/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. Copyright (c) 2015, 2018, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/dict0mem.h Data dictionary memory object creation Created 1/8/1996 Heikki Tuuri *******************************************************/ #ifndef dict0mem_h #define dict0mem_h #include "univ.i" #include "dict0types.h" #include "data0type.h" #include "mem0mem.h" #include "row0types.h" #include "rem0types.h" #include "btr0types.h" #ifndef UNIV_HOTBACKUP # include "lock0types.h" # include "que0types.h" # include "sync0rw.h" #endif /* !UNIV_HOTBACKUP */ #include "ut0mem.h" #include "ut0lst.h" #include "ut0rnd.h" #include "ut0byte.h" #include "hash0hash.h" #include "trx0types.h" #include "fts0fts.h" #include "os0once.h" #include #include #include #include /* Forward declaration. */ struct ib_rbt_t; /** Type flags of an index: OR'ing of the flags is allowed to define a combination of types */ /* @{ */ #define DICT_CLUSTERED 1 /*!< clustered index */ #define DICT_UNIQUE 2 /*!< unique index */ #define DICT_UNIVERSAL 4 /*!< index which can contain records from any other index */ #define DICT_IBUF 8 /*!< insert buffer tree */ #define DICT_CORRUPT 16 /*!< bit to store the corrupted flag in SYS_INDEXES.TYPE */ #define DICT_FTS 32 /* FTS index; can't be combined with the other flags */ #define DICT_IT_BITS 6 /*!< number of bits used for SYS_INDEXES.TYPE */ /* @} */ #if 0 /* not implemented, retained for history */ /** Types for a table object */ #define DICT_TABLE_ORDINARY 1 /*!< ordinary table */ #define DICT_TABLE_CLUSTER_MEMBER 2 #define DICT_TABLE_CLUSTER 3 /* this means that the table is really a cluster definition */ #endif /* Table and tablespace flags are generally not used for the Antelope file format except for the low order bit, which is used differently depending on where the flags are stored. ==================== Low order flags bit ========================= | REDUNDANT | COMPACT | COMPRESSED and DYNAMIC SYS_TABLES.TYPE | 1 | 1 | 1 dict_table_t::flags | 0 | 1 | 1 FSP_SPACE_FLAGS | 0 | 0 | 1 fil_space_t::flags | 0 | 0 | 1 Before the 5.1 plugin, SYS_TABLES.TYPE was always DICT_TABLE_ORDINARY (1) and the tablespace flags field was always 0. In the 5.1 plugin, these fields were repurposed to identify compressed and dynamic row formats. The following types and constants describe the flags found in dict_table_t and SYS_TABLES.TYPE. Similar flags found in fil_space_t and FSP_SPACE_FLAGS are described in fsp0fsp.h. */ /* @{ */ /** dict_table_t::flags bit 0 is equal to 0 if the row format = Redundant */ #define DICT_TF_REDUNDANT 0 /*!< Redundant row format. */ /** dict_table_t::flags bit 0 is equal to 1 if the row format = Compact */ #define DICT_TF_COMPACT 1 /*!< Compact row format. */ /** This bitmask is used in SYS_TABLES.N_COLS to set and test whether the Compact page format is used, i.e ROW_FORMAT != REDUNDANT */ #define DICT_N_COLS_COMPACT 0x80000000UL /** Width of the COMPACT flag */ #define DICT_TF_WIDTH_COMPACT 1 /** Width of the ZIP_SSIZE flag */ #define DICT_TF_WIDTH_ZIP_SSIZE 4 /** Width of the ATOMIC_BLOBS flag. The Antelope file formats broke up BLOB and TEXT fields, storing the first 768 bytes in the clustered index. Brracuda row formats store the whole blob or text field off-page atomically. Secondary indexes are created from this external data using row_ext_t to cache the BLOB prefixes. */ #define DICT_TF_WIDTH_ATOMIC_BLOBS 1 /** If a table is created with the MYSQL option DATA DIRECTORY and innodb-file-per-table, an older engine will not be able to find that table. This flag prevents older engines from attempting to open the table and allows InnoDB to update_create_info() accordingly. */ #define DICT_TF_WIDTH_DATA_DIR 1 /** Width of all the currently known table flags */ #define DICT_TF_BITS (DICT_TF_WIDTH_COMPACT \ + DICT_TF_WIDTH_ZIP_SSIZE \ + DICT_TF_WIDTH_ATOMIC_BLOBS \ + DICT_TF_WIDTH_DATA_DIR) /** A mask of all the known/used bits in table flags */ #define DICT_TF_BIT_MASK (~(~0U << DICT_TF_BITS)) /** Zero relative shift position of the COMPACT field */ #define DICT_TF_POS_COMPACT 0 /** Zero relative shift position of the ZIP_SSIZE field */ #define DICT_TF_POS_ZIP_SSIZE (DICT_TF_POS_COMPACT \ + DICT_TF_WIDTH_COMPACT) /** Zero relative shift position of the ATOMIC_BLOBS field */ #define DICT_TF_POS_ATOMIC_BLOBS (DICT_TF_POS_ZIP_SSIZE \ + DICT_TF_WIDTH_ZIP_SSIZE) /** Zero relative shift position of the DATA_DIR field */ #define DICT_TF_POS_DATA_DIR (DICT_TF_POS_ATOMIC_BLOBS \ + DICT_TF_WIDTH_ATOMIC_BLOBS) /** Zero relative shift position of the start of the UNUSED bits */ #define DICT_TF_POS_UNUSED (DICT_TF_POS_DATA_DIR \ + DICT_TF_WIDTH_DATA_DIR) /** Bit mask of the COMPACT field */ #define DICT_TF_MASK_COMPACT \ ((~(~0U << DICT_TF_WIDTH_COMPACT)) \ << DICT_TF_POS_COMPACT) /** Bit mask of the ZIP_SSIZE field */ #define DICT_TF_MASK_ZIP_SSIZE \ ((~(~0U << DICT_TF_WIDTH_ZIP_SSIZE)) \ << DICT_TF_POS_ZIP_SSIZE) /** Bit mask of the ATOMIC_BLOBS field */ #define DICT_TF_MASK_ATOMIC_BLOBS \ ((~(~0U << DICT_TF_WIDTH_ATOMIC_BLOBS)) \ << DICT_TF_POS_ATOMIC_BLOBS) /** Bit mask of the DATA_DIR field */ #define DICT_TF_MASK_DATA_DIR \ ((~(~0U << DICT_TF_WIDTH_DATA_DIR)) \ << DICT_TF_POS_DATA_DIR) /** Return the value of the COMPACT field */ #define DICT_TF_GET_COMPACT(flags) \ ((flags & DICT_TF_MASK_COMPACT) \ >> DICT_TF_POS_COMPACT) /** Return the value of the ZIP_SSIZE field */ #define DICT_TF_GET_ZIP_SSIZE(flags) \ ((flags & DICT_TF_MASK_ZIP_SSIZE) \ >> DICT_TF_POS_ZIP_SSIZE) /** Return the value of the ATOMIC_BLOBS field */ #define DICT_TF_HAS_ATOMIC_BLOBS(flags) \ ((flags & DICT_TF_MASK_ATOMIC_BLOBS) \ >> DICT_TF_POS_ATOMIC_BLOBS) /** Return the value of the ATOMIC_BLOBS field */ #define DICT_TF_HAS_DATA_DIR(flags) \ ((flags & DICT_TF_MASK_DATA_DIR) \ >> DICT_TF_POS_DATA_DIR) /** Return the contents of the UNUSED bits */ #define DICT_TF_GET_UNUSED(flags) \ (flags >> DICT_TF_POS_UNUSED) /* @} */ /** @brief Table Flags set number 2. These flags will be stored in SYS_TABLES.MIX_LEN. All unused flags will be written as 0. The column may contain garbage for tables created with old versions of InnoDB that only implemented ROW_FORMAT=REDUNDANT. InnoDB engines do not check these flags for unknown bits in order to protect backward incompatibility. */ /* @{ */ /** Total number of bits in table->flags2. */ #define DICT_TF2_BITS 7 #define DICT_TF2_BIT_MASK ~(~0U << DICT_TF2_BITS) /** TEMPORARY; TRUE for tables from CREATE TEMPORARY TABLE. */ #define DICT_TF2_TEMPORARY 1 /** The table has an internal defined DOC ID column */ #define DICT_TF2_FTS_HAS_DOC_ID 2 /** The table has an FTS index */ #define DICT_TF2_FTS 4 /** Need to add Doc ID column for FTS index build. This is a transient bit for index build */ #define DICT_TF2_FTS_ADD_DOC_ID 8 /** This bit is used during table creation to indicate that it will use its own tablespace instead of the system tablespace. */ #define DICT_TF2_USE_TABLESPACE 16 /** Set when we discard/detach the tablespace */ #define DICT_TF2_DISCARDED 32 /** This bit is set if all aux table names (both common tables and index tables) of a FTS table are in HEX format. */ #define DICT_TF2_FTS_AUX_HEX_NAME 64 /* @} */ #define DICT_TF2_FLAG_SET(table, flag) \ (table->flags2 |= (flag)) #define DICT_TF2_FLAG_IS_SET(table, flag) \ (table->flags2 & (flag)) #define DICT_TF2_FLAG_UNSET(table, flag) \ (table->flags2 &= ~(flag)) /** Tables could be chained together with Foreign key constraint. When first load the parent table, we would load all of its descedents. This could result in rescursive calls and out of stack error eventually. DICT_FK_MAX_RECURSIVE_LOAD defines the maximum number of recursive loads, when exceeded, the child table will not be loaded. It will be loaded when the foreign constraint check needs to be run. */ #define DICT_FK_MAX_RECURSIVE_LOAD 20 /** Similarly, when tables are chained together with foreign key constraints with on cascading delete/update clause, delete from parent table could result in recursive cascading calls. This defines the maximum number of such cascading deletes/updates allowed. When exceeded, the delete from parent table will fail, and user has to drop excessive foreign constraint before proceeds. */ #define FK_MAX_CASCADE_DEL 255 /**********************************************************************//** Creates a table memory object. @return own: table object */ UNIV_INTERN dict_table_t* dict_mem_table_create( /*==================*/ const char* name, /*!< in: table name */ ulint space, /*!< in: space where the clustered index of the table is placed */ ulint n_cols, /*!< in: number of columns */ ulint flags, /*!< in: table flags */ ulint flags2); /*!< in: table flags2 */ /**********************************************************************//** Determines if a table belongs to a system database @return */ UNIV_INTERN bool dict_mem_table_is_system( /*==================*/ char *name); /*!< in: table name */ /****************************************************************//** Free a table memory object. */ UNIV_INTERN void dict_mem_table_free( /*================*/ dict_table_t* table); /*!< in: table */ /**********************************************************************//** Adds a column definition to a table. */ UNIV_INTERN void dict_mem_table_add_col( /*===================*/ dict_table_t* table, /*!< in: table */ mem_heap_t* heap, /*!< in: temporary memory heap, or NULL */ const char* name, /*!< in: column name, or NULL */ ulint mtype, /*!< in: main datatype */ ulint prtype, /*!< in: precise type */ ulint len) /*!< in: precision */ MY_ATTRIBUTE((nonnull(1))); /**********************************************************************//** Renames a column of a table in the data dictionary cache. */ UNIV_INTERN void dict_mem_table_col_rename( /*======================*/ dict_table_t* table, /*!< in/out: table */ unsigned nth_col,/*!< in: column index */ const char* from, /*!< in: old column name */ const char* to) /*!< in: new column name */ MY_ATTRIBUTE((nonnull)); /**********************************************************************//** This function populates a dict_col_t memory structure with supplied information. */ UNIV_INTERN void dict_mem_fill_column_struct( /*========================*/ dict_col_t* column, /*!< out: column struct to be filled */ ulint col_pos, /*!< in: column position */ ulint mtype, /*!< in: main data type */ ulint prtype, /*!< in: precise type */ ulint col_len); /*!< in: column length */ /**********************************************************************//** This function poplulates a dict_index_t index memory structure with supplied information. */ UNIV_INLINE void dict_mem_fill_index_struct( /*=======================*/ dict_index_t* index, /*!< out: index to be filled */ mem_heap_t* heap, /*!< in: memory heap */ const char* table_name, /*!< in: table name */ const char* index_name, /*!< in: index name */ ulint space, /*!< in: space where the index tree is placed, ignored if the index is of the clustered type */ ulint type, /*!< in: DICT_UNIQUE, DICT_CLUSTERED, ... ORed */ ulint n_fields); /*!