/***************************************************************************** Copyright (c) 2011, 2014, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0log.cc Modification log for online index creation and online table rebuild Created 2011-05-26 Marko Makela *******************************************************/ #include "row0log.h" #ifdef UNIV_NONINL #include "row0log.ic" #endif #include "row0row.h" #include "row0ins.h" #include "row0upd.h" #include "row0merge.h" #include "row0ext.h" #include "data0data.h" #include "que0que.h" #include "handler0alter.h" #include /** Table row modification operations during online table rebuild. Delete-marked records are not copied to the rebuilt table. */ enum row_tab_op { /** Insert a record */ ROW_T_INSERT = 0x41, /** Update a record in place */ ROW_T_UPDATE, /** Delete (purge) a record */ ROW_T_DELETE }; /** Index record modification operations during online index creation */ enum row_op { /** Insert a record */ ROW_OP_INSERT = 0x61, /** Delete a record */ ROW_OP_DELETE }; #ifdef UNIV_DEBUG /** Write information about the applied record to the error log */ # define ROW_LOG_APPLY_PRINT #endif /* UNIV_DEBUG */ #ifdef ROW_LOG_APPLY_PRINT /** When set, write information about the applied record to the error log */ static bool row_log_apply_print; #endif /* ROW_LOG_APPLY_PRINT */ /** Size of the modification log entry header, in bytes */ #define ROW_LOG_HEADER_SIZE 2/*op, extra_size*/ /** Log block for modifications during online ALTER TABLE */ struct row_log_buf_t { byte* block; /*!< file block buffer */ mrec_buf_t buf; /*!< buffer for accessing a record that spans two blocks */ ulint blocks; /*!< current position in blocks */ ulint bytes; /*!< current position within block */ ulonglong total; /*!< logical position, in bytes from the start of the row_log_table log; 0 for row_log_online_op() and row_log_apply(). */ ulint size; /*!< allocated size of block */ }; /** Tracks BLOB allocation during online ALTER TABLE */ class row_log_table_blob_t { public: /** Constructor (declaring a BLOB freed) @param offset_arg row_log_t::tail::total */ #ifdef UNIV_DEBUG row_log_table_blob_t(ulonglong offset_arg) : old_offset (0), free_offset (offset_arg), offset (BLOB_FREED) {} #else /* UNIV_DEBUG */ row_log_table_blob_t() : offset (BLOB_FREED) {} #endif /* UNIV_DEBUG */ /** Declare a BLOB freed again. @param offset_arg row_log_t::tail::total */ #ifdef UNIV_DEBUG void blob_free(ulonglong offset_arg) #else /* UNIV_DEBUG */ void blob_free() #endif /* UNIV_DEBUG */ { ut_ad(offset < offset_arg); ut_ad(offset != BLOB_FREED); ut_d(old_offset = offset); ut_d(free_offset = offset_arg); offset = BLOB_FREED; } /** Declare a freed BLOB reused. @param offset_arg row_log_t::tail::total */ void blob_alloc(ulonglong offset_arg) { ut_ad(free_offset <= offset_arg); ut_d(old_offset = offset); offset = offset_arg; } /** Determine if a BLOB was freed at a given log position @param offset_arg row_log_t::head::total after the log record @return true if freed */ bool is_freed(ulonglong offset_arg) const { /* This is supposed to be the offset at the end of the current log record. */ ut_ad(offset_arg > 0); /* We should never get anywhere close the magic value. */ ut_ad(offset_arg < BLOB_FREED); return(offset_arg < offset); } private: /** Magic value for a freed BLOB */ static const ulonglong BLOB_FREED = ~0ULL; #ifdef UNIV_DEBUG /** Old offset, in case a page was freed, reused, freed, ... */ ulonglong old_offset; /** Offset of last blob_free() */ ulonglong free_offset; #endif /* UNIV_DEBUG */ /** Byte offset to the log file */ ulonglong offset; }; /** @brief Map of off-page column page numbers to 0 or log byte offsets. If there is no mapping for a page number, it is safe to access. If a page number maps to 0, it is an off-page column that has been freed. If a page number maps to a nonzero number, the number is a byte offset into the index->online_log, indicating that the page is safe to access when applying log records starting from that offset. */ typedef std::map page_no_map; /** @brief Buffer for logging modifications during online index creation All modifications to an index that is being created will be logged by row_log_online_op() to this buffer. All modifications to a table that is being rebuilt will be logged by row_log_table_delete(), row_log_table_update(), row_log_table_insert() to this buffer. When head.blocks == tail.blocks, the reader will access tail.block directly. When also head.bytes == tail.bytes, both counts will be reset to 0 and the file will be truncated. */ struct row_log_t { int fd; /*!< file descriptor */ ib_mutex_t mutex; /*!< mutex protecting error, max_trx and tail */ page_no_map* blobs; /*!< map of page numbers of off-page columns that have been freed during table-rebuilding ALTER TABLE (row_log_table_*); protected by index->lock X-latch only */ dict_table_t* table; /*!< table that is being rebuilt, or NULL when this is a secondary index that is being created online */ bool same_pk;/*!< whether the definition of the PRIMARY KEY has remained the same */ const dtuple_t* add_cols; /*!< default values of added columns, or NULL */ const ulint* col_map;/*!< mapping of old column numbers to new ones, or NULL if !table */ dberr_t error; /*!< error that occurred during online table rebuild */ trx_id_t max_trx;/*!< biggest observed trx_id in row_log_online_op(); protected by mutex and index->lock S-latch, or by index->lock X-latch only */ row_log_buf_t tail; /*!< writer context; protected by mutex and index->lock S-latch, or by index->lock X-latch only */ row_log_buf_t head; /*!< reader context; protected by MDL only; modifiable by row_log_apply_ops() */ }; /** Allocate the memory for the log buffer. @param[in,out] log_buf Buffer used for log operation @return TRUE if success, false if not */ static __attribute__((warn_unused_result)) bool row_log_block_allocate( row_log_buf_t& log_buf) { DBUG_ENTER("row_log_block_allocate"); if (log_buf.block == NULL) { log_buf.size = srv_sort_buf_size; log_buf.block = (byte*) os_mem_alloc_large(&log_buf.size); DBUG_EXECUTE_IF("simulate_row_log_allocation_failure", if (log_buf.block) os_mem_free_large(log_buf.block, log_buf.size); log_buf.block = NULL;); if (!log_buf.block) { DBUG_RETURN(false); } } DBUG_RETURN(true); } /** Free the log buffer. @param[in,out] log_buf Buffer used for log operation */ static void row_log_block_free( row_log_buf_t& log_buf) { DBUG_ENTER("row_log_block_free"); if (log_buf.block != NULL) { os_mem_free_large(log_buf.block, log_buf.size); log_buf.block = NULL; } DBUG_VOID_RETURN; } /******************************************************//** Logs an operation to a secondary index that is (or was) being created. */ UNIV_INTERN void row_log_online_op( /*==============*/ dict_index_t* index, /*!< in/out: index, S or X latched */ const dtuple_t* tuple, /*!< in: index tuple */ trx_id_t trx_id) /*!< in: transaction ID for insert, or 0 for delete */ { byte* b; ulint extra_size; ulint size; ulint mrec_size; ulint avail_size; row_log_t* log; ut_ad(dtuple_validate(tuple)); ut_ad(dtuple_get_n_fields(tuple) == dict_index_get_n_fields(index)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_SHARED) || rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ if (dict_index_is_corrupted(index)) { return; } ut_ad(dict_index_is_online_ddl(index)); /* Compute the size of the record. This differs from row_merge_buf_encode(), because here we do not encode extra_size+1 (and reserve 0 as the end-of-chunk marker). */ size = rec_get_converted_size_temp( index, tuple->fields, tuple->n_fields, &extra_size); ut_ad(size >= extra_size); ut_ad(size <= sizeof log->tail.buf); mrec_size = ROW_LOG_HEADER_SIZE + (extra_size >= 0x80) + size + (trx_id ? DATA_TRX_ID_LEN : 0); log = index->online_log; mutex_enter(&log->mutex); if (trx_id > log->max_trx) { log->max_trx = trx_id; } if (!row_log_block_allocate(log->tail)) { log->error = DB_OUT_OF_MEMORY; goto err_exit; } UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf); ut_ad(log->tail.bytes < srv_sort_buf_size); avail_size = srv_sort_buf_size - log->tail.bytes; if (mrec_size > avail_size) { b = log->tail.buf; } else { b = log->tail.block + log->tail.bytes; } if (trx_id != 0) { *b++ = ROW_OP_INSERT; trx_write_trx_id(b, trx_id); b += DATA_TRX_ID_LEN; } else { *b++ = ROW_OP_DELETE; } if (extra_size < 0x80) { *b++ = (byte) extra_size; } else { ut_ad(extra_size < 0x8000); *b++ = (byte) (0x80 | (extra_size >> 8)); *b++ = (byte) extra_size; } rec_convert_dtuple_to_temp( b + extra_size, index, tuple->fields, tuple->n_fields); b += size; if (mrec_size >= avail_size) { const os_offset_t byte_offset = (os_offset_t) log->tail.blocks * srv_sort_buf_size; ibool ret; if (byte_offset + srv_sort_buf_size >= srv_online_max_size) { goto write_failed; } if (mrec_size == avail_size) { ut_ad(b == &log->tail.block[srv_sort_buf_size]); } else { ut_ad(b == log->tail.buf + mrec_size); memcpy(log->tail.block + log->tail.bytes, log->tail.buf, avail_size); } UNIV_MEM_ASSERT_RW(log->tail.block, srv_sort_buf_size); ret = os_file_write( "(modification log)", OS_FILE_FROM_FD(log->fd), log->tail.block, byte_offset, srv_sort_buf_size); log->tail.blocks++; if (!ret) { write_failed: /* We set the flag directly instead of invoking dict_set_corrupted_index_cache_only(index) here, because the index is not "public" yet. */ index->type |= DICT_CORRUPT; } UNIV_MEM_INVALID(log->tail.block, srv_sort_buf_size); memcpy(log->tail.block, log->tail.buf + avail_size, mrec_size - avail_size); log->tail.bytes = mrec_size - avail_size; } else { log->tail.bytes += mrec_size; ut_ad(b == log->tail.block + log->tail.bytes); } UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf); err_exit: mutex_exit(&log->mutex); } /******************************************************//** Gets the error status of the online index rebuild log. @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t row_log_table_get_error( /*====================*/ const dict_index_t* index) /*!< in: clustered index of a table that is being rebuilt online */ { ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_online_ddl(index)); return(index->online_log->error); } /******************************************************//** Starts logging an operation to a table that is being rebuilt. @return pointer to log, or NULL if no logging is necessary */ static __attribute__((nonnull, warn_unused_result)) byte* row_log_table_open( /*===============*/ row_log_t* log, /*!< in/out: online rebuild log */ ulint size, /*!< in: size of log record */ ulint* avail) /*!< out: available size for log record */ { mutex_enter(&log->mutex); UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf); if (log->error != DB_SUCCESS) { err_exit: mutex_exit(&log->mutex); return(NULL); } if (!row_log_block_allocate(log->tail)) { log->error = DB_OUT_OF_MEMORY; goto err_exit; } ut_ad(log->tail.bytes < srv_sort_buf_size); *avail = srv_sort_buf_size - log->tail.bytes; if (size > *avail) { return(log->tail.buf); } else { return(log->tail.block + log->tail.bytes); } } /******************************************************//** Stops logging an operation to a table that is being rebuilt. */ static __attribute__((nonnull)) void row_log_table_close_func( /*=====================*/ row_log_t* log, /*!< in/out: online rebuild log */ #ifdef UNIV_DEBUG const byte* b, /*!< in: end of log record */ #endif /* UNIV_DEBUG */ ulint size, /*!< in: size of log record */ ulint avail) /*!