to restore ibuf position."; } return(FALSE); } /*********************************************************************//** Deletes from ibuf the record on which pcur is positioned. If we have to resort to a pessimistic delete, this function commits mtr and closes the cursor. @return TRUE if mtr was committed and pcur closed in this operation */ static MY_ATTRIBUTE((warn_unused_result)) ibool ibuf_delete_rec( /*============*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number that the record should belong to */ btr_pcur_t* pcur, /*!< in: pcur positioned on the record to delete, having latch mode BTR_MODIFY_LEAF */ const dtuple_t* search_tuple, /*!< in: search tuple for entries of page_no */ mtr_t* mtr) /*!< in: mtr */ { ibool success; page_t* root; dberr_t err; ut_ad(ibuf_inside(mtr)); ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur))); ut_ad(ibuf_rec_get_page_no(mtr, btr_pcur_get_rec(pcur)) == page_no); ut_ad(ibuf_rec_get_space(mtr, btr_pcur_get_rec(pcur)) == space); #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG if (ibuf_debug == 2) { /* Inject a fault (crash). We do this before trying optimistic delete, because a pessimistic delete in the change buffer would require a larger test case. */ /* Flag the buffered record as processed, to avoid an assertion failure after crash recovery. */ btr_cur_set_deleted_flag_for_ibuf( btr_pcur_get_rec(pcur), NULL, TRUE, mtr); ibuf_mtr_commit(mtr); log_write_up_to(LSN_MAX, true); DBUG_SUICIDE(); } #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ success = btr_cur_optimistic_delete(btr_pcur_get_btr_cur(pcur), 0, mtr); const page_id_t page_id(space, page_no); if (success) { if (page_is_empty(btr_pcur_get_page(pcur))) { /* If a B-tree page is empty, it must be the root page and the whole B-tree must be empty. InnoDB does not allow empty B-tree pages other than the root. */ root = btr_pcur_get_page(pcur); ut_ad(page_get_space_id(root) == IBUF_SPACE_ID); ut_ad(page_get_page_no(root) == FSP_IBUF_TREE_ROOT_PAGE_NO); /* ibuf->empty is protected by the root page latch. Before the deletion, it had to be FALSE. */ ut_ad(!ibuf->empty); ibuf->empty = true; } #ifdef UNIV_IBUF_COUNT_DEBUG ib::info() << "Decrementing ibuf count of space " << space << " page " << page_no << " from " << ibuf_count_get(page_id) << " by 1"; ibuf_count_set(page_id, ibuf_count_get(page_id) - 1); #endif /* UNIV_IBUF_COUNT_DEBUG */ return(FALSE); } ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur))); ut_ad(ibuf_rec_get_page_no(mtr, btr_pcur_get_rec(pcur)) == page_no); ut_ad(ibuf_rec_get_space(mtr, btr_pcur_get_rec(pcur)) == space); /* We have to resort to a pessimistic delete from ibuf. Delete-mark the record so that it will not be applied again, in case the server crashes before the pessimistic delete is made persistent. */ btr_cur_set_deleted_flag_for_ibuf( btr_pcur_get_rec(pcur), NULL, TRUE, mtr); btr_pcur_store_position(pcur, mtr); ibuf_btr_pcur_commit_specify_mtr(pcur, mtr); ibuf_mtr_start(mtr); mutex_enter(&ibuf_mutex); if (!ibuf_restore_pos(space, page_no, search_tuple, BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE, pcur, mtr)) { mutex_exit(&ibuf_mutex); ut_ad(mtr->has_committed()); goto func_exit; } root = ibuf_tree_root_get(mtr); btr_cur_pessimistic_delete(&err, TRUE, btr_pcur_get_btr_cur(pcur), 