< in: number of fields */ /**********************************************************************//** Creates an index memory object. @return own: index object */ UNIV_INTERN dict_index_t* dict_mem_index_create( /*==================*/ const char* table_name, /*!< in: table name */ const char* index_name, /*!< in: index name */ ulint space, /*!< in: space where the index tree is placed, ignored if the index is of the clustered type */ ulint type, /*!< in: DICT_UNIQUE, DICT_CLUSTERED, ... ORed */ ulint n_fields); /*!< in: number of fields */ /**********************************************************************//** Adds a field definition to an index. NOTE: does not take a copy of the column name if the field is a column. The memory occupied by the column name may be released only after publishing the index. */ UNIV_INTERN void dict_mem_index_add_field( /*=====================*/ dict_index_t* index, /*!< in: index */ const char* name, /*!< in: column name */ ulint prefix_len); /*!< in: 0 or the column prefix length in a MySQL index like INDEX (textcol(25)) */ /**********************************************************************//** Frees an index memory object. */ UNIV_INTERN void dict_mem_index_free( /*================*/ dict_index_t* index); /*!< in: index */ /**********************************************************************//** Creates and initializes a foreign constraint memory object. @return own: foreign constraint struct */ UNIV_INTERN dict_foreign_t* dict_mem_foreign_create(void); /*=========================*/ /**********************************************************************//** Sets the foreign_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, foreign_table_name_lookup will point to foreign_table_name. If 2, then another string is allocated from the heap and set to lower case. */ UNIV_INTERN void dict_mem_foreign_table_name_lookup_set( /*===================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc); /*!< in: is an alloc needed */ /**********************************************************************//** Sets the referenced_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, referenced_table_name_lookup will point to referenced_table_name. If 2, then another string is allocated from the heap and set to lower case. */ UNIV_INTERN void dict_mem_referenced_table_name_lookup_set( /*======================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc); /*!< in: is an alloc needed */ /** Create a temporary tablename like "#sql-ibtid-inc where tid = the Table ID inc = a randomly initialized number that is incremented for each file The table ID is a 64 bit integer, can use up to 20 digits, and is initialized at bootstrap. The second number is 32 bits, can use up to 10 digits, and is initialized at startup to a randomly distributed number. It is hoped that the combination of these two numbers will provide a reasonably unique temporary file name. @param[in] heap A memory heap @param[in] dbtab Table name in the form database/table name @param[in] id Table id @return A unique temporary tablename suitable for InnoDB use */ UNIV_INTERN char* dict_mem_create_temporary_tablename( mem_heap_t* heap, const char* dbtab, table_id_t id); /** Initialize dict memory variables */ void dict_mem_init(void); /** Data structure for a column in a table */ struct dict_col_t{ /*----------------------*/ /** The following are copied from dtype_t, so that all bit-fields can be packed tightly. */ /* @{ */ unsigned prtype:32; /*!< precise type; MySQL data type, charset code, flags to indicate nullability, signedness, whether this is a binary string, whether this is a true VARCHAR where MySQL uses 2 bytes to store the length */ unsigned mtype:8; /*!< main data type */ /* the remaining fields do not affect alphabetical ordering: */ unsigned len:16; /*!< length; for MySQL data this is field->pack_length(), except that for a >= 5.0.3 type true VARCHAR this is the maximum byte length of the string data (in addition to the string, MySQL uses 1 or 2 bytes to store the string length) */ unsigned mbminlen:3; /*!< minimum length of a character, in bytes */ unsigned mbmaxlen:3; /*!< maximum length of a character, in bytes */ /*----------------------*/ /* End of definitions copied from dtype_t */ /* @} */ unsigned ind:10; /*!< table column position (starting from 0) */ unsigned ord_part:1; /*!< nonzero if this column appears in the ordering fields of an index */ unsigned max_prefix:12; /*!< maximum index prefix length on this column. Our current max limit is 3072 for Barracuda table */ }; /** @brief DICT_ANTELOPE_MAX_INDEX_COL_LEN is measured in bytes and is the maximum indexed column length (or indexed prefix length) in ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. Also, in any format, any fixed-length field that is longer than this will be encoded as a variable-length field. It is set to 3*256, so that one can create a column prefix index on 256 characters of a TEXT or VARCHAR column also in the UTF-8 charset. In that charset, a character may take at most 3 bytes. This constant MUST NOT BE CHANGED, or the compatibility of InnoDB data files would be at risk! */ #define DICT_ANTELOPE_MAX_INDEX_COL_LEN REC_ANTELOPE_MAX_INDEX_COL_LEN /** Find out maximum indexed column length by its table format. For ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, the maximum field length is REC_ANTELOPE_MAX_INDEX_COL_LEN - 1 (767). For Barracuda row formats COMPRESSED and DYNAMIC, the length could be REC_VERSION_56_MAX_INDEX_COL_LEN (3072) bytes */ #define DICT_MAX_FIELD_LEN_BY_FORMAT(table) \ ((dict_table_get_format(table) < UNIV_FORMAT_B) \ ? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) \ : REC_VERSION_56_MAX_INDEX_COL_LEN) #define DICT_MAX_FIELD_LEN_BY_FORMAT_FLAG(flags) \ ((DICT_TF_HAS_ATOMIC_BLOBS(flags) < UNIV_FORMAT_B) \ ? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) \ : REC_VERSION_56_MAX_INDEX_COL_LEN) /** Defines the maximum fixed length column size */ #define DICT_MAX_FIXED_COL_LEN DICT_ANTELOPE_MAX_INDEX_COL_LEN #ifdef WITH_WSREP #define WSREP_MAX_SUPPORTED_KEY_LENGTH 3500 #endif /* WITH_WSREP */ /** Data structure for a field in an index */ struct dict_field_t{ dict_col_t* col; /*!< pointer to the table column */ const char* name; /*!< name of the column */ unsigned prefix_len:12; /*!< 0 or the length of the column prefix in bytes in a MySQL index of type, e.g., INDEX (textcol(25)); must be smaller than DICT_MAX_FIELD_LEN_BY_FORMAT; NOTE that in the UTF-8 charset, MySQL sets this to (mbmaxlen * the prefix len) in UTF-8 chars */ unsigned fixed_len:10; /*!< 0 or the fixed length of the column if smaller than DICT_ANTELOPE_MAX_INDEX_COL_LEN */ }; /**********************************************************************//** PADDING HEURISTIC BASED ON LINEAR INCREASE OF PADDING TO AVOID COMPRESSION FAILURES (Note: this is relevant only for compressed indexes) GOAL: Avoid compression failures by maintaining information about the compressibility of data. If data is not very compressible then leave some extra space 'padding' in the uncompressed page making it more likely that compression of less than fully packed uncompressed page will succeed. This padding heuristic works by increasing the pad linearly until the desired failure rate is reached. A "round" is a fixed number of compression operations. After each round, the compression failure rate for that round is computed. If the failure rate is too high, then padding is incremented by a fixed value, otherwise it's left intact. If the compression failure is lower than the desired rate for a fixed number of consecutive rounds, then the padding is decreased by a fixed value. This is done to prevent overshooting the padding value, and to accommodate the possible change in data compressibility. */ /** Number of zip ops in one round. */ #define ZIP_PAD_ROUND_LEN (128) /** Number of successful rounds after which the padding is decreased */ #define ZIP_PAD_SUCCESSFUL_ROUND_LIMIT (5) /** Amount by which padding is increased. */ #define ZIP_PAD_INCR (128) /** Percentage of compression failures that are allowed in a single round */ extern ulong zip_failure_threshold_pct; /** Maximum percentage of a page that can be allowed as a pad to avoid compression failures */ extern ulong zip_pad_max; /** Data structure to hold information about how much space in an uncompressed page should be left as padding to avoid compression failures. This estimate is based on a self-adapting heuristic. */ struct zip_pad_info_t { os_fast_mutex_t* mutex; /*!< mutex protecting the info */ ulint pad; /*!< number of bytes used as pad */ ulint success;/*!< successful compression ops during current round */ ulint failure;/*!< failed compression ops during current round */ ulint n_rounds;/*!< number of currently successful rounds */ volatile os_once::state_t mutex_created; /*!< Creation state of mutex member */ }; /** Data structure for an index. Most fields will be initialized to 0, NULL or FALSE in dict_mem_index_create(). */ struct dict_index_t{ index_id_t id; /*!< id of the index */ mem_heap_t* heap; /*!< memory heap */ const char* name; /*!< index name */ const char* table_name;/*!< table name */ dict_table_t* table; /*!< back pointer to table */ #ifndef UNIV_HOTBACKUP unsigned space:32; /*!< space where the index tree is placed */ unsigned page:32;/*!< index tree root page number */ #endif /* !UNIV_HOTBACKUP */ unsigned type:DICT_IT_BITS; /*!< index type (DICT_CLUSTERED, DICT_UNIQUE, DICT_UNIVERSAL, DICT_IBUF, DICT_CORRUPT) */ #define MAX_KEY_LENGTH_BITS 12 unsigned trx_id_offset:MAX_KEY_LENGTH_BITS; /*!< position of the trx id column in a clustered index record, if the fields before it are known to be of a fixed size, 0 otherwise */ #if (1<mutex. Other changes are protected by index->lock. */ dict_field_t* fields; /*!< array of field descriptions */ bool index_fts_syncing;/*!< Whether the fts index is still syncing in the background */ #ifndef UNIV_HOTBACKUP UT_LIST_NODE_T(dict_index_t) indexes;/*!< list of indexes of the table */ btr_search_t* search_info; /*!< info used in optimistic searches */ row_log_t* online_log; /*!< the log of modifications during online index creation; valid when online_status is ONLINE_INDEX_CREATION */ /*----------------------*/ /** Statistics for query optimization */ /* @{ */ ib_uint64_t* stat_n_diff_key_vals; /*!< approximate number of different key values for this index, for each n-column prefix where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); we periodically calculate new estimates */ ib_uint64_t* stat_n_sample_sizes; /*!< number of pages that were sampled to calculate each of stat_n_diff_key_vals[], e.g. stat_n_sample_sizes[3] pages were sampled to get the number stat_n_diff_key_vals[3]. */ ib_uint64_t* stat_n_non_null_key_vals; /* approximate number of non-null key values for this index, for each column where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); This is used when innodb_stats_method is "nulls_ignored". */ ulint stat_index_size; /*!< approximate index size in database pages */ ulint stat_n_leaf_pages; /*!< approximate number of leaf pages in the index tree */ bool stats_error_printed; /*!< has persistent statistics error printed for this index ? */ /* @} */ rw_lock_t lock; /*!