< in: available size for log record */ { ut_ad(mutex_own(&log->mutex)); if (size >= avail) { const os_offset_t byte_offset = (os_offset_t) log->tail.blocks * srv_sort_buf_size; ibool ret; if (byte_offset + srv_sort_buf_size >= srv_online_max_size) { goto write_failed; } if (size == avail) { ut_ad(b == &log->tail.block[srv_sort_buf_size]); } else { ut_ad(b == log->tail.buf + size); memcpy(log->tail.block + log->tail.bytes, log->tail.buf, avail); } UNIV_MEM_ASSERT_RW(log->tail.block, srv_sort_buf_size); ret = os_file_write( "(modification log)", OS_FILE_FROM_FD(log->fd), log->tail.block, byte_offset, srv_sort_buf_size); log->tail.blocks++; if (!ret) { write_failed: log->error = DB_ONLINE_LOG_TOO_BIG; } UNIV_MEM_INVALID(log->tail.block, srv_sort_buf_size); memcpy(log->tail.block, log->tail.buf + avail, size - avail); log->tail.bytes = size - avail; } else { log->tail.bytes += size; ut_ad(b == log->tail.block + log->tail.bytes); } log->tail.total += size; UNIV_MEM_INVALID(log->tail.buf, sizeof log->tail.buf); mutex_exit(&log->mutex); } #ifdef UNIV_DEBUG # define row_log_table_close(log, b, size, avail) \ row_log_table_close_func(log, b, size, avail) #else /* UNIV_DEBUG */ # define row_log_table_close(log, b, size, avail) \ row_log_table_close_func(log, size, avail) #endif /* UNIV_DEBUG */ /******************************************************//** Logs a delete operation to a table that is being rebuilt. This will be merged in row_log_table_apply_delete(). */ UNIV_INTERN void row_log_table_delete( /*=================*/ const rec_t* rec, /*!< in: clustered index leaf page record, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */ const byte* sys) /*!< in: DB_TRX_ID,DB_ROLL_PTR that should be logged, or NULL to use those in rec */ { ulint old_pk_extra_size; ulint old_pk_size; ulint ext_size = 0; ulint mrec_size; ulint avail_size; mem_heap_t* heap = NULL; const dtuple_t* old_pk; row_ext_t* ext; ut_ad(dict_index_is_clust(index)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_n_fields(offsets) == dict_index_get_n_fields(index)); ut_ad(rec_offs_size(offsets) <= sizeof index->online_log->tail.buf); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&index->lock, RW_LOCK_SHARED) || rw_lock_own(&index->lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ if (dict_index_is_corrupted(index) || !dict_index_is_online_ddl(index) || index->online_log->error != DB_SUCCESS) { return; } dict_table_t* new_table = index->online_log->table; dict_index_t* new_index = dict_table_get_first_index(new_table); ut_ad(dict_index_is_clust(new_index)); ut_ad(!dict_index_is_online_ddl(new_index)); /* Create the tuple PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR in new_table. */ if (index->online_log->same_pk) { dtuple_t* tuple; ut_ad(new_index->n_uniq == index->n_uniq); /* The PRIMARY KEY and DB_TRX_ID,DB_ROLL_PTR are in the first fields of the record. */ heap = mem_heap_create( DATA_TRX_ID_LEN + DTUPLE_EST_ALLOC(new_index->n_uniq + 2)); old_pk = tuple = dtuple_create(heap, new_index->n_uniq + 2); dict_index_copy_types(tuple, new_index, tuple->n_fields); dtuple_set_n_fields_cmp(tuple, new_index->n_uniq); for (ulint i = 0; i < dtuple_get_n_fields(tuple); i++) { ulint len; const void* field = rec_get_nth_field( rec, offsets, i, &len); dfield_t* dfield = dtuple_get_nth_field( tuple, i); ut_ad(len != UNIV_SQL_NULL); ut_ad(!rec_offs_nth_extern(offsets, i)); dfield_set_data(dfield, field, len); } if (sys) { dfield_set_data( dtuple_get_nth_field(tuple, new_index->n_uniq), sys, DATA_TRX_ID_LEN); dfield_set_data( dtuple_get_nth_field(tuple, new_index->n_uniq + 1), sys + DATA_TRX_ID_LEN, DATA_ROLL_PTR_LEN); } } else { /* The PRIMARY KEY has changed. Translate the tuple. */ old_pk = row_log_table_get_pk( rec, index, offsets, NULL, &heap); if (!old_pk) { ut_ad(index->online_log->error != DB_SUCCESS); if (heap) { goto func_exit; } return; } } ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 2)->len); ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 1)->len); old_pk_size = rec_get_converted_size_temp( new_index, old_pk->fields, old_pk->n_fields, &old_pk_extra_size); ut_ad(old_pk_extra_size < 0x100); mrec_size = 4 + old_pk_size; /* Log enough prefix of the BLOB unless both the old and new table are in COMPACT or REDUNDANT format, which store the prefix in the clustered index record. */ if (rec_offs_any_extern(offsets) && (dict_table_get_format(index->table) >= UNIV_FORMAT_B || dict_table_get_format(new_table) >= UNIV_FORMAT_B)) { /* Build a cache of those off-page column prefixes that are referenced by secondary indexes. It can be that none of the off-page columns are needed. */ row_build(ROW_COPY_DATA, index, rec, offsets, NULL, NULL, NULL, &ext, heap); if (ext) { /* Log the row_ext_t, ext->ext and ext->buf */ ext_size = ext->n_ext * ext->max_len + sizeof(*ext) + ext->n_ext * sizeof(ulint) + (ext->n_ext - 1) * sizeof ext->len; mrec_size += ext_size; } } if (byte* b = row_log_table_open(index->online_log, mrec_size, &avail_size)) { *b++ = ROW_T_DELETE; *b++ = static_cast(old_pk_extra_size); /* Log the size of external prefix we saved */ mach_write_to_2(b, ext_size); b += 2; rec_convert_dtuple_to_temp( b + old_pk_extra_size, new_index, old_pk->fields, old_pk->n_fields); b += old_pk_size; if (ext_size) { ulint cur_ext_size = sizeof(*ext) + (ext->n_ext - 1) * sizeof ext->len; memcpy(b, ext, cur_ext_size); b += cur_ext_size; /* Check if we need to col_map to adjust the column number. If columns were added/removed/reordered, adjust the column number. */ if (const ulint* col_map = index->online_log->col_map) { for (ulint i = 0; i < ext->n_ext; i++) { const_cast(ext->ext[i]) = col_map[ext->ext[i]]; } } memcpy(b, ext->ext, ext->n_ext * sizeof(*ext->ext)); b += ext->n_ext * sizeof(*ext->ext); ext_size -= cur_ext_size + ext->n_ext * sizeof(*ext->ext); memcpy(b, ext->buf, ext_size); b += ext_size; } row_log_table_close( index->online_log, b, mrec_size, avail_size); } func_exit: mem_heap_free(heap); } /******************************************************//** Logs an insert or update to a table that is being rebuilt. */ static void row_log_table_low_redundant( /*========================*/ const rec_t* rec, /*!< in: clustered index leaf page record in ROW_FORMAT=REDUNDANT, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ bool insert, /*!< in: true if insert, false if update */ const dtuple_t* old_pk, /*!< in: old PRIMARY KEY value (if !insert and a PRIMARY KEY is being created) */ const dict_index_t* new_index) /*!< in: clustered index of the new table, not latched */ { ulint old_pk_size; ulint old_pk_extra_size; ulint size; ulint extra_size; ulint mrec_size; ulint avail_size; mem_heap_t* heap = NULL; dtuple_t* tuple; ut_ad(!page_is_comp(page_align(rec))); ut_ad(dict_index_get_n_fields(index) == rec_get_n_fields_old(rec)); ut_ad(dict_tf_is_valid(index->table->flags)); ut_ad(!dict_table_is_comp(index->table)); /* redundant row format */ ut_ad(dict_index_is_clust(new_index)); heap = mem_heap_create(DTUPLE_EST_ALLOC(index->n_fields)); tuple = dtuple_create(heap, index->n_fields); dict_index_copy_types(tuple, index, index->n_fields); dtuple_set_n_fields_cmp(tuple, dict_index_get_n_unique(index)); if (rec_get_1byte_offs_flag(rec)) { for (ulint i = 0; i < index->n_fields; i++) { dfield_t* dfield; ulint len; const void* field; dfield = dtuple_get_nth_field(tuple, i); field = rec_get_nth_field_old(rec, i, &len); dfield_set_data(dfield, field, len); } } else { for (ulint i = 0; i < index->n_fields; i++) { dfield_t* dfield; ulint len; const void* field; dfield = dtuple_get_nth_field(tuple, i); field = rec_get_nth_field_old(rec, i, &len); dfield_set_data(dfield, field, len); if (rec_2_is_field_extern(rec, i)) { dfield_set_ext(dfield); } } } size = rec_get_converted_size_temp( index, tuple->fields, tuple->n_fields, &extra_size); mrec_size = ROW_LOG_HEADER_SIZE + size + (extra_size >= 0x80); if (insert || index->online_log->same_pk) { ut_ad(!old_pk); old_pk_extra_size = old_pk_size = 0; } else { ut_ad(old_pk); ut_ad(old_pk->n_fields == 2 + old_pk->n_fields_cmp); ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 2)->len); ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 1)->len); old_pk_size = rec_get_converted_size_temp( new_index, old_pk->fields, old_pk->n_fields, &old_pk_extra_size); ut_ad(old_pk_extra_size < 0x100); mrec_size += 1/*old_pk_extra_size*/ + old_pk_size; } if (byte* b = row_log_table_open(index->online_log, mrec_size, &avail_size)) { *b++ = insert ? ROW_T_INSERT : ROW_T_UPDATE; if (old_pk_size) { *b++ = static_cast(old_pk_extra_size); rec_convert_dtuple_to_temp( b + old_pk_extra_size, new_index, old_pk->fields, old_pk->n_fields); b += old_pk_size; } if (extra_size < 0x80) { *b++ = static_cast(extra_size); } else { ut_ad(extra_size < 0x8000); *b++ = static_cast(0x80 | (extra_size >> 8)); *b++ = static_cast(extra_size); } rec_convert_dtuple_to_temp( b + extra_size, index, tuple->fields, tuple->n_fields); b += size; row_log_table_close( index->online_log, b, mrec_size, avail_size); } mem_heap_free(heap); } /******************************************************//** Logs an insert or update to a table that is being rebuilt. */ static __attribute__((nonnull(1,2,3))) void row_log_table_low( /*==============*/ const rec_t* rec, /*!< in: clustered index leaf page record, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */ bool insert, /*!< in: true if insert, false if update */ const dtuple_t* old_pk) /*!< in: old PRIMARY KEY value (if !insert and a PRIMARY KEY is being created) */ { ulint omit_size; ulint old_pk_size; ulint old_pk_extra_size; ulint extra_size; ulint mrec_size; ulint avail_size; const dict_index_t* new_index = dict_table_get_first_index( index->online_log->table); ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_clust(new_index)); ut_ad(!dict_index_is_online_ddl(new_index)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_n_fields(offsets) == dict_index_get_n_fields(index)); ut_ad(rec_offs_size(offsets) <= sizeof index->online_log->tail.buf); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&index->lock, RW_LOCK_SHARED) || rw_lock_own(&index->lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(fil_page_get_type(page_align(rec)) == FIL_PAGE_INDEX); ut_ad(page_is_leaf(page_align(rec))); ut_ad(!page_is_comp(page_align(rec)) == !rec_offs_comp(offsets)); if (dict_index_is_corrupted(index) || !dict_index_is_online_ddl(index) || index->online_log->error != DB_SUCCESS) { return; } if (!rec_offs_comp(offsets)) { row_log_table_low_redundant( rec, index, insert, old_pk, new_index); return; } ut_ad(page_is_comp(page_align(rec))); ut_ad(rec_get_status(rec) == REC_STATUS_ORDINARY); omit_size = REC_N_NEW_EXTRA_BYTES; extra_size = rec_offs_extra_size(offsets) - omit_size; mrec_size = ROW_LOG_HEADER_SIZE + (extra_size >= 0x80) + rec_offs_size(offsets) - omit_size; if (insert || index->online_log->same_pk) { ut_ad(!old_pk); old_pk_extra_size = old_pk_size = 0; } else { ut_ad(old_pk); ut_ad(old_pk->n_fields == 2 + old_pk->n_fields_cmp); ut_ad(DATA_TRX_ID_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 2)->len); ut_ad(DATA_ROLL_PTR_LEN == dtuple_get_nth_field( old_pk, old_pk->n_fields - 1)->len); old_pk_size = rec_get_converted_size_temp( new_index, old_pk->fields, old_pk->n_fields, &old_pk_extra_size); ut_ad(old_pk_extra_size < 0x100); mrec_size += 1/*old_pk_extra_size*/ + old_pk_size; } if (byte* b = row_log_table_open(index->online_log, mrec_size, &avail_size)) { *b++ = insert ? ROW_T_INSERT : ROW_T_UPDATE; if (old_pk_size) { *b++ = static_cast(old_pk_extra_size); rec_convert_dtuple_to_temp( b + old_pk_extra_size, new_index, old_pk->fields, old_pk->n_fields); b += old_pk_size; } if (extra_size < 0x80) { *b++ = static_cast(extra_size); } else { ut_ad(extra_size < 0x8000); *b++ = static_cast(0x80 | (extra_size >> 8)); *b++ = static_cast(extra_size); } memcpy(b, rec - rec_offs_extra_size(offsets), extra_size); b += extra_size; memcpy(b, rec, rec_offs_data_size(offsets)); b += rec_offs_data_size(offsets); row_log_table_close( index->online_log, b, mrec_size, avail_size); } } /******************************************************//** Logs an update to a table that is being rebuilt. This will be merged in row_log_table_apply_update(). */ UNIV_INTERN void row_log_table_update( /*=================*/ const rec_t* rec, /*!