0, false, mtr); ut_a(err == DB_SUCCESS); #ifdef UNIV_IBUF_COUNT_DEBUG ibuf_count_set(page_id, ibuf_count_get(page_id) - 1); #endif /* UNIV_IBUF_COUNT_DEBUG */ ibuf_size_update(root); mutex_exit(&ibuf_mutex); ibuf->empty = page_is_empty(root); ibuf_btr_pcur_commit_specify_mtr(pcur, mtr); func_exit: ut_ad(mtr->has_committed()); btr_pcur_close(pcur); return(TRUE); } /** When an index page is read from a disk to the buffer pool, this function applies any buffered operations to the page and deletes the entries from the insert buffer. If the page is not read, but created in the buffer pool, this function deletes its buffered entries from the insert buffer; there can exist entries for such a page if the page belonged to an index which subsequently was dropped. @param[in,out] block if page has been read from disk, pointer to the page x-latched, else NULL @param[in] page_id page id of the index page @param[in] update_ibuf_bitmap normally this is set to TRUE, but if we have deleted or are deleting the tablespace, then we naturally do not want to update a non-existent bitmap page */ void ibuf_merge_or_delete_for_page( buf_block_t* block, const page_id_t& page_id, const page_size_t* page_size, ibool update_ibuf_bitmap) { mem_heap_t* heap; btr_pcur_t pcur; dtuple_t* search_tuple; #ifdef UNIV_IBUF_DEBUG ulint volume = 0; #endif /* UNIV_IBUF_DEBUG */ page_zip_des_t* page_zip = NULL; bool corruption_noticed = false; mtr_t mtr; /* Counts for merged & discarded operations. */ ulint mops[IBUF_OP_COUNT]; ulint dops[IBUF_OP_COUNT]; ut_ad(block == NULL || page_id.equals_to(block->page.id)); ut_ad(block == NULL || buf_block_get_io_fix(block) == BUF_IO_READ); if (srv_force_recovery >= SRV_FORCE_NO_IBUF_MERGE || trx_sys_hdr_page(page_id) || fsp_is_system_temporary(page_id.space())) { return; } /* We cannot refer to page_size in the following, because it is passed as NULL (it is unknown) when buf_read_ibuf_merge_pages() is merging (discarding) changes for a dropped tablespace. When block != NULL or update_ibuf_bitmap is specified, then page_size must be known. That is why we will repeat the check below, with page_size in place of univ_page_size. Passing univ_page_size assumes that the uncompressed page size always is a power-of-2 multiple of the compressed page size. */ if (ibuf_fixed_addr_page(page_id, univ_page_size) || fsp_descr_page(page_id, univ_page_size)) { return; } fil_space_t* space; if (update_ibuf_bitmap) { ut_ad(page_size != NULL); if (ibuf_fixed_addr_page(page_id, *page_size) || fsp_descr_page(page_id, *page_size)) { return; } space = fil_space_acquire(page_id.space()); if (UNIV_UNLIKELY(!space)) { /* Do not try to read the bitmap page from the non-existent tablespace, delete the ibuf records */ block = NULL; update_ibuf_bitmap = FALSE; } else { page_t* bitmap_page = NULL; ulint bitmap_bits = 0; ibuf_mtr_start(&mtr); bitmap_page = ibuf_bitmap_get_map_page( page_id, *page_size, &mtr); if (bitmap_page && fil_page_get_type(bitmap_page) != FIL_PAGE_TYPE_ALLOCATED) { bitmap_bits = ibuf_bitmap_page_get_bits( bitmap_page, page_id, *page_size, IBUF_BITMAP_BUFFERED, &mtr); } ibuf_mtr_commit(&mtr); if (!bitmap_bits) { /* No inserts buffered for this page */ fil_space_release(space); return; } } } else if (block != NULL && (ibuf_fixed_addr_page(page_id, *page_size) || fsp_descr_page(page_id, *page_size))) { return; } else { space = NULL; } heap = mem_heap_create(512); search_tuple = ibuf_search_tuple_build( page_id.space(), page_id.page_no(), heap); if (block != NULL) { /* Move the ownership of the x-latch on the page to this OS thread, so that we can acquire a second x-latch on it. This is needed for the insert operations to the index page to pass the debug checks. */ rw_lock_x_lock_move_ownership(&(block->lock)); page_zip = buf_block_get_page_zip(block); if (!fil_page_index_page_check(block->frame) || !page_is_leaf(block->frame)) { corruption_noticed = true; ib::error() << "Corruption in the tablespace. Bitmap" " shows insert buffer records to page " << page_id << " though the page type is " << fil_page_get_type(block->frame) << ", which is not an index leaf page. We try" " to resolve the problem by skipping the" " insert buffer merge for this page. Please" " run CHECK TABLE on your tables to determine" " if they are corrupt after this."; ut_ad(0); } } memset(mops, 0, sizeof(mops)); memset(dops, 0, sizeof(dops)); loop: ibuf_mtr_start(&mtr); /* Position pcur in the insert buffer at the first entry for this index page */ btr_pcur_open_on_user_rec( ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF, &pcur, &mtr); if (block != NULL) { ibool success; mtr.set_named_space(page_id.space()); success = buf_page_get_known_nowait( RW_X_LATCH, block, BUF_KEEP_OLD, __FILE__, __LINE__, &mtr); ut_a(success); /* This is a user page (secondary index leaf page), but we pretend that it is a change buffer page in order to obey the latching order. This should be OK, because buffered changes are applied immediately while the block is io-fixed. Other threads must not try to latch an io-fixed block. */ buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE); } else if (update_ibuf_bitmap) { mtr.set_named_space(page_id.space()); } if (!btr_pcur_is_on_user_rec(&pcur)) { ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr)); goto reset_bit; } for (;;) { rec_t* rec; ut_ad(btr_pcur_is_on_user_rec(&pcur)); rec = btr_pcur_get_rec(&pcur); /* Check if the entry is for this index page */ if (ibuf_rec_get_page_no(&mtr, rec) != page_id.page_no() || ibuf_rec_get_space(&mtr, rec) != page_id.space()) { if (block != NULL) { page_header_reset_last_insert( block->frame, page_zip, &mtr); } goto reset_bit; } if (corruption_noticed) { fputs("InnoDB: Discarding record\n ", stderr); rec_print_old(stderr, rec); fputs("\nInnoDB: from the insert buffer!\n\n", stderr); } else if (block != NULL && !rec_get_deleted_flag(rec, 0)) { /* Now we have at pcur a record which should be applied on the index page; NOTE that the call below copies pointers to fields in rec, and we must keep the latch to the rec page until the insertion is finished! */ dtuple_t* entry; trx_id_t max_trx_id; dict_index_t* dummy_index; ibuf_op_t op = ibuf_rec_get_op_type(&mtr, rec); max_trx_id = page_get_max_trx_id(page_align(rec)); page_update_max_trx_id(block, page_zip, max_trx_id, &mtr); ut_ad(page_validate(page_align(rec), ibuf->index)); entry = ibuf_build_entry_from_ibuf_rec( &mtr, rec, heap, &dummy_index); ut_ad(page_validate(block->frame, dummy_index)); switch (op) { ibool success; case IBUF_OP_INSERT: #ifdef UNIV_IBUF_DEBUG volume += rec_get_converted_size( dummy_index, entry, 