/***************************************************************************** Copyright (c) 2014, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2018, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file lock/lock0prdt.cc The transaction lock system Created 9/7/2013 Jimmy Yang *******************************************************/ #define LOCK_MODULE_IMPLEMENTATION #include "lock0lock.h" #include "lock0priv.h" #include "lock0prdt.h" #include "dict0mem.h" #include "que0que.h" /*********************************************************************//** Get a minimum bounding box from a Predicate @return the minimum bounding box */ UNIV_INLINE rtr_mbr_t* prdt_get_mbr_from_prdt( /*===================*/ const lock_prdt_t* prdt) /*!< in: the lock predicate */ { rtr_mbr_t* mbr_loc = reinterpret_cast(prdt->data); return(mbr_loc); } /*********************************************************************//** Get a predicate from a lock @return the predicate */ lock_prdt_t* lock_get_prdt_from_lock( /*====================*/ const lock_t* lock) /*!< in: the lock */ { lock_prdt_t* prdt = reinterpret_cast( &((reinterpret_cast( const_cast(&lock[1])))[ UNIV_WORD_SIZE])); return(prdt); } /*********************************************************************//** Get a minimum bounding box directly from a lock @return the minimum bounding box*/ UNIV_INLINE rtr_mbr_t* lock_prdt_get_mbr_from_lock( /*========================*/ const lock_t* lock) /*!< in: the lock */ { ut_ad(lock->type_mode & LOCK_PREDICATE); lock_prdt_t* prdt = lock_get_prdt_from_lock(lock); rtr_mbr_t* mbr_loc = prdt_get_mbr_from_prdt(prdt); return(mbr_loc); } /*********************************************************************//** Append a predicate to the lock */ void lock_prdt_set_prdt( /*===============*/ lock_t* lock, /*!< in: lock */ const lock_prdt_t* prdt) /*!< in: Predicate */ { ut_ad(lock->type_mode & LOCK_PREDICATE); memcpy(&(((byte*) &lock[1])[UNIV_WORD_SIZE]), prdt, sizeof *prdt); } /** Check whether two predicate locks are compatible with each other @param[in] prdt1 first predicate lock @param[in] prdt2 second predicate lock @param[in] op predicate comparison operator @return true if consistent */ static bool lock_prdt_consistent( lock_prdt_t* prdt1, lock_prdt_t* prdt2, ulint op) { bool ret = false; rtr_mbr_t* mbr1 = prdt_get_mbr_from_prdt(prdt1); rtr_mbr_t* mbr2 = prdt_get_mbr_from_prdt(prdt2); ulint action; if (op) { action = op; } else { if (prdt2->op != 0 && (prdt1->op != prdt2->op)) { return(false); } action = prdt1->op; } switch (action) { case PAGE_CUR_CONTAIN: ret = MBR_CONTAIN_CMP(mbr1, mbr2); break; case PAGE_CUR_DISJOINT: ret = MBR_DISJOINT_CMP(mbr1, mbr2); break; case PAGE_CUR_MBR_EQUAL: ret = MBR_EQUAL_CMP(mbr1, mbr2); break; case PAGE_CUR_INTERSECT: ret = MBR_INTERSECT_CMP(mbr1, mbr2); break; case PAGE_CUR_WITHIN: ret = MBR_WITHIN_CMP(mbr1, mbr2); break; default: ib::error() << "invalid operator " << action; ut_error; } return(ret); } /*********************************************************************//** Checks if a predicate lock request for a new lock has to wait for another lock. @return true if new lock has to wait for lock2 to be released */ bool lock_prdt_has_to_wait( /*==================*/ const trx_t* trx, /*!< in: trx of new lock */ ulint type_mode,/*!< in: precise mode of the new lock to set: LOCK_S or LOCK_X, possibly ORed to LOCK_PREDICATE or LOCK_PRDT_PAGE, LOCK_INSERT_INTENTION */ lock_prdt_t* prdt, /*!< in: lock predicate to check */ const lock_t* lock2) /*!