< in: clustered index leaf page record, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */ const dtuple_t* old_pk) /*!< in: row_log_table_get_pk() before the update */ { row_log_table_low(rec, index, offsets, false, old_pk); } /** Gets the old table column of a PRIMARY KEY column. @param table old table (before ALTER TABLE) @param col_map mapping of old column numbers to new ones @param col_no column position in the new table @return old table column, or NULL if this is an added column */ static const dict_col_t* row_log_table_get_pk_old_col( /*=========================*/ const dict_table_t* table, const ulint* col_map, ulint col_no) { for (ulint i = 0; i < table->n_cols; i++) { if (col_no == col_map[i]) { return(dict_table_get_nth_col(table, i)); } } return(NULL); } /** Maps an old table column of a PRIMARY KEY column. @param col old table column (before ALTER TABLE) @param ifield clustered index field in the new table (after ALTER TABLE) @param dfield clustered index tuple field in the new table @param heap memory heap for allocating dfield contents @param rec clustered index leaf page record in the old table @param offsets rec_get_offsets(rec) @param i rec field corresponding to col @param zip_size compressed page size of the old table, or 0 for uncompressed @param max_len maximum length of dfield @retval DB_INVALID_NULL if a NULL value is encountered @retval DB_TOO_BIG_INDEX_COL if the maximum prefix length is exceeded */ static dberr_t row_log_table_get_pk_col( /*=====================*/ const dict_col_t* col, const dict_field_t* ifield, dfield_t* dfield, mem_heap_t* heap, const rec_t* rec, const ulint* offsets, ulint i, ulint zip_size, ulint max_len) { const byte* field; ulint len; ut_ad(ut_is_2pow(zip_size)); field = rec_get_nth_field(rec, offsets, i, &len); if (len == UNIV_SQL_NULL) { return(DB_INVALID_NULL); } if (rec_offs_nth_extern(offsets, i)) { ulint field_len = ifield->prefix_len; byte* blob_field; if (!field_len) { field_len = ifield->fixed_len; if (!field_len) { field_len = max_len + 1; } } blob_field = static_cast( mem_heap_alloc(heap, field_len)); len = btr_copy_externally_stored_field_prefix( blob_field, field_len, zip_size, field, len); if (len >= max_len + 1) { return(DB_TOO_BIG_INDEX_COL); } dfield_set_data(dfield, blob_field, len); } else { dfield_set_data(dfield, mem_heap_dup(heap, field, len), len); } return(DB_SUCCESS); } /******************************************************//** Constructs the old PRIMARY KEY and DB_TRX_ID,DB_ROLL_PTR of a table that is being rebuilt. @return tuple of PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR in the rebuilt table, or NULL if the PRIMARY KEY definition does not change */ UNIV_INTERN const dtuple_t* row_log_table_get_pk( /*=================*/ const rec_t* rec, /*!< in: clustered index leaf page record, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ const ulint* offsets,/*!< in: rec_get_offsets(rec,index) */ byte* sys, /*!< out: DB_TRX_ID,DB_ROLL_PTR for row_log_table_delete(), or NULL */ mem_heap_t** heap) /*!< in/out: memory heap where allocated */ { dtuple_t* tuple = NULL; row_log_t* log = index->online_log; ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_online_ddl(index)); ut_ad(!offsets || rec_offs_validate(rec, index, offsets)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&index->lock, RW_LOCK_SHARED) || rw_lock_own(&index->lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(log); ut_ad(log->table); if (log->same_pk) { /* The PRIMARY KEY columns are unchanged. */ if (sys) { /* Store the DB_TRX_ID,DB_ROLL_PTR. */ ulint trx_id_offs = index->trx_id_offset; if (!trx_id_offs) { ulint pos = dict_index_get_sys_col_pos( index, DATA_TRX_ID); ulint len; ut_ad(pos > 0); if (!offsets) { offsets = rec_get_offsets( rec, index, NULL, pos + 1, heap); } trx_id_offs = rec_get_nth_field_offs( offsets, pos, &len); ut_ad(len == DATA_TRX_ID_LEN); } memcpy(sys, rec + trx_id_offs, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN); } return(NULL); } mutex_enter(&log->mutex); /* log->error is protected by log->mutex. */ if (log->error == DB_SUCCESS) { dict_table_t* new_table = log->table; dict_index_t* new_index = dict_table_get_first_index(new_table); const ulint new_n_uniq = dict_index_get_n_unique(new_index); if (!*heap) { ulint size = 0; if (!offsets) { size += (1 + REC_OFFS_HEADER_SIZE + index->n_fields) * sizeof *offsets; } for (ulint i = 0; i < new_n_uniq; i++) { size += dict_col_get_min_size( dict_index_get_nth_col(new_index, i)); } *heap = mem_heap_create( DTUPLE_EST_ALLOC(new_n_uniq + 2) + size); } if (!offsets) { offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, heap); } tuple = dtuple_create(*heap, new_n_uniq + 2); dict_index_copy_types(tuple, new_index, tuple->n_fields); dtuple_set_n_fields_cmp(tuple, new_n_uniq); const ulint max_len = DICT_MAX_FIELD_LEN_BY_FORMAT(new_table); const ulint zip_size = dict_table_zip_size(index->table); for (ulint new_i = 0; new_i < new_n_uniq; new_i++) { dict_field_t* ifield; dfield_t* dfield; ulint prtype; ulint mbminmaxlen; ifield = dict_index_get_nth_field(new_index, new_i); dfield = dtuple_get_nth_field(tuple, new_i); const ulint col_no = dict_field_get_col(ifield)->ind; if (const dict_col_t* col = row_log_table_get_pk_old_col( index->table, log->col_map, col_no)) { ulint i = dict_col_get_clust_pos(col, index); if (i == ULINT_UNDEFINED) { ut_ad(0); log->error = DB_CORRUPTION; goto err_exit; } log->error = row_log_table_get_pk_col( col, ifield, dfield, *heap, rec, offsets, i, zip_size, max_len); if (log->error != DB_SUCCESS) { err_exit: tuple = NULL; goto func_exit; } mbminmaxlen = col->mbminmaxlen; prtype = col->prtype; } else { /* No matching column was found in the old table, so this must be an added column. Copy the default value. */ ut_ad(log->add_cols); dfield_copy(dfield, dtuple_get_nth_field( log->add_cols, col_no)); mbminmaxlen = dfield->type.mbminmaxlen; prtype = dfield->type.prtype; } ut_ad(!dfield_is_ext(dfield)); ut_ad(!dfield_is_null(dfield)); if (ifield->prefix_len) { ulint len = dtype_get_at_most_n_mbchars( prtype, mbminmaxlen, ifield->prefix_len, dfield_get_len(dfield), static_cast( dfield_get_data(dfield))); ut_ad(len <= dfield_get_len(dfield)); dfield_set_len(dfield, len); } } const byte* trx_roll = rec + row_get_trx_id_offset(index, offsets); /* Copy the fields, because the fields will be updated or the record may be moved somewhere else in the B-tree as part of the upcoming operation. */ if (sys) { memcpy(sys, trx_roll, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN); trx_roll = sys; } else { trx_roll = static_cast( mem_heap_dup( *heap, trx_roll, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN)); } dfield_set_data(dtuple_get_nth_field(tuple, new_n_uniq), trx_roll, DATA_TRX_ID_LEN); dfield_set_data(dtuple_get_nth_field(tuple, new_n_uniq + 1), trx_roll + DATA_TRX_ID_LEN, DATA_ROLL_PTR_LEN); } func_exit: mutex_exit(&log->mutex); return(tuple); } /******************************************************//** Logs an insert to a table that is being rebuilt. This will be merged in row_log_table_apply_insert(). */ UNIV_INTERN void row_log_table_insert( /*=================*/ const rec_t* rec, /*!< in: clustered index leaf page record, page X-latched */ dict_index_t* index, /*!< in/out: clustered index, S-latched or X-latched */ const ulint* offsets)/*!< in: rec_get_offsets(rec,index) */ { row_log_table_low(rec, index, offsets, true, NULL); } /******************************************************//** Notes that a BLOB is being freed during online ALTER TABLE. */ UNIV_INTERN void row_log_table_blob_free( /*====================*/ dict_index_t* index, /*!< in/out: clustered index, X-latched */ ulint page_no)/*!< in: starting page number of the BLOB */ { ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_online_ddl(index)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&index->lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(page_no != FIL_NULL); if (index->online_log->error != DB_SUCCESS) { return; } page_no_map* blobs = index->online_log->blobs; if (!blobs) { index->online_log->blobs = blobs = new page_no_map(); } #ifdef UNIV_DEBUG const ulonglong log_pos = index->online_log->tail.total; #else # define log_pos /* empty */ #endif /* UNIV_DEBUG */ const page_no_map::value_type v(page_no, row_log_table_blob_t(log_pos)); std::pair p = blobs->insert(v); if (!p.second) { /* Update the existing mapping. */ ut_ad(p.first->first == page_no); p.first->second.blob_free(log_pos); } #undef log_pos } /******************************************************//** Notes that a BLOB is being allocated during online ALTER TABLE. */ UNIV_INTERN void row_log_table_blob_alloc( /*=====================*/ dict_index_t* index, /*!< in/out: clustered index, X-latched */ ulint page_no)/*!< in: starting page number of the BLOB */ { ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_online_ddl(index)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&index->lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(page_no != FIL_NULL); if (index->online_log->error != DB_SUCCESS) { return; } /* Only track allocations if the same page has been freed earlier. Double allocation without a free is not allowed. */ if (page_no_map* blobs = index->online_log->blobs) { page_no_map::iterator p = blobs->find(page_no); if (p != blobs->end()) { ut_ad(p->first == page_no); p->second.blob_alloc(index->online_log->tail.total); } } } /******************************************************//** Converts a log record to a table row. @return converted row, or NULL if the conversion fails */ static __attribute__((nonnull, warn_unused_result)) const dtuple_t* row_log_table_apply_convert_mrec( /*=============================*/ const mrec_t* mrec, /*!< in: merge record */ dict_index_t* index, /*!< in: index of mrec */ const ulint* offsets, /*!< in: offsets of mrec */ const row_log_t* log, /*!< in: rebuild context */ mem_heap_t* heap, /*!< in/out: memory heap */ trx_id_t trx_id, /*!< in: DB_TRX_ID of mrec */ dberr_t* error) /*!< out: DB_SUCCESS or DB_MISSING_HISTORY or reason of failure */ { dtuple_t* row; *error = DB_SUCCESS; /* This is based on row_build(). */ if (log->add_cols) { row = dtuple_copy(log->add_cols, heap); /* dict_table_copy_types() would set the fields to NULL */ for (ulint i = 0; i < dict_table_get_n_cols(log->table); i++) { dict_col_copy_type( dict_table_get_nth_col(log->table, i), dfield_get_type(dtuple_get_nth_field(row, i))); } } else { row = dtuple_create(heap, dict_table_get_n_cols(log->table)); dict_table_copy_types(row, log->table); } for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) { const dict_field_t* ind_field = dict_index_get_nth_field(index, i); if (ind_field->prefix_len) { /* Column prefixes can only occur in key fields, which cannot be stored externally. For a column prefix, there should also be the full field in the clustered index tuple. The row tuple comprises full fields, not prefixes. */ ut_ad(!rec_offs_nth_extern(offsets, i)); continue; } const dict_col_t* col = dict_field_get_col(ind_field); ulint col_no = log->col_map[dict_col_get_no(col)]; if (col_no == ULINT_UNDEFINED) { /* dropped column */ continue; } dfield_t* dfield = dtuple_get_nth_field(row, col_no); ulint len; const byte* data; if (rec_offs_nth_extern(offsets, i)) { ut_ad(rec_offs_any_extern(offsets)); rw_lock_x_lock(dict_index_get_lock(index)); if (const page_no_map* blobs = log->blobs) { data = rec_get_nth_field( mrec, offsets, i, &len); ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE); ulint page_no = mach_read_from_4( data + len - (BTR_EXTERN_FIELD_REF_SIZE - BTR_EXTERN_PAGE_NO)); page_no_map::const_iterator p = blobs->find( page_no); if (p != blobs->end() && p->second.is_freed(log->head.total)) { /* This BLOB has been freed. We must not access the row. */ *error = DB_MISSING_HISTORY; dfield_set_data(dfield, data, len); dfield_set_ext(dfield); goto blob_done; } } data = btr_rec_copy_externally_stored_field( mrec, offsets, dict_table_zip_size(index->table), i, &len, heap); ut_a(data); dfield_set_data(dfield, data, len); blob_done: rw_lock_x_unlock(dict_index_get_lock(index)); } else { data = rec_get_nth_field(mrec, offsets, i, &len); dfield_set_data(dfield, data, len); } /* See if any columns were changed to NULL or NOT NULL. */ const dict_col_t* new_col = dict_table_get_nth_col(log->table, col_no); ut_ad(new_col->mtype == col->mtype); /* Assert that prtype matches except for nullability. */ ut_ad(!