0); volume += page_dir_calc_reserved_space(1); ut_a(volume <= 4 * UNIV_PAGE_SIZE / IBUF_PAGE_SIZE_PER_FREE_SPACE); #endif ibuf_insert_to_index_page( entry, block, dummy_index, &mtr); break; case IBUF_OP_DELETE_MARK: ibuf_set_del_mark( entry, block, dummy_index, &mtr); break; case IBUF_OP_DELETE: ibuf_delete(entry, block, dummy_index, &mtr); /* Because ibuf_delete() will latch an insert buffer bitmap page, commit mtr before latching any further pages. Store and restore the cursor position. */ ut_ad(rec == btr_pcur_get_rec(&pcur)); ut_ad(page_rec_is_user_rec(rec)); ut_ad(ibuf_rec_get_page_no(&mtr, rec) == page_id.page_no()); ut_ad(ibuf_rec_get_space(&mtr, rec) == page_id.space()); /* Mark the change buffer record processed, so that it will not be merged again in case the server crashes between the following mtr_commit() and the subsequent mtr_commit() of deleting the change buffer record. */ btr_cur_set_deleted_flag_for_ibuf( btr_pcur_get_rec(&pcur), NULL, TRUE, &mtr); btr_pcur_store_position(&pcur, &mtr); ibuf_btr_pcur_commit_specify_mtr(&pcur, &mtr); ibuf_mtr_start(&mtr); mtr.set_named_space(page_id.space()); success = buf_page_get_known_nowait( RW_X_LATCH, block, BUF_KEEP_OLD, __FILE__, __LINE__, &mtr); ut_a(success); /* This is a user page (secondary index leaf page), but it should be OK to use too low latching order for it, as the block is io-fixed. */ buf_block_dbg_add_level( block, SYNC_IBUF_TREE_NODE); if (!ibuf_restore_pos(page_id.space(), page_id.page_no(), search_tuple, BTR_MODIFY_LEAF, &pcur, &mtr)) { ut_ad(mtr.has_committed()); mops[op]++; ibuf_dummy_index_free(dummy_index); goto loop; } break; default: ut_error; } mops[op]++; ibuf_dummy_index_free(dummy_index); } else { dops[ibuf_rec_get_op_type(&mtr, rec)]++; } /* Delete the record from ibuf */ if (ibuf_delete_rec(page_id.space(), page_id.page_no(), &pcur, search_tuple, &mtr)) { /* Deletion was pessimistic and mtr was committed: we start from the beginning again */ ut_ad(mtr.has_committed()); goto loop; } else if (btr_pcur_is_after_last_on_page(&pcur)) { ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); goto loop; } } reset_bit: if (update_ibuf_bitmap) { page_t* bitmap_page; bitmap_page = ibuf_bitmap_get_map_page(page_id, *page_size, &mtr); ibuf_bitmap_page_set_bits( bitmap_page, page_id, *page_size, IBUF_BITMAP_BUFFERED, FALSE, &mtr); if (block != NULL) { ulint old_bits = ibuf_bitmap_page_get_bits( bitmap_page, page_id, *page_size, IBUF_BITMAP_FREE, &mtr); ulint new_bits = ibuf_index_page_calc_free(block); if (old_bits != new_bits) { ibuf_bitmap_page_set_bits( bitmap_page, page_id, *page_size, IBUF_BITMAP_FREE, new_bits, &mtr); } } } ibuf_mtr_commit(&mtr); if (space) { fil_space_release(space); } btr_pcur_close(&pcur); mem_heap_free(heap); my_atomic_addlint(&ibuf->n_merges, 1); ibuf_add_ops(ibuf->n_merged_ops, mops); ibuf_add_ops(ibuf->n_discarded_ops, dops); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(page_id) == 0); #endif } /*********************************************************************//** Deletes all entries in the insert buffer for a given space id. This is used in DISCARD TABLESPACE, IMPORT TABLESPACE and TRUNCATE TABLESPACE. NOTE: this does not update the page free bitmaps in the space. The space will become CORRUPT when you call this function! */ void ibuf_delete_for_discarded_space( /*============================*/ ulint space) /*!