< in: another record lock; NOTE that it is assumed that this has a lock bit set on the same record as in the new lock we are setting */ { lock_prdt_t* cur_prdt = lock_get_prdt_from_lock(lock2); ut_ad(trx && lock2); ut_ad((lock2->type_mode & LOCK_PREDICATE && type_mode & LOCK_PREDICATE) || (lock2->type_mode & LOCK_PRDT_PAGE && type_mode & LOCK_PRDT_PAGE)); ut_ad(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)); if (trx != lock2->trx && !lock_mode_compatible(static_cast( LOCK_MODE_MASK & type_mode), lock_get_mode(lock2))) { /* If it is a page lock, then return true (conflict) */ if (type_mode & LOCK_PRDT_PAGE) { ut_ad(lock2->type_mode & LOCK_PRDT_PAGE); return(true); } /* Predicate lock does not conflicts with non-predicate lock */ if (!(lock2->type_mode & LOCK_PREDICATE)) { return(FALSE); } ut_ad(lock2->type_mode & LOCK_PREDICATE); if (!(type_mode & LOCK_INSERT_INTENTION)) { /* PREDICATE locks without LOCK_INSERT_INTENTION flag do not need to wait for anything. This is because different users can have conflicting lock types on predicates. */ return(FALSE); } if (lock2->type_mode & LOCK_INSERT_INTENTION) { /* No lock request needs to wait for an insert intention lock to be removed. This makes it similar to GAP lock, that allows conflicting insert intention locks */ return(FALSE); } if (!lock_prdt_consistent(cur_prdt, prdt, 0)) { return(false); } return(TRUE); } return(FALSE); } /*********************************************************************//** Checks if a transaction has a GRANTED stronger or equal predicate lock on the page @return lock or NULL */ UNIV_INLINE lock_t* lock_prdt_has_lock( /*===============*/ ulint precise_mode, /*!< in: LOCK_S or LOCK_X */ ulint type_mode, /*!< in: LOCK_PREDICATE etc. */ const buf_block_t* block, /*!< in: buffer block containing the record */ lock_prdt_t* prdt, /*!< in: The predicate to be attached to the new lock */ const trx_t* trx) /*!< in: transaction */ { lock_t* lock; ut_ad(lock_mutex_own()); ut_ad((precise_mode & LOCK_MODE_MASK) == LOCK_S || (precise_mode & LOCK_MODE_MASK) == LOCK_X); ut_ad(!(precise_mode & LOCK_INSERT_INTENTION)); for (lock = lock_rec_get_first( lock_hash_get(type_mode), block, PRDT_HEAPNO); lock != NULL; lock = lock_rec_get_next(PRDT_HEAPNO, lock)) { ut_ad(lock->type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)); if (lock->trx == trx && !(lock->type_mode & LOCK_INSERT_INTENTION) && !lock_get_wait(lock) && lock_mode_stronger_or_eq( lock_get_mode(lock), static_cast( precise_mode & LOCK_MODE_MASK))) { if (lock->type_mode & LOCK_PRDT_PAGE) { return(lock); } ut_ad(lock->type_mode & LOCK_PREDICATE); lock_prdt_t* cur_prdt = lock_get_prdt_from_lock( lock); /* if the lock predicate operator is the same as the one to look, and prdicate test is successful, then we find a lock */ if (cur_prdt->op == prdt->op && lock_prdt_consistent(cur_prdt, prdt, 0)) { return(lock); } } } return(NULL); } /*********************************************************************//** Checks if some other transaction has a conflicting predicate lock request in the queue, so that we have to wait. @return lock or NULL */ static lock_t* lock_prdt_other_has_conflicting( /*============================*/ ulint mode, /*!< in: LOCK_S or LOCK_X, possibly ORed to LOCK_PREDICATE or LOCK_PRDT_PAGE, LOCK_INSERT_INTENTION */ const buf_block_t* block, /*!< in: buffer block containing the record */ lock_prdt_t* prdt, /*!< in: Predicates (currently) the Minimum Bounding Rectangle) the new lock will be on */ const trx_t* trx) /*!