((new_col->prtype ^ col->prtype) & ~DATA_NOT_NULL)); ut_ad(!((new_col->prtype ^ dfield_get_type(dfield)->prtype) & ~DATA_NOT_NULL)); if (new_col->prtype == col->prtype) { continue; } if ((new_col->prtype & DATA_NOT_NULL) && dfield_is_null(dfield)) { /* We got a NULL value for a NOT NULL column. */ *error = DB_INVALID_NULL; return(NULL); } /* Adjust the DATA_NOT_NULL flag in the parsed row. */ dfield_get_type(dfield)->prtype = new_col->prtype; ut_ad(dict_col_type_assert_equal(new_col, dfield_get_type(dfield))); } return(row); } /******************************************************//** Replays an insert operation on a table that was rebuilt. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_log_table_apply_insert_low( /*===========================*/ que_thr_t* thr, /*!< in: query graph */ const dtuple_t* row, /*!< in: table row in the old table definition */ trx_id_t trx_id, /*!< in: trx_id of the row */ mem_heap_t* offsets_heap, /*!< in/out: memory heap that can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap */ row_merge_dup_t* dup) /*!< in/out: for reporting duplicate key errors */ { dberr_t error; dtuple_t* entry; const row_log_t*log = dup->index->online_log; dict_index_t* index = dict_table_get_first_index(log->table); ut_ad(dtuple_validate(row)); ut_ad(trx_id); #ifdef ROW_LOG_APPLY_PRINT if (row_log_apply_print) { fprintf(stderr, "table apply insert " IB_ID_FMT " " IB_ID_FMT "\n", index->table->id, index->id); dtuple_print(stderr, row); } #endif /* ROW_LOG_APPLY_PRINT */ static const ulint flags = (BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG); entry = row_build_index_entry(row, NULL, index, heap); error = row_ins_clust_index_entry_low( flags, BTR_MODIFY_TREE, index, index->n_uniq, entry, 0, thr); switch (error) { case DB_SUCCESS: break; case DB_SUCCESS_LOCKED_REC: /* The row had already been copied to the table. */ return(DB_SUCCESS); default: return(error); } do { if (!(index = dict_table_get_next_index(index))) { break; } if (index->type & DICT_FTS) { continue; } entry = row_build_index_entry(row, NULL, index, heap); error = row_ins_sec_index_entry_low( flags, BTR_MODIFY_TREE, index, offsets_heap, heap, entry, trx_id, thr); } while (error == DB_SUCCESS); return(error); } /******************************************************//** Replays an insert operation on a table that was rebuilt. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_log_table_apply_insert( /*=======================*/ que_thr_t* thr, /*!< in: query graph */ const mrec_t* mrec, /*!< in: record to insert */ const ulint* offsets, /*!< in: offsets of mrec */ mem_heap_t* offsets_heap, /*!< in/out: memory heap that can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap */ row_merge_dup_t* dup, /*!< in/out: for reporting duplicate key errors */ trx_id_t trx_id) /*!< in: DB_TRX_ID of mrec */ { const row_log_t*log = dup->index->online_log; dberr_t error; const dtuple_t* row = row_log_table_apply_convert_mrec( mrec, dup->index, offsets, log, heap, trx_id, &error); switch (error) { case DB_MISSING_HISTORY: ut_ad(log->blobs); /* Because some BLOBs are missing, we know that the transaction was rolled back later (a rollback of an insert can free BLOBs). We can simply skip the insert: the subsequent ROW_T_DELETE will be ignored, or a ROW_T_UPDATE will be interpreted as ROW_T_INSERT. */ return(DB_SUCCESS); case DB_SUCCESS: ut_ad(row != NULL); break; default: ut_ad(0); case DB_INVALID_NULL: ut_ad(row == NULL); return(error); } error = row_log_table_apply_insert_low( thr, row, trx_id, offsets_heap, heap, dup); if (error != DB_SUCCESS) { /* Report the erroneous row using the new version of the table. */ innobase_row_to_mysql(dup->table, log->table, row); } return(error); } /******************************************************//** Deletes a record from a table that is being rebuilt. @return DB_SUCCESS or error code */ static __attribute__((nonnull(1, 2, 4, 5), warn_unused_result)) dberr_t row_log_table_apply_delete_low( /*===========================*/ btr_pcur_t* pcur, /*!< in/out: B-tree cursor, will be trashed */ const ulint* offsets, /*!< in: offsets on pcur */ const row_ext_t* save_ext, /*!< in: saved external field info, or NULL */ mem_heap_t* heap, /*!< in/out: memory heap */ mtr_t* mtr) /*!< in/out: mini-transaction, will be committed */ { dberr_t error; row_ext_t* ext; dtuple_t* row; dict_index_t* index = btr_pcur_get_btr_cur(pcur)->index; ut_ad(dict_index_is_clust(index)); #ifdef ROW_LOG_APPLY_PRINT if (row_log_apply_print) { fprintf(stderr, "table apply delete " IB_ID_FMT " " IB_ID_FMT "\n", index->table->id, index->id); rec_print_new(stderr, btr_pcur_get_rec(pcur), offsets); } #endif /* ROW_LOG_APPLY_PRINT */ if (dict_table_get_next_index(index)) { /* Build a row template for purging secondary index entries. */ row = row_build( ROW_COPY_DATA, index, btr_pcur_get_rec(pcur), offsets, NULL, NULL, NULL, save_ext ? NULL : &ext, heap); if (!save_ext) { save_ext = ext; } } else { row = NULL; } btr_cur_pessimistic_delete(&error, FALSE, btr_pcur_get_btr_cur(pcur), BTR_CREATE_FLAG, RB_NONE, mtr); mtr_commit(mtr); if (error != DB_SUCCESS) { return(error); } while ((index = dict_table_get_next_index(index)) != NULL) { if (index->type & DICT_FTS) { continue; } const dtuple_t* entry = row_build_index_entry( row, save_ext, index, heap); mtr_start(mtr); btr_pcur_open(index, entry, PAGE_CUR_LE, BTR_MODIFY_TREE, pcur, mtr); #ifdef UNIV_DEBUG switch (btr_pcur_get_btr_cur(pcur)->flag) { case BTR_CUR_DELETE_REF: case BTR_CUR_DEL_MARK_IBUF: case BTR_CUR_DELETE_IBUF: case BTR_CUR_INSERT_TO_IBUF: /* We did not request buffering. */ break; case BTR_CUR_HASH: case BTR_CUR_HASH_FAIL: case BTR_CUR_BINARY: goto flag_ok; } ut_ad(0); flag_ok: #endif /* UNIV_DEBUG */ if (page_rec_is_infimum(btr_pcur_get_rec(pcur)) || btr_pcur_get_low_match(pcur) < index->n_uniq) { /* All secondary index entries should be found, because new_table is being modified by this thread only, and all indexes should be updated in sync. */ mtr_commit(mtr); return(DB_INDEX_CORRUPT); } btr_cur_pessimistic_delete(&error, FALSE, btr_pcur_get_btr_cur(pcur), BTR_CREATE_FLAG, RB_NONE, mtr); mtr_commit(mtr); } return(error); } /******************************************************//** Replays a delete operation on a table that was rebuilt. @return DB_SUCCESS or error code */ static __attribute__((nonnull(1, 3, 4, 5, 6, 7), warn_unused_result)) dberr_t row_log_table_apply_delete( /*=======================*/ que_thr_t* thr, /*!< in: query graph */ ulint trx_id_col, /*!< in: position of DB_TRX_ID in the new clustered index */ const mrec_t* mrec, /*!< in: merge record */ const ulint* moffsets, /*!< in: offsets of mrec */ mem_heap_t* offsets_heap, /*!< in/out: memory heap that can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap */ const row_log_t* log, /*!< in: online log */ const row_ext_t* save_ext) /*!< in: saved external field info, or NULL */ { dict_table_t* new_table = log->table; dict_index_t* index = dict_table_get_first_index(new_table); dtuple_t* old_pk; mtr_t mtr; btr_pcur_t pcur; ulint* offsets; ut_ad(rec_offs_n_fields(moffsets) == dict_index_get_n_unique(index) + 2); ut_ad(!rec_offs_any_extern(moffsets)); /* Convert the row to a search tuple. */ old_pk = dtuple_create(heap, index->n_uniq); dict_index_copy_types(old_pk, index, index->n_uniq); for (ulint i = 0; i < index->n_uniq; i++) { ulint len; const void* field; field = rec_get_nth_field(mrec, moffsets, i, &len); ut_ad(len != UNIV_SQL_NULL); dfield_set_data(dtuple_get_nth_field(old_pk, i), field, len); } mtr_start(&mtr); btr_pcur_open(index, old_pk, PAGE_CUR_LE, BTR_MODIFY_TREE, &pcur, &mtr); #ifdef UNIV_DEBUG switch (btr_pcur_get_btr_cur(&pcur)->flag) { case BTR_CUR_DELETE_REF: case BTR_CUR_DEL_MARK_IBUF: case BTR_CUR_DELETE_IBUF: case BTR_CUR_INSERT_TO_IBUF: /* We did not request buffering. */ break; case BTR_CUR_HASH: case BTR_CUR_HASH_FAIL: case BTR_CUR_BINARY: goto flag_ok; } ut_ad(0); flag_ok: #endif /* UNIV_DEBUG */ if (page_rec_is_infimum(btr_pcur_get_rec(&pcur)) || btr_pcur_get_low_match(&pcur) < index->n_uniq) { all_done: mtr_commit(&mtr); /* The record was not found. All done. */ /* This should only happen when an earlier ROW_T_INSERT was skipped or ROW_T_UPDATE was interpreted as ROW_T_DELETE due to BLOBs having been freed by rollback. */ return(DB_SUCCESS); } offsets = rec_get_offsets(btr_pcur_get_rec(&pcur), index, NULL, ULINT_UNDEFINED, &offsets_heap); #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG ut_a(!rec_offs_any_null_extern(btr_pcur_get_rec(&pcur), offsets)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ /* Only remove the record if DB_TRX_ID,DB_ROLL_PTR match. */ { ulint len; const byte* mrec_trx_id = rec_get_nth_field(mrec, moffsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); const byte* rec_trx_id = rec_get_nth_field(btr_pcur_get_rec(&pcur), offsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); ut_ad(rec_get_nth_field(mrec, moffsets, trx_id_col + 1, &len) == mrec_trx_id + DATA_TRX_ID_LEN); ut_ad(len == DATA_ROLL_PTR_LEN); ut_ad(rec_get_nth_field(btr_pcur_get_rec(&pcur), offsets, trx_id_col + 1, &len) == rec_trx_id + DATA_TRX_ID_LEN); ut_ad(len == DATA_ROLL_PTR_LEN); if (memcmp(mrec_trx_id, rec_trx_id, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN)) { /* The ROW_T_DELETE was logged for a different PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR. This is possible if a ROW_T_INSERT was skipped or a ROW_T_UPDATE was interpreted as ROW_T_DELETE because some BLOBs were missing due to (1) rolling back the initial insert, or (2) purging the BLOB for a later ROW_T_DELETE (3) purging 'old values' for a later ROW_T_UPDATE or ROW_T_DELETE. */ ut_ad(!log->same_pk); goto all_done; } } return(row_log_table_apply_delete_low(&pcur, offsets, save_ext, heap, &mtr)); } /******************************************************//** Replays an update operation on a table that was rebuilt. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_log_table_apply_update( /*=======================*/ que_thr_t* thr, /*!< in: query graph */ ulint new_trx_id_col, /*!< in: position of DB_TRX_ID in the new clustered index */ const mrec_t* mrec, /*!< in: new value */ const ulint* offsets, /*!< in: offsets of mrec */ mem_heap_t* offsets_heap, /*!< in/out: memory heap that can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap */ row_merge_dup_t* dup, /*!< in/out: for reporting duplicate key errors */ trx_id_t trx_id, /*!< in: DB_TRX_ID of mrec */ const dtuple_t* old_pk) /*!< in: PRIMARY KEY and DB_TRX_ID,DB_ROLL_PTR of the old value, or PRIMARY KEY if same_pk */ { const row_log_t*log = dup->index->online_log; const dtuple_t* row; dict_index_t* index = dict_table_get_first_index(log->table); mtr_t mtr; btr_pcur_t pcur; dberr_t error; ut_ad(dtuple_get_n_fields_cmp(old_pk) == dict_index_get_n_unique(index)); ut_ad(dtuple_get_n_fields(old_pk) == dict_index_get_n_unique(index) + (log->same_pk ? 