< in: space id */ { mem_heap_t* heap; btr_pcur_t pcur; dtuple_t* search_tuple; const rec_t* ibuf_rec; ulint page_no; mtr_t mtr; /* Counts for discarded operations. */ ulint dops[IBUF_OP_COUNT]; heap = mem_heap_create(512); /* Use page number 0 to build the search tuple so that we get the cursor positioned at the first entry for this space id */ search_tuple = ibuf_search_tuple_build(space, 0, heap); memset(dops, 0, sizeof(dops)); loop: ibuf_mtr_start(&mtr); /* Position pcur in the insert buffer at the first entry for the space */ btr_pcur_open_on_user_rec( ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF, &pcur, &mtr); if (!btr_pcur_is_on_user_rec(&pcur)) { ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr)); goto leave_loop; } for (;;) { ut_ad(btr_pcur_is_on_user_rec(&pcur)); ibuf_rec = btr_pcur_get_rec(&pcur); /* Check if the entry is for this space */ if (ibuf_rec_get_space(&mtr, ibuf_rec) != space) { goto leave_loop; } page_no = ibuf_rec_get_page_no(&mtr, ibuf_rec); dops[ibuf_rec_get_op_type(&mtr, ibuf_rec)]++; /* Delete the record from ibuf */ if (ibuf_delete_rec(space, page_no, &pcur, search_tuple, &mtr)) { /* Deletion was pessimistic and mtr was committed: we start from the beginning again */ ut_ad(mtr.has_committed()); goto loop; } if (btr_pcur_is_after_last_on_page(&pcur)) { ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); goto loop; } } leave_loop: ibuf_mtr_commit(&mtr); btr_pcur_close(&pcur); ibuf_add_ops(ibuf->n_discarded_ops, dops); mem_heap_free(heap); } /******************************************************************//** Looks if the insert buffer is empty. @return true if empty */ bool ibuf_is_empty(void) /*===============*/ { bool is_empty; const page_t* root; mtr_t mtr; ibuf_mtr_start(&mtr); mutex_enter(&ibuf_mutex); root = ibuf_tree_root_get(&mtr); mutex_exit(&ibuf_mutex); is_empty = page_is_empty(root); ut_a(is_empty == ibuf->empty); ibuf_mtr_commit(&mtr); return(is_empty); } /******************************************************************//** Prints info of ibuf. */ void ibuf_print( /*=======*/ FILE* file) /*!< in: file where to print */ { #ifdef UNIV_IBUF_COUNT_DEBUG ulint i; ulint j; #endif mutex_enter(&ibuf_mutex); fprintf(file, "Ibuf: size " ULINTPF ", free list len " ULINTPF "," " seg size " ULINTPF ", " ULINTPF " merges\n", ibuf->size, ibuf->free_list_len, ibuf->seg_size, ibuf->n_merges); fputs("merged operations:\n ", file); ibuf_print_ops(ibuf->n_merged_ops, file); fputs("discarded operations:\n ", file); ibuf_print_ops(ibuf->n_discarded_ops, file); #ifdef UNIV_IBUF_COUNT_DEBUG for (i = 0; i < IBUF_COUNT_N_SPACES; i++) { for (j = 0; j < IBUF_COUNT_N_PAGES; j++) { ulint count = ibuf_count_get(page_id_t(i, j, 0)); if (count > 0) { fprintf(stderr, "Ibuf count for page " ULINTPF ":" ULINTPF "" " is " ULINTPF "\n", i, j, count); } } } #endif /* UNIV_IBUF_COUNT_DEBUG */ mutex_exit(&ibuf_mutex); } /******************************************************************//** Checks the insert buffer bitmaps on IMPORT TABLESPACE. @return DB_SUCCESS or error code */ dberr_t ibuf_check_bitmap_on_import( /*========================*/ const trx_t* trx, /*!< in: transaction */ ulint space_id) /*!