/***************************************************************************** Copyright (c) 2000, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2015, 2023, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0mysql.cc Interface between Innobase row operations and MySQL. Contains also create table and other data dictionary operations. Created 9/17/2000 Heikki Tuuri *******************************************************/ #include "univ.i" #include #include #include #include "row0mysql.h" #include "btr0sea.h" #include "dict0boot.h" #include "dict0crea.h" #include "dict0dict.h" #include "dict0load.h" #include "dict0stats.h" #include "dict0stats_bg.h" #include "fil0fil.h" #include "fil0crypt.h" #include "fsp0file.h" #include "fts0fts.h" #include "fts0types.h" #include "lock0lock.h" #include "log0log.h" #include "pars0pars.h" #include "que0que.h" #include "rem0cmp.h" #include "row0import.h" #include "row0ins.h" #include "row0row.h" #include "row0sel.h" #include "row0upd.h" #include "trx0purge.h" #include "trx0rec.h" #include "trx0roll.h" #include "trx0undo.h" #include "srv0mon.h" #include "srv0start.h" #include "log.h" #include #include #include /** Delay an INSERT, DELETE or UPDATE operation if the purge is lagging. */ static void row_mysql_delay_if_needed() { const auto delay= srv_dml_needed_delay; if (UNIV_UNLIKELY(delay != 0)) { /* Adjust for purge_coordinator_state::refresh() */ log_sys.latch.rd_lock(SRW_LOCK_CALL); const lsn_t last= log_sys.last_checkpoint_lsn, max_age= log_sys.max_checkpoint_age; log_sys.latch.rd_unlock(); const lsn_t lsn= log_sys.get_lsn(); if ((lsn - last) / 4 >= max_age / 5) buf_flush_ahead(last + max_age / 5, false); srv_wake_purge_thread_if_not_active(); std::this_thread::sleep_for(std::chrono::microseconds(delay)); } } /*******************************************************************//** Frees the blob heap in prebuilt when no longer needed. */ void row_mysql_prebuilt_free_blob_heap( /*==============================*/ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct of a ha_innobase:: table handle */ { DBUG_ENTER("row_mysql_prebuilt_free_blob_heap"); DBUG_PRINT("row_mysql_prebuilt_free_blob_heap", ("blob_heap freeing: %p", prebuilt->blob_heap)); mem_heap_free(prebuilt->blob_heap); prebuilt->blob_heap = NULL; DBUG_VOID_RETURN; } /*******************************************************************//** Stores a >= 5.0.3 format true VARCHAR length to dest, in the MySQL row format. @return pointer to the data, we skip the 1 or 2 bytes at the start that are used to store the len */ byte* row_mysql_store_true_var_len( /*=========================*/ byte* dest, /*!< in: where to store */ ulint len, /*!< in: length, must fit in two bytes */ ulint lenlen) /*!< in: storage length of len: either 1 or 2 bytes */ { if (lenlen == 2) { ut_a(len < 256 * 256); mach_write_to_2_little_endian(dest, len); return(dest + 2); } ut_a(lenlen == 1); ut_a(len < 256); mach_write_to_1(dest, len); return(dest + 1); } /*******************************************************************//** Reads a >= 5.0.3 format true VARCHAR length, in the MySQL row format, and returns a pointer to the data. @return pointer to the data, we skip the 1 or 2 bytes at the start that are used to store the len */ const byte* row_mysql_read_true_varchar( /*========================*/ ulint* len, /*!< out: variable-length field length */ const byte* field, /*!< in: field in the MySQL format */ ulint lenlen) /*!< in: storage length of len: either 1 or 2 bytes */ { if (lenlen == 2) { *len = mach_read_from_2_little_endian(field); return(field + 2); } ut_a(lenlen == 1); *len = mach_read_from_1(field); return(field + 1); } /*******************************************************************//** Stores a reference to a BLOB in the MySQL format. */ void row_mysql_store_blob_ref( /*=====================*/ byte* dest, /*!< in: where to store */ ulint col_len,/*!< in: dest buffer size: determines into how many bytes the BLOB length is stored, the space for the length may vary from 1 to 4 bytes */ const void* data, /*!< in: BLOB data; if the value to store is SQL NULL this should be NULL pointer */ ulint len) /*!< in: BLOB length; if the value to store is SQL NULL this should be 0; remember also to set the NULL bit in the MySQL record header! */ { /* MySQL might assume the field is set to zero except the length and the pointer fields */ memset(dest, '\0', col_len); /* In dest there are 1 - 4 bytes reserved for the BLOB length, and after that 8 bytes reserved for the pointer to the data. In 32-bit architectures we only use the first 4 bytes of the pointer slot. */ ut_a(col_len - 8 > 1 || len < 256); ut_a(col_len - 8 > 2 || len < 256 * 256); ut_a(col_len - 8 > 3 || len < 256 * 256 * 256); mach_write_to_n_little_endian(dest, col_len - 8, len); memcpy(dest + col_len - 8, &data, sizeof data); } /*******************************************************************//** Reads a reference to a BLOB in the MySQL format. @return pointer to BLOB data */ const byte* row_mysql_read_blob_ref( /*====================*/ ulint* len, /*!< out: BLOB length */ const byte* ref, /*!< in: BLOB reference in the MySQL format */ ulint col_len) /*!< in: BLOB reference length (not BLOB length) */ { byte* data; *len = mach_read_from_n_little_endian(ref, col_len - 8); memcpy(&data, ref + col_len - 8, sizeof data); return(data); } /*******************************************************************//** Converting InnoDB geometry data format to MySQL data format. */ void row_mysql_store_geometry( /*=====================*/ byte* dest, /*!< in/out: where to store */ ulint dest_len, /*!< in: dest buffer size: determines into how many bytes the GEOMETRY length is stored, the space for the length may vary from 1 to 4 bytes */ const byte* src, /*!< in: GEOMETRY data; if the value to store is SQL NULL this should be NULL pointer */ ulint src_len) /*!< in: GEOMETRY length; if the value to store is SQL NULL this should be 0; remember also to set the NULL bit in the MySQL record header! */ { /* MySQL might assume the field is set to zero except the length and the pointer fields */ MEM_CHECK_DEFINED(src, src_len); memset(dest, '\0', dest_len); /* In dest there are 1 - 4 bytes reserved for the BLOB length, and after that 8 bytes reserved for the pointer to the data. In 32-bit architectures we only use the first 4 bytes of the pointer slot. */ ut_ad(dest_len - 8 > 1 || src_len < 1<<8); ut_ad(dest_len - 8 > 2 || src_len < 1<<16); ut_ad(dest_len - 8 > 3 || src_len < 1<<24); mach_write_to_n_little_endian(dest, dest_len - 8, src_len); memcpy(dest + dest_len - 8, &src, sizeof src); } /*******************************************************************//** Read geometry data in the MySQL format. @return pointer to geometry data */ static const byte* row_mysql_read_geometry( /*====================*/ ulint* len, /*!< out: data length */ const byte* ref, /*!< in: geometry data in the MySQL format */ ulint col_len) /*!< in: MySQL format length */ { byte* data; ut_ad(col_len > 8); *len = mach_read_from_n_little_endian(ref, col_len - 8); memcpy(&data, ref + col_len - 8, sizeof data); return(data); } /**************************************************************//** Pad a column with spaces. */ void row_mysql_pad_col( /*==============*/ ulint mbminlen, /*!< in: minimum size of a character, in bytes */ byte* pad, /*!< out: padded buffer */ ulint len) /*!< in: number of bytes to pad */ { const byte* pad_end; switch (UNIV_EXPECT(mbminlen, 1)) { default: ut_error; case 1: /* space=0x20 */ memset(pad, 0x20, len); break; case 2: /* space=0x0020 */ pad_end = pad + len; ut_a(!(len % 2)); while (pad < pad_end) { *pad++ = 0x00; *pad++ = 0x20; }; break; case 4: /* space=0x00000020 */ pad_end = pad + len; ut_a(!(len % 4)); while (pad < pad_end) { *pad++ = 0x00; *pad++ = 0x00; *pad++ = 0x00; *pad++ = 0x20; } break; } } /**************************************************************//** Stores a non-SQL-NULL field given in the MySQL format in the InnoDB format. The counterpart of this function is row_sel_field_store_in_mysql_format() in row0sel.cc. @return up to which byte we used buf in the conversion */ byte* row_mysql_store_col_in_innobase_format( /*===================================*/ dfield_t* dfield, /*!< in/out: dfield where dtype information must be already set when this function is called! */ byte* buf, /*!< in/out: buffer for a converted integer value; this must be at least col_len long then! NOTE that dfield may also get a pointer to 'buf', therefore do not discard this as long as dfield is used! */ ibool row_format_col, /*!< TRUE if the mysql_data is from a MySQL row, FALSE if from a MySQL key value; in MySQL, a true VARCHAR storage format differs in a row and in a key value: in a key value the length is always stored in 2 bytes! */ const byte* mysql_data, /*!< in: MySQL column value, not SQL NULL; NOTE that dfield may also get a pointer to mysql_data, therefore do not discard this as long as dfield is used! */ ulint col_len, /*!< in: MySQL column length; NOTE that this is the storage length of the column in the MySQL format row, not necessarily the length of the actual payload data; if the column is a true VARCHAR then this is irrelevant */ ulint comp) /*!