< read-write lock protecting the upper levels of the index tree */ trx_id_t trx_id; /*!< id of the transaction that created this index, or 0 if the index existed when InnoDB was started up */ zip_pad_info_t zip_pad;/*!< Information about state of compression failures and successes */ #endif /* !UNIV_HOTBACKUP */ #ifdef UNIV_BLOB_DEBUG ib_mutex_t blobs_mutex; /*!< mutex protecting blobs */ ib_rbt_t* blobs; /*!< map of (page_no,heap_no,field_no) to first_blob_page_no; protected by blobs_mutex; @see btr_blob_dbg_t */ #endif /* UNIV_BLOB_DEBUG */ #ifdef UNIV_DEBUG ulint magic_n;/*!< magic number */ /** Value of dict_index_t::magic_n */ # define DICT_INDEX_MAGIC_N 76789786 #endif }; /** The status of online index creation */ enum online_index_status { /** the index is complete and ready for access */ ONLINE_INDEX_COMPLETE = 0, /** the index is being created, online (allowing concurrent modifications) */ ONLINE_INDEX_CREATION, /** secondary index creation was aborted and the index should be dropped as soon as index->table->n_ref_count reaches 0, or online table rebuild was aborted and the clustered index of the original table should soon be restored to ONLINE_INDEX_COMPLETE */ ONLINE_INDEX_ABORTED, /** the online index creation was aborted, the index was dropped from the data dictionary and the tablespace, and it should be dropped from the data dictionary cache as soon as index->table->n_ref_count reaches 0. */ ONLINE_INDEX_ABORTED_DROPPED }; /** Data structure for a foreign key constraint; an example: FOREIGN KEY (A, B) REFERENCES TABLE2 (C, D). Most fields will be initialized to 0, NULL or FALSE in dict_mem_foreign_create(). */ struct dict_foreign_t{ mem_heap_t* heap; /*!< this object is allocated from this memory heap */ char* id; /*!< id of the constraint as a null-terminated string */ unsigned n_fields:10; /*!< number of indexes' first fields for which the foreign key constraint is defined: we allow the indexes to contain more fields than mentioned in the constraint, as long as the first fields are as mentioned */ unsigned type:6; /*!< 0 or DICT_FOREIGN_ON_DELETE_CASCADE or DICT_FOREIGN_ON_DELETE_SET_NULL */ char* foreign_table_name;/*!< foreign table name */ char* foreign_table_name_lookup; /*!< foreign table name used for dict lookup */ dict_table_t* foreign_table; /*!< table where the foreign key is */ const char** foreign_col_names;/*!< names of the columns in the foreign key */ char* referenced_table_name;/*!< referenced table name */ char* referenced_table_name_lookup; /*!< referenced table name for dict lookup*/ dict_table_t* referenced_table;/*!< table where the referenced key is */ const char** referenced_col_names;/*!< names of the referenced columns in the referenced table */ dict_index_t* foreign_index; /*!< foreign index; we require that both tables contain explicitly defined indexes for the constraint: InnoDB does not generate new indexes implicitly */ dict_index_t* referenced_index;/*!< referenced index */ }; std::ostream& operator<< (std::ostream& out, const dict_foreign_t& foreign); struct dict_foreign_print { dict_foreign_print(std::ostream& out) : m_out(out) {} void operator()(const dict_foreign_t* foreign) { m_out << *foreign; } private: std::ostream& m_out; }; /** Compare two dict_foreign_t objects using their ids. Used in the ordering of dict_table_t::foreign_set and dict_table_t::referenced_set. It returns true if the first argument is considered to go before the second in the strict weak ordering it defines, and false otherwise. */ struct dict_foreign_compare { bool operator()( const dict_foreign_t* lhs, const dict_foreign_t* rhs) const { return(ut_strcmp(lhs->id, rhs->id) < 0); } }; /** A function object to find a foreign key with the given index as the referenced index. Return the foreign key with matching criteria or NULL */ struct dict_foreign_with_index { dict_foreign_with_index(const dict_index_t* index) : m_index(index) {} bool operator()(const dict_foreign_t* foreign) const { return(foreign->referenced_index == m_index); } const dict_index_t* m_index; }; /* A function object to check if the foreign constraint is between different tables. Returns true if foreign key constraint is between different tables, false otherwise. */ struct dict_foreign_different_tables { bool operator()(const dict_foreign_t* foreign) const { return(foreign->foreign_table != foreign->referenced_table); } }; /** A function object to check if the foreign key constraint has the same name as given. If the full name of the foreign key constraint doesn't match, then, check if removing the database name from the foreign key constraint matches. Return true if it matches, false otherwise. */ struct dict_foreign_matches_id { dict_foreign_matches_id(const char* id) : m_id(id) {} bool operator()(const dict_foreign_t* foreign) const { if (0 == innobase_strcasecmp(foreign->id, m_id)) { return(true); } if (const char* pos = strchr(foreign->id, '/')) { if (0 == innobase_strcasecmp(m_id, pos + 1)) { return(true); } } return(false); } const char* m_id; }; typedef std::set dict_foreign_set; std::ostream& operator<< (std::ostream& out, const dict_foreign_set& fk_set); /** Function object to check if a foreign key object is there in the given foreign key set or not. It returns true if the foreign key is not found, false otherwise */ struct dict_foreign_not_exists { dict_foreign_not_exists(const dict_foreign_set& obj_) : m_foreigns(obj_) {} /* Return true if the given foreign key is not found */ bool operator()(dict_foreign_t* const & foreign) const { return(m_foreigns.find(foreign) == m_foreigns.end()); } private: const dict_foreign_set& m_foreigns; }; /** Validate the search order in the foreign key set. @param[in] fk_set the foreign key set to be validated @return true if search order is fine in the set, false otherwise. */ bool dict_foreign_set_validate( const dict_foreign_set& fk_set); /** Validate the search order in the foreign key sets of the table (foreign_set and referenced_set). @param[in] table table whose foreign key sets are to be validated @return true if foreign key sets are fine, false otherwise. */ bool dict_foreign_set_validate( const dict_table_t& table); /*********************************************************************//** Frees a foreign key struct. */ inline void dict_foreign_free( /*==============*/ dict_foreign_t* foreign) /*!