< in: tablespace identifier */ { ulint size; ulint page_no; ut_ad(space_id); ut_ad(trx->mysql_thd); bool found; const page_size_t& page_size = fil_space_get_page_size(space_id, &found); if (!found) { return(DB_TABLE_NOT_FOUND); } size = fil_space_get_size(space_id); if (size == 0) { return(DB_TABLE_NOT_FOUND); } mutex_enter(&ibuf_mutex); /* The two bitmap pages (allocation bitmap and ibuf bitmap) repeat every page_size pages. For example if page_size is 16 KiB, then the two bitmap pages repeat every 16 KiB * 16384 = 256 MiB. In the loop below page_no is measured in number of pages since the beginning of the space, as usual. */ for (page_no = 0; page_no < size; page_no += page_size.physical()) { mtr_t mtr; page_t* bitmap_page; ulint i; if (trx_is_interrupted(trx)) { mutex_exit(&ibuf_mutex); return(DB_INTERRUPTED); } mtr_start(&mtr); mtr_set_log_mode(&mtr, MTR_LOG_NO_REDO); ibuf_enter(&mtr); bitmap_page = ibuf_bitmap_get_map_page( page_id_t(space_id, page_no), page_size, &mtr); if (buf_page_is_zeroes(bitmap_page, page_size)) { /* This means we got all-zero page instead of ibuf bitmap page. The subsequent page should be all-zero pages. */ #ifdef UNIV_DEBUG for (ulint curr_page = page_no + 1; curr_page < page_size.physical(); curr_page++) { buf_block_t* block = buf_page_get( page_id_t(space_id, curr_page), page_size, RW_S_LATCH, &mtr); page_t* page = buf_block_get_frame(block); ut_ad(buf_page_is_zeroes(page, page_size)); } #endif /* UNIV_DEBUG */ ibuf_exit(&mtr); mtr_commit(&mtr); continue; } for (i = FSP_IBUF_BITMAP_OFFSET + 1; i < page_size.physical(); i++) { const ulint offset = page_no + i; const page_id_t cur_page_id(space_id, offset); if (ibuf_bitmap_page_get_bits( bitmap_page, cur_page_id, page_size, IBUF_BITMAP_IBUF, &mtr)) { mutex_exit(&ibuf_mutex); ibuf_exit(&mtr); mtr_commit(&mtr); ib_errf(trx->mysql_thd, IB_LOG_LEVEL_ERROR, ER_INNODB_INDEX_CORRUPT, "Space %u page %u" " is wrongly flagged to belong to the" " insert buffer", (unsigned) space_id, (unsigned) offset); return(DB_CORRUPTION); } if (ibuf_bitmap_page_get_bits( bitmap_page, cur_page_id, page_size, IBUF_BITMAP_BUFFERED, &mtr)) { ib_errf(trx->mysql_thd, IB_LOG_LEVEL_WARN, ER_INNODB_INDEX_CORRUPT, "Buffered changes" " for space %u page %u are lost", (unsigned) space_id, (unsigned) offset); /* Tolerate this error, so that slightly corrupted tables can be imported and dumped. Clear the bit. */ ibuf_bitmap_page_set_bits( bitmap_page, cur_page_id, page_size, IBUF_BITMAP_BUFFERED, FALSE, &mtr); } } ibuf_exit(&mtr); mtr_commit(&mtr); } mutex_exit(&ibuf_mutex); return(DB_SUCCESS); } /** Updates free bits and buffered bits for bulk loaded page. @param[in] block index page @param[in] reset flag if reset free val */ void ibuf_set_bitmap_for_bulk_load( buf_block_t* block, bool reset) { page_t* bitmap_page; mtr_t mtr; ulint free_val; ut_a(page_is_leaf(buf_block_get_frame(block))); free_val = ibuf_index_page_calc_free(block); mtr_start(&mtr); mtr.set_named_space(block->page.id.space()); bitmap_page = ibuf_bitmap_get_map_page(block->page.id, block->page.size, &mtr); free_val = reset ? 0 : ibuf_index_page_calc_free(block); ibuf_bitmap_page_set_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_FREE, free_val, &mtr); ibuf_bitmap_page_set_bits( bitmap_page, block->page.id, block->page.size, IBUF_BITMAP_BUFFERED, FALSE, &mtr); mtr_commit(&mtr); }