< in: nonzero=compact format */ { const byte* ptr = mysql_data; const dtype_t* dtype; ulint type; ulint lenlen; dtype = dfield_get_type(dfield); type = dtype->mtype; if (type == DATA_INT) { /* Store integer data in Innobase in a big-endian format, sign bit negated if the data is a signed integer. In MySQL, integers are stored in a little-endian format. */ byte* p = buf + col_len; for (;;) { p--; *p = *mysql_data; if (p == buf) { break; } mysql_data++; } if (!(dtype->prtype & DATA_UNSIGNED)) { *buf ^= 128; } ptr = buf; buf += col_len; } else if ((type == DATA_VARCHAR || type == DATA_VARMYSQL || type == DATA_BINARY)) { if (dtype_get_mysql_type(dtype) == DATA_MYSQL_TRUE_VARCHAR) { /* The length of the actual data is stored to 1 or 2 bytes at the start of the field */ if (row_format_col) { if (dtype->prtype & DATA_LONG_TRUE_VARCHAR) { lenlen = 2; } else { lenlen = 1; } } else { /* In a MySQL key value, lenlen is always 2 */ lenlen = 2; } ptr = row_mysql_read_true_varchar(&col_len, mysql_data, lenlen); } else { /* Remove trailing spaces from old style VARCHAR columns. */ /* Handle Unicode strings differently. */ ulint mbminlen = dtype_get_mbminlen(dtype); ptr = mysql_data; switch (mbminlen) { default: ut_error; case 4: /* space=0x00000020 */ /* Trim "half-chars", just in case. */ col_len &= ~3U; while (col_len >= 4 && ptr[col_len - 4] == 0x00 && ptr[col_len - 3] == 0x00 && ptr[col_len - 2] == 0x00 && ptr[col_len - 1] == 0x20) { col_len -= 4; } break; case 2: /* space=0x0020 */ /* Trim "half-chars", just in case. */ col_len &= ~1U; while (col_len >= 2 && ptr[col_len - 2] == 0x00 && ptr[col_len - 1] == 0x20) { col_len -= 2; } break; case 1: /* space=0x20 */ while (col_len > 0 && ptr[col_len - 1] == 0x20) { col_len--; } } } } else if (comp && type == DATA_MYSQL && dtype_get_mbminlen(dtype) == 1 && dtype_get_mbmaxlen(dtype) > 1) { /* In some cases we strip trailing spaces from UTF-8 and other multibyte charsets, from FIXED-length CHAR columns, to save space. UTF-8 would otherwise normally use 3 * the string length bytes to store an ASCII string! */ /* We assume that this CHAR field is encoded in a variable-length character set where spaces have 1:1 correspondence to 0x20 bytes, such as UTF-8. Consider a CHAR(n) field, a field of n characters. It will contain between n * mbminlen and n * mbmaxlen bytes. We will try to truncate it to n bytes by stripping space padding. If the field contains single-byte characters only, it will be truncated to n characters. Consider a CHAR(5) field containing the string ".a " where "." denotes a 3-byte character represented by the bytes "$%&". After our stripping, the string will be stored as "$%&a " (5 bytes). The string ".abc " will be stored as "$%&abc" (6 bytes). The space padding will be restored in row0sel.cc, function row_sel_field_store_in_mysql_format(). */ ulint n_chars; ut_a(!(dtype_get_len(dtype) % dtype_get_mbmaxlen(dtype))); n_chars = dtype_get_len(dtype) / dtype_get_mbmaxlen(dtype); /* Strip space padding. */ while (col_len > n_chars && ptr[col_len - 1] == 0x20) { col_len--; } } else if (!row_format_col) { /* if mysql data is from a MySQL key value since the length is always stored in 2 bytes, we need do nothing here. */ } else if (type == DATA_BLOB) { ptr = row_mysql_read_blob_ref(&col_len, mysql_data, col_len); } else if (DATA_GEOMETRY_MTYPE(type)) { ptr = row_mysql_read_geometry(&col_len, mysql_data, col_len); } dfield_set_data(dfield, ptr, col_len); return(buf); } /**************************************************************//** Convert a row in the MySQL format to a row in the Innobase format. Note that the function to convert a MySQL format key value to an InnoDB dtuple is row_sel_convert_mysql_key_to_innobase() in row0sel.cc. */ static void row_mysql_convert_row_to_innobase( /*==============================*/ dtuple_t* row, /*!< in/out: Innobase row where the field type information is already copied there! */ row_prebuilt_t* prebuilt, /*!< in: prebuilt struct where template must be of type ROW_MYSQL_WHOLE_ROW */ const byte* mysql_rec, /*!< in: row in the MySQL format; NOTE: do not discard as long as row is used, as row may contain pointers to this record! */ mem_heap_t** blob_heap) /*!< in: FIX_ME, remove this after server fixes its issue */ { const mysql_row_templ_t*templ; dfield_t* dfield; ulint i; ulint n_col = 0; ulint n_v_col = 0; ut_ad(prebuilt->template_type == ROW_MYSQL_WHOLE_ROW); ut_ad(prebuilt->mysql_template); for (i = 0; i < prebuilt->n_template; i++) { templ = prebuilt->mysql_template + i; if (templ->is_virtual) { ut_ad(n_v_col < dtuple_get_n_v_fields(row)); dfield = dtuple_get_nth_v_field(row, n_v_col); n_v_col++; } else { dfield = dtuple_get_nth_field(row, n_col); n_col++; } if (templ->mysql_null_bit_mask != 0) { /* Column may be SQL NULL */ if (mysql_rec[templ->mysql_null_byte_offset] & (byte) (templ->mysql_null_bit_mask)) { /* It is SQL NULL */ dfield_set_null(dfield); goto next_column; } } row_mysql_store_col_in_innobase_format( dfield, prebuilt->ins_upd_rec_buff + templ->mysql_col_offset, TRUE, /* MySQL row format data */ mysql_rec + templ->mysql_col_offset, templ->mysql_col_len, dict_table_is_comp(prebuilt->table)); /* server has issue regarding handling BLOB virtual fields, and we need to duplicate it with our own memory here */ if (templ->is_virtual && DATA_LARGE_MTYPE(dfield_get_type(dfield)->mtype)) { if (*blob_heap == NULL) { *blob_heap = mem_heap_create(dfield->len); } dfield_dup(dfield, *blob_heap); } next_column: ; } /* If there is a FTS doc id column and it is not user supplied ( generated by server) then assign it a new doc id. */ if (!prebuilt->table->fts) { return; } ut_a(prebuilt->table->fts->doc_col != ULINT_UNDEFINED); doc_id_t doc_id; if (!DICT_TF2_FLAG_IS_SET(prebuilt->table, DICT_TF2_FTS_HAS_DOC_ID)) { if (prebuilt->table->fts->cache->first_doc_id == FTS_NULL_DOC_ID) { fts_get_next_doc_id(prebuilt->table, &doc_id); } return; } dfield_t* fts_doc_id = dtuple_get_nth_field( row, prebuilt->table->fts->doc_col); if (fts_get_next_doc_id(prebuilt->table, &doc_id) == DB_SUCCESS) { ut_a(doc_id != FTS_NULL_DOC_ID); ut_ad(sizeof(doc_id) == fts_doc_id->type.len); dfield_set_data(fts_doc_id, prebuilt->ins_upd_rec_buff + prebuilt->mysql_row_len, 8); fts_write_doc_id(fts_doc_id->data, doc_id); } else { dfield_set_null(fts_doc_id); } } /****************************************************************//** Handles user errors and lock waits detected by the database engine. @return true if it was a lock wait and we should continue running the query thread and in that case the thr is ALREADY in the running state. */ bool row_mysql_handle_errors( /*====================*/ dberr_t* new_err,/*!< out: possible new error encountered in lock wait, or if no new error, the value of trx->error_state at the entry of this function */ trx_t* trx, /*!< in: transaction */ que_thr_t* thr, /*!< in: query thread, or NULL */ trx_savept_t* savept) /*!< in: savepoint, or NULL */ { dberr_t err; DBUG_ENTER("row_mysql_handle_errors"); DEBUG_SYNC_C("row_mysql_handle_errors"); err = trx->error_state; handle_new_error: ut_a(err != DB_SUCCESS); trx->error_state = DB_SUCCESS; DBUG_LOG("trx", "handle error: " << err << ";id=" << ib::hex(trx->id) << ", " << trx); switch (err) { case DB_LOCK_WAIT_TIMEOUT: extern my_bool innobase_rollback_on_timeout; if (innobase_rollback_on_timeout) { goto rollback; } /* fall through */ case DB_DUPLICATE_KEY: case DB_FOREIGN_DUPLICATE_KEY: case DB_TOO_BIG_RECORD: case DB_UNDO_RECORD_TOO_BIG: case DB_ROW_IS_REFERENCED: case DB_NO_REFERENCED_ROW: case DB_CANNOT_ADD_CONSTRAINT: case DB_TOO_MANY_CONCURRENT_TRXS: case DB_OUT_OF_FILE_SPACE: case DB_READ_ONLY: case DB_FTS_INVALID_DOCID: case DB_INTERRUPTED: case DB_CANT_CREATE_GEOMETRY_OBJECT: case DB_TABLE_NOT_FOUND: case DB_DECRYPTION_FAILED: case DB_COMPUTE_VALUE_FAILED: rollback_to_savept: DBUG_EXECUTE_IF("row_mysql_crash_if_error", { log_buffer_flush_to_disk(); DBUG_SUICIDE(); }); if (savept) { /* Roll back the latest, possibly incomplete insertion or update */ trx->rollback(savept); } if (!trx->bulk_insert) { /* MariaDB will roll back the latest SQL statement */ break; } /* MariaDB will roll back the entire transaction. */ trx->bulk_insert = false; trx->last_sql_stat_start.least_undo_no = 0; trx->savepoints_discard(); break; case DB_LOCK_WAIT: err = lock_wait(thr); if (err != DB_SUCCESS) { goto handle_new_error; } *new_err = err; DBUG_RETURN(true); case DB_DEADLOCK: case DB_LOCK_TABLE_FULL: rollback: /* Roll back the whole transaction; this resolution was added to version 3.23.43 */ trx->rollback(); break; case DB_IO_ERROR: case DB_TABLE_CORRUPT: case DB_CORRUPTION: case DB_PAGE_CORRUPTED: ib::error() << "We detected index corruption in an InnoDB type" " table. You have to dump + drop + reimport the" " table or, in a case of widespread corruption," " dump all InnoDB tables and recreate the whole" " tablespace. If the mariadbd server crashes after" " the startup or when you dump the tables. " << FORCE_RECOVERY_MSG; goto rollback_to_savept; case DB_FOREIGN_EXCEED_MAX_CASCADE: ib::error() << "Cannot delete/update rows with cascading" " foreign key constraints that exceed max depth of " << FK_MAX_CASCADE_DEL << ". Please drop excessive" " foreign constraints and try again"; goto rollback_to_savept; case DB_UNSUPPORTED: ib::error() << "Cannot delete/update rows with cascading" " foreign key constraints in timestamp-based temporal" " table. Please drop excessive" " foreign constraints and try again"; goto rollback_to_savept; default: ib::fatal() << "Unknown error " << err; } if (dberr_t n_err = trx->error_state) { trx->error_state = DB_SUCCESS; *new_err = n_err; } else { *new_err = err; } DBUG_RETURN(false); } /********************************************************************//** Create a prebuilt struct for a MySQL table handle. @return own: a prebuilt struct */ row_prebuilt_t* row_create_prebuilt( /*================*/ dict_table_t* table, /*!