< in, own: foreign key struct */ { mem_heap_free(foreign->heap); } /** The destructor will free all the foreign key constraints in the set by calling dict_foreign_free() on each of the foreign key constraints. This is used to free the allocated memory when a local set goes out of scope. */ struct dict_foreign_set_free { dict_foreign_set_free(const dict_foreign_set& foreign_set) : m_foreign_set(foreign_set) {} ~dict_foreign_set_free() { std::for_each(m_foreign_set.begin(), m_foreign_set.end(), dict_foreign_free); } const dict_foreign_set& m_foreign_set; }; /** The flags for ON_UPDATE and ON_DELETE can be ORed; the default is that a foreign key constraint is enforced, therefore RESTRICT just means no flag */ /* @{ */ #define DICT_FOREIGN_ON_DELETE_CASCADE 1 /*!< ON DELETE CASCADE */ #define DICT_FOREIGN_ON_DELETE_SET_NULL 2 /*!< ON UPDATE SET NULL */ #define DICT_FOREIGN_ON_UPDATE_CASCADE 4 /*!< ON DELETE CASCADE */ #define DICT_FOREIGN_ON_UPDATE_SET_NULL 8 /*!< ON UPDATE SET NULL */ #define DICT_FOREIGN_ON_DELETE_NO_ACTION 16 /*!< ON DELETE NO ACTION */ #define DICT_FOREIGN_ON_UPDATE_NO_ACTION 32 /*!< ON UPDATE NO ACTION */ /* @} */ /* This flag is for sync SQL DDL and memcached DML. if table->memcached_sync_count == DICT_TABLE_IN_DDL means there's DDL running on the table, DML from memcached will be blocked. */ #define DICT_TABLE_IN_DDL -1 /** These are used when MySQL FRM and InnoDB data dictionary are in inconsistent state. */ typedef enum { DICT_FRM_CONSISTENT = 0, /*!< Consistent state */ DICT_FRM_NO_PK = 1, /*!< MySQL has no primary key but InnoDB dictionary has non-generated one. */ DICT_NO_PK_FRM_HAS = 2, /*!< MySQL has primary key but InnoDB dictionary has not. */ DICT_FRM_INCONSISTENT_KEYS = 3 /*!< Key count mismatch */ } dict_frm_t; /** Data structure for a database table. Most fields will be initialized to 0, NULL or FALSE in dict_mem_table_create(). */ struct dict_table_t{ table_id_t id; /*!< id of the table */ mem_heap_t* heap; /*!< memory heap */ char* name; /*!< table name */ const char* dir_path_of_temp_table;/*!< NULL or the directory path where a TEMPORARY table that was explicitly created by a user should be placed if innodb_file_per_table is defined in my.cnf; in Unix this is usually /tmp/..., in Windows temp\... */ char* data_dir_path; /*!< NULL or the directory path specified by DATA DIRECTORY */ unsigned space:32; /*!< space where the clustered index of the table is placed */ unsigned flags:DICT_TF_BITS; /*!< DICT_TF_... */ unsigned flags2:DICT_TF2_BITS; /*!< DICT_TF2_... */ unsigned ibd_file_missing:1; /*!< TRUE if this is in a single-table tablespace and the .ibd file is missing; then we must return in ha_innodb.cc an error if the user tries to query such an orphaned table */ unsigned cached:1;/*!< TRUE if the table object has been added to the dictionary cache */ unsigned to_be_dropped:1; /*!< TRUE if the table is to be dropped, but not yet actually dropped (could in the bk drop list); It is turned on at the beginning of row_drop_table_for_mysql() and turned off just before we start to update system tables for the drop. It is protected by dict_operation_lock */ unsigned n_def:10;/*!< number of columns defined so far */ unsigned n_cols:10;/*!< number of columns */ unsigned can_be_evicted:1; /*!< TRUE if it's not an InnoDB system table or a table that has no FK relationships */ unsigned corrupted:1; /*!< TRUE if table is corrupted */ unsigned drop_aborted:1; /*!< TRUE if some indexes should be dropped after ONLINE_INDEX_ABORTED or ONLINE_INDEX_ABORTED_DROPPED */ dict_col_t* cols; /*!< array of column descriptions */ const char* col_names; /*!< Column names packed in a character string "name1\0name2\0...nameN\0". Until the string contains n_cols, it will be allocated from a temporary heap. The final string will be allocated from table->heap. */ bool is_system_db; /*!< True if the table belongs to a system database (mysql, information_schema or performance_schema) */ dict_frm_t dict_frm_mismatch; /*!< !DICT_FRM_CONSISTENT==0 if data dictionary information and MySQL FRM information mismatch. */ #ifndef UNIV_HOTBACKUP hash_node_t name_hash; /*!< hash chain node */ hash_node_t id_hash; /*!< hash chain node */ UT_LIST_BASE_NODE_T(dict_index_t) indexes; /*!< list of indexes of the table */ dict_foreign_set foreign_set; /*!< set of foreign key constraints in the table; these refer to columns in other tables */ dict_foreign_set referenced_set; /*!< list of foreign key constraints which refer to this table */ UT_LIST_NODE_T(dict_table_t) table_LRU; /*!< node of the LRU list of tables */ unsigned fk_max_recusive_level:8; /*!< maximum recursive level we support when loading tables chained together with FK constraints. If exceeds this level, we will stop loading child table into memory along with its parent table */ ulint n_foreign_key_checks_running; /*!