/***************************************************************************** Copyright (c) 1995, 2015, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2015, 2021, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/buf0rea.h The database buffer read Created 11/5/1995 Heikki Tuuri *******************************************************/ #ifndef buf0rea_h #define buf0rea_h #include "buf0buf.h" /** High-level function which reads a page asynchronously from a file to the buffer buf_pool if it is not already there. Sets the io_fix flag and sets an exclusive lock on the buffer frame. The flag is cleared and the x-lock released by the i/o-handler thread. @param page_id page id @param zip_size ROW_FORMAT=COMPRESSED page size, or 0 @retval DB_SUCCESS if the page was read and is not corrupted @retval DB_SUCCESS_LOCKED_REC if the page was not read @retval DB_PAGE_CORRUPTED if page based on checksum check is corrupted @retval DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. @retval DB_TABLESPACE_DELETED if tablespace .ibd file is missing */ dberr_t buf_read_page(const page_id_t page_id, ulint zip_size); /** High-level function which reads a page asynchronously from a file to the buffer buf_pool if it is not already there. Sets the io_fix flag and sets an exclusive lock on the buffer frame. The flag is cleared and the x-lock released by the i/o-handler thread. @param[in,out] space tablespace @param[in] page_id page id @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 */ void buf_read_page_background(fil_space_t *space, const page_id_t page_id, ulint zip_size) MY_ATTRIBUTE((nonnull)); /** Applies a random read-ahead in buf_pool if there are at least a threshold value of accessed pages from the random read-ahead area. Does not read any page, not even the one at the position (space, offset), if the read-ahead mechanism is not activated. NOTE 1: the calling thread may own latches on pages: to avoid deadlocks this function must be written such that it cannot end up waiting for these latches! NOTE 2: the calling thread must want access to the page given: this rule is set to prevent unintended read-aheads performed by ibuf routines, a situation which could result in a deadlock if the OS does not support asynchronous i/o. @param[in] page_id page id of a page which the current thread wants to access @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] ibuf whether we are inside ibuf routine @return number of page read requests issued; NOTE that if we read ibuf pages, it may happen that the page at the given page number does not get read even if we return a positive value! */ ulint buf_read_ahead_random(const page_id_t page_id, ulint zip_size, bool ibuf); /** Applies linear read-ahead if in the buf_pool the page is a border page of a linear read-ahead area and all the pages in the area have been accessed. Does not read any page if the read-ahead mechanism is not activated. Note that the algorithm looks at the 'natural' adjacent successor and predecessor of the page, which on the leaf level of a B-tree are the next and previous page in the chain of leaves. To know these, the page specified in (space, offset) must already be present in the buf_pool. Thus, the natural way to use this function is to call it when a page in the buf_pool is accessed the first time, calling this function just after it has been bufferfixed. NOTE 1: as this function looks at the natural predecessor and successor fields on the page, what happens, if these are not initialized to any sensible value? No problem, before applying read-ahead we check that the area to read is within the span of the space, if not, read-ahead is not applied. An uninitialized value may result in a useless read operation, but only very improbably. NOTE 2: the calling thread may own latches on pages: to avoid deadlocks this function must be written such that it cannot end up waiting for these latches! NOTE 3: the calling thread must want access to the page given: this rule is set to prevent unintended read-aheads performed by ibuf routines, a situation which could result in a deadlock if the OS does not support asynchronous io. @param[in] page_id page id; see NOTE 3 above @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] ibuf whether if we are inside ibuf routine @return number of page read requests issued */ ulint buf_read_ahead_linear(const page_id_t page_id, ulint zip_size, bool ibuf); /** Issues read requests for pages which recovery wants to read in. @param[in] space_id tablespace id @param[in] page_nos array of page numbers to read, with the highest page number the last in the array @param[in] n number of page numbers in the array */ void buf_read_recv_pages(ulint space_id, const uint32_t* page_nos, ulint n); /** @name Modes used in read-ahead @{ */ /** read only pages belonging to the insert buffer tree */ #define BUF_READ_IBUF_PAGES_ONLY 131 /** read any page */ #define BUF_READ_ANY_PAGE 132 /* @} */ #endif