< in: Innobase table handle */ ulint mysql_row_len) /*!< in: length in bytes of a row in the MySQL format */ { DBUG_ENTER("row_create_prebuilt"); row_prebuilt_t* prebuilt; mem_heap_t* heap; dict_index_t* clust_index; dict_index_t* temp_index; dtuple_t* ref; ulint ref_len; uint srch_key_len = 0; ulint search_tuple_n_fields; search_tuple_n_fields = 2 * (dict_table_get_n_cols(table) + dict_table_get_n_v_cols(table)); clust_index = dict_table_get_first_index(table); /* Make sure that search_tuple is long enough for clustered index */ ut_a(2 * unsigned(table->n_cols) >= unsigned(clust_index->n_fields) - clust_index->table->n_dropped()); ref_len = dict_index_get_n_unique(clust_index); /* Maximum size of the buffer needed for conversion of INTs from little endian format to big endian format in an index. An index can have maximum 16 columns (MAX_REF_PARTS) in it. Therfore Max size for PK: 16 * 8 bytes (BIGINT's size) = 128 bytes Max size Secondary index: 16 * 8 bytes + PK = 256 bytes. */ #define MAX_SRCH_KEY_VAL_BUFFER 2* (8 * MAX_REF_PARTS) #define PREBUILT_HEAP_INITIAL_SIZE \ ( \ sizeof(*prebuilt) \ /* allocd in this function */ \ + DTUPLE_EST_ALLOC(search_tuple_n_fields) \ + DTUPLE_EST_ALLOC(ref_len) \ /* allocd in row_prebuild_sel_graph() */ \ + sizeof(sel_node_t) \ + sizeof(que_fork_t) \ + sizeof(que_thr_t) \ /* allocd in row_get_prebuilt_update_vector() */ \ + sizeof(upd_node_t) \ + sizeof(upd_t) \ + sizeof(upd_field_t) \ * dict_table_get_n_cols(table) \ + sizeof(que_fork_t) \ + sizeof(que_thr_t) \ /* allocd in row_get_prebuilt_insert_row() */ \ + sizeof(ins_node_t) \ /* mysql_row_len could be huge and we are not \ sure if this prebuilt instance is going to be \ used in inserts */ \ + (mysql_row_len < 256 ? mysql_row_len : 0) \ + DTUPLE_EST_ALLOC(dict_table_get_n_cols(table) \ + dict_table_get_n_v_cols(table)) \ + sizeof(que_fork_t) \ + sizeof(que_thr_t) \ + sizeof(*prebuilt->pcur) \ + sizeof(*prebuilt->clust_pcur) \ ) /* Calculate size of key buffer used to store search key in InnoDB format. MySQL stores INTs in little endian format and InnoDB stores INTs in big endian format with the sign bit flipped. All other field types are stored/compared the same in MySQL and InnoDB, so we must create a buffer containing the INT key parts in InnoDB format.We need two such buffers since both start and end keys are used in records_in_range(). */ for (temp_index = dict_table_get_first_index(table); temp_index; temp_index = dict_table_get_next_index(temp_index)) { DBUG_EXECUTE_IF("innodb_srch_key_buffer_max_value", ut_a(temp_index->n_user_defined_cols == MAX_REF_PARTS);); if (temp_index->is_corrupted()) { continue; } uint temp_len = 0; for (uint i = 0; i < temp_index->n_uniq; i++) { ulint type = temp_index->fields[i].col->mtype; if (type == DATA_INT) { temp_len += temp_index->fields[i].fixed_len; } } srch_key_len = std::max(srch_key_len,temp_len); } ut_a(srch_key_len <= MAX_SRCH_KEY_VAL_BUFFER); DBUG_EXECUTE_IF("innodb_srch_key_buffer_max_value", ut_a(srch_key_len == MAX_SRCH_KEY_VAL_BUFFER);); /* We allocate enough space for the objects that are likely to be created later in order to minimize the number of malloc() calls */ heap = mem_heap_create(PREBUILT_HEAP_INITIAL_SIZE + 2 * srch_key_len); prebuilt = static_cast( mem_heap_zalloc(heap, sizeof(*prebuilt))); prebuilt->magic_n = ROW_PREBUILT_ALLOCATED; prebuilt->magic_n2 = ROW_PREBUILT_ALLOCATED; prebuilt->table = table; prebuilt->sql_stat_start = TRUE; prebuilt->heap = heap; prebuilt->srch_key_val_len = srch_key_len; if (prebuilt->srch_key_val_len) { prebuilt->srch_key_val1 = static_cast( mem_heap_alloc(prebuilt->heap, 2 * prebuilt->srch_key_val_len)); prebuilt->srch_key_val2 = prebuilt->srch_key_val1 + prebuilt->srch_key_val_len; } else { prebuilt->srch_key_val1 = NULL; prebuilt->srch_key_val2 = NULL; } prebuilt->pcur = static_cast( mem_heap_zalloc(prebuilt->heap, sizeof(btr_pcur_t))); prebuilt->clust_pcur = static_cast( mem_heap_zalloc(prebuilt->heap, sizeof(btr_pcur_t))); btr_pcur_reset(prebuilt->pcur); btr_pcur_reset(prebuilt->clust_pcur); prebuilt->select_lock_type = LOCK_NONE; prebuilt->stored_select_lock_type = LOCK_NONE_UNSET; prebuilt->search_tuple = dtuple_create(heap, search_tuple_n_fields); ref = dtuple_create(heap, ref_len); dict_index_copy_types(ref, clust_index, ref_len); prebuilt->clust_ref = ref; prebuilt->autoinc_error = DB_SUCCESS; prebuilt->autoinc_offset = 0; /* Default to 1, we will set the actual value later in ha_innobase::get_auto_increment(). */ prebuilt->autoinc_increment = 1; prebuilt->autoinc_last_value = 0; /* During UPDATE and DELETE we need the doc id. */ prebuilt->fts_doc_id = 0; prebuilt->mysql_row_len = mysql_row_len; prebuilt->fts_doc_id_in_read_set = 0; prebuilt->blob_heap = NULL; DBUG_RETURN(prebuilt); } /** Free a prebuilt struct for a TABLE handle. */ void row_prebuilt_free(row_prebuilt_t *prebuilt) { DBUG_ENTER("row_prebuilt_free"); ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); prebuilt->magic_n = ROW_PREBUILT_FREED; prebuilt->magic_n2 = ROW_PREBUILT_FREED; btr_pcur_reset(prebuilt->pcur); btr_pcur_reset(prebuilt->clust_pcur); ut_free(prebuilt->mysql_template); if (prebuilt->ins_graph) { que_graph_free_recursive(prebuilt->ins_graph); } if (prebuilt->sel_graph) { que_graph_free_recursive(prebuilt->sel_graph); } if (prebuilt->upd_graph) { que_graph_free_recursive(prebuilt->upd_graph); } if (prebuilt->blob_heap) { row_mysql_prebuilt_free_blob_heap(prebuilt); } if (prebuilt->old_vers_heap) { mem_heap_free(prebuilt->old_vers_heap); } if (prebuilt->fetch_cache[0] != NULL) { byte* base = prebuilt->fetch_cache[0] - 4; byte* ptr = base; for (ulint i = 0; i < MYSQL_FETCH_CACHE_SIZE; i++) { ulint magic1 = mach_read_from_4(ptr); ut_a(magic1 == ROW_PREBUILT_FETCH_MAGIC_N); ptr += 4; byte* row = ptr; ut_a(row == prebuilt->fetch_cache[i]); ptr += prebuilt->mysql_row_len; ulint magic2 = mach_read_from_4(ptr); ut_a(magic2 == ROW_PREBUILT_FETCH_MAGIC_N); ptr += 4; } ut_free(base); } if (prebuilt->rtr_info) { rtr_clean_rtr_info(prebuilt->rtr_info, true); } if (prebuilt->table) { dict_table_close(prebuilt->table); } mem_heap_free(prebuilt->heap); DBUG_VOID_RETURN; } /*********************************************************************//** Updates the transaction pointers in query graphs stored in the prebuilt struct. */ void row_update_prebuilt_trx( /*====================*/ row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct in MySQL handle */ trx_t* trx) /*!< in: transaction handle */ { ut_a(trx->magic_n == TRX_MAGIC_N); ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); prebuilt->trx = trx; if (prebuilt->ins_graph) { prebuilt->ins_graph->trx = trx; } if (prebuilt->upd_graph) { prebuilt->upd_graph->trx = trx; } if (prebuilt->sel_graph) { prebuilt->sel_graph->trx = trx; } } /*********************************************************************//** Gets pointer to a prebuilt dtuple used in insertions. If the insert graph has not yet been built in the prebuilt struct, then this function first builds it. @return prebuilt dtuple; the column type information is also set in it */ static dtuple_t* row_get_prebuilt_insert_row( /*========================*/ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct in MySQL handle */ { dict_table_t* table = prebuilt->table; ut_ad(prebuilt && table && prebuilt->trx); if (prebuilt->ins_node != 0) { /* Check if indexes have been dropped or added and we may need to rebuild the row insert template. */ if (prebuilt->trx_id == table->def_trx_id && prebuilt->ins_node->entry_list.size() == UT_LIST_GET_LEN(table->indexes)) { return(prebuilt->ins_node->row); } ut_ad(prebuilt->trx_id < table->def_trx_id); que_graph_free_recursive(prebuilt->ins_graph); prebuilt->ins_graph = 0; } /* Create an insert node and query graph to the prebuilt struct */ ins_node_t* node; node = ins_node_create(INS_DIRECT, table, prebuilt->heap); prebuilt->ins_node = node; if (prebuilt->ins_upd_rec_buff == 0) { prebuilt->ins_upd_rec_buff = static_cast( mem_heap_alloc( prebuilt->heap, DICT_TF2_FLAG_IS_SET(prebuilt->table, DICT_TF2_FTS_HAS_DOC_ID) ? prebuilt->mysql_row_len + 8/* FTS_DOC_ID */ : prebuilt->mysql_row_len)); } dtuple_t* row; row = dtuple_create_with_vcol( prebuilt->heap, dict_table_get_n_cols(table), dict_table_get_n_v_cols(table)); dict_table_copy_types(row, table); ins_node_set_new_row(node, row); que_thr_t* fork = pars_complete_graph_for_exec( node, prebuilt->trx, prebuilt->heap, prebuilt); fork->state = QUE_THR_RUNNING; prebuilt->ins_graph = static_cast( que_node_get_parent(fork)); prebuilt->ins_graph->state = QUE_FORK_ACTIVE; prebuilt->trx_id = table->def_trx_id; return(prebuilt->ins_node->row); } /*********************************************************************//** Sets an AUTO_INC type lock on the table mentioned