< in: our transaction */ { ut_ad(lock_mutex_own()); for (lock_t* lock = lock_rec_get_first( lock_hash_get(mode), block, PRDT_HEAPNO); lock != NULL; lock = lock_rec_get_next(PRDT_HEAPNO, lock)) { if (lock->trx == trx) { continue; } if (lock_prdt_has_to_wait(trx, mode, prdt, lock)) { return(lock); } } return(NULL); } /*********************************************************************//** Reset the Minimum Bounding Rectangle (to a large area) */ static void lock_prdt_enlarge_mbr( /*==================*/ const lock_t* lock, /*!< in/out: lock to modify */ rtr_mbr_t* mbr) /*!< in: Minimum Bounding Rectangle */ { rtr_mbr_t* cur_mbr = lock_prdt_get_mbr_from_lock(lock); if (cur_mbr->xmin > mbr->xmin) { cur_mbr->xmin = mbr->xmin; } if (cur_mbr->ymin > mbr->ymin) { cur_mbr->ymin = mbr->ymin; } if (cur_mbr->xmax < mbr->xmax) { cur_mbr->xmax = mbr->xmax; } if (cur_mbr->ymax < mbr->ymax) { cur_mbr->ymax = mbr->ymax; } } /*********************************************************************//** Reset the predicates to a "covering" (larger) predicates */ static void lock_prdt_enlarge_prdt( /*===================*/ lock_t* lock, /*!< in/out: lock to modify */ lock_prdt_t* prdt) /*!< in: predicate */ { rtr_mbr_t* mbr = prdt_get_mbr_from_prdt(prdt); lock_prdt_enlarge_mbr(lock, mbr); } /*********************************************************************//** Check two predicates' MBRs are the same @return true if they are the same */ static bool lock_prdt_is_same( /*==============*/ lock_prdt_t* prdt1, /*!< in: MBR with the lock */ lock_prdt_t* prdt2) /*!< in: MBR with the lock */ { rtr_mbr_t* mbr1 = prdt_get_mbr_from_prdt(prdt1); rtr_mbr_t* mbr2 = prdt_get_mbr_from_prdt(prdt2); if (prdt1->op == prdt2->op && MBR_EQUAL_CMP(mbr1, mbr2)) { return(true); } return(false); } /*********************************************************************//** Looks for a similar predicate lock struct by the same trx on the same page. This can be used to save space when a new record lock should be set on a page: no new struct is needed, if a suitable old one is found. @return lock or NULL */ static lock_t* lock_prdt_find_on_page( /*===================*/ ulint type_mode, /*!< in: lock type_mode field */ const buf_block_t* block, /*!< in: buffer block */ lock_prdt_t* prdt, /*!< in: MBR with the lock */ const trx_t* trx) /*!< in: transaction */ { lock_t* lock; ut_ad(lock_mutex_own()); for (lock = lock_rec_get_first_on_page(lock_hash_get(type_mode), block); lock != NULL; lock = lock_rec_get_next_on_page(lock)) { if (lock->trx == trx && lock->type_mode == type_mode) { if (lock->type_mode & LOCK_PRDT_PAGE) { return(lock); } ut_ad(lock->type_mode & LOCK_PREDICATE); if (lock_prdt_is_same(lock_get_prdt_from_lock(lock), prdt)) { return(lock); } } } return(NULL); } /*********************************************************************//** Adds a predicate lock request in the predicate lock queue. @return lock where the bit was set */ static lock_t* lock_prdt_add_to_queue( /*===================*/ ulint type_mode,/*!< in: lock mode, wait, predicate etc. flags; type is ignored and replaced by LOCK_REC */ const buf_block_t* block, /*!< in: buffer block containing the record */ dict_index_t* index, /*!< in: index of record */ trx_t* trx, /*!< in/out: transaction */ lock_prdt_t* prdt, /*!< in: Minimum Bounding Rectangle the new lock will be on */ bool caller_owns_trx_mutex) /*!