0 : 2)); row = row_log_table_apply_convert_mrec( mrec, dup->index, offsets, log, heap, trx_id, &error); switch (error) { case DB_MISSING_HISTORY: /* The record contained BLOBs that are now missing. */ ut_ad(log->blobs); /* Whether or not we are updating the PRIMARY KEY, we know that there should be a subsequent ROW_T_DELETE for rolling back a preceding ROW_T_INSERT, overriding this ROW_T_UPDATE record. (*1) This allows us to interpret this ROW_T_UPDATE as ROW_T_DELETE. When applying the subsequent ROW_T_DELETE, no matching record will be found. */ case DB_SUCCESS: ut_ad(row != NULL); break; default: ut_ad(0); case DB_INVALID_NULL: ut_ad(row == NULL); return(error); } mtr_start(&mtr); btr_pcur_open(index, old_pk, PAGE_CUR_LE, BTR_MODIFY_TREE, &pcur, &mtr); #ifdef UNIV_DEBUG switch (btr_pcur_get_btr_cur(&pcur)->flag) { case BTR_CUR_DELETE_REF: case BTR_CUR_DEL_MARK_IBUF: case BTR_CUR_DELETE_IBUF: case BTR_CUR_INSERT_TO_IBUF: ut_ad(0);/* We did not request buffering. */ case BTR_CUR_HASH: case BTR_CUR_HASH_FAIL: case BTR_CUR_BINARY: break; } #endif /* UNIV_DEBUG */ if (page_rec_is_infimum(btr_pcur_get_rec(&pcur)) || btr_pcur_get_low_match(&pcur) < index->n_uniq) { /* The record was not found. This should only happen when an earlier ROW_T_INSERT or ROW_T_UPDATE was diverted because BLOBs were freed when the insert was later rolled back. */ ut_ad(log->blobs); if (error == DB_SUCCESS) { /* An earlier ROW_T_INSERT could have been skipped because of a missing BLOB, like this: BEGIN; INSERT INTO t SET blob_col='blob value'; UPDATE t SET blob_col=''; ROLLBACK; This would generate the following records: ROW_T_INSERT (referring to 'blob value') ROW_T_UPDATE ROW_T_UPDATE (referring to 'blob value') ROW_T_DELETE [ROLLBACK removes the 'blob value'] The ROW_T_INSERT would have been skipped because of a missing BLOB. Now we are executing the first ROW_T_UPDATE. The second ROW_T_UPDATE (for the ROLLBACK) would be interpreted as ROW_T_DELETE, because the BLOB would be missing. We could probably assume that the transaction has been rolled back and simply skip the 'insert' part of this ROW_T_UPDATE record. However, there might be some complex scenario that could interfere with such a shortcut. So, we will insert the row (and risk introducing a bogus duplicate key error for the ALTER TABLE), and a subsequent ROW_T_UPDATE or ROW_T_DELETE will delete it. */ mtr_commit(&mtr); error = row_log_table_apply_insert_low( thr, row, trx_id, offsets_heap, heap, dup); } else { /* Some BLOBs are missing, so we are interpreting this ROW_T_UPDATE as ROW_T_DELETE (see *1). Because the record was not found, we do nothing. */ ut_ad(error == DB_MISSING_HISTORY); error = DB_SUCCESS; func_exit: mtr_commit(&mtr); } func_exit_committed: ut_ad(mtr.state == MTR_COMMITTED); if (error != DB_SUCCESS) { /* Report the erroneous row using the new version of the table. */ innobase_row_to_mysql(dup->table, log->table, row); } return(error); } /* Prepare to update (or delete) the record. */ ulint* cur_offsets = rec_get_offsets( btr_pcur_get_rec(&pcur), index, NULL, ULINT_UNDEFINED, &offsets_heap); if (!log->same_pk) { /* Only update the record if DB_TRX_ID,DB_ROLL_PTR match what was buffered. */ ulint len; const void* rec_trx_id = rec_get_nth_field(btr_pcur_get_rec(&pcur), cur_offsets, index->n_uniq, &len); ut_ad(len == DATA_TRX_ID_LEN); ut_ad(dtuple_get_nth_field(old_pk, index->n_uniq)->len == DATA_TRX_ID_LEN); ut_ad(dtuple_get_nth_field(old_pk, index->n_uniq + 1)->len == DATA_ROLL_PTR_LEN); ut_ad(DATA_TRX_ID_LEN + static_cast( dtuple_get_nth_field(old_pk, index->n_uniq)->data) == dtuple_get_nth_field(old_pk, index->n_uniq + 1)->data); if (memcmp(rec_trx_id, dtuple_get_nth_field(old_pk, index->n_uniq)->data, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN)) { /* The ROW_T_UPDATE was logged for a different DB_TRX_ID,DB_ROLL_PTR. This is possible if an earlier ROW_T_INSERT or ROW_T_UPDATE was diverted because some BLOBs were missing due to rolling back the initial insert or due to purging the old BLOB values of an update. */ ut_ad(log->blobs); if (error != DB_SUCCESS) { ut_ad(error == DB_MISSING_HISTORY); /* Some BLOBs are missing, so we are interpreting this ROW_T_UPDATE as ROW_T_DELETE (see *1). Because this is a different row, we will do nothing. */ error = DB_SUCCESS; } else { /* Because the user record is missing due to BLOBs that were missing when processing an earlier log record, we should interpret the ROW_T_UPDATE as ROW_T_INSERT. However, there is a different user record with the same PRIMARY KEY value already. */ error = DB_DUPLICATE_KEY; } goto func_exit; } } if (error != DB_SUCCESS) { ut_ad(error == DB_MISSING_HISTORY); ut_ad(log->blobs); /* Some BLOBs are missing, so we are interpreting this ROW_T_UPDATE as ROW_T_DELETE (see *1). */ error = row_log_table_apply_delete_low( &pcur, cur_offsets, NULL, heap, &mtr); goto func_exit_committed; } dtuple_t* entry = row_build_index_entry( row, NULL, index, heap); const upd_t* update = row_upd_build_difference_binary( index, entry, btr_pcur_get_rec(&pcur), cur_offsets, false, NULL, heap); if (!update->n_fields) { /* Nothing to do. */ goto func_exit; } const bool pk_updated = upd_get_nth_field(update, 0)->field_no < new_trx_id_col; if (pk_updated || rec_offs_any_extern(cur_offsets)) { /* If the record contains any externally stored columns, perform the update by delete and insert, because we will not write any undo log that would allow purge to free any orphaned externally stored columns. */ if (pk_updated && log->same_pk) { /* The ROW_T_UPDATE log record should only be written when the PRIMARY KEY fields of the record did not change in the old table. We can only get a change of PRIMARY KEY columns in the rebuilt table if the PRIMARY KEY was redefined (!same_pk). */ ut_ad(0); error = DB_CORRUPTION; goto func_exit; } error = row_log_table_apply_delete_low( &pcur, cur_offsets, NULL, heap, &mtr); ut_ad(mtr.state == MTR_COMMITTED); if (error == DB_SUCCESS) { error = row_log_table_apply_insert_low( thr, row, trx_id, offsets_heap, heap, dup); } goto func_exit_committed; } dtuple_t* old_row; row_ext_t* old_ext; if (dict_table_get_next_index(index)) { /* Construct the row corresponding to the old value of the record. */ old_row = row_build( ROW_COPY_DATA, index, btr_pcur_get_rec(&pcur), cur_offsets, NULL, NULL, NULL, &old_ext, heap); ut_ad(old_row); #ifdef ROW_LOG_APPLY_PRINT if (row_log_apply_print) { fprintf(stderr, "table apply update " IB_ID_FMT " " IB_ID_FMT "\n", index->table->id, index->id); dtuple_print(stderr, old_row); dtuple_print(stderr, row); } #endif /* ROW_LOG_APPLY_PRINT */ } else { old_row = NULL; old_ext = NULL; } big_rec_t* big_rec; error = btr_cur_pessimistic_update( BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG | BTR_KEEP_POS_FLAG, btr_pcur_get_btr_cur(&pcur), &cur_offsets, &offsets_heap, heap, &big_rec, update, 0, thr, 0, &mtr); if (big_rec) { if (error == DB_SUCCESS) { error = btr_store_big_rec_extern_fields( index, btr_pcur_get_block(&pcur), btr_pcur_get_rec(&pcur), cur_offsets, big_rec, &mtr, BTR_STORE_UPDATE); } dtuple_big_rec_free(big_rec); } while ((index = dict_table_get_next_index(index)) != NULL) { if (error != DB_SUCCESS) { break; } if (index->type & DICT_FTS) { continue; } if (!row_upd_changes_ord_field_binary( index, update, thr, old_row, NULL)) { continue; } mtr_commit(&mtr); entry = row_build_index_entry(old_row, old_ext, index, heap); if (!entry) { ut_ad(0); return(DB_CORRUPTION); } mtr_start(&mtr); if (ROW_FOUND != row_search_index_entry( index, entry, BTR_MODIFY_TREE, &pcur, &mtr)) { ut_ad(0); error = DB_CORRUPTION; break; } btr_cur_pessimistic_delete( &error, FALSE, btr_pcur_get_btr_cur(&pcur), BTR_CREATE_FLAG, RB_NONE, &mtr); if (error != DB_SUCCESS) { break; } mtr_commit(&mtr); entry = row_build_index_entry(row, NULL, index, heap); error = row_ins_sec_index_entry_low( BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG, BTR_MODIFY_TREE, index, offsets_heap, heap, entry, trx_id, thr); mtr_start(&mtr); } goto func_exit; } /******************************************************//** Applies an operation to a table that was rebuilt. @return NULL on failure (mrec corruption) or when out of data; pointer to next record on success */ static __attribute__((nonnull, warn_unused_result)) const mrec_t* row_log_table_apply_op( /*===================*/ que_thr_t* thr, /*!< in: query graph */ ulint trx_id_col, /*!< in: position of DB_TRX_ID in old index */ ulint new_trx_id_col, /*!< in: position of DB_TRX_ID in new index */ row_merge_dup_t* dup, /*!< in/out: for reporting duplicate key errors */ dberr_t* error, /*!< out: DB_SUCCESS or error code */ mem_heap_t* offsets_heap, /*!< in/out: memory heap that can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap */ const mrec_t* mrec, /*!< in: merge record */ const mrec_t* mrec_end, /*!< in: end of buffer */ ulint* offsets) /*!< in/out: work area for parsing mrec */ { row_log_t* log = dup->index->online_log; dict_index_t* new_index = dict_table_get_first_index(log->table); ulint extra_size; const mrec_t* next_mrec; dtuple_t* old_pk; row_ext_t* ext; ulint ext_size; ut_ad(dict_index_is_clust(dup->index)); ut_ad(dup->index->table != log->table); ut_ad(log->head.total <= log->tail.total); *error = DB_SUCCESS; /* 3 = 1 (op type) + 1 (ext_size) + at least 1 byte payload */ if (mrec + 3 >= mrec_end) { return(NULL); } const mrec_t* const mrec_start = mrec; switch (*mrec++) { default: ut_ad(0); *error = DB_CORRUPTION; return(NULL); case ROW_T_INSERT: extra_size = *mrec++; if (extra_size >= 0x80) { /* Read another byte of extra_size. */ extra_size = (extra_size & 0x7f) << 8; extra_size |= *mrec++; } mrec += extra_size; if (mrec > mrec_end) { return(NULL); } rec_offs_set_n_fields(offsets, dup->index->n_fields); rec_init_offsets_temp(mrec, dup->index, offsets); next_mrec = mrec + rec_offs_data_size(offsets); if (next_mrec > mrec_end) { return(NULL); } else { log->head.total += next_mrec - mrec_start; ulint len; const byte* db_trx_id = rec_get_nth_field( mrec, offsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); *error = row_log_table_apply_insert( thr, mrec, offsets, offsets_heap, heap, dup, trx_read_trx_id(db_trx_id)); } break; case ROW_T_DELETE: /* 1 (extra_size) + 2 (ext_size) + at least 1 (payload) */ if (mrec + 4 >= mrec_end) { return(NULL); } extra_size = *mrec++; ext_size = mach_read_from_2(mrec); mrec += 2; ut_ad(mrec < mrec_end); /* We assume extra_size < 0x100 for the PRIMARY KEY prefix. For fixed-length PRIMARY key columns, it is 0. */ mrec += extra_size; rec_offs_set_n_fields(offsets, new_index->n_uniq + 2); rec_init_offsets_temp(mrec, new_index, offsets); next_mrec = mrec + rec_offs_data_size(offsets) + ext_size; if (next_mrec > mrec_end) { return(NULL); } log->head.total += next_mrec - mrec_start; /* If there are external fields, retrieve those logged prefix info and reconstruct the row_ext_t */ if (ext_size) { /* We use memcpy to avoid unaligned access on some non-x86 platforms.