< count of how many foreign key check operations are currently being performed on the table: we cannot drop the table while there are foreign key checks running on it! */ trx_id_t def_trx_id; /*!< transaction id that last touched the table definition, either when loading the definition or CREATE TABLE, or ALTER TABLE (prepare, commit, and rollback phases) */ trx_id_t query_cache_inv_trx_id; /*!< transactions whose trx id is smaller than this number are not allowed to store to the MySQL query cache or retrieve from it; when a trx with undo logs commits, it sets this to the value of the trx id counter for the tables it had an IX lock on */ #ifdef UNIV_DEBUG /*----------------------*/ ibool does_not_fit_in_memory; /*!< this field is used to specify in simulations tables which are so big that disk should be accessed: disk access is simulated by putting the thread to sleep for a while; NOTE that this flag is not stored to the data dictionary on disk, and the database will forget about value TRUE if it has to reload the table definition from disk */ #endif /* UNIV_DEBUG */ /*----------------------*/ unsigned big_rows:1; /*!< flag: TRUE if the maximum length of a single row exceeds BIG_ROW_SIZE; initialized in dict_table_add_to_cache() */ /** Statistics for query optimization */ /* @{ */ volatile os_once::state_t stats_latch_created; /*!< Creation state of 'stats_latch'. */ rw_lock_t* stats_latch; /*!< this latch protects: dict_table_t::stat_initialized dict_table_t::stat_n_rows (*) dict_table_t::stat_clustered_index_size dict_table_t::stat_sum_of_other_index_sizes dict_table_t::stat_modified_counter (*) dict_table_t::indexes*::stat_n_diff_key_vals[] dict_table_t::indexes*::stat_index_size dict_table_t::indexes*::stat_n_leaf_pages (*) those are not always protected for performance reasons */ unsigned stat_initialized:1; /*!< TRUE if statistics have been calculated the first time after database startup or table creation */ #define DICT_TABLE_IN_USED -1 lint memcached_sync_count; /*!< count of how many handles are opened to this table from memcached; DDL on the table is NOT allowed until this count goes to zero. If it's -1, means there's DDL on the table, DML from memcached will be blocked. */ ib_time_t stats_last_recalc; /*!< Timestamp of last recalc of the stats */ ib_uint32_t stat_persistent; /*!< The two bits below are set in the ::stat_persistent member and have the following meaning: 1. _ON=0, _OFF=0, no explicit persistent stats setting for this table, the value of the global srv_stats_persistent is used to determine whether the table has persistent stats enabled or not 2. _ON=0, _OFF=1, persistent stats are explicitly disabled for this table, regardless of the value of the global srv_stats_persistent 3. _ON=1, _OFF=0, persistent stats are explicitly enabled for this table, regardless of the value of the global srv_stats_persistent 4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */ #define DICT_STATS_PERSISTENT_ON (1 << 1) #define DICT_STATS_PERSISTENT_OFF (1 << 2) ib_uint32_t stats_auto_recalc; /*!< The two bits below are set in the ::stats_auto_recalc member and have the following meaning: 1. _ON=0, _OFF=0, no explicit auto recalc setting for this table, the value of the global srv_stats_persistent_auto_recalc is used to determine whether the table has auto recalc enabled or not 2. _ON=0, _OFF=1, auto recalc is explicitly disabled for this table, regardless of the value of the global srv_stats_persistent_auto_recalc 3. _ON=1, _OFF=0, auto recalc is explicitly enabled for this table, regardless of the value of the global srv_stats_persistent_auto_recalc 4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */ #define DICT_STATS_AUTO_RECALC_ON (1 << 1) #define DICT_STATS_AUTO_RECALC_OFF (1 << 2) ulint stats_sample_pages; /*!< the number of pages to sample for this table during persistent stats estimation; if this is 0, then the value of the global srv_stats_persistent_sample_pages will be used instead. */ ib_uint64_t stat_n_rows; /*!< approximate number of rows in the table; we periodically calculate new estimates */ ulint stat_clustered_index_size; /*!< approximate clustered index size in database pages */ ulint stat_sum_of_other_index_sizes; /*!< other indexes in database pages */ ib_uint64_t stat_modified_counter; /*!< when a row is inserted, updated, or deleted, we add 1 to this number; we calculate new estimates for the stat_... values for the table and the indexes when about 1 / 16 of table has been modified; also when the estimate operation is called for MySQL SHOW TABLE STATUS; the counter is reset to zero at statistics calculation; this counter is not protected by any latch, because this is only used for heuristics */ #define BG_STAT_NONE 0 #define BG_STAT_IN_PROGRESS (1 << 0) /*!< BG_STAT_IN_PROGRESS is set in stats_bg_flag when the background stats code is working on this table. The DROP TABLE code waits for this to be cleared before proceeding. */ #define BG_STAT_SHOULD_QUIT (1 << 1) /*!< BG_STAT_SHOULD_QUIT is set in stats_bg_flag when DROP TABLE starts waiting on BG_STAT_IN_PROGRESS to be cleared, the background stats thread will detect this and will eventually quit sooner */ byte stats_bg_flag; /*!< see BG_STAT_* above. Writes are covered by dict_sys->mutex. Dirty reads are possible. */ bool stats_error_printed; /*!< Has persistent stats error beein already printed for this table ? */ /* @} */ /*----------------------*/ /**!