< in: TRUE if caller owns the transaction mutex */ { ut_ad(lock_mutex_own()); ut_ad(caller_owns_trx_mutex == trx_mutex_own(trx)); ut_ad(!dict_index_is_clust(index) && !dict_index_is_online_ddl(index)); ut_ad(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)); #ifdef UNIV_DEBUG switch (type_mode & LOCK_MODE_MASK) { case LOCK_X: case LOCK_S: break; default: ut_error; } #endif /* UNIV_DEBUG */ type_mode |= LOCK_REC; /* Look for a waiting lock request on the same record or on a gap */ lock_t* lock; for (lock = lock_rec_get_first_on_page(lock_hash_get(type_mode), block); lock != NULL; lock = lock_rec_get_next_on_page(lock)) { if (lock_get_wait(lock) && lock_rec_get_nth_bit(lock, PRDT_HEAPNO) && lock->type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)) { break; } } if (lock == NULL && !(type_mode & LOCK_WAIT)) { /* Look for a similar record lock on the same page: if one is found and there are no waiting lock requests, we can just set the bit */ lock = lock_prdt_find_on_page(type_mode, block, prdt, trx); if (lock != NULL) { if (lock->type_mode & LOCK_PREDICATE) { lock_prdt_enlarge_prdt(lock, prdt); } return(lock); } } lock = lock_rec_create( #ifdef WITH_WSREP NULL, NULL, /* FIXME: replicate SPATIAL INDEX locks */ #endif type_mode, block, PRDT_HEAPNO, index, trx, caller_owns_trx_mutex); if (lock->type_mode & LOCK_PREDICATE) { lock_prdt_set_prdt(lock, prdt); } return lock; } /*********************************************************************//** Checks if locks of other transactions prevent an immediate insert of a predicate record. @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_prdt_insert_check_and_lock( /*============================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const rec_t* rec, /*!< in: record after which to insert */ buf_block_t* block, /*!< in/out: buffer block of rec */ dict_index_t* index, /*!< in: index */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr, /*!< in/out: mini-transaction */ lock_prdt_t* prdt) /*!< in: Predicates with Minimum Bound Rectangle */ { ut_ad(block->frame == page_align(rec)); if (flags & BTR_NO_LOCKING_FLAG) { return(DB_SUCCESS); } ut_ad(!index->table->is_temporary()); ut_ad(!dict_index_is_clust(index)); trx_t* trx = thr_get_trx(thr); lock_mutex_enter(); /* Because this code is invoked for a running transaction by the thread that is serving the transaction, it is not necessary to hold trx->mutex here. */ ut_ad(lock_table_has(trx, index->table, LOCK_IX)); lock_t* lock; /* Only need to check locks on prdt_hash */ lock = lock_rec_get_first(lock_sys.prdt_hash, block, PRDT_HEAPNO); if (lock == NULL) { lock_mutex_exit(); /* Update the page max trx id field */ page_update_max_trx_id(block, buf_block_get_page_zip(block), trx->id, mtr); return(DB_SUCCESS); } ut_ad(lock->type_mode & LOCK_PREDICATE); dberr_t err; /* If another transaction has an explicit lock request which locks the predicate, waiting or granted, on the successor, the insert has to wait. Similar to GAP lock, we do not consider lock from inserts conflicts with each other */ const ulint mode = LOCK_X | LOCK_PREDICATE | LOCK_INSERT_INTENTION; const lock_t* wait_for = lock_prdt_other_has_conflicting( mode, block, prdt, trx); if (wait_for != NULL) { rtr_mbr_t* mbr = prdt_get_mbr_from_prdt(prdt); /* Allocate MBR on the lock heap */ lock_init_prdt_from_mbr(prdt, mbr, 0, trx->lock.lock_heap); /* Note that we may get DB_SUCCESS also here! */ trx_mutex_enter(trx); err = lock_rec_enqueue_waiting( #ifdef WITH_WSREP NULL, /* FIXME: replicate SPATIAL INDEX locks */ #endif LOCK_X | LOCK_PREDICATE | LOCK_INSERT_INTENTION, block, PRDT_HEAPNO, index, thr, prdt); trx_mutex_exit(trx); } else { err = DB_SUCCESS; } lock_mutex_exit(); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; /* fall through */ case DB_SUCCESS: /* Update the page max trx id field */ page_update_max_trx_id(block, buf_block_get_page_zip(block), trx->id, mtr); default: /* We only care about the two return values. */ break; } return(err); } /**************************************************************//** Check whether any predicate lock in parent needs to propagate to child page after split. */ void lock_prdt_update_parent( /*====================*/ buf_block_t* left_block, /*!