in prebuilt. The AUTO_INC lock gives exclusive access to the auto-inc counter of the table. The lock is reserved only for the duration of an SQL statement. It is not compatible with another AUTO_INC or exclusive lock on the table. @return error code or DB_SUCCESS */ dberr_t row_lock_table_autoinc_for_mysql( /*=============================*/ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct in the MySQL table handle */ { trx_t* trx = prebuilt->trx; ins_node_t* node = prebuilt->ins_node; const dict_table_t* table = prebuilt->table; que_thr_t* thr; dberr_t err; /* If we already hold an AUTOINC lock on the table then do nothing. Note: We peek at the value of the current owner without acquiring lock_sys.latch. */ if (trx == table->autoinc_trx) { return(DB_SUCCESS); } trx->op_info = "setting auto-inc lock"; row_get_prebuilt_insert_row(prebuilt); node = prebuilt->ins_node; /* We use the insert query graph as the dummy graph needed in the lock module call */ thr = que_fork_get_first_thr(prebuilt->ins_graph); do { thr->run_node = node; thr->prev_node = node; /* It may be that the current session has not yet started its transaction, or it has been committed: */ trx_start_if_not_started_xa(trx, true); err = lock_table(prebuilt->table, NULL, LOCK_AUTO_INC, thr); trx->error_state = err; } while (err != DB_SUCCESS && row_mysql_handle_errors(&err, trx, thr, NULL)); trx->op_info = ""; return(err); } /** Lock a table. @param[in,out] prebuilt table handle @return error code or DB_SUCCESS */ dberr_t row_lock_table(row_prebuilt_t* prebuilt) { trx_t* trx = prebuilt->trx; que_thr_t* thr; dberr_t err; trx->op_info = "setting table lock"; if (prebuilt->sel_graph == NULL) { /* Build a dummy select query graph */ row_prebuild_sel_graph(prebuilt); } /* We use the select query graph as the dummy graph needed in the lock module call */ thr = que_fork_get_first_thr(prebuilt->sel_graph); do { thr->run_node = thr; thr->prev_node = thr->common.parent; /* It may be that the current session has not yet started its transaction, or it has been committed: */ trx_start_if_not_started_xa(trx, false); err = lock_table(prebuilt->table, NULL, static_cast( prebuilt->select_lock_type), thr); trx->error_state = err; } while (err != DB_SUCCESS && row_mysql_handle_errors(&err, trx, thr, NULL)); trx->op_info = ""; return(err); } /** Determine is tablespace encrypted but decryption failed, is table corrupted or is tablespace .ibd file missing. @param[in] table Table @param[in] trx Transaction @param[in] push_warning true if we should push warning to user @retval DB_DECRYPTION_FAILED table is encrypted but decryption failed @retval DB_CORRUPTION table is corrupted @retval DB_TABLESPACE_NOT_FOUND tablespace .ibd file not found */ static dberr_t row_mysql_get_table_status( const dict_table_t* table, trx_t* trx, bool push_warning = true) { dberr_t err; if (const fil_space_t* space = table->space) { if (space->crypt_data && space->crypt_data->is_encrypted()) { // maybe we cannot access the table due to failing // to decrypt if (push_warning) { ib_push_warning(trx, DB_DECRYPTION_FAILED, "Table %s is encrypted." "However key management plugin or used key_id is not found or" " used encryption algorithm or method does not match.", table->name.m_name); } err = DB_DECRYPTION_FAILED; } else { if (push_warning) { ib_push_warning(trx, DB_CORRUPTION, "Table %s in tablespace %lu corrupted.", table->name.m_name, table->space); } err = DB_CORRUPTION; } } else { ib::error() << ".ibd file is missing for table " << table->name; err = DB_TABLESPACE_NOT_FOUND; } return(err); } /** Does an insert for MySQL. @param[in] mysql_rec row in the MySQL format @param[in,out] prebuilt prebuilt struct in MySQL handle @return error code or DB_SUCCESS */ dberr_t row_insert_for_mysql( const byte* mysql_rec, row_prebuilt_t* prebuilt, ins_mode_t ins_mode) { trx_savept_t savept; que_thr_t* thr; dberr_t err; ibool was_lock_wait; trx_t* trx = prebuilt->trx; ins_node_t* node = prebuilt->ins_node; dict_table_t* table = prebuilt->table; /* FIX_ME: This blob heap is used to compensate an issue in server for virtual column blob handling */ mem_heap_t* blob_heap = NULL; ut_ad(trx); ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); if (!table->space) { ib::error() << "The table " << table->name << " doesn't have a corresponding tablespace, it was" " discarded."; return(DB_TABLESPACE_DELETED); } else if (!table->is_readable()) { return row_mysql_get_table_status(table, trx, true); } else if (high_level_read_only) { return(DB_READ_ONLY); } else if (UNIV_UNLIKELY(table->corrupted) || dict_table_get_first_index(table)->is_corrupted()) { return DB_TABLE_CORRUPT; } trx->op_info = "inserting"; row_mysql_delay_if_needed(); if (!table->no_rollback()) { trx_start_if_not_started_xa(trx, true); } row_get_prebuilt_insert_row(prebuilt); node = prebuilt->ins_node; row_mysql_convert_row_to_innobase(node->row, prebuilt, mysql_rec, &blob_heap); if (ins_mode != ROW_INS_NORMAL) { node->vers_update_end(prebuilt, ins_mode == ROW_INS_HISTORICAL); } /* Because we now allow multiple INSERT into the same initially empty table in bulk insert mode, on error we must roll back to the start of the transaction. For correctness, it would suffice to roll back to the start of the first insert into this empty table, but we will keep it simple and efficient. */ savept.least_undo_no = trx->bulk_insert ? 0 : trx->undo_no; thr = que_fork_get_first_thr(prebuilt->ins_graph); if (prebuilt->sql_stat_start) { node->state = INS_NODE_SET_IX_LOCK; prebuilt->sql_stat_start = FALSE; } else { node->state = INS_NODE_ALLOC_ROW_ID; node->trx_id = trx->id; } run_again: thr->run_node = node; thr->prev_node = node; row_ins_step(thr); DEBUG_SYNC_C("ib_after_row_insert_step"); err = trx->error_state; if (err != DB_SUCCESS) { error_exit: /* FIXME: What's this ? */ thr->lock_state = QUE_THR_LOCK_ROW; was_lock_wait = row_mysql_handle_errors( &err, trx, thr, &savept); thr->lock_state = QUE_THR_LOCK_NOLOCK; if (was_lock_wait) { ut_ad(node->state == INS_NODE_INSERT_ENTRIES || node->state == INS_NODE_ALLOC_ROW_ID || node->state == INS_NODE_SET_IX_LOCK); goto run_again; } trx->op_info = ""; if (blob_heap != NULL) { mem_heap_free(blob_heap); } return(err); } if (dict_table_has_fts_index(table) && (!table->versioned() || !node->row->fields[table->vers_end].vers_history_row())) { doc_id_t doc_id; /* Extract the doc id from the hidden FTS column */ doc_id = fts_get_doc_id_from_row(table, node->row); if (doc_id <= 0) { ib::error() << "FTS_DOC_ID must be larger than 0 for table " << table->name; err = DB_FTS_INVALID_DOCID; trx->error_state = DB_FTS_INVALID_DOCID; goto error_exit; } if (!DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)) { doc_id_t next_doc_id = table->fts->cache->next_doc_id; if (doc_id < next_doc_id) { ib::error() << "FTS_DOC_ID must be larger than " << next_doc_id - 1 << " for table " << table->name; err = DB_FTS_INVALID_DOCID; trx->error_state = DB_FTS_INVALID_DOCID; goto error_exit; } } if (table->skip_alter_undo) { if (trx->fts_trx == NULL) { trx->fts_trx = fts_trx_create(trx); } fts_trx_table_t ftt; ftt.table = table; ftt.fts_trx = trx->fts_trx; fts_add_doc_from_tuple(&ftt, doc_id, node->row); } else { /* Pass NULL for the columns affected, since an INSERT affects all FTS indexes. */ fts_trx_add_op(trx, table, doc_id, FTS_INSERT, NULL); } } /* Not protected by dict_sys.latch or table->stats_mutex_lock() for performance reasons, we would rather get garbage in stat_n_rows (which is just an estimate anyway) than protecting the following code with a latch. */ dict_table_n_rows_inc(table); if (prebuilt->clust_index_was_generated) { /* set row id to prebuilt */ memcpy(prebuilt->row_id, node->sys_buf, DATA_ROW_ID_LEN); } dict_stats_update_if_needed(table, *trx); trx->op_info = ""; if (blob_heap != NULL) { mem_heap_free(blob_heap); } return(err); } /*********************************************************************//** Builds a dummy query graph used in selects. */ void row_prebuild_sel_graph( /*===================*/ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct in MySQL handle */ { sel_node_t* node; ut_ad(prebuilt && prebuilt->trx); if (prebuilt->sel_graph == NULL) { node = sel_node_create(prebuilt->heap); que_thr_t* fork = pars_complete_graph_for_exec( node, prebuilt->trx, prebuilt->heap, prebuilt); fork->state = QUE_THR_RUNNING; prebuilt->sel_graph = static_cast( que_node_get_parent(fork)); prebuilt->sel_graph->state = QUE_FORK_ACTIVE; } } /*********************************************************************//** Creates an query graph node of 'update' type to be used in the MySQL interface. @return own: update node */ upd_node_t* row_create_update_node_for_mysql( /*=============================*/ dict_table_t* table, /*!< in: table to update */ mem_heap_t* heap) /*!