/***************************************************************************** Copyright (c) 2005, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. Copyright (c) 2017, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/page0zip.ic Compressed page interface Created June 2005 by Marko Makela *******************************************************/ #ifdef UNIV_MATERIALIZE # undef UNIV_INLINE # define UNIV_INLINE #endif #include "page0zip.h" #include "mtr0log.h" #include "page0page.h" #include "srv0srv.h" /* The format of compressed pages is as follows. The header and trailer of the uncompressed pages, excluding the page directory in the trailer, are copied as is to the header and trailer of the compressed page. At the end of the compressed page, there is a dense page directory pointing to every user record contained on the page, including deleted records on the free list. The dense directory is indexed in the collation order, i.e., in the order in which the record list is linked on the uncompressed page. The infimum and supremum records are excluded. The two most significant bits of the entries are allocated for the delete-mark and an n_owned flag indicating the last record in a chain of records pointed to from the sparse page directory on the uncompressed page. The data between PAGE_ZIP_START and the last page directory entry will be written in compressed format, starting at offset PAGE_DATA. Infimum and supremum records are not stored. We exclude the REC_N_NEW_EXTRA_BYTES in every record header. These can be recovered from the dense page directory stored at the end of the compressed page. The fields node_ptr (in non-leaf B-tree nodes; level>0), trx_id and roll_ptr (in leaf B-tree nodes; level=0), and BLOB pointers of externally stored columns are stored separately, in ascending order of heap_no and column index, starting backwards from the dense page directory. The compressed data stream may be followed by a modification log covering the compressed portion of the page, as follows. MODIFICATION LOG ENTRY FORMAT - write record: - (heap_no - 1) << 1 (1..2 bytes) - extra bytes backwards - data bytes - clear record: - (heap_no - 1) << 1 | 1 (1..2 bytes) The integer values are stored in a variable-length format: - 0xxxxxxx: 0..127 - 1xxxxxxx xxxxxxxx: 0..32767 The end of the modification log is marked by a 0 byte. In summary, the compressed page looks like this: (1) Uncompressed page header (PAGE_DATA bytes) (2) Compressed index information (3) Compressed page data (4) Page modification log (page_zip->m_start..page_zip->m_end) (5) Empty zero-filled space (6) BLOB pointers (on leaf pages) - BTR_EXTERN_FIELD_REF_SIZE for each externally stored column - in descending collation order (7) Uncompressed columns of user records, n_dense * uncompressed_size bytes, - indexed by heap_no - DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN for leaf pages of clustered indexes - REC_NODE_PTR_SIZE for non-leaf pages - 0 otherwise (8) dense page directory, stored backwards - n_dense = n_heap - 2 - existing records in ascending collation order - deleted records (free list) in link order */ /**********************************************************************//** Determine the size of a compressed page in bytes. @return size in bytes */ UNIV_INLINE ulint page_zip_get_size( /*==============*/ const page_zip_des_t* page_zip) /*!< in: compressed page */ { ulint size; if (!page_zip->ssize) { return(0); } size = (UNIV_ZIP_SIZE_MIN >> 1) << page_zip->ssize; ut_ad(size >= UNIV_ZIP_SIZE_MIN); ut_ad(size <= UNIV_PAGE_SIZE); return(size); } /**********************************************************************//** Set the size of a compressed page in bytes. */ UNIV_INLINE void page_zip_set_size( /*==============*/ page_zip_des_t* page_zip, /*!< in/out: compressed page */ ulint size) /*!