*/ ext = static_cast( mem_heap_dup(heap, mrec + rec_offs_data_size(offsets), ext_size)); byte* ext_start = reinterpret_cast(ext); ulint ext_len = sizeof(*ext) + (ext->n_ext - 1) * sizeof ext->len; ext->ext = reinterpret_cast(ext_start + ext_len); ext_len += ext->n_ext * sizeof(*ext->ext); ext->buf = static_cast(ext_start + ext_len); } else { ext = NULL; } *error = row_log_table_apply_delete( thr, new_trx_id_col, mrec, offsets, offsets_heap, heap, log, ext); break; case ROW_T_UPDATE: /* Logically, the log entry consists of the (PRIMARY KEY,DB_TRX_ID) of the old value (converted to the new primary key definition) followed by the new value in the old table definition. If the definition of the columns belonging to PRIMARY KEY is not changed, the log will only contain DB_TRX_ID,new_row. */ if (dup->index->online_log->same_pk) { ut_ad(new_index->n_uniq == dup->index->n_uniq); extra_size = *mrec++; if (extra_size >= 0x80) { /* Read another byte of extra_size. */ extra_size = (extra_size & 0x7f) << 8; extra_size |= *mrec++; } mrec += extra_size; if (mrec > mrec_end) { return(NULL); } rec_offs_set_n_fields(offsets, dup->index->n_fields); rec_init_offsets_temp(mrec, dup->index, offsets); next_mrec = mrec + rec_offs_data_size(offsets); if (next_mrec > mrec_end) { return(NULL); } old_pk = dtuple_create(heap, new_index->n_uniq); dict_index_copy_types( old_pk, new_index, old_pk->n_fields); /* Copy the PRIMARY KEY fields from mrec to old_pk. */ for (ulint i = 0; i < new_index->n_uniq; i++) { const void* field; ulint len; dfield_t* dfield; ut_ad(!rec_offs_nth_extern(offsets, i)); field = rec_get_nth_field( mrec, offsets, i, &len); ut_ad(len != UNIV_SQL_NULL); dfield = dtuple_get_nth_field(old_pk, i); dfield_set_data(dfield, field, len); } } else { /* We assume extra_size < 0x100 for the PRIMARY KEY prefix. */ mrec += *mrec + 1; if (mrec > mrec_end) { return(NULL); } /* Get offsets for PRIMARY KEY, DB_TRX_ID, DB_ROLL_PTR. */ rec_offs_set_n_fields(offsets, new_index->n_uniq + 2); rec_init_offsets_temp(mrec, new_index, offsets); next_mrec = mrec + rec_offs_data_size(offsets); if (next_mrec + 2 > mrec_end) { return(NULL); } /* Copy the PRIMARY KEY fields and DB_TRX_ID, DB_ROLL_PTR from mrec to old_pk. */ old_pk = dtuple_create(heap, new_index->n_uniq + 2); dict_index_copy_types(old_pk, new_index, old_pk->n_fields); for (ulint i = 0; i < dict_index_get_n_unique(new_index) + 2; i++) { const void* field; ulint len; dfield_t* dfield; ut_ad(!rec_offs_nth_extern(offsets, i)); field = rec_get_nth_field( mrec, offsets, i, &len); ut_ad(len != UNIV_SQL_NULL); dfield = dtuple_get_nth_field(old_pk, i); dfield_set_data(dfield, field, len); } mrec = next_mrec; /* Fetch the new value of the row as it was in the old table definition. */ extra_size = *mrec++; if (extra_size >= 0x80) { /* Read another byte of extra_size. */ extra_size = (extra_size & 0x7f) << 8; extra_size |= *mrec++; } mrec += extra_size; if (mrec > mrec_end) { return(NULL); } rec_offs_set_n_fields(offsets, dup->index->n_fields); rec_init_offsets_temp(mrec, dup->index, offsets); next_mrec = mrec + rec_offs_data_size(offsets); if (next_mrec > mrec_end) { return(NULL); } } ut_ad(next_mrec <= mrec_end); log->head.total += next_mrec - mrec_start; dtuple_set_n_fields_cmp(old_pk, new_index->n_uniq); { ulint len; const byte* db_trx_id = rec_get_nth_field( mrec, offsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); *error = row_log_table_apply_update( thr, new_trx_id_col, mrec, offsets, offsets_heap, heap, dup, trx_read_trx_id(db_trx_id), old_pk); } break; } ut_ad(log->head.total <= log->tail.total); mem_heap_empty(offsets_heap); mem_heap_empty(heap); return(next_mrec); } /******************************************************//** Applies operations to a table was rebuilt. @return DB_SUCCESS, or error code on failure */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_log_table_apply_ops( /*====================*/ que_thr_t* thr, /*!< in: query graph */ row_merge_dup_t*dup) /*!< in/out: for reporting duplicate key errors */ { dberr_t error; const mrec_t* mrec = NULL; const mrec_t* next_mrec; const mrec_t* mrec_end = NULL; /* silence bogus warning */ const mrec_t* next_mrec_end; mem_heap_t* heap; mem_heap_t* offsets_heap; ulint* offsets; bool has_index_lock; dict_index_t* index = const_cast( dup->index); dict_table_t* new_table = index->online_log->table; dict_index_t* new_index = dict_table_get_first_index( new_table); const ulint i = 1 + REC_OFFS_HEADER_SIZE + ut_max(dict_index_get_n_fields(index), dict_index_get_n_unique(new_index) + 2); const ulint trx_id_col = dict_col_get_clust_pos( dict_table_get_sys_col(index->table, DATA_TRX_ID), index); const ulint new_trx_id_col = dict_col_get_clust_pos( dict_table_get_sys_col(new_table, DATA_TRX_ID), new_index); trx_t* trx = thr_get_trx(thr); ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_is_online_ddl(index)); ut_ad(trx->mysql_thd); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(!dict_index_is_online_ddl(new_index)); ut_ad(trx_id_col > 0); ut_ad(trx_id_col != ULINT_UNDEFINED); ut_ad(new_trx_id_col > 0); ut_ad(new_trx_id_col != ULINT_UNDEFINED); UNIV_MEM_INVALID(&mrec_end, sizeof mrec_end); offsets = static_cast(ut_malloc(i * sizeof *offsets)); offsets[0] = i; offsets[1] = dict_index_get_n_fields(index); heap = mem_heap_create(UNIV_PAGE_SIZE); offsets_heap = mem_heap_create(UNIV_PAGE_SIZE); has_index_lock = true; next_block: ut_ad(has_index_lock); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(index->online_log->head.bytes == 0); if (trx_is_interrupted(trx)) { goto interrupted; } if (dict_index_is_corrupted(index)) { error = DB_INDEX_CORRUPT; goto func_exit; } ut_ad(dict_index_is_online_ddl(index)); error = index->online_log->error; if (error != DB_SUCCESS) { goto func_exit; } if (UNIV_UNLIKELY(index->online_log->head.blocks > index->online_log->tail.blocks)) { unexpected_eof: fprintf(stderr, "InnoDB: unexpected end of temporary file" " for table %s\n", index->table_name); corruption: error = DB_CORRUPTION; goto func_exit; } if (index->online_log->head.blocks == index->online_log->tail.blocks) { if (index->online_log->head.blocks) { #ifdef HAVE_FTRUNCATE /* Truncate the file in order to save space. */ if (ftruncate(index->online_log->fd, 0) == -1) { fprintf(stderr, "InnoDB: Error: Truncate of file " "\'%s\' failed with error %d:%s\n", index->name + 1, errno, strerror(errno)); goto corruption; } #endif /* HAVE_FTRUNCATE */ index->online_log->head.blocks = index->online_log->tail.blocks = 0; } next_mrec = index->online_log->tail.block; next_mrec_end = next_mrec + index->online_log->tail.bytes; if (next_mrec_end == next_mrec) { /* End of log reached. */ all_done: ut_ad(has_index_lock); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->tail.blocks == 0); index->online_log->head.bytes = 0; index->online_log->tail.bytes = 0; error = DB_SUCCESS; goto func_exit; } } else { os_offset_t ofs; ibool success; ofs = (os_offset_t) index->online_log->head.blocks * srv_sort_buf_size; ut_ad(has_index_lock); has_index_lock = false; rw_lock_x_unlock(dict_index_get_lock(index)); log_free_check(); ut_ad(dict_index_is_online_ddl(index)); if (!row_log_block_allocate(index->online_log->head)) { error = DB_OUT_OF_MEMORY; goto func_exit; } success = os_file_read_no_error_handling( OS_FILE_FROM_FD(index->online_log->fd), index->online_log->head.block, ofs, srv_sort_buf_size); if (!success) { fprintf(stderr, "InnoDB: unable to read temporary file" " for table %s\n", index->table_name); goto corruption; } #ifdef POSIX_FADV_DONTNEED /* Each block is read exactly once. Free up the file cache. */ posix_fadvise(index->online_log->fd, ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ #if 0 //def FALLOC_FL_PUNCH_HOLE /* Try to deallocate the space for the file on disk. This should work on ext4 on Linux 2.6.39 and later, and be ignored when the operation is unsupported. */ fallocate(index->online_log->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, ofs, srv_buf_size); #endif /* FALLOC_FL_PUNCH_HOLE */ next_mrec = index->online_log->head.block; next_mrec_end = next_mrec + srv_sort_buf_size; } /* This read is not protected by index->online_log->mutex for performance reasons. We will eventually notice any error that was flagged by a DML thread. */ error = index->online_log->error; if (error != DB_SUCCESS) { goto func_exit; } if (mrec) { /* A partial record was read from the previous block. Copy the temporary buffer full, as we do not know the length of the record. Parse subsequent records from the bigger buffer index->online_log->head.block or index->online_log->tail.block. */ ut_ad(mrec == index->online_log->head.buf); ut_ad(mrec_end > mrec); ut_ad(mrec_end < (&index->online_log->head.buf)[1]); memcpy((mrec_t*) mrec_end, next_mrec, (&index->online_log->head.buf)[1] - mrec_end); mrec = row_log_table_apply_op( thr, trx_id_col, new_trx_id_col, dup, &error, offsets_heap, heap, index->online_log->head.buf, (&index->online_log->head.buf)[1], offsets); if (error != DB_SUCCESS) { goto func_exit; } else if (UNIV_UNLIKELY(mrec == NULL)) { /* The record was not reassembled properly. */ goto corruption; } /* The record was previously found out to be truncated. Now that the parse buffer was extended, it should proceed beyond the old end of the buffer. */ ut_a(mrec > mrec_end); index->online_log->head.bytes = mrec - mrec_end; next_mrec += index->online_log->head.bytes; } ut_ad(next_mrec <= next_mrec_end); /* The following loop must not be parsing the temporary buffer, but head.block or tail.block. */ /* mrec!=NULL means that the next record starts from the middle of the block */ ut_ad((mrec == NULL) == (index->online_log->head.bytes == 0)); #ifdef UNIV_DEBUG if (next_mrec_end == index->online_log->head.block + srv_sort_buf_size) { /* If tail.bytes == 0, next_mrec_end can also be at the end of tail.block. */ if (index->online_log->tail.bytes == 0) { ut_ad(next_mrec == next_mrec_end); ut_ad(index->online_log->tail.blocks == 0); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->head.bytes == 0); } else { ut_ad(next_mrec == index->online_log->head.block + index->online_log->head.bytes); ut_ad(index->online_log->tail.blocks > index->online_log->head.blocks); } } else if (next_mrec_end == index->online_log->tail.block + index->online_log->tail.bytes) { ut_ad(next_mrec == index->online_log->tail.block + index->online_log->head.bytes); ut_ad(index->online_log->tail.blocks == 0); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->head.bytes <= index->online_log->tail.bytes); } else { ut_error; } #endif /* UNIV_DEBUG */ mrec_end = next_mrec_end; while (!trx_is_interrupted(trx)) { mrec = next_mrec; ut_ad(mrec < mrec_end); if (!has_index_lock) { /* We are applying operations from a different block than the one that is being written to. We do not hold index->lock in order to allow other threads to concurrently buffer modifications. */ ut_ad(mrec >= index->online_log->head.block); ut_ad(mrec_end == index->online_log->head.block + srv_sort_buf_size); ut_ad(index->online_log->head.bytes < srv_sort_buf_size); /* Take the opportunity to do a redo log checkpoint if needed. */ log_free_check(); } else { /* We are applying operations from the last block. Do not allow other threads to buffer anything, so that we can finally catch up and synchronize. */ ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->tail.blocks == 0); ut_ad(mrec_end == index->online_log->tail.block + index->online_log->tail.bytes); ut_ad(mrec >= index->online_log->tail.block); } /* This read is not protected by index->online_log->mutex for performance reasons. We will eventually notice any error that was flagged by a DML thread. */ error = index->online_log->error; if (error != DB_SUCCESS) { goto func_exit; } next_mrec = row_log_table_apply_op( thr, trx_id_col, new_trx_id_col, dup, &error, offsets_heap, heap, mrec, mrec_end, offsets); if (error != DB_SUCCESS) { goto func_exit; } else if (next_mrec == next_mrec_end) { /* The record happened to end on a block boundary. Do we have more blocks left? */ if (has_index_lock) { /* The index will be locked while applying the last block. */ goto all_done; } mrec = NULL; process_next_block: rw_lock_x_lock(dict_index_get_lock(index)); has_index_lock = true; index->online_log->head.bytes = 0; index->online_log->head.blocks++; goto next_block; } else if (next_mrec != NULL) { ut_ad(next_mrec < next_mrec_end); index->online_log->head.bytes += next_mrec - mrec; } else if (has_index_lock) { /* When mrec is within tail.block, it should be a complete record, because we are holding index->lock and thus excluding the writer. */ ut_ad(index->online_log->tail.blocks == 0); ut_ad(mrec_end == index->online_log->tail.block + index->online_log->tail.bytes); ut_ad(0); goto unexpected_eof; } else { memcpy(index->online_log->head.buf, mrec, mrec_end - mrec); mrec_end += index->online_log->head.buf - mrec; mrec = index->online_log->head.buf; goto process_next_block; } } interrupted: error = DB_INTERRUPTED; func_exit: if (!has_index_lock) { rw_lock_x_lock(dict_index_get_lock(index)); } mem_heap_free(offsets_heap); mem_heap_free(heap); row_log_block_free(index->online_log->head); ut_free(offsets); return(error); } /******************************************************//** Apply the row_log_table log to a table upon completing rebuild. @return DB_SUCCESS, or error code on failure */ UNIV_INTERN dberr_t row_log_table_apply( /*================*/ que_thr_t* thr, /*!