< in: mem heap from which allocated */ { upd_node_t* node; DBUG_ENTER("row_create_update_node_for_mysql"); node = upd_node_create(heap); node->in_mysql_interface = true; node->is_delete = NO_DELETE; node->pcur = new (mem_heap_alloc(heap, sizeof(btr_pcur_t))) btr_pcur_t(); node->table = table; node->update = upd_create(dict_table_get_n_cols(table) + dict_table_get_n_v_cols(table), heap); node->update_n_fields = dict_table_get_n_cols(table); UT_LIST_INIT(node->columns, &sym_node_t::col_var_list); node->has_clust_rec_x_lock = TRUE; DBUG_RETURN(node); } /*********************************************************************//** Gets pointer to a prebuilt update vector used in updates. If the update graph has not yet been built in the prebuilt struct, then this function first builds it. @return prebuilt update vector */ upd_t* row_get_prebuilt_update_vector( /*===========================*/ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct in MySQL handle */ { if (prebuilt->upd_node == NULL) { /* Not called before for this handle: create an update node and query graph to the prebuilt struct */ prebuilt->upd_node = row_create_update_node_for_mysql( prebuilt->table, prebuilt->heap); prebuilt->upd_graph = static_cast( que_node_get_parent( pars_complete_graph_for_exec( prebuilt->upd_node, prebuilt->trx, prebuilt->heap, prebuilt))); prebuilt->upd_graph->state = QUE_FORK_ACTIVE; } return(prebuilt->upd_node->update); } /******************************************************************** Handle an update of a column that has an FTS index. */ static void row_fts_do_update( /*==============*/ trx_t* trx, /* in: transaction */ dict_table_t* table, /* in: Table with FTS index */ doc_id_t old_doc_id, /* in: old document id */ doc_id_t new_doc_id) /* in: new document id */ { if(trx->fts_next_doc_id) { fts_trx_add_op(trx, table, old_doc_id, FTS_DELETE, NULL); if(new_doc_id != FTS_NULL_DOC_ID) fts_trx_add_op(trx, table, new_doc_id, FTS_INSERT, NULL); } } /************************************************************************ Handles FTS matters for an update or a delete. NOTE: should not be called if the table does not have an FTS index. .*/ static dberr_t row_fts_update_or_delete( /*=====================*/ row_prebuilt_t* prebuilt) /* in: prebuilt struct in MySQL handle */ { trx_t* trx = prebuilt->trx; dict_table_t* table = prebuilt->table; upd_node_t* node = prebuilt->upd_node; doc_id_t old_doc_id = prebuilt->fts_doc_id; DBUG_ENTER("row_fts_update_or_delete"); ut_a(dict_table_has_fts_index(prebuilt->table)); /* Deletes are simple; get them out of the way first. */ if (node->is_delete) { /* A delete affects all FTS indexes, so we pass NULL */ fts_trx_add_op(trx, table, old_doc_id, FTS_DELETE, NULL); } else { doc_id_t new_doc_id; new_doc_id = fts_read_doc_id((byte*) &trx->fts_next_doc_id); if (new_doc_id == 0) { ib::error() << "InnoDB FTS: Doc ID cannot be 0"; DBUG_RETURN(DB_FTS_INVALID_DOCID); } row_fts_do_update(trx, table, old_doc_id, new_doc_id); } DBUG_RETURN(DB_SUCCESS); } /*********************************************************************//** Initialize the Doc ID system for FK table with FTS index */ static void init_fts_doc_id_for_ref( /*====================*/ dict_table_t* table, /*!< in: table */ ulint* depth) /*!< in: recusive call depth */ { table->fk_max_recusive_level = 0; /* Limit on tables involved in cascading delete/update */ if (++*depth > FK_MAX_CASCADE_DEL) { return; } /* Loop through this table's referenced list and also recursively traverse each table's foreign table list */ for (dict_foreign_t* foreign : table->referenced_set) { ut_ad(foreign->foreign_table); if (foreign->foreign_table->fts) { fts_init_doc_id(foreign->foreign_table); } if (foreign->foreign_table != table && !foreign->foreign_table->referenced_set.empty()) { init_fts_doc_id_for_ref( foreign->foreign_table, depth); } } } /** Does an update or delete of a row for MySQL. @param[in,out] prebuilt prebuilt struct in MySQL handle @return error code or DB_SUCCESS */ dberr_t row_update_for_mysql(row_prebuilt_t* prebuilt) { trx_savept_t savept; dberr_t err; que_thr_t* thr; dict_index_t* clust_index; upd_node_t* node; dict_table_t* table = prebuilt->table; trx_t* trx = prebuilt->trx; ulint fk_depth = 0; DBUG_ENTER("row_update_for_mysql"); ut_ad(trx); ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); ut_a(prebuilt->template_type == ROW_MYSQL_WHOLE_ROW); ut_ad(table->stat_initialized); if (!table->is_readable()) { return(row_mysql_get_table_status(table, trx, true)); } if (high_level_read_only) { return(DB_READ_ONLY); } DEBUG_SYNC_C("innodb_row_update_for_mysql_begin"); trx->op_info = "updating or deleting"; row_mysql_delay_if_needed(); init_fts_doc_id_for_ref(table, &fk_depth); if (!table->no_rollback()) { trx_start_if_not_started_xa(trx, true); } node = prebuilt->upd_node; const bool is_delete = node->is_delete == PLAIN_DELETE; ut_ad(node->table == table); clust_index = dict_table_get_first_index(table); btr_pcur_copy_stored_position(node->pcur, prebuilt->pcur->index() == clust_index ? prebuilt->pcur : prebuilt->clust_pcur); ut_a(node->pcur->rel_pos == BTR_PCUR_ON); /* MySQL seems to call rnd_pos before updating each row it has cached: we can get the correct cursor position from prebuilt->pcur; NOTE that we cannot build the row reference from mysql_rec if the clustered index was automatically generated for the table: MySQL does not know anything about the row id used as the clustered index key */ savept.least_undo_no = trx->undo_no; thr = que_fork_get_first_thr(prebuilt->upd_graph); node->state = UPD_NODE_UPDATE_CLUSTERED; ut_ad(!prebuilt->sql_stat_start); ut_ad(!prebuilt->versioned_write || node->table->versioned()); if (prebuilt->versioned_write) { if (node->is_delete == VERSIONED_DELETE) { node->vers_make_delete(trx); } else if (node->update->affects_versioned()) { node->vers_make_update(trx); } } for (;;) { thr->run_node = node; thr->prev_node = node; thr->fk_cascade_depth = 0; row_upd_step(thr); err = trx->error_state; if (err == DB_SUCCESS) { break; } if (err == DB_RECORD_NOT_FOUND) { trx->error_state = DB_SUCCESS; goto error; } thr->lock_state= QUE_THR_LOCK_ROW; DEBUG_SYNC(trx->mysql_thd, "row_update_for_mysql_error"); bool was_lock_wait = row_mysql_handle_errors( &err, trx, thr, &savept); thr->lock_state= QUE_THR_LOCK_NOLOCK; if (!was_lock_wait) { goto error; } } if (dict_table_has_fts_index(table) && trx->fts_next_doc_id != UINT64_UNDEFINED) { err = row_fts_update_or_delete(prebuilt); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { ut_ad("unexpected error" == 0); goto error; } } /* Completed cascading operations (if any) */ bool update_statistics; ut_ad(is_delete == (node->is_delete == PLAIN_DELETE)); if (is_delete) { /* Not protected by dict_sys.latch or prebuilt->table->stats_mutex_lock() for performance reasons, we would rather get garbage in stat_n_rows (which is just an estimate anyway) than protecting the following code with a latch. */ dict_table_n_rows_dec(prebuilt->table); update_statistics = !srv_stats_include_delete_marked; } else { update_statistics = !(node->cmpl_info & UPD_NODE_NO_ORD_CHANGE); } if (update_statistics) { dict_stats_update_if_needed(prebuilt->table, *trx); } else { /* Always update the table modification counter. */ prebuilt->table->stat_modified_counter++; } error: trx->op_info = ""; DBUG_RETURN(err); } /** This can only be used when the current transaction is at READ COMMITTED or READ UNCOMMITTED isolation level. Before calling this function row_search_mvcc() must have initialized prebuilt->new_rec_locks to store the information which new record locks really were set. This function removes a newly set clustered index record lock under prebuilt->pcur or prebuilt->clust_pcur. Thus, this implements a 'mini-rollback' that releases the latest clustered index record lock we set. @param[in,out] prebuilt prebuilt struct in MySQL handle @param[in] has_latches_on_recs TRUE if called so that we have the latches on the records under pcur and clust_pcur, and we do not need to reposition the cursors. */ void row_unlock_for_mysql( row_prebuilt_t* prebuilt, ibool has_latches_on_recs) { if (prebuilt->new_rec_locks == 1 && prebuilt->index->is_clust()) { trx_t* trx = prebuilt->trx; ut_ad(trx->isolation_level <= TRX_ISO_READ_COMMITTED); trx->op_info = "unlock_row"; const rec_t* rec; dict_index_t* index; trx_id_t rec_trx_id; mtr_t mtr; btr_pcur_t* pcur = prebuilt->pcur; mtr_start(&mtr); /* Restore the cursor position and find the record */ if (!has_latches_on_recs && pcur->restore_position(BTR_SEARCH_LEAF, &mtr) != btr_pcur_t::SAME_ALL) { goto no_unlock; } rec = btr_pcur_get_rec(pcur); index = pcur->index(); /* If the record has been modified by this transaction, do not unlock it. */ if (index->trx_id_offset) { rec_trx_id = trx_read_trx_id(rec + index->trx_id_offset); } else { mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields, ULINT_UNDEFINED, &heap); rec_trx_id = row_get_rec_trx_id(rec, index, offsets); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } if (rec_trx_id != trx->id) { /* We did not update the record: unlock it */ rec = btr_pcur_get_rec(pcur); lock_rec_unlock( trx, btr_pcur_get_block(pcur)->page.id(), rec, static_cast( prebuilt->select_lock_type)); } no_unlock: mtr_commit(&mtr); trx->op_info = ""; } } /** Write query start time as SQL field data to a buffer. Needed by InnoDB. @param thd Thread object @param buf Buffer to hold start time data */ void thd_get_query_start_data(THD *thd, char *buf); /** Insert history row when evaluating foreign key referential action. 