< in: size in bytes */ { if (size) { unsigned ssize; ut_ad(ut_is_2pow(size)); for (ssize = 1; size > (512U << ssize); ssize++) { } page_zip->ssize = ssize; } else { page_zip->ssize = 0; } ut_ad(page_zip_get_size(page_zip) == size); } /** Determine if a record is so big that it needs to be stored externally. @param[in] rec_size length of the record in bytes @param[in] comp nonzero=compact format @param[in] n_fields number of fields in the record; ignored if tablespace is not compressed @param[in] page_size page size @return FALSE if the entire record can be stored locally on the page */ UNIV_INLINE ibool page_zip_rec_needs_ext( ulint rec_size, ulint comp, ulint n_fields, const page_size_t& page_size) { /* FIXME: row size check is this function seems to be the most correct. Put it in a separate function and use in more places of InnoDB */ ut_ad(rec_size > ulint(comp ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES)); ut_ad(comp || !page_size.is_compressed()); #if UNIV_PAGE_SIZE_MAX > COMPRESSED_REC_MAX_DATA_SIZE if (comp ? rec_size >= COMPRESSED_REC_MAX_DATA_SIZE : rec_size >= REDUNDANT_REC_MAX_DATA_SIZE) { return(TRUE); } #endif if (page_size.is_compressed()) { ut_ad(comp); /* On a compressed page, there is a two-byte entry in the dense page directory for every record. But there is no record header. There should be enough room for one record on an empty leaf page. Subtract 1 byte for the encoded heap number. Check also the available space on the uncompressed page. */ return(rec_size - (REC_N_NEW_EXTRA_BYTES - 2 - 1) >= page_zip_empty_size(n_fields, page_size.physical()) || rec_size >= page_get_free_space_of_empty(TRUE) / 2); } return(rec_size >= page_get_free_space_of_empty(comp) / 2); } #ifdef UNIV_DEBUG /**********************************************************************//** Validate a compressed page descriptor. @return TRUE if ok */ UNIV_INLINE ibool page_zip_simple_validate( /*=====================*/ const page_zip_des_t* page_zip)/*!< in: compressed page descriptor */ { ut_ad(page_zip); ut_ad(page_zip->data); ut_ad(page_zip->ssize <= PAGE_ZIP_SSIZE_MAX); ut_ad(page_zip_get_size(page_zip) > PAGE_DATA + PAGE_ZIP_DIR_SLOT_SIZE); ut_ad(page_zip->m_start <= page_zip->m_end); ut_ad(page_zip->m_end < page_zip_get_size(page_zip)); ut_ad(page_zip->n_blobs < page_zip_get_size(page_zip) / BTR_EXTERN_FIELD_REF_SIZE); return(TRUE); } #endif /* UNIV_DEBUG */ /**********************************************************************//** Determine if the length of the page trailer. @return length of the page trailer, in bytes, not including the terminating zero byte of the modification log */ UNIV_INLINE ibool page_zip_get_trailer_len( /*=====================*/ const page_zip_des_t* page_zip,/*!< in: compressed page */ ibool is_clust)/*!< in: TRUE if clustered index */ { ulint uncompressed_size; ut_ad(page_zip_simple_validate(page_zip)); MEM_CHECK_DEFINED(page_zip->data, page_zip_get_size(page_zip)); if (!page_is_leaf(page_zip->data)) { uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE + REC_NODE_PTR_SIZE; ut_ad(!page_zip->n_blobs); } else if (is_clust) { uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE + DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN; } else { uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE; ut_ad(!page_zip->n_blobs); } return((page_dir_get_n_heap(page_zip->data) - 2) * uncompressed_size + page_zip->n_blobs * BTR_EXTERN_FIELD_REF_SIZE); } /**********************************************************************//** Determine how big record can be inserted without recompressing the page. @return a positive number indicating the maximum size of a record whose insertion is guaranteed to succeed, or zero or negative */ UNIV_INLINE lint page_zip_max_ins_size( /*==================*/ const page_zip_des_t* page_zip,/*!< in: compressed page */ ibool is_clust)/*!< in: TRUE if clustered index */ { ulint trailer_len; trailer_len = page_zip_get_trailer_len(page_zip, is_clust); /* When a record is created, a pointer may be added to the dense directory. Likewise, space for the columns that will not be compressed will be allocated from the page trailer. Also the BLOB pointers will be allocated from there, but we may as well count them in the length of the record. */ trailer_len += PAGE_ZIP_DIR_SLOT_SIZE; return(lint(page_zip_get_size(page_zip) - trailer_len - page_zip->m_end - (REC_N_NEW_EXTRA_BYTES - 2))); } /**********************************************************************//** Determine if enough space is available in the modification log. @return TRUE if enough space is available */ UNIV_INLINE ibool page_zip_available( /*===============*/ const page_zip_des_t* page_zip,/*!< in: compressed page */ ibool is_clust,/*!< in: TRUE if clustered index */ ulint length, /*!< in: combined size of the record */ ulint create) /*!