< in/out: page to be split */ buf_block_t* right_block, /*!< in/out: the new half page */ lock_prdt_t* left_prdt, /*!< in: MBR on the old page */ lock_prdt_t* right_prdt, /*!< in: MBR on the new page */ ulint space, /*!< in: parent space id */ ulint page_no) /*!< in: parent page number */ { lock_t* lock; lock_mutex_enter(); /* Get all locks in parent */ for (lock = lock_rec_get_first_on_page_addr( lock_sys.prdt_hash, space, page_no); lock; lock = lock_rec_get_next_on_page(lock)) { lock_prdt_t* lock_prdt; ulint op = PAGE_CUR_DISJOINT; ut_ad(lock); if (!(lock->type_mode & LOCK_PREDICATE) || (lock->type_mode & LOCK_MODE_MASK) == LOCK_X) { continue; } lock_prdt = lock_get_prdt_from_lock(lock); /* Check each lock in parent to see if it intersects with left or right child */ if (!lock_prdt_consistent(lock_prdt, left_prdt, op) && !lock_prdt_find_on_page(lock->type_mode, left_block, lock_prdt, lock->trx)) { lock_prdt_add_to_queue(lock->type_mode, left_block, lock->index, lock->trx, lock_prdt, FALSE); } if (!lock_prdt_consistent(lock_prdt, right_prdt, op) && !lock_prdt_find_on_page(lock->type_mode, right_block, lock_prdt, lock->trx)) { lock_prdt_add_to_queue(lock->type_mode, right_block, lock->index, lock->trx, lock_prdt, FALSE); } } lock_mutex_exit(); } /**************************************************************//** Update predicate lock when page splits */ static void lock_prdt_update_split_low( /*=======================*/ buf_block_t* new_block, /*!< in/out: the new half page */ lock_prdt_t* prdt, /*!< in: MBR on the old page */ lock_prdt_t* new_prdt, /*!< in: MBR on the new page */ ulint space, /*!< in: space id */ ulint page_no, /*!< in: page number */ ulint type_mode) /*!< in: LOCK_PREDICATE or LOCK_PRDT_PAGE */ { lock_t* lock; lock_mutex_enter(); for (lock = lock_rec_get_first_on_page_addr( lock_hash_get(type_mode), space, page_no); lock; lock = lock_rec_get_next_on_page(lock)) { ut_ad(lock); /* First dealing with Page Lock */ if (lock->type_mode & LOCK_PRDT_PAGE) { /* Duplicate the lock to new page */ trx_mutex_enter(lock->trx); lock_prdt_add_to_queue(lock->type_mode, new_block, lock->index, lock->trx, NULL, TRUE); trx_mutex_exit(lock->trx); continue; } /* Now dealing with Predicate Lock */ lock_prdt_t* lock_prdt; ulint op = PAGE_CUR_DISJOINT; ut_ad(lock->type_mode & LOCK_PREDICATE); /* No need to duplicate waiting X locks */ if ((lock->type_mode & LOCK_MODE_MASK) == LOCK_X) { continue; } lock_prdt = lock_get_prdt_from_lock(lock); if (lock_prdt_consistent(lock_prdt, prdt, op)) { if (!lock_prdt_consistent(lock_prdt, new_prdt, op)) { /* Move the lock to new page */ trx_mutex_enter(lock->trx); lock_prdt_add_to_queue(lock->type_mode, new_block, lock->index, lock->trx, lock_prdt, TRUE); trx_mutex_exit(lock->trx); } } else if (!lock_prdt_consistent(lock_prdt, new_prdt, op)) { /* Duplicate the lock to new page */ trx_mutex_enter(lock->trx); lock_prdt_add_to_queue(lock->type_mode, new_block, lock->index, lock->trx, lock_prdt, TRUE); trx_mutex_exit(lock->trx); } } lock_mutex_exit(); } /**************************************************************//** Update predicate lock when page splits */ void lock_prdt_update_split( /*===================*/ buf_block_t* new_block, /*!< in/out: the new half page */ lock_prdt_t* prdt, /*!< in: MBR on the old page */ lock_prdt_t* new_prdt, /*!