1. Create new dtuple_t 'row' from node->historical_row; 2. Update its row_end to current timestamp; 3. Insert it to a table; 4. Update table statistics. This is used in UPDATE CASCADE/SET NULL of a system versioned referenced table. node->historical_row: dtuple_t containing pointers of row changed by refertial action. @param[in] thr current query thread @param[in] node a node which just updated a row in a foreign table @return DB_SUCCESS or some error */ static dberr_t row_update_vers_insert(que_thr_t* thr, upd_node_t* node) { trx_t* trx = thr_get_trx(thr); dfield_t* row_end; char row_end_data[8]; dict_table_t* table = node->table; const unsigned zip_size = table->space->zip_size(); ut_ad(table->versioned()); dtuple_t* row; const ulint n_cols = dict_table_get_n_cols(table); const ulint n_v_cols = dict_table_get_n_v_cols(table); ut_ad(n_cols == dtuple_get_n_fields(node->historical_row)); ut_ad(n_v_cols == dtuple_get_n_v_fields(node->historical_row)); row = dtuple_create_with_vcol(node->historical_heap, n_cols, n_v_cols); dict_table_copy_types(row, table); ins_node_t* insert_node = ins_node_create(INS_DIRECT, table, node->historical_heap); if (!insert_node) { trx->error_state = DB_OUT_OF_MEMORY; goto exit; } insert_node->common.parent = thr; ins_node_set_new_row(insert_node, row); ut_ad(n_cols > DATA_N_SYS_COLS); // Exclude DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR for (ulint i = 0; i < n_cols - DATA_N_SYS_COLS; i++) { dfield_t *src= dtuple_get_nth_field(node->historical_row, i); dfield_t *dst= dtuple_get_nth_field(row, i); dfield_copy(dst, src); if (dfield_is_ext(src)) { byte *field_data = static_cast(dfield_get_data(src)); ulint ext_len; ulint field_len = dfield_get_len(src); ut_a(field_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_a(memcmp(field_data + field_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); byte *data = btr_copy_externally_stored_field( &ext_len, field_data, zip_size, field_len, node->historical_heap); dfield_set_data(dst, data, ext_len); } } for (ulint i = 0; i < n_v_cols; i++) { dfield_t *dst= dtuple_get_nth_v_field(row, i); dfield_t *src= dtuple_get_nth_v_field(node->historical_row, i); dfield_copy(dst, src); } node->historical_row = NULL; row_end = dtuple_get_nth_field(row, table->vers_end); if (dict_table_get_nth_col(table, table->vers_end)->vers_native()) { mach_write_to_8(row_end_data, trx->id); dfield_set_data(row_end, row_end_data, 8); } else { thd_get_query_start_data(trx->mysql_thd, row_end_data); dfield_set_data(row_end, row_end_data, 7); } for (;;) { thr->run_node = insert_node; thr->prev_node = insert_node; row_ins_step(thr); switch (trx->error_state) { case DB_LOCK_WAIT: if (lock_wait(thr) == DB_SUCCESS) { continue; } /* fall through */ default: /* Other errors are handled for the parent node. */ thr->fk_cascade_depth = 0; goto exit; case DB_SUCCESS: dict_stats_update_if_needed(table, *trx); goto exit; } } exit: que_graph_free_recursive(insert_node); mem_heap_free(node->historical_heap); node->historical_heap = NULL; return trx->error_state; } /**********************************************************************//** Does a cascaded delete or set null in a foreign key operation. @return error code or DB_SUCCESS */ dberr_t row_update_cascade_for_mysql( /*=========================*/ que_thr_t* thr, /*!< in: query thread */ upd_node_t* node, /*!< in: update node used in the cascade or set null operation */ dict_table_t* table) /*!< in: table where we do the operation */ { /* Increment fk_cascade_depth to record the recursive call depth on a single update/delete that affects multiple tables chained together with foreign key relations. */ if (++thr->fk_cascade_depth > FK_MAX_CASCADE_DEL) { return(DB_FOREIGN_EXCEED_MAX_CASCADE); } trx_t* trx = thr_get_trx(thr); if (table->versioned()) { if (node->is_delete == PLAIN_DELETE) { node->vers_make_delete(trx); } else if (node->update->affects_versioned()) { dberr_t err = row_update_vers_insert(thr, node); if (err != DB_SUCCESS) { return err; } node->vers_make_update(trx); } } for (;;) { thr->run_node = node; thr->prev_node = node; DEBUG_SYNC_C("foreign_constraint_update_cascade"); { TABLE *mysql_table = thr->prebuilt->m_mysql_table; thr->prebuilt->m_mysql_table = NULL; row_upd_step(thr); thr->prebuilt->m_mysql_table = mysql_table; } switch (trx->error_state) { case DB_LOCK_WAIT: if (lock_wait(thr) == DB_SUCCESS) { continue; } /* fall through */ default: /* Other errors are handled for the parent node. */ thr->fk_cascade_depth = 0; return trx->error_state; case DB_SUCCESS: thr->fk_cascade_depth = 0; bool stats; if (node->is_delete == PLAIN_DELETE) { /* Not protected by dict_sys.latch or node->table->stats_mutex_lock() for performance reasons, we would rather get garbage in stat_n_rows (which is just an estimate anyway) than protecting the following code with a latch. */ dict_table_n_rows_dec(node->table); stats = !srv_stats_include_delete_marked; } else { stats = !(node->cmpl_info & UPD_NODE_NO_ORD_CHANGE); } if (stats) { dict_stats_update_if_needed(node->table, *trx); } else { /* Always update the table modification counter. */ node->table->stat_modified_counter++; } return(DB_SUCCESS); } } } /*********************************************************************//** Creates a table for MySQL. On failure the transaction will be rolled back and the 'table' object will be freed. @return error code or DB_SUCCESS */ dberr_t row_create_table_for_mysql( /*=======================*/ dict_table_t* table, /*!< in, own: table definition (will be freed, or on DB_SUCCESS added to the data dictionary cache) */ trx_t* trx) /*!< in/out: transaction */ { tab_node_t* node; mem_heap_t* heap; que_thr_t* thr; ut_ad(trx->state == TRX_STATE_ACTIVE); ut_ad(dict_sys.sys_tables_exist()); ut_ad(dict_sys.locked()); ut_ad(trx->dict_operation_lock_mode); DEBUG_SYNC_C("create_table"); DBUG_EXECUTE_IF( "ib_create_table_fail_at_start_of_row_create_table_for_mysql", dict_mem_table_free(table); return DB_ERROR; ); trx->op_info = "creating table"; heap = mem_heap_create(512); trx->dict_operation = true; node = tab_create_graph_create(table, heap); thr = pars_complete_graph_for_exec(node, trx, heap, NULL); ut_a(thr == que_fork_start_command( static_cast(que_node_get_parent(thr)))); que_run_threads(thr); dberr_t err = trx->error_state; if (err != DB_SUCCESS) { trx->error_state = DB_SUCCESS; trx->rollback(); dict_mem_table_free(table); } que_graph_free((que_t*) que_node_get_parent(thr)); trx->op_info = ""; return(err); } /*********************************************************************//** Create an index when creating a table. On failure, the caller must drop the table! @return error number or DB_SUCCESS */ dberr_t row_create_index_for_mysql( /*=======================*/ dict_index_t* index, /*!< in, own: index definition (will be freed) */ trx_t* trx, /*!< in: transaction handle */ const ulint* field_lengths, /*!< in: if not NULL, must contain dict_index_get_n_fields(index) actual field lengths for the index columns, which are then checked for not being too large. */ fil_encryption_t mode, /*!< in: encryption mode */ uint32_t key_id) /*!< in: encryption key_id */ { ind_node_t* node; mem_heap_t* heap; que_thr_t* thr; dberr_t err; ulint i; ulint len; dict_table_t* table = index->table; ut_ad(dict_sys.locked()); for (i = 0; i < index->n_def; i++) { /* Check that prefix_len and actual length < DICT_MAX_INDEX_COL_LEN */ len = dict_index_get_nth_field(index, i)->prefix_len; if (field_lengths && field_lengths[i]) { len = ut_max(len, field_lengths[i]); } DBUG_EXECUTE_IF( "ib_create_table_fail_at_create_index", len = DICT_MAX_FIELD_LEN_BY_FORMAT(table) + 1; ); /* Column or prefix length exceeds maximum column length */ if (len > (ulint) DICT_MAX_FIELD_LEN_BY_FORMAT(table)) { dict_mem_index_free(index); return DB_TOO_BIG_INDEX_COL; } } /* For temp-table we avoid insertion into SYSTEM TABLES to maintain performance and so we have separate path that directly just updates dictonary cache. */ if (!table->is_temporary()) { ut_ad(trx->state == TRX_STATE_ACTIVE); ut_ad(trx->dict_operation); trx->op_info = "creating index"; /* Note that the space id where we store the index is inherited from the table in dict_build_index_def_step() in dict0crea.cc. */ heap = mem_heap_create(512); node = ind_create_graph_create(index, table->name.m_name, heap, mode, key_id); thr = pars_complete_graph_for_exec(node, trx, heap, NULL); ut_a(thr == que_fork_start_command( static_cast( que_node_get_parent(thr)))); que_run_threads(thr); err = trx->error_state; index = node->index; ut_ad(!index == (err != DB_SUCCESS)); que_graph_free((que_t*) que_node_get_parent(thr)); if (index && (index->type & DICT_FTS)) { err = fts_create_index_tables(trx, index, table->id); } trx->op_info = ""; } else { dict_build_index_def(table, index, trx); err = dict_index_add_to_cache(index, FIL_NULL); ut_ad((index == NULL) == (err != DB_SUCCESS)); if (UNIV_LIKELY(err == DB_SUCCESS)) { ut_ad(!index->is_instant()); index->n_core_null_bytes = static_cast( UT_BITS_IN_BYTES(unsigned(index->n_nullable))); err = dict_create_index_tree_in_mem(index, trx); #ifdef BTR_CUR_HASH_ADAPT ut_ad(!index->search_info->ref_count); #endif /* BTR_CUR_HASH_ADAPT */ if (err != DB_SUCCESS) { dict_index_remove_from_cache(table, index); } } } return(err); } /** Reassigns the table identifier of a table. @param[in,out] table table @param[in,out] trx transaction @param[out] new_id new table id @return error code or DB_SUCCESS */ static dberr_t row_mysql_table_id_reassign( dict_table_t* table, trx_t* trx, table_id_t* new_id) { if (!dict_sys.sys_tables || dict_sys.sys_tables->corrupted || !dict_sys.sys_columns || dict_sys.sys_columns->corrupted || !dict_sys.sys_indexes || dict_sys.sys_indexes->corrupted || !dict_sys.sys_virtual || dict_sys.sys_virtual->corrupted) { return DB_CORRUPTION; } dberr_t err; pars_info_t* info = pars_info_create(); dict_hdr_get_new_id(new_id, NULL, NULL); pars_info_add_ull_literal(info, "old_id", table->id); pars_info_add_ull_literal(info, "new_id", *new_id); /* Note: This cannot be rolled back. Rollback would see the UPDATE SYS_INDEXES as two operations: DELETE and INSERT. It would invoke btr_free_if_exists() when rolling back the INSERT, effectively dropping all indexes of the table. */ err = que_eval_sql( info, "PROCEDURE RENUMBER_TABLE_PROC () IS\n" "BEGIN\n" "UPDATE SYS_TABLES SET ID = :new_id\n" " WHERE ID = :old_id;\n" "UPDATE SYS_COLUMNS SET TABLE_ID = :new_id\n" " WHERE TABLE_ID = :old_id;\n" "UPDATE SYS_INDEXES SET TABLE_ID = :new_id\n" " WHERE TABLE_ID = :old_id;\n" "UPDATE SYS_VIRTUAL SET TABLE_ID = :new_id\n" " WHERE TABLE_ID = :old_id;\n" "END;\n", trx); return(err); } /*********************************************************************//** Do the foreign key constraint checks. @return DB_SUCCESS or error code. */ static dberr_t row_discard_tablespace_foreign_key_checks( /*======================================*/ const trx_t* trx, /*!