< The following fields are used by the AUTOINC code. The actual collection of tables locked during AUTOINC read/write is kept in trx_t. In order to quickly determine whether a transaction has locked the AUTOINC lock we keep a pointer to the transaction here in the autoinc_trx variable. This is to avoid acquiring the lock_sys_t::mutex and scanning the vector in trx_t. When an AUTOINC lock has to wait, the corresponding lock instance is created on the trx lock heap rather than use the pre-allocated instance in autoinc_lock below.*/ /* @{ */ lock_t* autoinc_lock; /*!< a buffer for an AUTOINC lock for this table: we allocate the memory here so that individual transactions can get it and release it without a need to allocate space from the lock heap of the trx: otherwise the lock heap would grow rapidly if we do a large insert from a select */ ib_mutex_t* autoinc_mutex; /*!< mutex protecting the autoincrement counter */ /** Creation state of autoinc_mutex member */ volatile os_once::state_t autoinc_mutex_created; ib_uint64_t autoinc;/*!< autoinc counter value to give to the next inserted row */ ulong n_waiting_or_granted_auto_inc_locks; /*!< This counter is used to track the number of granted and pending autoinc locks on this table. This value is set after acquiring the lock_sys_t::mutex but we peek the contents to determine whether other transactions have acquired the AUTOINC lock or not. Of course only one transaction can be granted the lock but there can be multiple waiters. */ const trx_t* autoinc_trx; /*!< The transaction that currently holds the the AUTOINC lock on this table. Protected by lock_sys->mutex. */ fts_t* fts; /* FTS specific state variables */ /* @} */ /*----------------------*/ ib_quiesce_t quiesce;/*!< Quiescing states, protected by the dict_index_t::lock. ie. we can only change the state if we acquire all the latches (dict_index_t::lock) in X mode of this table's indexes. */ /*----------------------*/ ulint n_rec_locks; /*!< Count of the number of record locks on this table. We use this to determine whether we can evict the table from the dictionary cache. It is protected by lock_sys->mutex. */ ulint n_ref_count; /*!< count of how many handles are opened to this table; dropping of the table is NOT allowed until this count gets to zero; MySQL does NOT itself check the number of open handles at drop */ UT_LIST_BASE_NODE_T(lock_t) locks; /*!< list of locks on the table; protected by lock_sys->mutex */ #endif /* !UNIV_HOTBACKUP */ #ifdef UNIV_DEBUG ulint magic_n;/*!< magic number */ /** Value of dict_table_t::magic_n */ # define DICT_TABLE_MAGIC_N 76333786 #endif /* UNIV_DEBUG */ }; /** A function object to add the foreign key constraint to the referenced set of the referenced table, if it exists in the dictionary cache. */ struct dict_foreign_add_to_referenced_table { void operator()(dict_foreign_t* foreign) const { if (dict_table_t* table = foreign->referenced_table) { std::pair ret = table->referenced_set.insert(foreign); ut_a(ret.second); } } }; /** Destroy the autoinc latch of the given table. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to destroy */ inline void dict_table_autoinc_destroy( dict_table_t* table) { if (table->autoinc_mutex_created == os_once::DONE && table->autoinc_mutex != NULL) { mutex_free(table->autoinc_mutex); delete table->autoinc_mutex; } } /** Allocate and init the autoinc latch of a given table. This function must not be called concurrently on the same table object. @param[in,out] table_void table whose autoinc latch to create */ void dict_table_autoinc_alloc( void* table_void); /** Allocate and init the zip_pad_mutex of a given index. This function must not be called concurrently on the same index object. @param[in,out] index_void index whose zip_pad_mutex to create */ void dict_index_zip_pad_alloc( void* index_void); /** Request for lazy creation of the autoinc latch of a given table. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose autoinc latch is to be created. */ inline void dict_table_autoinc_create_lazy( dict_table_t* table) { #ifdef HAVE_ATOMIC_BUILTINS table->autoinc_mutex = NULL; table->autoinc_mutex_created = os_once::NEVER_DONE; #else /* HAVE_ATOMIC_BUILTINS */ dict_table_autoinc_alloc(table); table->autoinc_mutex_created = os_once::DONE; #endif /* HAVE_ATOMIC_BUILTINS */ } /** Request a lazy creation of dict_index_t::zip_pad::mutex. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] index index whose zip_pad mutex is to be created */ inline void dict_index_zip_pad_mutex_create_lazy( dict_index_t* index) { #ifdef HAVE_ATOMIC_BUILTINS index->zip_pad.mutex = NULL; index->zip_pad.mutex_created = os_once::NEVER_DONE; #else /* HAVE_ATOMIC_BUILTINS */ dict_index_zip_pad_alloc(index); index->zip_pad.mutex_created = os_once::DONE; #endif /* HAVE_ATOMIC_BUILTINS */ } /** Destroy the zip_pad_mutex of the given index. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to destroy */ inline void dict_index_zip_pad_mutex_destroy( dict_index_t* index) { if (index->zip_pad.mutex_created == os_once::DONE && index->zip_pad.mutex != NULL) { os_fast_mutex_free(index->zip_pad.mutex); delete index->zip_pad.mutex; } } /** Release the zip_pad_mutex of a given index. @param[in,out] index index whose zip_pad_mutex is to be released */ inline void dict_index_zip_pad_unlock( dict_index_t* index) { os_fast_mutex_unlock(index->zip_pad.mutex); } #ifdef UNIV_DEBUG /** Check if the current thread owns the autoinc_mutex of a given table. @param[in] table the autoinc_mutex belongs to this table @return true, if the current thread owns the autoinc_mutex, false otherwise.*/ inline bool dict_table_autoinc_own( const dict_table_t* table) { return(mutex_own(table->autoinc_mutex)); } #endif /* UNIV_DEBUG */ #ifndef UNIV_NONINL #include "dict0mem.ic" #endif #endif