< in: MBR on the new page */ ulint space, /*!< in: space id */ ulint page_no) /*!< in: page number */ { lock_prdt_update_split_low(new_block, prdt, new_prdt, space, page_no, LOCK_PREDICATE); lock_prdt_update_split_low(new_block, NULL, NULL, space, page_no, LOCK_PRDT_PAGE); } /*********************************************************************//** Initiate a Predicate Lock from a MBR */ void lock_init_prdt_from_mbr( /*====================*/ lock_prdt_t* prdt, /*!< in/out: predicate to initialized */ rtr_mbr_t* mbr, /*!< in: Minimum Bounding Rectangle */ ulint mode, /*!< in: Search mode */ mem_heap_t* heap) /*!< in: heap for allocating memory */ { memset(prdt, 0, sizeof(*prdt)); if (heap != NULL) { prdt->data = mem_heap_alloc(heap, sizeof(*mbr)); ut_memcpy(prdt->data, mbr, sizeof(*mbr)); } else { prdt->data = static_cast(mbr); } prdt->op = static_cast(mode); } /*********************************************************************//** Acquire a predicate lock on a block @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_prdt_lock( /*===========*/ buf_block_t* block, /*!< in/out: buffer block of rec */ lock_prdt_t* prdt, /*!< in: Predicate for the lock */ dict_index_t* index, /*!< in: secondary index */ lock_mode mode, /*!< in: mode of the lock which the read cursor should set on records: LOCK_S or LOCK_X; the latter is possible in SELECT FOR UPDATE */ ulint type_mode, /*!< in: LOCK_PREDICATE or LOCK_PRDT_PAGE */ que_thr_t* thr) /*!< in: query thread (can be NULL if BTR_NO_LOCKING_FLAG) */ { trx_t* trx = thr_get_trx(thr); dberr_t err = DB_SUCCESS; lock_rec_req_status status = LOCK_REC_SUCCESS; if (trx->read_only || index->table->is_temporary()) { return(DB_SUCCESS); } ut_ad(!dict_index_is_clust(index)); ut_ad(!dict_index_is_online_ddl(index)); ut_ad(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)); hash_table_t* hash = type_mode == LOCK_PREDICATE ? lock_sys.prdt_hash : lock_sys.prdt_page_hash; /* Another transaction cannot have an implicit lock on the record, because when we come here, we already have modified the clustered index record, and this would not have been possible if another active transaction had modified this secondary index record. */ lock_mutex_enter(); const ulint prdt_mode = ulint(mode) | type_mode; lock_t* lock = lock_rec_get_first_on_page(hash, block); if (lock == NULL) { lock = lock_rec_create( #ifdef WITH_WSREP NULL, NULL, /* FIXME: replicate SPATIAL INDEX locks */ #endif ulint(mode) | type_mode, block, PRDT_HEAPNO, index, trx, FALSE); status = LOCK_REC_SUCCESS_CREATED; } else { trx_mutex_enter(trx); if (lock_rec_get_next_on_page(lock) || lock->trx != trx || lock->type_mode != (LOCK_REC | prdt_mode) || lock_rec_get_n_bits(lock) == 0 || ((type_mode & LOCK_PREDICATE) && (!lock_prdt_consistent( lock_get_prdt_from_lock(lock), prdt, 0)))) { lock = lock_prdt_has_lock( mode, type_mode, block, prdt, trx); if (lock == NULL) { lock_t* wait_for; wait_for = lock_prdt_other_has_conflicting( prdt_mode, block, prdt, trx); if (wait_for != NULL) { err = lock_rec_enqueue_waiting( #ifdef WITH_WSREP NULL, /* FIXME: replicate SPATIAL INDEX locks */ #endif ulint(mode) | type_mode, block, PRDT_HEAPNO, index, thr, prdt); } else { lock_prdt_add_to_queue( prdt_mode, block, index, trx, prdt, true); status = LOCK_REC_SUCCESS; } } trx_mutex_exit(trx); } else { trx_mutex_exit(trx); if (!lock_rec_get_nth_bit(lock, PRDT_HEAPNO)) { lock_rec_set_nth_bit(lock, PRDT_HEAPNO); status = LOCK_REC_SUCCESS_CREATED; } } } lock_mutex_exit(); if (status == LOCK_REC_SUCCESS_CREATED && type_mode == LOCK_PREDICATE) { /* Append the predicate in the lock record */ lock_prdt_set_prdt(lock, prdt); } return(err); } /*********************************************************************//** Acquire a "Page" lock on a block @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_place_prdt_page_lock( /*======================*/ ulint space, /*!