< in: query graph */ dict_table_t* old_table, /*!< in: old table */ struct TABLE* table) /*!< in/out: MySQL table (for reporting duplicates) */ { dberr_t error; dict_index_t* clust_index; thr_get_trx(thr)->error_key_num = 0; #ifdef UNIV_SYNC_DEBUG ut_ad(!rw_lock_own(&dict_operation_lock, RW_LOCK_SHARED)); #endif /* UNIV_SYNC_DEBUG */ clust_index = dict_table_get_first_index(old_table); rw_lock_x_lock(dict_index_get_lock(clust_index)); if (!clust_index->online_log) { ut_ad(dict_index_get_online_status(clust_index) == ONLINE_INDEX_COMPLETE); /* This function should not be called unless rebuilding a table online. Build in some fault tolerance. */ ut_ad(0); error = DB_ERROR; } else { row_merge_dup_t dup = { clust_index, table, clust_index->online_log->col_map, 0 }; error = row_log_table_apply_ops(thr, &dup); ut_ad(error != DB_SUCCESS || clust_index->online_log->head.total == clust_index->online_log->tail.total); } rw_lock_x_unlock(dict_index_get_lock(clust_index)); return(error); } /******************************************************//** Allocate the row log for an index and flag the index for online creation. @retval true if success, false if not */ UNIV_INTERN bool row_log_allocate( /*=============*/ dict_index_t* index, /*!< in/out: index */ dict_table_t* table, /*!< in/out: new table being rebuilt, or NULL when creating a secondary index */ bool same_pk,/*!< in: whether the definition of the PRIMARY KEY has remained the same */ const dtuple_t* add_cols, /*!< in: default values of added columns, or NULL */ const ulint* col_map)/*!< in: mapping of old column numbers to new ones, or NULL if !table */ { row_log_t* log; DBUG_ENTER("row_log_allocate"); ut_ad(!dict_index_is_online_ddl(index)); ut_ad(dict_index_is_clust(index) == !!table); ut_ad(!table || index->table != table); ut_ad(same_pk || table); ut_ad(!table || col_map); ut_ad(!add_cols || col_map); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ log = (row_log_t*) ut_malloc(sizeof *log); if (!log) { DBUG_RETURN(false); } log->fd = row_merge_file_create_low(); if (log->fd < 0) { ut_free(log); DBUG_RETURN(false); } mutex_create(index_online_log_key, &log->mutex, SYNC_INDEX_ONLINE_LOG); log->blobs = NULL; log->table = table; log->same_pk = same_pk; log->add_cols = add_cols; log->col_map = col_map; log->error = DB_SUCCESS; log->max_trx = 0; log->tail.blocks = log->tail.bytes = 0; log->tail.total = 0; log->tail.block = log->head.block = NULL; log->head.blocks = log->head.bytes = 0; log->head.total = 0; dict_index_set_online_status(index, ONLINE_INDEX_CREATION); index->online_log = log; /* While we might be holding an exclusive data dictionary lock here, in row_log_abort_sec() we will not always be holding it. Use atomic operations in both cases. */ MONITOR_ATOMIC_INC(MONITOR_ONLINE_CREATE_INDEX); DBUG_RETURN(true); } /******************************************************//** Free the row log for an index that was being created online. */ UNIV_INTERN void row_log_free( /*=========*/ row_log_t*& log) /*!< in,own: row log */ { MONITOR_ATOMIC_DEC(MONITOR_ONLINE_CREATE_INDEX); delete log->blobs; row_log_block_free(log->tail); row_log_block_free(log->head); row_merge_file_destroy_low(log->fd); mutex_free(&log->mutex); ut_free(log); log = 0; } /******************************************************//** Get the latest transaction ID that has invoked row_log_online_op() during online creation. @return latest transaction ID, or 0 if nothing was logged */ UNIV_INTERN trx_id_t row_log_get_max_trx( /*================*/ dict_index_t* index) /*!< in: index, must be locked */ { ut_ad(dict_index_get_online_status(index) == ONLINE_INDEX_CREATION); #ifdef UNIV_SYNC_DEBUG ut_ad((rw_lock_own(dict_index_get_lock(index), RW_LOCK_SHARED) && mutex_own(&index->online_log->mutex)) || rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ return(index->online_log->max_trx); } /******************************************************//** Applies an operation to a secondary index that was being created. */ static __attribute__((nonnull)) void row_log_apply_op_low( /*=================*/ dict_index_t* index, /*!< in/out: index */ row_merge_dup_t*dup, /*!< in/out: for reporting duplicate key errors */ dberr_t* error, /*!< out: DB_SUCCESS or error code */ mem_heap_t* offsets_heap, /*!< in/out: memory heap for allocating offsets; can be emptied */ bool has_index_lock, /*!< in: true if holding index->lock in exclusive mode */ enum row_op op, /*!< in: operation being applied */ trx_id_t trx_id, /*!< in: transaction identifier */ const dtuple_t* entry) /*!< in: row */ { mtr_t mtr; btr_cur_t cursor; ulint* offsets = NULL; ut_ad(!dict_index_is_clust(index)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX) == has_index_lock); #endif /* UNIV_SYNC_DEBUG */ ut_ad(!dict_index_is_corrupted(index)); ut_ad(trx_id != 0 || op == ROW_OP_DELETE); mtr_start(&mtr); /* We perform the pessimistic variant of the operations if we already hold index->lock exclusively. First, search the record. The operation may already have been performed, depending on when the row in the clustered index was scanned. */ btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE, has_index_lock ? BTR_MODIFY_TREE : BTR_MODIFY_LEAF, &cursor, 0, __FILE__, __LINE__, &mtr); ut_ad(dict_index_get_n_unique(index) > 0); /* This test is somewhat similar to row_ins_must_modify_rec(), but not identical for unique secondary indexes. */ if (cursor.low_match >= dict_index_get_n_unique(index) && !page_rec_is_infimum(btr_cur_get_rec(&cursor))) { /* We have a matching record. */ bool exists = (cursor.low_match == dict_index_get_n_fields(index)); #ifdef UNIV_DEBUG rec_t* rec = btr_cur_get_rec(&cursor); ut_ad(page_rec_is_user_rec(rec)); ut_ad(!rec_get_deleted_flag(rec, page_rec_is_comp(rec))); #endif /* UNIV_DEBUG */ ut_ad(exists || dict_index_is_unique(index)); switch (op) { case ROW_OP_DELETE: if (!exists) { /* The existing record matches the unique secondary index key, but the PRIMARY KEY columns differ. So, this exact record does not exist. For example, we could detect a duplicate key error in some old index before logging an ROW_OP_INSERT for our index. This ROW_OP_DELETE could have been logged for rolling back TRX_UNDO_INSERT_REC. */ goto func_exit; } if (btr_cur_optimistic_delete( &cursor, BTR_CREATE_FLAG, &mtr)) { *error = DB_SUCCESS; break; } if (!has_index_lock) { /* This needs a pessimistic operation. Lock the index tree exclusively. */ mtr_commit(&mtr); mtr_start(&mtr); btr_cur_search_to_nth_level( index, 0, entry, PAGE_CUR_LE, BTR_MODIFY_TREE, &cursor, 0, __FILE__, __LINE__, &mtr); /* No other thread than the current one is allowed to modify the index tree. Thus, the record should still exist. */ ut_ad(cursor.low_match >= dict_index_get_n_fields(index)); ut_ad(page_rec_is_user_rec( btr_cur_get_rec(&cursor))); } /* As there are no externally stored fields in a secondary index record, the parameter rb_ctx = RB_NONE will be ignored. */ btr_cur_pessimistic_delete( error, FALSE, &cursor, BTR_CREATE_FLAG, RB_NONE, &mtr); break; case ROW_OP_INSERT: if (exists) { /* The record already exists. There is nothing to be inserted. This could happen when processing TRX_UNDO_DEL_MARK_REC in statement rollback: UPDATE of PRIMARY KEY can lead to statement rollback if the updated value of the PRIMARY KEY already exists. In this case, the UPDATE would be mapped to DELETE;INSERT, and we only wrote undo log for the DELETE part. The duplicate key error would be triggered before logging the INSERT part. Theoretically, we could also get a similar situation when a DELETE operation is blocked by a FOREIGN KEY constraint. */ goto func_exit; } if (dtuple_contains_null(entry)) { /* The UNIQUE KEY columns match, but there is a NULL value in the key, and NULL!=NULL. */ goto insert_the_rec; } goto duplicate; } } else { switch (op) { rec_t* rec; big_rec_t* big_rec; case ROW_OP_DELETE: /* The record does not exist. For example, we could detect a duplicate key error in some old index before logging an ROW_OP_INSERT for our index. This ROW_OP_DELETE could be logged for rolling back TRX_UNDO_INSERT_REC. */ goto func_exit; case ROW_OP_INSERT: if (dict_index_is_unique(index) && (cursor.up_match >= dict_index_get_n_unique(index) || cursor.low_match >= dict_index_get_n_unique(index)) && (!index->n_nullable || !dtuple_contains_null(entry))) { duplicate: /* Duplicate key */ ut_ad(dict_index_is_unique(index)); row_merge_dup_report(dup, entry->fields); *error = DB_DUPLICATE_KEY; goto func_exit; } insert_the_rec: /* Insert the record. As we are inserting into a secondary index, there cannot be externally stored columns (!big_rec). */ *error = btr_cur_optimistic_insert( BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG, &cursor, &offsets, &offsets_heap, const_cast(entry), &rec, &big_rec, 0, NULL, &mtr); ut_ad(!big_rec); if (*error != DB_FAIL) { break; } if (!has_index_lock) { /* This needs a pessimistic operation. Lock the index tree exclusively. */ mtr_commit(&mtr); mtr_start(&mtr); btr_cur_search_to_nth_level( index, 0, entry, PAGE_CUR_LE, BTR_MODIFY_TREE, &cursor, 0, __FILE__, __LINE__, &mtr); } /* We already determined that the record did not exist. No other thread than the current one is allowed to modify the index tree. Thus, the record should still not exist. */ *error = btr_cur_pessimistic_insert( BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG, &cursor, &offsets, &offsets_heap, const_cast(entry), &rec, &big_rec, 0, NULL, &mtr); ut_ad(!big_rec); break; } mem_heap_empty(offsets_heap); } if (*error == DB_SUCCESS && trx_id) { page_update_max_trx_id(btr_cur_get_block(&cursor), btr_cur_get_page_zip(&cursor), trx_id, &mtr); } func_exit: mtr_commit(&mtr); } /******************************************************//** Applies an operation to a secondary index that was being created. @return NULL on failure (mrec corruption) or when out of data; pointer to next record on success */ static __attribute__((nonnull, warn_unused_result)) const mrec_t* row_log_apply_op( /*=============*/ dict_index_t* index, /*!< in/out: index */ row_merge_dup_t*dup, /*!< in/out: for reporting duplicate key errors */ dberr_t* error, /*!< out: DB_SUCCESS or error code */ mem_heap_t* offsets_heap, /*!< in/out: memory heap for allocating offsets; can be emptied */ mem_heap_t* heap, /*!< in/out: memory heap for allocating data tuples */ bool has_index_lock, /*!< in: true if holding index->lock in exclusive mode */ const mrec_t* mrec, /*!< in: merge record */ const mrec_t* mrec_end, /*!< in: end of buffer */ ulint* offsets) /*!