< in: transaction handle */ const dict_table_t* table) /*!< in: table to be discarded */ { if (srv_read_only_mode || !trx->check_foreigns) { return(DB_SUCCESS); } /* Check if the table is referenced by foreign key constraints from some other table (not the table itself) */ dict_foreign_set::const_iterator it = std::find_if(table->referenced_set.begin(), table->referenced_set.end(), dict_foreign_different_tables()); if (it == table->referenced_set.end()) { return(DB_SUCCESS); } const dict_foreign_t* foreign = *it; FILE* ef = dict_foreign_err_file; ut_ad(foreign->foreign_table != table); ut_ad(foreign->referenced_table == table); /* We only allow discarding a referenced table if FOREIGN_KEY_CHECKS is set to 0 */ mysql_mutex_lock(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Cannot DISCARD table ", ef); ut_print_name(ef, trx, table->name.m_name); fputs("\n" "because it is referenced by ", ef); ut_print_name(ef, trx, foreign->foreign_table_name); putc('\n', ef); mysql_mutex_unlock(&dict_foreign_err_mutex); return(DB_CANNOT_DROP_CONSTRAINT); } /*********************************************************************//** Do the DISCARD TABLESPACE operation. @return DB_SUCCESS or error code. */ static dberr_t row_discard_tablespace( /*===================*/ trx_t* trx, /*!< in/out: transaction handle */ dict_table_t* table) /*!< in/out: table to be discarded */ { dberr_t err; /* How do we prevent crashes caused by ongoing operations on the table? Old operations could try to access non-existent pages. The SQL layer will block all DML on the table using MDL and a DISCARD will not start unless all existing operations on the table to be discarded are completed. 1) Acquire the data dictionary latch in X mode. This will prevent any internal operations that are not covered by MDL or InnoDB table locks. 2) Purge and rollback: we assign a new table id for the table. Since purge and rollback look for the table based on the table id, they see the table as 'dropped' and discard their operations. */ table_id_t new_id; /* Set the TABLESPACE DISCARD flag in the table definition on disk. */ err = row_import_update_discarded_flag(trx, table->id, true); if (err != DB_SUCCESS) { return(err); } /* Update the index root pages in the system tables, on disk */ err = row_import_update_index_root(trx, table, true); if (err != DB_SUCCESS) { return(err); } /* Drop all the FTS auxiliary tables. */ if (dict_table_has_fts_index(table) || DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)) { fts_drop_tables(trx, *table); } /* Assign a new space ID to the table definition so that purge can ignore the changes. Update the system table on disk. */ err = row_mysql_table_id_reassign(table, trx, &new_id); if (err != DB_SUCCESS) { return(err); } /* All persistent operations successful, update the data dictionary memory cache. */ dict_table_change_id_in_cache(table, new_id); dict_index_t* index = UT_LIST_GET_FIRST(table->indexes); if (index) index->clear_instant_alter(); /* Reset the root page numbers. */ for (; index; index = UT_LIST_GET_NEXT(indexes, index)) { index->page = FIL_NULL; } /* If the tablespace did not already exist or we couldn't write to it, we treat that as a successful DISCARD. It is unusable anyway. */ return DB_SUCCESS; } /*********************************************************************//** Discards the tablespace of a table which stored in an .ibd file. Discarding means that this function renames the .ibd file and assigns a new table id for the table. Also the file_unreadable flag is set. @return error code or DB_SUCCESS */ dberr_t row_discard_tablespace_for_mysql(dict_table_t *table, trx_t *trx) { ut_ad(!is_system_tablespace(table->space_id)); ut_ad(!table->is_temporary()); const auto fts_exist = table->flags2 & (DICT_TF2_FTS_HAS_DOC_ID | DICT_TF2_FTS); dberr_t err; if (fts_exist) { fts_optimize_remove_table(table); purge_sys.stop_FTS(*table); err= fts_lock_tables(trx, *table); if (err != DB_SUCCESS) { rollback: if (fts_exist) { purge_sys.resume_FTS(); fts_optimize_add_table(table); } trx->rollback(); if (trx->dict_operation_lock_mode) row_mysql_unlock_data_dictionary(trx); return err; } } row_mysql_lock_data_dictionary(trx); trx->op_info = "discarding tablespace"; trx->dict_operation= true; /* We serialize data dictionary operations with dict_sys.latch: this is to avoid deadlocks during data dictionary operations */ err= row_discard_tablespace_foreign_key_checks(trx, table); if (err != DB_SUCCESS) goto rollback; /* Note: The following cannot be rolled back. Rollback would see the UPDATE of SYS_INDEXES.TABLE_ID as two operations: DELETE and INSERT. It would invoke btr_free_if_exists() when rolling back the INSERT, effectively dropping all indexes of the table. Furthermore, we are already discarding data before the transaction is committed. It would be better to remove the integrity-breaking ALTER TABLE...DISCARD TABLESPACE operation altogether. */ table->file_unreadable= true; table->space= nullptr; table->flags2|= DICT_TF2_DISCARDED; err= row_discard_tablespace(trx, table); DBUG_EXECUTE_IF("ib_discard_before_commit_crash", log_buffer_flush_to_disk(); DBUG_SUICIDE();); /* FTS_ tables may be deleted */ std::vector deleted; trx->commit(deleted); const auto space_id= table->space_id; pfs_os_file_t d= fil_delete_tablespace(space_id); DBUG_EXECUTE_IF("ib_discard_after_commit_crash", DBUG_SUICIDE();); row_mysql_unlock_data_dictionary(trx); if (d != OS_FILE_CLOSED) os_file_close(d); for (pfs_os_file_t d : deleted) os_file_close(d); if (fts_exist) purge_sys.resume_FTS(); buf_flush_remove_pages(space_id); trx->op_info= ""; return err; } /****************************************************************//** Delete a single constraint. @return error code or DB_SUCCESS */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_delete_constraint_low( /*======================*/ const char* id, /*!< in: constraint id */ trx_t* trx) /*!< in: transaction handle */ { pars_info_t* info = pars_info_create(); pars_info_add_str_literal(info, "id", id); return(que_eval_sql(info, "PROCEDURE DELETE_CONSTRAINT () IS\n" "BEGIN\n" "DELETE FROM SYS_FOREIGN_COLS WHERE ID = :id;\n" "DELETE FROM SYS_FOREIGN WHERE ID = :id;\n" "END;\n", trx)); } /****************************************************************//** Delete a single constraint. @return error code or DB_SUCCESS */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_delete_constraint( /*==================*/ const char* id, /*!< in: constraint id */ const char* database_name, /*!< in: database name, with the trailing '/' */ mem_heap_t* heap, /*!< in: memory heap */ trx_t* trx) /*!< in: transaction handle */ { dberr_t err; /* New format constraints have ids /. */ err = row_delete_constraint_low( mem_heap_strcat(heap, database_name, id), trx); if ((err == DB_SUCCESS) && !strchr(id, '/')) { /* Old format < 4.0.18 constraints have constraint ids NUMBER_NUMBER. We only try deleting them if the constraint name does not contain a '/' character, otherwise deleting a new format constraint named 'foo/bar' from database 'baz' would remove constraint 'bar' from database 'foo', if it existed. */ err = row_delete_constraint_low(id, trx); } return(err); } /*********************************************************************//** Renames a table for MySQL. @return error code or DB_SUCCESS */ dberr_t row_rename_table_for_mysql( /*=======================*/ const char* old_name, /*!< in: old table name */ const char* new_name, /*!< in: new table name */ trx_t* trx, /*!< in/out: transaction */ bool use_fk) /*!