< in: space for the page to lock */ ulint page_no, /*!< in: page number */ dict_index_t* index, /*!< in: secondary index */ que_thr_t* thr) /*!< in: query thread */ { ut_ad(thr != NULL); ut_ad(!srv_read_only_mode); ut_ad(!dict_index_is_clust(index)); ut_ad(!dict_index_is_online_ddl(index)); /* Another transaction cannot have an implicit lock on the record, because when we come here, we already have modified the clustered index record, and this would not have been possible if another active transaction had modified this secondary index record. */ lock_mutex_enter(); const lock_t* lock = lock_rec_get_first_on_page_addr( lock_sys.prdt_page_hash, space, page_no); const ulint mode = LOCK_S | LOCK_PRDT_PAGE; trx_t* trx = thr_get_trx(thr); if (lock != NULL) { trx_mutex_enter(trx); /* Find a matching record lock owned by this transaction. */ while (lock != NULL && lock->trx != trx) { lock = lock_rec_get_next_on_page_const(lock); } ut_ad(lock == NULL || lock->type_mode == (mode | LOCK_REC)); ut_ad(lock == NULL || lock_rec_get_n_bits(lock) != 0); trx_mutex_exit(trx); } if (lock == NULL) { lock = lock_rec_create_low( #ifdef WITH_WSREP NULL, NULL, /* FIXME: replicate SPATIAL INDEX locks */ #endif mode, space, page_no, NULL, PRDT_HEAPNO, index, trx, FALSE); #ifdef PRDT_DIAG printf("GIS_DIAGNOSTIC: page lock %d\n", (int) page_no); #endif /* PRDT_DIAG */ } lock_mutex_exit(); return(DB_SUCCESS); } /** Check whether there are R-tree Page lock on a page @param[in] trx trx to test the lock @param[in] space space id for the page @param[in] page_no page number @return true if there is none */ bool lock_test_prdt_page_lock( const trx_t* trx, ulint space, ulint page_no) { lock_t* lock; lock_mutex_enter(); lock = lock_rec_get_first_on_page_addr( lock_sys.prdt_page_hash, space, page_no); lock_mutex_exit(); return(lock == NULL || trx == lock->trx); } /*************************************************************//** Moves the locks of a page to another page and resets the lock bits of the donating records. */ void lock_prdt_rec_move( /*===============*/ const buf_block_t* receiver, /*!< in: buffer block containing the receiving record */ const buf_block_t* donator) /*!< in: buffer block containing the donating record */ { lock_t* lock; if (!lock_sys.prdt_hash) { return; } lock_mutex_enter(); for (lock = lock_rec_get_first(lock_sys.prdt_hash, donator, PRDT_HEAPNO); lock != NULL; lock = lock_rec_get_next(PRDT_HEAPNO, lock)) { const ulint type_mode = lock->type_mode; lock_prdt_t* lock_prdt = lock_get_prdt_from_lock(lock); lock_rec_reset_nth_bit(lock, PRDT_HEAPNO); lock_reset_lock_and_trx_wait(lock); lock_prdt_add_to_queue( type_mode, receiver, lock->index, lock->trx, lock_prdt, FALSE); } lock_mutex_exit(); } /** Removes predicate lock objects set on an index page which is discarded. @param[in] block page to be discarded @param[in] lock_hash lock hash */ void lock_prdt_page_free_from_discard( const buf_block_t* block, hash_table_t* lock_hash) { lock_t* lock; lock_t* next_lock; ulint space; ulint page_no; ut_ad(lock_mutex_own()); space = block->page.id.space(); page_no = block->page.id.page_no(); lock = lock_rec_get_first_on_page_addr(lock_hash, space, page_no); while (lock != NULL) { next_lock = lock_rec_get_next_on_page(lock); lock_rec_discard(lock); lock = next_lock; } }