< in/out: work area for rec_init_offsets_temp() */ { enum row_op op; ulint extra_size; ulint data_size; ulint n_ext; dtuple_t* entry; trx_id_t trx_id; /* Online index creation is only used for secondary indexes. */ ut_ad(!dict_index_is_clust(index)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX) == has_index_lock); #endif /* UNIV_SYNC_DEBUG */ if (dict_index_is_corrupted(index)) { *error = DB_INDEX_CORRUPT; return(NULL); } *error = DB_SUCCESS; if (mrec + ROW_LOG_HEADER_SIZE >= mrec_end) { return(NULL); } switch (*mrec) { case ROW_OP_INSERT: if (ROW_LOG_HEADER_SIZE + DATA_TRX_ID_LEN + mrec >= mrec_end) { return(NULL); } op = static_cast(*mrec++); trx_id = trx_read_trx_id(mrec); mrec += DATA_TRX_ID_LEN; break; case ROW_OP_DELETE: op = static_cast(*mrec++); trx_id = 0; break; default: corrupted: ut_ad(0); *error = DB_CORRUPTION; return(NULL); } extra_size = *mrec++; ut_ad(mrec < mrec_end); if (extra_size >= 0x80) { /* Read another byte of extra_size. */ extra_size = (extra_size & 0x7f) << 8; extra_size |= *mrec++; } mrec += extra_size; if (mrec > mrec_end) { return(NULL); } rec_init_offsets_temp(mrec, index, offsets); if (rec_offs_any_extern(offsets)) { /* There should never be any externally stored fields in a secondary index, which is what online index creation is used for. Therefore, the log file must be corrupted. */ goto corrupted; } data_size = rec_offs_data_size(offsets); mrec += data_size; if (mrec > mrec_end) { return(NULL); } entry = row_rec_to_index_entry_low( mrec - data_size, index, offsets, &n_ext, heap); /* Online index creation is only implemented for secondary indexes, which never contain off-page columns. */ ut_ad(n_ext == 0); #ifdef ROW_LOG_APPLY_PRINT if (row_log_apply_print) { fprintf(stderr, "apply " IB_ID_FMT " " TRX_ID_FMT " %u %u ", index->id, trx_id, unsigned (op), unsigned (has_index_lock)); for (const byte* m = mrec - data_size; m < mrec; m++) { fprintf(stderr, "%02x", *m); } putc('\n', stderr); } #endif /* ROW_LOG_APPLY_PRINT */ row_log_apply_op_low(index, dup, error, offsets_heap, has_index_lock, op, trx_id, entry); return(mrec); } /******************************************************//** Applies operations to a secondary index that was being created. @return DB_SUCCESS, or error code on failure */ static __attribute__((nonnull)) dberr_t row_log_apply_ops( /*==============*/ trx_t* trx, /*!< in: transaction (for checking if the operation was interrupted) */ dict_index_t* index, /*!< in/out: index */ row_merge_dup_t*dup) /*!< in/out: for reporting duplicate key errors */ { dberr_t error; const mrec_t* mrec = NULL; const mrec_t* next_mrec; const mrec_t* mrec_end= NULL; /* silence bogus warning */ const mrec_t* next_mrec_end; mem_heap_t* offsets_heap; mem_heap_t* heap; ulint* offsets; bool has_index_lock; const ulint i = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); ut_ad(dict_index_is_online_ddl(index)); ut_ad(*index->name == TEMP_INDEX_PREFIX); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(index->online_log); UNIV_MEM_INVALID(&mrec_end, sizeof mrec_end); offsets = static_cast(ut_malloc(i * sizeof *offsets)); offsets[0] = i; offsets[1] = dict_index_get_n_fields(index); offsets_heap = mem_heap_create(UNIV_PAGE_SIZE); heap = mem_heap_create(UNIV_PAGE_SIZE); has_index_lock = true; next_block: ut_ad(has_index_lock); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(index->online_log->head.bytes == 0); if (trx_is_interrupted(trx)) { goto interrupted; } error = index->online_log->error; if (error != DB_SUCCESS) { goto func_exit; } if (dict_index_is_corrupted(index)) { error = DB_INDEX_CORRUPT; goto func_exit; } if (UNIV_UNLIKELY(index->online_log->head.blocks > index->online_log->tail.blocks)) { unexpected_eof: fprintf(stderr, "InnoDB: unexpected end of temporary file" " for index %s\n", index->name + 1); corruption: error = DB_CORRUPTION; goto func_exit; } if (index->online_log->head.blocks == index->online_log->tail.blocks) { if (index->online_log->head.blocks) { #ifdef HAVE_FTRUNCATE /* Truncate the file in order to save space. */ if (ftruncate(index->online_log->fd, 0) == -1) { fprintf(stderr, "InnoDB: Error: Truncate of file " "\'%s\' failed with error %d:%s\n", index->name + 1, errno, strerror(errno)); goto corruption; } #endif /* HAVE_FTRUNCATE */ index->online_log->head.blocks = index->online_log->tail.blocks = 0; } next_mrec = index->online_log->tail.block; next_mrec_end = next_mrec + index->online_log->tail.bytes; if (next_mrec_end == next_mrec) { /* End of log reached. */ all_done: ut_ad(has_index_lock); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->tail.blocks == 0); error = DB_SUCCESS; goto func_exit; } } else { os_offset_t ofs; ibool success; ofs = (os_offset_t) index->online_log->head.blocks * srv_sort_buf_size; ut_ad(has_index_lock); has_index_lock = false; rw_lock_x_unlock(dict_index_get_lock(index)); log_free_check(); if (!row_log_block_allocate(index->online_log->head)) { error = DB_OUT_OF_MEMORY; goto func_exit; } success = os_file_read_no_error_handling( OS_FILE_FROM_FD(index->online_log->fd), index->online_log->head.block, ofs, srv_sort_buf_size); if (!success) { fprintf(stderr, "InnoDB: unable to read temporary file" " for index %s\n", index->name + 1); goto corruption; } #ifdef POSIX_FADV_DONTNEED /* Each block is read exactly once. Free up the file cache. */ posix_fadvise(index->online_log->fd, ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ #if 0 //def FALLOC_FL_PUNCH_HOLE /* Try to deallocate the space for the file on disk. This should work on ext4 on Linux 2.6.39 and later, and be ignored when the operation is unsupported. */ fallocate(index->online_log->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, ofs, srv_buf_size); #endif /* FALLOC_FL_PUNCH_HOLE */ next_mrec = index->online_log->head.block; next_mrec_end = next_mrec + srv_sort_buf_size; } if (mrec) { /* A partial record was read from the previous block. Copy the temporary buffer full, as we do not know the length of the record. Parse subsequent records from the bigger buffer index->online_log->head.block or index->online_log->tail.block. */ ut_ad(mrec == index->online_log->head.buf); ut_ad(mrec_end > mrec); ut_ad(mrec_end < (&index->online_log->head.buf)[1]); memcpy((mrec_t*) mrec_end, next_mrec, (&index->online_log->head.buf)[1] - mrec_end); mrec = row_log_apply_op( index, dup, &error, offsets_heap, heap, has_index_lock, index->online_log->head.buf, (&index->online_log->head.buf)[1], offsets); if (error != DB_SUCCESS) { goto func_exit; } else if (UNIV_UNLIKELY(mrec == NULL)) { /* The record was not reassembled properly. */ goto corruption; } /* The record was previously found out to be truncated. Now that the parse buffer was extended, it should proceed beyond the old end of the buffer. */ ut_a(mrec > mrec_end); index->online_log->head.bytes = mrec - mrec_end; next_mrec += index->online_log->head.bytes; } ut_ad(next_mrec <= next_mrec_end); /* The following loop must not be parsing the temporary buffer, but head.block or tail.block. */ /* mrec!=NULL means that the next record starts from the middle of the block */ ut_ad((mrec == NULL) == (index->online_log->head.bytes == 0)); #ifdef UNIV_DEBUG if (next_mrec_end == index->online_log->head.block + srv_sort_buf_size) { /* If tail.bytes == 0, next_mrec_end can also be at the end of tail.block. */ if (index->online_log->tail.bytes == 0) { ut_ad(next_mrec == next_mrec_end); ut_ad(index->online_log->tail.blocks == 0); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->head.bytes == 0); } else { ut_ad(next_mrec == index->online_log->head.block + index->online_log->head.bytes); ut_ad(index->online_log->tail.blocks > index->online_log->head.blocks); } } else if (next_mrec_end == index->online_log->tail.block + index->online_log->tail.bytes) { ut_ad(next_mrec == index->online_log->tail.block + index->online_log->head.bytes); ut_ad(index->online_log->tail.blocks == 0); ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->head.bytes <= index->online_log->tail.bytes); } else { ut_error; } #endif /* UNIV_DEBUG */ mrec_end = next_mrec_end; while (!trx_is_interrupted(trx)) { mrec = next_mrec; ut_ad(mrec < mrec_end); if (!has_index_lock) { /* We are applying operations from a different block than the one that is being written to. We do not hold index->lock in order to allow other threads to concurrently buffer modifications. */ ut_ad(mrec >= index->online_log->head.block); ut_ad(mrec_end == index->online_log->head.block + srv_sort_buf_size); ut_ad(index->online_log->head.bytes < srv_sort_buf_size); /* Take the opportunity to do a redo log checkpoint if needed. */ log_free_check(); } else { /* We are applying operations from the last block. Do not allow other threads to buffer anything, so that we can finally catch up and synchronize. */ ut_ad(index->online_log->head.blocks == 0); ut_ad(index->online_log->tail.blocks == 0); ut_ad(mrec_end == index->online_log->tail.block + index->online_log->tail.bytes); ut_ad(mrec >= index->online_log->tail.block); } next_mrec = row_log_apply_op( index, dup, &error, offsets_heap, heap, has_index_lock, mrec, mrec_end, offsets); if (error != DB_SUCCESS) { goto func_exit; } else if (next_mrec == next_mrec_end) { /* The record happened to end on a block boundary. Do we have more blocks left? */ if (has_index_lock) { /* The index will be locked while applying the last block. */ goto all_done; } mrec = NULL; process_next_block: rw_lock_x_lock(dict_index_get_lock(index)); has_index_lock = true; index->online_log->head.bytes = 0; index->online_log->head.blocks++; goto next_block; } else if (next_mrec != NULL) { ut_ad(next_mrec < next_mrec_end); index->online_log->head.bytes += next_mrec - mrec; } else if (has_index_lock) { /* When mrec is within tail.block, it should be a complete record, because we are holding index->lock and thus excluding the writer. */ ut_ad(index->online_log->tail.blocks == 0); ut_ad(mrec_end == index->online_log->tail.block + index->online_log->tail.bytes); ut_ad(0); goto unexpected_eof; } else { memcpy(index->online_log->head.buf, mrec, mrec_end - mrec); mrec_end += index->online_log->head.buf - mrec; mrec = index->online_log->head.buf; goto process_next_block; } } interrupted: error = DB_INTERRUPTED; func_exit: if (!has_index_lock) { rw_lock_x_lock(dict_index_get_lock(index)); } switch (error) { case DB_SUCCESS: break; case DB_INDEX_CORRUPT: if (((os_offset_t) index->online_log->tail.blocks + 1) * srv_sort_buf_size >= srv_online_max_size) { /* The log file grew too big. */ error = DB_ONLINE_LOG_TOO_BIG; } /* fall through */ default: /* We set the flag directly instead of invoking dict_set_corrupted_index_cache_only(index) here, because the index is not "public" yet. */ index->type |= DICT_CORRUPT; } mem_heap_free(heap); mem_heap_free(offsets_heap); row_log_block_free(index->online_log->head); ut_free(offsets); return(error); } /******************************************************//** Apply the row log to the index upon completing index creation. @return DB_SUCCESS, or error code on failure */ UNIV_INTERN dberr_t row_log_apply( /*==========*/ trx_t* trx, /*!< in: transaction (for checking if the operation was interrupted) */ dict_index_t* index, /*!< in/out: secondary index */ struct TABLE* table) /*!< in/out: MySQL table (for reporting duplicates) */ { dberr_t error; row_log_t* log; row_merge_dup_t dup = { index, table, NULL, 0 }; DBUG_ENTER("row_log_apply"); ut_ad(dict_index_is_online_ddl(index)); ut_ad(!dict_index_is_clust(index)); log_free_check(); rw_lock_x_lock(dict_index_get_lock(index)); if (!dict_table_is_corrupted(index->table)) { error = row_log_apply_ops(trx, index, &dup); } else { error = DB_SUCCESS; } if (error != DB_SUCCESS) { ut_a(!dict_table_is_discarded(index->table)); /* We set the flag directly instead of invoking dict_set_corrupted_index_cache_only(index) here, because the index is not "public" yet. */ index->type |= DICT_CORRUPT; index->table->drop_aborted = TRUE; dict_index_set_online_status(index, ONLINE_INDEX_ABORTED); } else { ut_ad(dup.n_dup == 0); dict_index_set_online_status(index, ONLINE_INDEX_COMPLETE); } log = index->online_log; index->online_log = NULL; /* We could remove the TEMP_INDEX_PREFIX and update the data dictionary to say that this index is complete, if we had access to the .frm file here. If the server crashes before all requested indexes have been created, this completed index will be dropped. */ rw_lock_x_unlock(dict_index_get_lock(index)); row_log_free(log); DBUG_RETURN(error); }