< in: nonzero=add the record to the heap */ { ulint trailer_len; ut_ad(length > REC_N_NEW_EXTRA_BYTES); trailer_len = page_zip_get_trailer_len(page_zip, is_clust); /* Subtract the fixed extra bytes and add the maximum space needed for identifying the record (encoded heap_no). */ length -= REC_N_NEW_EXTRA_BYTES - 2; if (create > 0) { /* When a record is created, a pointer may be added to the dense directory. Likewise, space for the columns that will not be compressed will be allocated from the page trailer. Also the BLOB pointers will be allocated from there, but we may as well count them in the length of the record. */ trailer_len += PAGE_ZIP_DIR_SLOT_SIZE; } return(length + trailer_len + page_zip->m_end < page_zip_get_size(page_zip)); } /**********************************************************************//** Initialize a compressed page descriptor. */ UNIV_INLINE void page_zip_des_init( /*==============*/ page_zip_des_t* page_zip) /*!< in/out: compressed page descriptor */ { memset(page_zip, 0, sizeof *page_zip); } /**********************************************************************//** Write a log record of writing to the uncompressed header portion of a page. */ void page_zip_write_header_log( /*======================*/ const byte* data,/*!< in: data on the uncompressed page */ ulint length, /*!< in: length of the data */ mtr_t* mtr); /*!< in: mini-transaction */ /**********************************************************************//** Write data to the uncompressed header portion of a page. The data must already have been written to the uncompressed page. However, the data portion of the uncompressed page may differ from the compressed page when a record is being inserted in page_cur_insert_rec_zip(). */ UNIV_INLINE void page_zip_write_header( /*==================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page */ const byte* str, /*!< in: address on the uncompressed page */ ulint length, /*!< in: length of the data */ mtr_t* mtr) /*!< in: mini-transaction, or NULL */ { ulint pos; ut_ad(page_zip_simple_validate(page_zip)); MEM_CHECK_DEFINED(page_zip->data, page_zip_get_size(page_zip)); pos = page_offset(str); ut_ad(pos < PAGE_DATA); memcpy(page_zip->data + pos, str, length); /* The following would fail in page_cur_insert_rec_zip(). */ /* ut_ad(page_zip_validate(page_zip, str - pos)); */ if (mtr) { page_zip_write_header_log(str, length, mtr); } } /**********************************************************************//** Write a log record of compressing an index page without the data on the page. */ UNIV_INLINE void page_zip_compress_write_log_no_data( /*================================*/ ulint level, /*!< in: compression level */ const page_t* page, /*!< in: page that is compressed */ dict_index_t* index, /*!< in: index */ mtr_t* mtr) /*!< in: mtr */ { byte* log_ptr = mlog_open_and_write_index( mtr, page, index, MLOG_ZIP_PAGE_COMPRESS_NO_DATA, 1); if (log_ptr) { mach_write_to_1(log_ptr, level); mlog_close(mtr, log_ptr + 1); } } /**********************************************************************//** Parses a log record of compressing an index page without the data. @return end of log record or NULL */ UNIV_INLINE byte* page_zip_parse_compress_no_data( /*============================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr, /*!< in: buffer end */ page_t* page, /*!< in: uncompressed page */ page_zip_des_t* page_zip, /*!< out: compressed page */ dict_index_t* index) /*!< in: index */ { ulint level; if (end_ptr == ptr) { return(NULL); } level = mach_read_from_1(ptr); /* If page compression fails then there must be something wrong because a compress log record is logged only if the compression was successful. Crash in this case. */ if (page && !page_zip_compress(page_zip, page, index, level, NULL, NULL)) { ut_error; } return(ptr + 1); } /**********************************************************************//** Reset the counters used for filling INFORMATION_SCHEMA.innodb_cmp_per_index. */ UNIV_INLINE void page_zip_reset_stat_per_index() /*===========================*/ { mutex_enter(&page_zip_stat_per_index_mutex); page_zip_stat_per_index.erase( page_zip_stat_per_index.begin(), page_zip_stat_per_index.end()); mutex_exit(&page_zip_stat_per_index_mutex); } #ifdef UNIV_MATERIALIZE # undef UNIV_INLINE # define UNIV_INLINE UNIV_INLINE_ORIGINAL #endif