< in: whether to parse and enforce FOREIGN KEY constraints */ { dict_table_t* table = NULL; dberr_t err = DB_ERROR; mem_heap_t* heap = NULL; const char** constraints_to_drop = NULL; ulint n_constraints_to_drop = 0; ibool old_is_tmp, new_is_tmp; pars_info_t* info = NULL; ut_a(old_name != NULL); ut_a(new_name != NULL); ut_ad(trx->state == TRX_STATE_ACTIVE); ut_ad(trx->dict_operation_lock_mode); if (high_level_read_only) { return(DB_READ_ONLY); } trx->op_info = "renaming table"; old_is_tmp = dict_table_t::is_temporary_name(old_name); new_is_tmp = dict_table_t::is_temporary_name(new_name); table = dict_table_open_on_name(old_name, true, DICT_ERR_IGNORE_FK_NOKEY); /* MariaDB partition engine hard codes the file name separator as "#P#" and "#SP#". The text case is fixed even if lower_case_table_names is set to 1 or 2. InnoDB always normalises file names to lower case on Windows, this can potentially cause problems when copying/moving tables between platforms. 1) If boot against an installation from Windows platform, then its partition table name could be all be in lower case in system tables. So we will need to check lower case name when load table. 2) If we boot an installation from other case sensitive platform in Windows, we might need to check the existence of table name without lowering case them in the system table. */ if (!table && lower_case_table_names == 1 && strstr(old_name, table_name_t::part_suffix)) { char par_case_name[MAX_FULL_NAME_LEN + 1]; #ifndef _WIN32 /* Check for the table using lower case name, including the partition separator "P" */ memcpy(par_case_name, old_name, strlen(old_name)); par_case_name[strlen(old_name)] = 0; innobase_casedn_str(par_case_name); #else /* On Windows platfrom, check whether there exists table name in system table whose name is not being normalized to lower case */ normalize_table_name_c_low( par_case_name, old_name, FALSE); #endif table = dict_table_open_on_name(par_case_name, true, DICT_ERR_IGNORE_FK_NOKEY); } if (!table) { err = DB_TABLE_NOT_FOUND; goto funct_exit; } ut_ad(!table->is_temporary()); if (!table->is_readable() && !table->space && !(table->flags2 & DICT_TF2_DISCARDED)) { err = DB_TABLE_NOT_FOUND; ib::error() << "Table " << old_name << " does not have an .ibd" " file in the database directory. " << TROUBLESHOOTING_MSG; goto funct_exit; } else if (use_fk && !old_is_tmp && new_is_tmp) { /* MySQL is doing an ALTER TABLE command and it renames the original table to a temporary table name. We want to preserve the original foreign key constraint definitions despite the name change. An exception is those constraints for which the ALTER TABLE contained DROP FOREIGN KEY .*/ heap = mem_heap_create(100); err = dict_foreign_parse_drop_constraints( heap, trx, table, &n_constraints_to_drop, &constraints_to_drop); if (err != DB_SUCCESS) { goto funct_exit; } } err = trx_undo_report_rename(trx, table); if (err != DB_SUCCESS) { goto funct_exit; } /* We use the private SQL parser of Innobase to generate the query graphs needed in updating the dictionary data from system tables. */ info = pars_info_create(); pars_info_add_str_literal(info, "new_table_name", new_name); pars_info_add_str_literal(info, "old_table_name", old_name); err = que_eval_sql(info, "PROCEDURE RENAME_TABLE () IS\n" "BEGIN\n" "UPDATE SYS_TABLES" " SET NAME = :new_table_name\n" " WHERE NAME = :old_table_name;\n" "END;\n", trx); if (err != DB_SUCCESS) { // Assume the caller guarantees destination name doesn't exist. ut_ad(err != DB_DUPLICATE_KEY); goto rollback_and_exit; } if (!new_is_tmp) { /* Rename all constraints. */ char new_table_name[MAX_TABLE_NAME_LEN + 1]; char old_table_utf8[MAX_TABLE_NAME_LEN + 1]; uint errors = 0; strncpy(old_table_utf8, old_name, MAX_TABLE_NAME_LEN); old_table_utf8[MAX_TABLE_NAME_LEN] = '\0'; innobase_convert_to_system_charset( strchr(old_table_utf8, '/') + 1, strchr(old_name, '/') +1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* Table name could not be converted from charset my_charset_filename to UTF-8. This means that the table name is already in UTF-8 (#mysql#50). */ strncpy(old_table_utf8, old_name, MAX_TABLE_NAME_LEN); old_table_utf8[MAX_TABLE_NAME_LEN] = '\0'; } info = pars_info_create(); pars_info_add_str_literal(info, "new_table_name", new_name); pars_info_add_str_literal(info, "old_table_name", old_name); pars_info_add_str_literal(info, "old_table_name_utf8", old_table_utf8); strncpy(new_table_name, new_name, MAX_TABLE_NAME_LEN); new_table_name[MAX_TABLE_NAME_LEN] = '\0'; innobase_convert_to_system_charset( strchr(new_table_name, '/') + 1, strchr(new_name, '/') +1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* Table name could not be converted from charset my_charset_filename to UTF-8. This means that the table name is already in UTF-8 (#mysql#50). */ strncpy(new_table_name, new_name, MAX_TABLE_NAME_LEN); new_table_name[MAX_TABLE_NAME_LEN] = '\0'; } pars_info_add_str_literal(info, "new_table_utf8", new_table_name); err = que_eval_sql( info, "PROCEDURE RENAME_CONSTRAINT_IDS () IS\n" "gen_constr_prefix CHAR;\n" "new_db_name CHAR;\n" "foreign_id CHAR;\n" "new_foreign_id CHAR;\n" "old_db_name_len INT;\n" "old_t_name_len INT;\n" "new_db_name_len INT;\n" "id_len INT;\n" "offset INT;\n" "found INT;\n" "BEGIN\n" "found := 1;\n" "old_db_name_len := INSTR(:old_table_name, '/')-1;\n" "new_db_name_len := INSTR(:new_table_name, '/')-1;\n" "new_db_name := SUBSTR(:new_table_name, 0,\n" " new_db_name_len);\n" "old_t_name_len := LENGTH(:old_table_name);\n" "gen_constr_prefix := CONCAT(:old_table_name_utf8,\n" " '_ibfk_');\n" "WHILE found = 1 LOOP\n" " SELECT ID INTO foreign_id\n" " FROM SYS_FOREIGN\n" " WHERE FOR_NAME = :old_table_name\n" " AND TO_BINARY(FOR_NAME)\n" " = TO_BINARY(:old_table_name)\n" " LOCK IN SHARE MODE;\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " ELSE\n" " UPDATE SYS_FOREIGN\n" " SET FOR_NAME = :new_table_name\n" " WHERE ID = foreign_id;\n" " id_len := LENGTH(foreign_id);\n" " IF (INSTR(foreign_id, '/') > 0) THEN\n" " IF (INSTR(foreign_id,\n" " gen_constr_prefix) > 0)\n" " THEN\n" " offset := INSTR(foreign_id, '_ibfk_') - 1;\n" " new_foreign_id :=\n" " CONCAT(:new_table_utf8,\n" " SUBSTR(foreign_id, offset,\n" " id_len - offset));\n" " ELSE\n" " new_foreign_id :=\n" " CONCAT(new_db_name,\n" " SUBSTR(foreign_id,\n" " old_db_name_len,\n" " id_len - old_db_name_len));\n" " END IF;\n" " UPDATE SYS_FOREIGN\n" " SET ID = new_foreign_id\n" " WHERE ID = foreign_id;\n" " UPDATE SYS_FOREIGN_COLS\n" " SET ID = new_foreign_id\n" " WHERE ID = foreign_id;\n" " END IF;\n" " END IF;\n" "END LOOP;\n" "UPDATE SYS_FOREIGN SET REF_NAME = :new_table_name\n" "WHERE REF_NAME = :old_table_name\n" " AND TO_BINARY(REF_NAME)\n" " = TO_BINARY(:old_table_name);\n" "END;\n", trx); } else if (n_constraints_to_drop > 0) { /* Drop some constraints of tmp tables. */ ulint db_name_len = dict_get_db_name_len(old_name) + 1; char* db_name = mem_heap_strdupl(heap, old_name, db_name_len); ulint i; for (i = 0; i < n_constraints_to_drop; i++) { err = row_delete_constraint(constraints_to_drop[i], db_name, heap, trx); if (err != DB_SUCCESS) { break; } } } if (err == DB_SUCCESS && (dict_table_has_fts_index(table) || DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)) && !dict_tables_have_same_db(old_name, new_name)) { err = fts_rename_aux_tables(table, new_name, trx); } switch (err) { case DB_DUPLICATE_KEY: ib::error() << "Table rename might cause two" " FOREIGN KEY constraints to have the same" " internal name in case-insensitive comparison."; ib::info() << TROUBLESHOOTING_MSG; /* fall through */ rollback_and_exit: default: trx->error_state = DB_SUCCESS; trx->rollback(); trx->error_state = DB_SUCCESS; break; case DB_SUCCESS: DEBUG_SYNC_C("innodb_rename_in_cache"); /* The following call will also rename the .ibd file */ err = dict_table_rename_in_cache( table, span{new_name,strlen(new_name)}, false); if (err != DB_SUCCESS) { goto rollback_and_exit; } /* In case of copy alter, template db_name and table_name should be renamed only for newly created table. */ if (table->vc_templ != NULL && !new_is_tmp) { innobase_rename_vc_templ(table); } /* We only want to switch off some of the type checking in an ALTER TABLE, not in a RENAME. */ dict_names_t fk_tables; err = dict_load_foreigns( new_name, nullptr, trx->id, !old_is_tmp || trx->check_foreigns, use_fk ? DICT_ERR_IGNORE_NONE : DICT_ERR_IGNORE_FK_NOKEY, fk_tables); if (err != DB_SUCCESS) { if (old_is_tmp) { /* In case of copy alter, ignore the loading of foreign key constraint when foreign_key_check is disabled */ ib::error_or_warn(trx->check_foreigns) << "In ALTER TABLE " << ut_get_name(trx, new_name) << " has or is referenced in foreign" " key constraints which are not" " compatible with the new table" " definition."; if (!trx->check_foreigns) { err = DB_SUCCESS; break; } } else { ib::error() << "In RENAME TABLE table " << ut_get_name(trx, new_name) << " is referenced in foreign key" " constraints which are not compatible" " with the new table definition."; } goto rollback_and_exit; } /* Check whether virtual column or stored column affects the foreign key constraint of the table. */ if (dict_foreigns_has_s_base_col(table->foreign_set, table)) { err = DB_NO_FK_ON_S_BASE_COL; goto rollback_and_exit; } /* Fill the virtual column set in foreign when the table undergoes copy alter operation. */ dict_mem_table_free_foreign_vcol_set(table); dict_mem_table_fill_foreign_vcol_set(table); while (!fk_tables.empty()) { const char *f = fk_tables.front(); dict_sys.load_table({f, strlen(f)}); fk_tables.pop_front(); } table->data_dir_path= NULL; } funct_exit: if (table) { table->release(); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } trx->op_info = ""; return(err); }